Efficient ASP Techniques

for Solving Hard Problems

Carmine Dodaro
DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

1/30

Pigeon Problem

Description

Given a set of n pigeons and m holes, assign each pigeon to
exactly one hole such that two pigeons do not share the same
hole.

Pigeon Problem: Natural Encoding

{inHole (X,H) : hole(H)} = 1 :- pigeon (X).
:— inHole (X,H), inHole(Y,H), X < Y.

2/30

Pigeon Problem: Optimized Encoding

{inHole (X,H) : hole(H)} = 1 :- pigeon (X).
:— inHole (X,H), inHole(Y,H), X < Y.
:— #count{X:pigeon (X) }=P, #count {X:hole (X) }=H,P>H.

3/30

Instantiation of Large Aggregates

c(l). c(2). ... c(9999). c(10000) .
a(X) | b(X) := c(X).
:— f#fcount{X:a (X) }=N1, #count{X:b(X)}=N2, N1=N2.

4/30

Instantiation of Large Aggregates

c(l). c(2). ... c(9999). c(10000) .
a(X) | b(X) := c(X).
:— f#fcount{X:a (X) }=N1, #count{X:b(X)}=N2, N1=N2.

Such aggregates are quite difficult to be evaluated

Instantiation of Large Aggregates

m A possible solution is to explore different ad-hoc strategies
for the problem

m What is the simplest strategy?

5/30

Instantiation of Large Aggregates

m A possible solution is to explore different ad-hoc strategies
for the problem

m What is the simplest strategy? In this simple case the
number of true “a” must be different from 5000!

5/30

A general solution

Ideas?

6/30

A general solution

Ideas?
|

c(l). c(2). ... c(9999). c(10000).
a(x) | b(X) :—= c(X).
:— #sum{l,X : a(X); -1,Y : b(Y)} = 0.

6/30

Nurse Scheduling Problem (NSP)

Generation of schedules for nurses consisting of working and
rest days over a predetermined period of time

A proper solution to NSP

m Guarantees the high level of quality of health care
m Improves the degree of satisfaction of nurses

m The recruitment of qualified personnel

Problem Description

m Planning period: one year

m Three working shifts: morning (7 A.M. —2 P.M.), afternoon
(2 PM. =9 PM.), night (9 PM. -7 AM.)

m Coverage: min and max number of nurses in each shift
m Workload: min and max number of working hours per year
m Vacation: 30 days per year

m The starting time of a shift must be at least 24 hours later
than the starting time of the previous shift

m Each nurse has at least two rest days each fourteen days
m After two consecutive nights there is one special rest day

m Balance: Morning, afternoon and night shifts assigned to
every nurse should range over a set of acceptable values

ASP Encoding: Define Search Space

Definition of Shifts

shift(1, morning, 7). shift(2, afternoon, 7).
shift(3, night, 10). shift(4, specialrest, 0).
shift(5, rest, 0). shift(6, vacation, 0).

% Choose an assignment for each day and for each
nurse.

{assign (N, S,D) :shift (S,Name, H) }=1 :- nurse (N),
day (D) .

ASP Encoding: Constraints

o

t Coverage: Limits to nurses that must be present
for each shift.

:— day (D), #count{N:assign (N, S,D) }>Max,
nurselLimits (S,Min, Max) .

:— day (D), #count{N:assign(N,S,D) }<Min,
nurselLimits (S,Min, Max) .

o

Workload: Min and Max working hours per year.
:— nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} >

Max, workLimits (Min,Max) .
:— nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} <
Min,

workLimits (Min, Max) .

[o)

% Holidays: Exactly 30 days of vacation

(ID 6)
:— nurse (N), #count{D

assign(N,6,D)} != 30.

10/30

ASP Encoding: Constraints

[)

% Each nurse cannot work twice in 24 hours.
:— nurse(N), assign(N,T1,D), assign(N,T2,D+1),
T2<T1l, T1<=3.

% At least 2 rest days each 14 days.

:— nurse (N),day (D), days (DAYS) ,D<=DAYS-13,

#count {Dl:assign(N,5,D1), D1>=D, D1<=D+13}<2.

% Special rest day after two nights (IDs 3 and 4
are night and special rest).

:— not assign(N,4,D), assign(N,3,D-2),
assign(N,3,D-1).

:— assign(N,4,D), not assign(N,3,D-2).

:— assign(N,4,D), not assign(N,3,D-1).

11/30

ASP Encoding: Constraints

[o)

5 Balance:

Morning, afternoon and night shifts

assigned to every nurse should range over a

set of acceptable values.

:— nurse (N), #count{D
dayLimits (S,Min, Max) .

:— nurse (N),

assign (N, S,D)} > Maxk,

#count {D

assign(N,S,D)} < Min,
dayLimits (S,Min, Max) .

12/30

Inefficiencies of the encoding (1)

Consider only the following portion of program:

% Workload: Min and Max working hours per year.

:— nurse(N), #sum{H,D:assign(N,S,D),shift(S,H)} >
Max, workLimits (Min,Max) .

:— nurse (N), #sum{H,D:assign(N,S,D),shift(S,H)} <

Min, workLimits (Min,Max) .

% Balance: Morning, afternoon and night shifts
assigned to every nurse should range over a
set of acceptable values.

:— nurse (N), #count{D : assign(N,S,D)} > Maxk,
dayLimits (S,Min, Max) .

:— nurse (N), #count{D : assign(N,S,D)} < Min,

dayLimits (S,Min, Max) .

13/30

Inefficiencies of the encoding

Assume the following values for the constraints:
m Assume 3 shifts:
shift(1,morning,7) shift(2, afternoon, 7) shift(3, night, 10)
m Workload: min and max number of working hours per yeatr,
1687 and 1692
m Balance: a nurse must be assigned to at least 74 and at
most 82 mornings, 74 to 82 afternoons and 58 to 61 nights

14/30

Inefficiencies of the encoding

Assume the following values for the constraints:
m Assume 3 shifts:
shift(1,morning,7) shift(2, afternoon, 7) shift(3, night, 10)
m Workload: min and max number of working hours per yeatr,
1687 and 1692
m Balance: a nurse must be assigned to at least 74 and at
most 82 mornings, 74 to 82 afternoons and 58 to 61 nights

M+ A
148 149| 150| 151| 152| 153| 154| 155 156 157| 158 159 160| 161| 162| 163| 164
58|1616|1623|1630|1637|1644|1651(1658(1665(1672(1679|1686|1693|1700({1707|1714|1721|1728
59|1626|1633|1640|1647|1654|1661|1668|1675(1682|1689(1696|1703|1710|1717|1724|1731|1738
60|1636|1643|1650|1657|1664|1671(1678(1685(1692(1699(1706(1713|1720{1727|1734|1741|1748
61|1646|1653|1660|1667|1674|1681|1688|1695(1702|1709(1716|1723|1730|1737|1744|1751|1758

m Number of working hours assigned to nurse n, that is,
7x(M+A)+10x N
m Admissible values ([1687..1692]) are emphasized in red

14/30

Possible Optimization: Intuition
-

admissible (N, M+A) :—
dayLimits (1,MinM,MaxM), M >= MinM, M <= MaxV,
dayLimits (2,MinA,MaxA), A >= MinA, A <= MaxA,
dayLimits (3,MinN,MaxN), N >= MinN, N <= MaxN,
V=7% (M+A) +10%N, workLimits (MinW, MaxW),
MinW<=V<=MaxW.

values (N, S,V) :— nurse(N), dayLimits(S,Min,Max),
fcount{D:assign (N, S,D) }=V, V >= Min, V <= Max.

%V1,V2,V3 represent the number of mornings,
afternoons, and nights
valid(Nu) :- nurse(Nu), admissible (N,M+A),
values (Nu, 1,M),values (Nu, 2,A),values (Nu, 3,N) .

:— nurse(N), not valid(N) .

15/30

Solving time (in seconds) on five instances (a dash means not
solved in 1 hour)

Solver Nurses
10 20 41 82 164
CLINGO (SIMPLE ENC) 155 117 738 1486 2987

CLINGO (OPTIMIZED ENC) 4 9 70 351 1291
GLUCOSE (SAT ENC) - - - - -
GLUCOSE (SAT ENC) - - - - -
CLASP (SAT ENC) - - -
GUROBI (ILP ENC) 62 172 1018 - -

16/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

17/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

17/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers

Try a different solver

17/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers
Try a different solver

Try to improve the branching heuristics of solvers

17/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers
Try a different solver
Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17/30

Beyond the Encodings

m What should we do when encodings cannot be (easily)
improved and our ASP system is still inefficient?

Try different strategies of the solvers
Try a different solver
Try to improve the branching heuristics of solvers

Implement ad-hoc propagators

17/30

Try Different Options

m ASP systems have several options (usually ——help shows
them)

m Different options can have a huge impact on the
performance

m Let’s see a practical example!

18/30

Heuristic Example: PUP and CCP

m Partner Units Problem (PUP)
m Combined Configuration Problem (CCP)
m Two hard problems proposed by Siemens

m Several efficient encodings have been proposed but still
performance are not good

19/30

Heuristic Example

Partner Units Problem

m Railway tracks are equipped with sensors registering
wagons

m Sensors are organized in safety zones

m A set of control units enforces safety requirements on
connected zones and sensors

20/30

PUP instance

A PUP instance

m A layout of sensors S and zones Z represented as an
undirected bipartite graph G=(S U Z, E)

m A set of units U

® The maximum number of sensors/zones connected to a
unit UCAP

® The maximum number of inter-unit connections IUCAP

Example (U={uy, u», us}, UCAP = IUCAP = 2)

21/30

PUP solution

A solution is an assignment of zones and sensors to units and
an interconnection of units, such that

m Every unit is connected to at most UCAP sensors and at
most UCAP zones

m Every unit is connected to at most IUCAP partner units

m If a sensor s is part of a zone z, then s must be connected
to the same or a partner unit of the unit connected to z

Example (U={uy, u», us}, UCAP = IUCAP = 2)

SXOyCEop

(B % (%]

(z1] [235} (Z123) (Za456) 26] (Z24]

22/30

Heuristic Example: Definition

Combined Configuration Problem

m Abstracts a number of real-world problems including
railway interlocking systems, safety automation, and
resource distribution

m Occurs in practical applications at Siemens, where a
complex problem is composed of a set of subproblems

23/30

CCP instance

A CCP instance

m A directed acyclic graph G = (V, E), where each vertex has
a type (e.g., b, p) with an associated size (e.g., 1, 3)

m Two disjoint paths Py (red arrows) and P, (green arrows)
m A set of safety areas and their border elements

m The max number M of assigned border elements per area
m C colors, B bins per color, K the capacity of each bin

Example (B=2, M=C=K=3)

24/30

CCP solution

Solution

Assignment of colors to vertices, vertices to bins and border elements to areas such
that the following subproblems are solved

(P1) Coloring: Every vertex must have exactly one color

(P2) Bin-Packing: For each set V. C V of color ¢, assign each vertex in V¢ to exactly
one bin s.t. for each bin the sum of vertex sizes is not greater than K, and at
most B bins are used

(P3) Disjoint Paths: Vertices in different paths must not share a color

(P4) Matching: For each area A assign a set of border elements, such that all border
elements have the same color and A has at most M border elements.
Additionally, each border element must be assigned to exactly one area

(P5) Connectedness: Two vertices of the same color must be connected via a path
that comprises only vertices of this color

(b /’ b)—)@—K\bs :
2 1 2
/

Example (B=2, M=C=K=3)

25/30

PUP and CCP

m Problems have been solved in ASP using custom
branching heuristics (sometimes called domain-specific
heuristics)

m Heuristics have been implemented on top of the ASP
solver WASP

m WASP with domain heuristics was able to solve all the
instances

26/30

Packing Problem

Definition

The Packing Problem is related to a class of problems in which
one has to pack objects together in a given container. The
problem submitted to 3rd ASP Competition was the packing of
squares of possibly different sizes in a rectangular space and
without the possibility of performing rotations. The encoding
follows the typical guess-and-check structure, where positions
of squares are guessed and some constraints check whether
the guessed solution is an answer set.

27/30

Custom propagators: Packing Problem

Packing Problem
m Problem submitted to the ASPCOMP 2011
m Grounding bottleneck — ‘Non groundable” since (ASPCOMP 2014)
m Few non ground constraints depending on the size of the grid

Problem statement

They are given
m a rectangular area of a known dimension n
m a set of squares of size s
Pack all the squares into the rectangular area s.t. no squares overlap

28/30

Custom propagators: Packing Problem

Packing Problem
m Problem submitted to the ASPCOMP 2011
m Grounding bottleneck — ‘Non groundable” since (ASPCOMP 2014)
m Few non ground constraints depending on the size of the grid

Problematic constraints
% The same square cannot be assigned to different positions
b pos(/7 Xa Y)7 pos(l7 X1) Y1)a X1 72 X
=pos(l, X, Y),pos(l, X1, Y1), Y1 £ Y
% Squares cannot overlap
= pos(h, X1, Y1), square(h,Dy), pos(k, X, Y2), square(k, D.), 1 # I2,
W1 =X1+D1,H1 = Y1+D1, X2> X1, X2< W1, Y2> Y1 Y2 < H1.

28/30

Custom propagators: Packing Problem

Packing Problem
m Problem submitted to the ASPCOMP 2011
m Grounding bottleneck — ‘Non groundable” since (ASPCOMP 2014)

m Few non ground constraints depending on the size of the grid

Problematic constraints

% The same square cannot be assigned to different positions
:_pOS(LX: Y),pOS(I,X1,)/1),X1 #X
:*pOS(I,X, Y)7pOS(I7X17 Y1)v Y1 ?é Y

% Squares cannot overlap
—pos(h, X1, Y1), square(h, Dy), pos(k, Xz, Y2), square(lk, D>), 1 # 12,
W1 =X1+D1,H1 = Y1+D1, X2> X1, X2 < W1, Y2> Y1, Y2 < H1.

— idea: replace such constraints by means of custom propagators

28/30

A practical exercise for you

Use an ASP encoding to answer the problem at
https://web.stanford.edu/~laurik/fsmbook/
examples/Einstein’ sPuzzle.html

29/30

https://web.stanford.edu/~laurik/fsmbook/examples/Einstein'sPuzzle.html
https://web.stanford.edu/~laurik/fsmbook/examples/Einstein'sPuzzle.html

Thank you for attending the course!

30/30

