
Knowledge-based (re)configuration:

an ASP approach

Kostyantyn Shchekotykhin

Alpen-Adria-Universität Klagenfurt

Acknowledgements

Many thanks to:

Markus Aschinger, Conrad Drescher, Andreas

Falkner, Gerhard Friedrich, Georg Gottlob, Alois

Haselböck, Peter Jevons, Anna Ryabokon, Gottfried

Schenner, Herwig Schreiner, Erich Teppan, Evgenij

Thorstensen (Projects “Reconcile” and “Constraint

satisfaction for configuration”)

and many other researchers in the field of knowledge-

based configuration who made this lecture possible

2

Outline

• Motivation

• Configuration problem

– Problem definition

– Example: House problem

• Configuration KRRs

– A bit of history

– Overview of modern KRRs

• Reconfiguration problem

3

Telecom switches (1997)

• 200 racks, 1000 frames, 30000 modules

10000 cables

• Successful configuration system

4

© Siemens

Server farms (@CERN)

5

Product customization

6

Knowledge-based configuration

7

Development costs for configurators:

DM- & GM-CG: standard procedural approach
LAVA: “constraint based programming” (generative, incomplete)

GM-CG

DM-CG

Costs

Functionality (qualitative)

LAVA

approx. - 65%

Since 1997

Additional functionality:

• Interactive configuration

• Improved user interface

• Explanations

• Extension of existing

configurations

...

Requirements to a configurator

• Declarative language for problem description

– Ideally: every programmer must be able to use it

after some (moderate) training

• Computation of solutions in admissible time

• Optimization of found solutions (optionally)

Is there a KRR approach for satisfying the

requirements?

8

Configuration problem

9

Configuration problem

Given

– Requirements (restricted FOL sentences)

• Configuration or general requirements 𝑅𝐺

• Customer or instance requirements 𝑅𝐼

– A set of predicated 𝑅𝑆 = 𝑝1, … , 𝑝𝑛 corresponding

to a solution schema

Find a finite, subset minimal set of ground

atoms, called configuration, 𝐶𝑂𝑁𝐹 = 𝜋𝑅𝑆
𝑀

– 𝑀 is a Herbrand model of 𝑅𝐺 ∪ 𝑅𝐼

– 𝜋𝑅𝑆
𝑀 is a projection of ground atoms 𝑀 onto

ground atoms over predicates 𝑅𝑆

10

Optimization problem

Given

• requirements 𝑅𝐺 , 𝑅𝐼 and solution schema 𝑅𝑠

• cost function 𝑓: 𝑪𝑶𝑵𝑭 ↦ ℕ, where 𝑪𝑶𝑵𝑭
denotes a set of all configurations

• bound 𝐵 ∈ ℕ

Find a configuration 𝐶𝑂𝑁𝐹 such that

𝑓 𝐶𝑂𝑁𝐹 ≤ 𝐵

11

Requirements overview I

Configuration requirements 𝑅𝐺

• Components catalog defines

– Types (motherboard, cpu, fan, hdd, etc.)

– Attributes (cpu frequency, motherboard format)

• Ports (socket type of a motherboard component)

• Valid relations between the components

– Cpu2Motherboard: for each cpu there exists a

motherboard with a compatible socket

Encoded as linear Tuple Generation Dependencies

(TGD) (see e.g. 𝐷𝑎𝑡𝑎𝑙𝑜𝑔± [Calì et al., 2010])

12

Requirements overview II

Example of a linear TGD (LoCo [Aschinger et al, 2014])

∀ 𝑖𝑑1, 𝑥 𝐶1 𝑖𝑑1, 𝑥
→ ∃𝑙

𝑢 𝑖𝑑2 𝐶2 𝑖𝑑2, 𝑦 ∧ 𝐶12𝐶2 𝑖𝑑1, 𝑖𝑑2 ∧ 𝜙 𝑖𝑑1, 𝑖𝑑2, 𝑥, 𝑦

– 𝐶𝑖(𝑖𝑑𝑗 , 𝑥) denotes a component type with an identifier 𝑖𝑑𝑗

and a vector of attributes 𝑥

– 𝐶𝑖2𝐶𝑗 𝑖𝑑𝑖 , 𝑖𝑑𝑗 denotes a relation between 2 components

– 𝜙 𝑖𝑑1, 𝑖𝑑2, 𝑥, 𝑦 is a formula expressing additional

constraints

– 𝑙 ≥ 0 and 𝑢 > 0 are lower and upper bounds

13

Requirements overview III

Customer requirements 𝑅𝐼

• Define available components

– Facts of the form 𝐶𝑗 𝑖𝑑𝑖 , 𝑥

• Specify input relations

– Facts of the form 𝐶𝑗2𝐶𝑖 𝑖𝑑𝑗 , 𝑖𝑑𝑖

• Declare a solution schema

– Set of predicates

• Provide preference criteria (optimization)

14

Configuration example (House)

things (lamps) are related to a person (signal),

things are stored in a cabinet (module),

cabinets are placed in a room (frame)

(Siemens©)

15

1-n relations

+

additional constraints

House problem

16

Customer requirements:

Declaration of available persons, things and ownership relations

between them

Configuration requirements:
1. each thing must be stored in exactly one cabinet

2. a cabinet can contain at most 5 things

3. every cabinet must be placed in exactly one room

4. a room can contain at most 4 cabinets

5. each room belongs to a person

6. and a room may only contain cabinets storing things of the

owner of the room

Goal: store all things in a house such that the set of requirements

is fulfilled

Sample customer requirements

• Person 1 owns things 3,4,5,6,7

• Person 2 owns thing 8

Predicates: person/1, thing/1 and p2t/2

17

person(1) person(2)

thing(3) thing(4) thing(5) thing(6) thing(8)thing(7)

p2t(1,3)
p2t(1,4)

p2t(1,5)

p2t(1,6)
p2t(1,7)

p2t(2,8)

House encoding

• Customer requirements (facts)

• Configuration requirements

– each thing must be stored in exactly one cabinet

and a cabinet can contain at most 5 things

∀𝑖𝑑𝑇 𝑡ℎ𝑖𝑛𝑔 𝑖𝑑𝑇 → ∃1
1𝑖𝑑𝐶 [𝑐𝑎𝑏𝑖𝑛𝑒𝑡 𝑖𝑑𝐶 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶]

∀𝑖𝑑𝐶 𝑐𝑎𝑏𝑖𝑛𝑒𝑡 𝑖𝑑𝐶 → ∃0
5𝑖𝑑𝑇 [𝑡ℎ𝑖𝑛𝑔 𝑖𝑑𝑇 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶]

– each room belongs to a person

∀𝑖𝑑𝑃, 𝑖𝑑𝑇 , 𝑖𝑑𝐶 , 𝑖𝑑𝑅 𝑝2𝑡 𝑖𝑑𝑃, 𝑖𝑑𝑇 ∧ 𝑡2𝑐 𝑖𝑑𝑇 , 𝑖𝑑𝐶

∧ 𝑐2𝑟 𝑖𝑑𝐶 , 𝑖𝑑𝑅 → 𝑝2𝑟 𝑖𝑑𝑃, 𝑖𝑑𝑅

18

Sample solution

• Solution schema: cabinet/1, room/1, t2c/2, c2r/2

and p2r/2

• Solution:

cabinet(9). cabinet(10). room(15). room(16). ...

p2r(1,15). p2r(2,16). ...

c2r(9,15). c2r(10,16). ...

t2c(3,9). t2c(8,10). ...

19

Configuration KRRs

20

KRRs overview

• Production rules (R1/XCON [McDermott, 1992],

ILOG JRules, OpenRules)

• Case-based [Rahmer et al., 1996; Tseng et al., 2005]

• Model-based (Oracle, SAP, Siemens)

˗ Constraint-based [Mittal et al 1989], Dynamic CSP [Mittal

et al., 1990], Generative CSP [Stumptner 1997]

˗ Specific languages: UML [Felfernig et al., 2000], Feature

models [Dhungana et al., 2011], LoCo [Aschinger et al., 2014]

˗ Description logics [McGuinness 2003]

˗ SAT [Aschinger et al 2011] and ASP [Friedrich et al., 2011]

˗ Hybrid approaches [Hotz et al., 2006]

21

CSPs

• De facto standard KRR for configuration

Variables 𝑉 = {𝑣1, … , 𝑣𝑛} and their domains

𝐷 = 𝑑𝑜𝑚 𝑣1 , … , 𝑑𝑜𝑚 𝑣𝑛 represent

components, attributes and relations

• Constraints define allowed compositions of

components

– TGDs are approximated by global cardinality

constraints

• Supports optimization and heuristics

• Possible modeling language MiniZinc
[Nethercote et al., 2007]

22

Generative CSP

• Differentiate between component variables

and other variables

• Component variables – classes

• Language is similar to OO programming

class Cpu

attr socket: integer

class Mb

attr socket: integer

assoc Cpu.board(1) – Mb.cpu(1)

constraint Mb.compatible :

cpu.socket = cpu.board.socket

23

Object-oriented approaches

UML:

• Generic language (+)

• Constraints are hard to write (-)

24

(Siemens©)

Description logics

• Components are modeled as concepts

(atoms over unary predicates)

• Roles (atoms over binary predicates) are

used to model relations and attributes

𝐶𝑝𝑢 ⊑ ∃𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒.𝑀𝑏
∀𝑋 𝐶𝑝𝑢 𝑋 → ∃𝑌 [𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑋, 𝑌 ∧ 𝑀𝑏 𝑌]

• Reasoning services support query answering

• Generation of a query (configuration) must be

done by external tools, e.g. ASP

25

ASP

• Modeling of components catalog is the same

as in FOL

• TGDs are approximated by either

– disjunctive rules + cardinality constraints or

– choice rules (cardinality atom in the head)

• Simple and easy to understand modeling

language

• Supports optimization

26

Reconfiguration problem

28

Motivation

29

cable termi-

nation rack

field equipment

interlock

CPU POM

ECC cabinet with

ECC 01.01 double frame

SOM

Powersupply

Fuses

SW configuration

for ECC 01.01

attributes

Signal "S1":

ECC = 01.01

module-type = SOM

lamp 1 = red

lamp 2 = green

One of the modules

should be shifted to the

right

Additional knowledge:

Two SOM modules

should not be placed

side-by-side

Sample configuration changes I

Additional customer requirements:

definitions of long and short things

thingLong(3). ... thingShort(7). thingLong(8).

thing(21). thingLong(21). p2t(1,21).

30

Additional configuration requirements:

• a cabinet is either small or high

• a long thing can only be put into a high cabinet

• a small cabinet occupies 1 and a high cabinet 2 of 4

cabinet places available in a room

• all legacy cabinets are small

Sample configuration changes II

31

Inconsistent

configuration

Transformation changes

Legacy configuration encoding (functional symbols):

legacyConfig(c2r(10,16)).

legacyConfig(cabinet(9)).

legacyConfig(cabinet(10)).

…

Transformation rules:

• Parts of the legacy configuration can either be reused

or deleted

• Individuals of reused relation tuples should also be

reused

• Relation tuples of deleted individuals should be

excluded

32

Objective function

• Introduce costs for each action:

– Creation costs: individuals and relation tuples absent in

the legacy configuration

– Reuse costs: individuals and relation tuples present in

both reconfiguration and legacy configuration

– Deletion costs: individuals and relation tuples of legacy

configuration absent in the reconfiguration

• Optimization criterion: minimize sum of all costs

33

Reconfiguration problem

Given

– legacy configuration as set of ground literals 𝑅𝐿,

– set of requirements 𝑅𝐺 ∪ 𝑅𝐼,

– set of transformation rules 𝑅𝑇

– set of predicates describing a solution schema 𝑅𝑆

– and an objective function 𝑓:𝑪𝑶𝑵𝑭↦ℕ and bound 𝐵∈ℕ

Find a finite, subset minimal set of ground atoms,

reconfiguration, 𝑅𝐸𝐶𝑂𝑁𝐹 = 𝜋𝑅𝑆
𝑀 such that

𝑓 𝑅𝐸𝐶𝑂𝑁𝐹 ≤ 𝐵

– 𝑀 is a Herbrand model of 𝑅𝐺 ∪ 𝑅𝐼 ∪ 𝑅𝐿 ∪ 𝑅𝑇 and 𝜋
is a projection operator

34

Test cases: Empty

35

Test cases: Long

36

Test cases: New Room

37

Test cases: Swap

38

Thank you for your attention!

Questions?

39

