
Efficient ASP Techniques
for Solving Hard Problems

Carmine Dodaro
DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

1 / 30



Pigeon Problem

Description

Given a set of n pigeons and m holes, assign each pigeon to
exactly one hole such that two pigeons do not share the same
hole.

1 / 30



Pigeon Problem: Natural Encoding

{inHole(X,H) : hole(H)} = 1 :- pigeon(X).
:- inHole(X,H), inHole(Y,H), X < Y.

2 / 30



Pigeon Problem: Optimized Encoding

{inHole(X,H) : hole(H)} = 1 :- pigeon(X).
:- inHole(X,H), inHole(Y,H), X < Y.
:- #count{X:pigeon(X)}=P,#count{X:hole(X)}=H,P>H.

3 / 30



Instantiation of Large Aggregates (1)

c(1). c(2). ... c(9999). c(10000).
a(X) | b(X) :- c(X).
:- #count{X:a(X)}=N1, #count{X:b(X)}=N2, N1=N2.

Such aggregates are quite difficult to be evaluated

4 / 30



Instantiation of Large Aggregates (1)

c(1). c(2). ... c(9999). c(10000).
a(X) | b(X) :- c(X).
:- #count{X:a(X)}=N1, #count{X:b(X)}=N2, N1=N2.

Such aggregates are quite difficult to be evaluated

4 / 30



Instantiation of Large Aggregates (2)

A possible solution is to explore different ad-hoc strategies
for the problem

What is the simplest strategy?

In this simple case the
number of true “a” must be different from 5000!

5 / 30



Instantiation of Large Aggregates (2)

A possible solution is to explore different ad-hoc strategies
for the problem

What is the simplest strategy? In this simple case the
number of true “a” must be different from 5000!

5 / 30



A general solution

Ideas?

c(1). c(2). ... c(9999). c(10000).
a(X) | b(X) :- c(X).
:- #sum{1,X : a(X); -1,Y : b(Y)} = 0.

6 / 30



A general solution

Ideas?

c(1). c(2). ... c(9999). c(10000).
a(X) | b(X) :- c(X).
:- #sum{1,X : a(X); -1,Y : b(Y)} = 0.

6 / 30



Nurse Scheduling Problem (NSP)

Goal

Generation of schedules for nurses consisting of working and
rest days over a predetermined period of time

Motivation

A proper solution to NSP

Guarantees the high level of quality of health care

Improves the degree of satisfaction of nurses

The recruitment of qualified personnel

7 / 30



Problem Description

Requirements

Planning period: one year
Three working shifts: morning (7 A.M. – 2 P.M.), afternoon
(2 P.M. – 9 P.M.), night (9 P.M. – 7 A.M.)
Coverage: min and max number of nurses in each shift
Workload: min and max number of working hours per year
Vacation: 30 days per year
The starting time of a shift must be at least 24 hours later
than the starting time of the previous shift
Each nurse has at least two rest days each fourteen days
After two consecutive nights there is one special rest day
Balance: Morning, afternoon and night shifts assigned to
every nurse should range over a set of acceptable values

8 / 30



ASP Encoding: Define Search Space

Definition of Shifts
shift(1, morning, 7). shift(2, afternoon, 7).
shift(3, night, 10). shift(4, specialrest, 0).
shift(5, rest, 0). shift(6, vacation, 0).

% Choose an assignment for each day and for each
nurse.

{assign(N,S,D):shift(S,Name,H)}=1 :- nurse(N),
day(D).

9 / 30



ASP Encoding: Constraints (1)

% Coverage: Limits to nurses that must be present
for each shift.

:- day(D), #count{N:assign(N,S,D)}>Max,
nurseLimits(S,Min,Max).

:- day(D), #count{N:assign(N,S,D)}<Min,
nurseLimits(S,Min,Max).

% Workload: Min and Max working hours per year.
:- nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} >

Max, workLimits(Min,Max).
:- nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} <

Min, workLimits(Min,Max).

% Holidays: Exactly 30 days of vacation (ID 6)
:- nurse(N), #count{D : assign(N,6,D)} != 30.

10 / 30



ASP Encoding: Constraints (2)

% Each nurse cannot work twice in 24 hours.
:- nurse(N), assign(N,T1,D), assign(N,T2,D+1),

T2<T1, T1<=3.

% At least 2 rest days each 14 days.
:- nurse(N),day(D),days(DAYS),D<=DAYS-13,
#count{D1:assign(N,5,D1), D1>=D, D1<=D+13}<2.

% Special rest day after two nights (IDs 3 and 4
are night and special rest).

:- not assign(N,4,D), assign(N,3,D-2),
assign(N,3,D-1).

:- assign(N,4,D), not assign(N,3,D-2).
:- assign(N,4,D), not assign(N,3,D-1).

11 / 30



ASP Encoding: Constraints (3)

% Balance: Morning, afternoon and night shifts
assigned to every nurse should range over a
set of acceptable values.

:- nurse(N), #count{D : assign(N,S,D)} > Max,
dayLimits(S,Min,Max).

:- nurse(N), #count{D : assign(N,S,D)} < Min,
dayLimits(S,Min,Max).

12 / 30



Inefficiencies of the encoding (1)

Consider only the following portion of program:

% Workload: Min and Max working hours per year.
:- nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} >

Max, workLimits(Min,Max).
:- nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} <

Min, workLimits(Min,Max).

% Balance: Morning, afternoon and night shifts
assigned to every nurse should range over a
set of acceptable values.

:- nurse(N), #count{D : assign(N,S,D)} > Max,
dayLimits(S,Min,Max).

:- nurse(N), #count{D : assign(N,S,D)} < Min,
dayLimits(S,Min,Max).

13 / 30



Inefficiencies of the encoding (2)
Assume the following values for the constraints:

Assume 3 shifts:
shift(1,morning,7) shift(2, afternoon, 7) shift(3, night, 10)
Workload: min and max number of working hours per year,
1687 and 1692
Balance: a nurse must be assigned to at least 74 and at
most 82 mornings, 74 to 82 afternoons and 58 to 61 nights

N M + A
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

58 1616 1623 1630 1637 1644 1651 1658 1665 1672 1679 1686 1693 1700 1707 1714 1721 1728
59 1626 1633 1640 1647 1654 1661 1668 1675 1682 1689 1696 1703 1710 1717 1724 1731 1738
60 1636 1643 1650 1657 1664 1671 1678 1685 1692 1699 1706 1713 1720 1727 1734 1741 1748
61 1646 1653 1660 1667 1674 1681 1688 1695 1702 1709 1716 1723 1730 1737 1744 1751 1758

Number of working hours assigned to nurse n, that is,
7× (M + A) + 10× N
Admissible values ([1687..1692]) are emphasized in red

14 / 30



Inefficiencies of the encoding (2)
Assume the following values for the constraints:

Assume 3 shifts:
shift(1,morning,7) shift(2, afternoon, 7) shift(3, night, 10)
Workload: min and max number of working hours per year,
1687 and 1692
Balance: a nurse must be assigned to at least 74 and at
most 82 mornings, 74 to 82 afternoons and 58 to 61 nights

N M + A
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

58 1616 1623 1630 1637 1644 1651 1658 1665 1672 1679 1686 1693 1700 1707 1714 1721 1728
59 1626 1633 1640 1647 1654 1661 1668 1675 1682 1689 1696 1703 1710 1717 1724 1731 1738
60 1636 1643 1650 1657 1664 1671 1678 1685 1692 1699 1706 1713 1720 1727 1734 1741 1748
61 1646 1653 1660 1667 1674 1681 1688 1695 1702 1709 1716 1723 1730 1737 1744 1751 1758

Number of working hours assigned to nurse n, that is,
7× (M + A) + 10× N
Admissible values ([1687..1692]) are emphasized in red

14 / 30



Possible Optimization: Intuition

admissible(N,M+A) :-
dayLimits(1,MinM,MaxM), M >= MinM, M <= MaxM,
dayLimits(2,MinA,MaxA), A >= MinA, A <= MaxA,
dayLimits(3,MinN,MaxN), N >= MinN, N <= MaxN,
V=7*(M+A)+10*N,workLimits(MinW, MaxW),

MinW<=V<=MaxW.

values(N,S,V):- nurse(N), dayLimits(S,Min,Max),
#count{D:assign(N,S,D)}=V, V >= Min, V <= Max.

%V1,V2,V3 represent the number of mornings,
afternoons, and nights

valid(Nu) :- nurse(Nu), admissible(N,M+A),
values(Nu,1,M),values(Nu,2,A),values(Nu,3,N).

:- nurse(N), not valid(N).

15 / 30



Impact

Solving time (in seconds) on five instances (a dash means not
solved in 1 hour)

Solver Nurses
10 20 41 82 164

CLINGO (SIMPLE ENC) 155 117 738 1486 2987
CLINGO (OPTIMIZED ENC) 4 9 70 351 1291
GLUCOSE (SAT ENC) - - - - -
GLUCOSE (SAT ENC) - - - - -
CLASP (SAT ENC) - - - - -
GUROBI (ILP ENC) 62 172 1018 - -

16 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Beyond the Encodings

What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17 / 30



Try Different Options

ASP systems have several options (usually −−help shows
them)

Different options can have a huge impact on the
performance

Let’s see a practical example!

18 / 30



Heuristic Example: PUP and CCP

Partner Units Problem (PUP)

Combined Configuration Problem (CCP)

Two hard problems proposed by Siemens

Several efficient encodings have been proposed but still
performance are not good

19 / 30



Heuristic Example

Partner Units Problem

Railway tracks are equipped with sensors registering
wagons

Sensors are organized in safety zones

A set of control units enforces safety requirements on
connected zones and sensors

20 / 30



PUP instance

A PUP instance

A layout of sensors S and zones Z represented as an
undirected bipartite graph G=(S ∪ Z, E)
A set of units U
The maximum number of sensors/zones connected to a
unit UCAP
The maximum number of inter-unit connections IUCAP

Example (U={u1, u2, u3}, UCAP = IUCAP = 2)

s1

s2

s3

s4

s5 s6
z1

z123

z24

z35 z456

z6

21 / 30



PUP solution

Solution

A solution is an assignment of zones and sensors to units and
an interconnection of units, such that

Every unit is connected to at most UCAP sensors and at
most UCAP zones
Every unit is connected to at most IUCAP partner units
If a sensor s is part of a zone z, then s must be connected
to the same or a partner unit of the unit connected to z

Example (U={u1, u2, u3}, UCAP = IUCAP = 2)

s1 s3 s5 s4 s6 s2

z1 z35 z123 z456 z6 z24

u1 u2 u3

22 / 30



Heuristic Example: Definition

Combined Configuration Problem

Abstracts a number of real-world problems including
railway interlocking systems, safety automation, and
resource distribution

Occurs in practical applications at Siemens, where a
complex problem is composed of a set of subproblems

23 / 30



CCP instance

A CCP instance

A directed acyclic graph G = (V, E), where each vertex has
a type (e.g., b, p) with an associated size (e.g., 1, 3)
Two disjoint paths P1 (red arrows) and P2 (green arrows)
A set of safety areas and their border elements
The max number M of assigned border elements per area
C colors, B bins per color, K the capacity of each bin

Example (B=2, M=C=K=3)

b1 p1 b2 p3 b5

b3 p2 b4A1 A2

24 / 30



CCP solution

Solution
Assignment of colors to vertices, vertices to bins and border elements to areas such
that the following subproblems are solved

(P1) Coloring: Every vertex must have exactly one color

(P2) Bin-Packing: For each set Vc ⊆ V of color c, assign each vertex in Vc to exactly
one bin s.t. for each bin the sum of vertex sizes is not greater than K, and at
most B bins are used

(P3) Disjoint Paths: Vertices in different paths must not share a color

(P4) Matching: For each area A assign a set of border elements, such that all border
elements have the same color and A has at most M border elements.
Additionally, each border element must be assigned to exactly one area

(P5) Connectedness: Two vertices of the same color must be connected via a path
that comprises only vertices of this color

Example (B=2, M=C=K=3)

b1

2
p1

1
b2

2
p3

1
b5

2

b3

2
p2

1
b4

2

25 / 30



PUP and CCP

Problems have been solved in ASP using custom
branching heuristics (sometimes called domain-specific
heuristics)

Heuristics have been implemented on top of the ASP
solver WASP

WASP with domain heuristics was able to solve all the
instances

26 / 30



Packing Problem

Definition

The Packing Problem is related to a class of problems in which
one has to pack objects together in a given container. The
problem submitted to 3rd ASP Competition was the packing of
squares of possibly different sizes in a rectangular space and
without the possibility of performing rotations. The encoding
follows the typical guess-and-check structure, where positions
of squares are guessed and some constraints check whether
the guessed solution is an answer set.

27 / 30



Custom propagators: Packing Problem

Packing Problem

Problem submitted to the ASPCOMP 2011

Grounding bottleneck→ ‘Non groundable” since (ASPCOMP 2014)

Few non ground constraints depending on the size of the grid

Problem statement

They are given

a rectangular area of a known dimension n

a set of squares of size s

Pack all the squares into the rectangular area s.t. no squares overlap

28 / 30



Custom propagators: Packing Problem

Packing Problem

Problem submitted to the ASPCOMP 2011

Grounding bottleneck→ ‘Non groundable” since (ASPCOMP 2014)

Few non ground constraints depending on the size of the grid

Problematic constraints

% The same square cannot be assigned to different positions
:- pos(I,X ,Y ), pos(I,X1,Y1),X1 6= X
:- pos(I,X ,Y ), pos(I,X1,Y1),Y1 6= Y

% Squares cannot overlap
:- pos(I1,X1,Y1), square(I1,D1), pos(I2,X2,Y2), square(I2,D2), I1 6= I2,

W1 = X1+D1,H1 = Y 1+D1, X2 ≥ X1, X2 < W1, Y 2 ≥ Y 1, Y2 < H1.

28 / 30



Custom propagators: Packing Problem

Packing Problem

Problem submitted to the ASPCOMP 2011

Grounding bottleneck→ ‘Non groundable” since (ASPCOMP 2014)

Few non ground constraints depending on the size of the grid

Problematic constraints

% The same square cannot be assigned to different positions
:- pos(I,X ,Y ), pos(I,X1,Y1),X1 6= X
:- pos(I,X ,Y ), pos(I,X1,Y1),Y1 6= Y

% Squares cannot overlap
:- pos(I1,X1,Y1), square(I1,D1), pos(I2,X2,Y2), square(I2,D2), I1 6= I2,

W1 = X1+D1,H1 = Y 1+D1, X2 ≥ X1, X2 < W1, Y 2 ≥ Y 1, Y2 < H1.

−→ idea: replace such constraints by means of custom propagators

28 / 30



A practical exercise for you

Use an ASP encoding to answer the problem at
https://web.stanford.edu/~laurik/fsmbook/
examples/Einstein’sPuzzle.html

29 / 30

https://web.stanford.edu/~laurik/fsmbook/examples/Einstein'sPuzzle.html
https://web.stanford.edu/~laurik/fsmbook/examples/Einstein'sPuzzle.html


...The end

Thank you for attending the course!

30 / 30


