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Telecom switches (1997)

• 200 racks, 1000 frames, 30000 modules 

10000 cables

• Successful configuration system
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Server farms (@CERN)
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Product customization
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Knowledge-based configuration
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Development costs for configurators:

DM- & GM-CG: standard procedural approach
LAVA: “constraint based programming” (generative, incomplete)

GM-CG 

DM-CG

Costs

Functionality (qualitative)

LAVA 

approx. - 65%

Since 1997

Additional functionality:

• Interactive configuration

• Improved user interface

• Explanations

• Extension of existing 

configurations

...



Requirements to a configurator

• Declarative language for problem description

– Ideally: every programmer must be able to use it 

after some (moderate) training

• Computation of solutions in admissible time

• Optimization of found solutions (optionally)

Is there a KRR approach for satisfying the 

requirements?
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Configuration problem
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Configuration problem

Given

– Requirements (restricted FOL sentences)

• Configuration or general requirements 𝑅𝐺

• Customer or instance requirements 𝑅𝐼

– A set of predicated 𝑅𝑆 = 𝑝1, … , 𝑝𝑛 corresponding 

to a solution schema

Find a finite, subset minimal set of ground 

atoms, called configuration, 𝐶𝑂𝑁𝐹 = 𝜋𝑅𝑆
𝑀

– 𝑀 is a Herbrand model of 𝑅𝐺 ∪ 𝑅𝐼

– 𝜋𝑅𝑆
𝑀 is a projection of ground atoms 𝑀 onto 

ground atoms over predicates 𝑅𝑆
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Optimization problem

Given

• requirements 𝑅𝐺 , 𝑅𝐼 and solution schema 𝑅𝑠

• cost function 𝑓: 𝑪𝑶𝑵𝑭 ↦ ℕ, where 𝑪𝑶𝑵𝑭
denotes a set of all configurations

• bound 𝐵 ∈ ℕ

Find a configuration 𝐶𝑂𝑁𝐹 such that 

𝑓 𝐶𝑂𝑁𝐹 ≤ 𝐵
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Requirements overview I

Configuration requirements 𝑅𝐺

• Components catalog defines

– Types (motherboard, cpu, fan, hdd, etc.)

– Attributes (cpu frequency, motherboard format)

• Ports (socket type of a motherboard component) 

• Valid relations between the components

– Cpu2Motherboard: for each cpu there exists a 

motherboard with a compatible socket

Encoded as linear Tuple Generation Dependencies 

(TGD) (see e.g. 𝐷𝑎𝑡𝑎𝑙𝑜𝑔± [Calì et al., 2010])
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Requirements overview II

Example of a linear TGD (LoCo [Aschinger et al, 2014])

∀ 𝑖𝑑1,  𝑥 𝐶1 𝑖𝑑1,  𝑥
→ ∃𝑙

𝑢 𝑖𝑑2 𝐶2 𝑖𝑑2,  𝑦 ∧ 𝐶12𝐶2 𝑖𝑑1, 𝑖𝑑2 ∧ 𝜙 𝑖𝑑1, 𝑖𝑑2,  𝑥,  𝑦

– 𝐶𝑖(𝑖𝑑𝑗 ,  𝑥) denotes a component type with an identifier 𝑖𝑑𝑗

and a vector of attributes  𝑥

– 𝐶𝑖2𝐶𝑗 𝑖𝑑𝑖 , 𝑖𝑑𝑗 denotes a relation between 2 components

– 𝜙 𝑖𝑑1, 𝑖𝑑2,  𝑥,  𝑦 is a formula expressing additional 

constraints

– 𝑙 ≥ 0 and 𝑢 > 0 are lower and upper bounds
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Requirements overview III

Customer requirements 𝑅𝐼

• Define available components

– Facts of the form 𝐶𝑗 𝑖𝑑𝑖 ,  𝑥

• Specify input relations

– Facts of the form 𝐶𝑗2𝐶𝑖 𝑖𝑑𝑗 , 𝑖𝑑𝑖

• Declare a solution schema

– Set of predicates

• Provide preference criteria (optimization)
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Configuration example (House)

things (lamps) are related to a person (signal), 

things are stored in a cabinet (module), 

cabinets are placed in a room (frame)

(Siemens©)
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1-n relations 

+

additional constraints



House problem
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Customer requirements:

Declaration of available persons, things and ownership relations 

between them

Configuration requirements:
1. each thing must be stored in exactly one cabinet 

2. a cabinet can contain at most 5 things

3. every cabinet must be placed in exactly one room

4. a room can contain at most 4 cabinets

5. each room belongs to a person

6. and a room may only contain cabinets storing things of the 

owner of the room

Goal: store all things in a house such that the set of requirements 

is fulfilled



Sample customer requirements

• Person 1 owns things 3,4,5,6,7

• Person 2 owns thing 8

Predicates: person/1, thing/1 and p2t/2
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person(1) person(2)

thing(3) thing(4) thing(5) thing(6) thing(8)thing(7)

p2t(1,3)
p2t(1,4)

p2t(1,5)

p2t(1,6)
p2t(1,7)

p2t(2,8)



House encoding

• Customer requirements (facts)

• Configuration requirements

– each thing must be stored in exactly one cabinet 

and a cabinet can contain at most 5 things

∀𝑖𝑑𝑇 𝑡ℎ𝑖𝑛𝑔 𝑖𝑑𝑇 → ∃1
1𝑖𝑑𝐶 [𝑐𝑎𝑏𝑖𝑛𝑒𝑡 𝑖𝑑𝐶 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶 ]

∀𝑖𝑑𝐶 𝑐𝑎𝑏𝑖𝑛𝑒𝑡 𝑖𝑑𝐶 → ∃0
5𝑖𝑑𝑇 [𝑡ℎ𝑖𝑛𝑔 𝑖𝑑𝑇 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶 ]

– each room belongs to a person

∀𝑖𝑑𝑃, 𝑖𝑑𝑇 , 𝑖𝑑𝐶 , 𝑖𝑑𝑅 𝑝2𝑡 𝑖𝑑𝑃, 𝑖𝑑𝑇 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶

∧ 𝑐2𝑟 𝑖𝑑𝐶 , 𝑖𝑑𝑅 → 𝑝2𝑟 𝑖𝑑𝑃, 𝑖𝑑𝑅
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Sample solution

• Solution schema: cabinet/1, room/1, t2c/2, c2r/2 

and p2r/2 

• Solution:

cabinet(9). cabinet(10). room(15). room(16). ...

p2r(1,15). p2r(2,16). ...

c2r(9,15). c2r(10,16). ...

t2c(3,9).  t2c(8,10). ... 
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Configuration KRRs
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KRRs overview

• Production rules (R1/XCON [McDermott, 1992], 

ILOG JRules, OpenRules)

• Case-based [Rahmer et al., 1996; Tseng et al., 2005]

• Model-based (Oracle, SAP, Siemens)

˗ Constraint-based [Mittal et al 1989], Dynamic CSP [Mittal 

et al., 1990], Generative CSP [Stumptner 1997]

˗ Specific languages: UML [Felfernig et al., 2000], Feature 

models [Dhungana et al., 2011], LoCo [Aschinger et al., 2014]

˗ Description logics [McGuinness 2003]

˗ SAT [Aschinger et al 2011] and ASP [Friedrich et al., 2011]

˗ Hybrid approaches [Hotz et al., 2006]
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CSPs

• De facto standard KRR for configuration 

Variables 𝑉 = {𝑣1, … , 𝑣𝑛} and their domains 

𝐷 = 𝑑𝑜𝑚 𝑣1 , … , 𝑑𝑜𝑚 𝑣𝑛 represent 

components, attributes and relations

• Constraints define allowed compositions of 

components

– TGDs are approximated by global cardinality 

constraints

• Supports optimization and heuristics

• Possible modeling language MiniZinc
[Nethercote et al., 2007]
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Generative CSP

• Differentiate between component variables 

and other variables

• Component variables – classes

• Language is similar to OO programming

class Cpu

attr socket: integer

class Mb

attr socket: integer

assoc Cpu.board(1) – Mb.cpu(1)

constraint Mb.compatible : 

cpu.socket = cpu.board.socket
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Object-oriented approaches

UML:

• Generic language (+)

• Constraints are hard to write (-)
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Description logics

• Components are modeled as concepts 

(atoms over unary predicates)

• Roles (atoms over binary predicates) are 

used to model relations and attributes

𝐶𝑝𝑢 ⊑ ∃𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒.𝑀𝑏
∀𝑋 𝐶𝑝𝑢 𝑋 → ∃𝑌 [𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑋, 𝑌 ∧ 𝑀𝑏 𝑌 ]

• Reasoning services support query answering

• Generation of a query (configuration) must be 

done by external tools, e.g. ASP
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ASP

• Modeling of components catalog is the same 

as in FOL

• TGDs are approximated by either 

– disjunctive rules + cardinality constraints or

– choice rules (cardinality atom in the head)

• Simple and easy to understand modeling 

language

• Supports optimization
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Reconfiguration problem
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Motivation

29

cable termi-

nation rack

field equipment

interlock

CPU POM

ECC cabinet with 

ECC 01.01 double frame

SOM

Powersupply

Fuses

SW configuration

for ECC 01.01

attributes

Signal "S1":

ECC = 01.01

module-type = SOM

lamp 1 = red

lamp 2 = green

One of the modules 

should be shifted to the 

right

Additional knowledge: 

Two SOM modules 

should not be placed 

side-by-side



Sample configuration changes I

Additional customer requirements: 

definitions of long and short things

thingLong(3). ... thingShort(7). thingLong(8).

thing(21). thingLong(21). p2t(1,21).
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Additional configuration requirements:

• a cabinet is either small or high

• a long thing can only be put into a high cabinet

• a small cabinet occupies 1 and a high cabinet 2 of 4 

cabinet places available in a room

• all legacy cabinets are small

Sample configuration changes II
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Inconsistent 

configuration



Transformation changes

Legacy configuration encoding (functional symbols):

legacyConfig(c2r(10,16)).

legacyConfig(cabinet(9)).

legacyConfig(cabinet(10)).

…

Transformation rules:

• Parts of the legacy configuration can either be reused

or deleted

• Individuals of reused relation tuples should also be 

reused

• Relation tuples of deleted individuals should be 

excluded
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Objective function

• Introduce costs for each action:

– Creation costs:  individuals and relation tuples absent in 

the legacy configuration

– Reuse costs: individuals and relation tuples present in 

both reconfiguration and legacy configuration

– Deletion costs: individuals and relation tuples of legacy 

configuration absent in the reconfiguration

• Optimization criterion: minimize sum of all costs
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Reconfiguration problem

Given 

– legacy configuration as set of ground literals 𝑅𝐿, 

– set of requirements 𝑅𝐺 ∪ 𝑅𝐼,

– set of transformation rules 𝑅𝑇

– set of predicates describing a solution schema 𝑅𝑆

– and an objective function 𝑓:𝑪𝑶𝑵𝑭↦ℕ and bound 𝐵∈ℕ

Find a finite, subset minimal set of ground atoms, 

reconfiguration, 𝑅𝐸𝐶𝑂𝑁𝐹 = 𝜋𝑅𝑆
𝑀 such that 

𝑓 𝑅𝐸𝐶𝑂𝑁𝐹 ≤ 𝐵

– 𝑀 is a Herbrand model of 𝑅𝐺 ∪ 𝑅𝐼 ∪ 𝑅𝐿 ∪ 𝑅𝑇 and 𝜋
is a projection operator
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Test cases: Empty
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Test cases: Long
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Test cases: New Room
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Test cases: Swap
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Thank you for your attention!

Questions?
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