Knowledge-based configuration: Modeling in MiniZinc

Kostyantyn Shchekotykhin

Alpen-Adria-Universität Klagenfurt, Austria

Agenda

1 Constraint satisfaction problems

- CSP example
- Backtracking search for CSPs
- Local search
- Summary

2 MiniZinc basics

- Variables

■ Formatting output

- Data files
- Basic structure of a model

3 Arrays and sets
4 Advanced modeling
5 House configuration problem

Section 1

Constraint satisfaction problems

Constraint satisfaction problems (CSPs)

- Standard search problem:

■ state is a "black box" - any old data structure that supports goal test, eval, successor

- CSP:

■ state is defined by variables X_{i} with values from domain D_{i}

- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Vertex-Coloring problem

- Given an undirected graph $G=(V, E)$, where V is a set of vertices and E is a set of edges, and a set of colors C find such an assignment of colors to vertices that for any edge $\left(v_{1}, v_{2}\right) \in E$ colors of the vertices v_{1} and v_{2} are different.
- The problem is an abstraction of many practical problems:
- Configuration of electronic circuits - identification of groups of non-conflicting components
- Compiler optimization - registry allocation (most often used color)
- Scheduling - schedule jobs in time slots and avoid conflicts (same color)
- Pattern matching, e.g. in biochemistry dealing with protein fragments

Example: Map-Coloring I

- Map-Coloring is a special case of the graph-coloring problem

■ Given a map assign colors to territories in such a way that no two neighboring territories have the same color

- Consider a map of Australia:

Tasmania

Example: Map-Coloring II

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_{i}=\{$ red, green, blue $\}$
- Constraints: adjacent regions must have different colors e.g., $W A \neq N T$ (if the language allows this), or (WA,NT) \in $\{($ red, green $),($ red, blue $),($ green, red $),($ green, blue $), \ldots\}$

Tasmania

Example: Map-Coloring III

- Solutions are assignments satisfying all constraints, e.g., $\{W A=$ red,$N T=$ green, $Q=$ red, $N S W=$ green, $V=$ red, $S A=$ blue, $T=$ green $\}$

Tasmania

Constraint graph

- Binary CSP: each constraint relates at most two variables

■ Constraint graph: nodes are variables, arcs show constraints

(T)

General-purpose CSP algorithms use the graph structure to speed up search.

Example

Tasmania is an independent subproblem!

Varieties of CSPs

Discrete variables

- finite discrete domains

■ n variables with d possible values $\Longrightarrow O\left(d^{n}\right)$ complete assignments

- e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- infinite domains (integers, strings, etc.)
- e.g., job scheduling, variables are start/end days for each job
- enumeration of possible assignments is not possible
- specific constraint languages, e.g. StartJob $1+5 \leq$ StartJob $_{3}$
- linear constraints solvable, nonlinear undecidable

Continuous variables
■ e.g., start/end times for Hubble Telescope observations
■ linear constraints solvable in poly time by LP methods

Varieties of constraints

■ Unary constraints involve a single variable, e.g., $S A \neq$ green

- Binary constraints involve pairs of variables, e.g., $S A \neq W A$

■ Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

- Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment \rightarrow constrained optimization problems

Backtracking search

■ Variable assignments are commutative, i.e., [WA = red then $N T=$ green $]$ same as [$N T=$ green then $W A=$ red]
■ Only need to consider assignments to a single variable at each node $\Longrightarrow b=d$ and there are d^{n} leaves

■ Depth-first search for CSPs with single-variable assignments is called backtracking search

- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for $n \approx 25$

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?

Minimum remaining values

- Minimum remaining values (MRV): choose the variable with the fewest legal values

Degree heuristic

- In some cases MRV does not discriminated between the variables, i.e. all variables have domains of equal cardinality.
■ Degree heuristic: choose the variable with the most constraints on remaining variables

Least constraining value

■ We have selected a variable, but which value should we try first?

■ Choose the least constraining value: the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible!

Forward checking \& Arc consistency

Forward checking:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Arc consistency is the simplest form of propagation which makes each arc consistent

Definition

$X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Local search for CSPs

■ Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
- allow states with unsatisfied constraints
- operators reassign variable values

■ Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:

Definition

Choose value that violates the fewest constraints, i.e. hillclimb with $h(n)=$ total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in the column
- Goal test: no attacks
- Evaluation: $h(n)=$ number of attacks

Summary

- CSPs are a special kind of problem:
- states defined by values of a fixed set of variables
- goal test defined by constraints on variable values
- Backtracking is a depth-first search with one variable assigned per node
- Variable and value heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
■ Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time

■ Local search allows to get an approximation of a solution in practice

Section 2

MiniZinc basics

MiniZinc Resources

■ Main page

- G12 MiniZinc distribution please select the latest version and your platform below
- MiniZinc IDE

■ Tutorial

- Language specifications

■ Gecode solver for FlatZinc or see MiniZinc Challenge for the others

■ Håkan Kjellerstrand's Blog

Creating CSP models

■ Constraint programming is usually done in two steps:

- creation of an conceptual model, an abstraction of some real-world problem, and
- design of a program that solves the problem
- This process, in most of the cases, requires some experiments with:
- different models
- different solving techniques
- different heuristics/orderings

Modeling languages

■ Programming language used with some constraint-solving library: Choco (Java), Gecode(C++),
■ Constraint programming language (Zinc/MiniZinc, ECLiPSe, Minion, Prologs)

- Mathematical modeling language (AMPL ${ }^{1}$, OPL ${ }^{2}$)
- Domain specific language

These languages vary in:
■ the level of abstraction from an underlying computer architecture

■ expressiveness, i.e. which problems can be specified in a language

[^0]
MiniZinc

- MiniZinc is a modeling language being developed mostly by NICTA (Australia)
- Models can be solved with constraint or MIP solver (not all features are supported by MIP)
■ MiniZinc \subset Zinc - a more powerful modeling language

Coloring example modeled in MiniZinc

\% Colouring Australia using nc colours
int: nc = 3;
var 1..nc: wa; var 1..nc: nt; var 1..nc: sa;
var 1..nc: q; var 1..nc: nsw; var 1..nc: v;
var 1..nc: t;
constraint wa != nt; constraint wa != sa;
constraint nt != sa; constraint nt != q;
constraint sa != q; constraint sa != nsw;
constraint sa != v; constraint q != nsw;

Tasmania
constraint nsw != v;
solve satisfy;

```
output ["wa=", show(wa), "\t nt=", show(nt), "\t sa=", show(sa),
"\n", "q=", show(q), "\t nsw=", show(nsw), "\t v=", show(v),
" \(\backslash \mathrm{n}\) ", " \(\mathrm{t}=\) ", show( t\(),\) " n "];
```


Running MiniZinc

- Save the model in au.mzn file and run mzn au.mzn
- The output model should look like

```
wa=1 nt=3 sa=2
q=1 nsw=3 v=1
t=1
```

■ MiniZinc models must have mzn extension and data dzn
■ use -f option to forward the result of "flattening" to other solvers. E.g. -f $f z$ will forward fzn file to Gecode FlatZinc front-end

- the output is saved to an ozn file that is then reformatted using the pattern given in output predicate

MiniZinc life-cycle

Parameters and variables I

- Parameters correspond to constants in usual programming languages, i.e. they should have a value and only one
■ Sample assignments

```
int: i=3;
int: j; j=3;
```

■ Values of decision variables are unknown and should be determined by a solver

- Sample variable declarations:

```
var int: x;
var 1..i: y;
```


Parameters and variables II

- Identifiers in MiniZinc start with a letter followed by other letters, underscores or digits
■ Moreover, the underscore " " is the name for an anonymous decision variable
- The basic parameter and variable types are:
- integers int; variables also ranges $1 . . n$ and sets
- floating point numbers float; variables also ranges 1.0..f and sets
- booleans bool
- strings string (parameters only)
- Sets: set of int: States = 1..7;
- Arrays: array[States] of var int: australia;

Operators and expressions

■ MiniZinc provides the relational operators: $=,!=,<,>,<=$, and $>=$

■ Integers: +, -, *, div, mod

- Floats: +, -, *, /
- Casting: int2float

■ Functions: abs, pow, (only floats): sqrt, In, sin, cos and others
■ Booleans: $/ \backslash, \ /$, implications $\langle-,->$, equivalence $<->$, and negation not. Casting bool2int allows to convert results of Boolean expressions to integers 0 and 1 .

Example: Arithmetic operations I

A backer has 4 kg self-raising flour, 6 bananas, 2 kg of sugar, 500 g of butter and 500 g of cocoa and can make two sorts of cakes. A banana cake which takes 250 g of self-raising flour, 2 mashed bananas, 75 g sugar and 100 g of butter, and a chocolate cake which takes 200 g of self-raising flour, 75 g of cocoa, 150 g sugar and 150 g of butter. We can sell a chocolate cake for $\$ 4.50$ and a banana cake for $\$ 4.00$. The question is how many of each sort of cake should the baker bake to maximize the profit.

Example: Arithmetic operations II

int: priceChoco $=450$; int: priceBanana $=400$;
var 0..100: b; \% no. of banana cakes
var 0..100: c; \% no. of chocolate cakes
\% flour
constraint 250*b + 200*c <= 4000;
\% bananas
constraint $2 *$ b <= 6;
\% sugar
constraint 75*b + 150*c <= 2000;
\% butter
constraint $100 * \mathrm{~b}+150 * \mathrm{c}$ <= 500;
\% cocoa
constraint 75*c <= 500;
\% maximize our profit
solve maximize priceBanana*b + priceChoco*c; output ["no. of banana cakes = ", show(b), "\n", "no. of chocolate cakes = ", show(c), "\n"];

Output

- The output statement output is followed by a list of strings that should be used to format the solution
- Strings can be concatenated by the operator ++ "Northern" ++ " Territories" = "Northern Territories"

■ show (X) is used to retrieve values of variable and parameters as srings

Data files

- Models can be used with different input parameters
- MiniZinc allows specification of parameters in separate data files (extension dzn)
- In the bakery example different prices for the cakes as well as different amounts of components used in the cakes can be specified separately from the model (bakery.dzn)

```
int: priceChoco = 450; int: priceBanana = 400;
int: flour = 4000;
int: sugar = 2000;
int: bananas = 6;
int: butter = 500;
int: cocoa = 500;
```


Basic structure of a model

- A MiniZinc model consists of a sequence of items
- The model is declarative, that is order of items is not important

■ Possible items are:

- An inclusion item include <filename (string)>;
- An output item output <list of string expressions>;
- Declaration of a variable
- A constraint constraint <Boolean expression>;
- A solve item (only one of the following is allowed)
- solve satisfy;

■ solve maximize <arith. expression>;
■ solve minimize <arith. expression>;
■ predicate and test (assert) items
■ Search annotation items ann

Section 3

Arrays and sets

Sets

Sets are declared by
set of <type> : <name>
■ Allowed types: integers, floats or Booleans.

- Set can be declared as $\left\{e_{1}, \ldots, e_{n}\right\}$

■ Generated sequences of integers as lower..upper

- Set operations:
card, in, union, intersect, subset, superset, diff, symdiff
Examples:
set of int: Products $=\{1,2\}$ union $\{3,4\}$;
int: setCardinality $=$ card(Products);

Arrays

- An array is declared by

```
array[index_set_1,index_set_2, ... ] of <type> : <name>
```

- Index sets of an array are sets of integers
- Elements of an array can be parameters or decision variables
- Built-in function length returns the number of elements in a dimension of an array
- Concatenation of two arrays ++

```
array[States] of string: names;
array[States,States] of 0..1: inc;
array[States] of var Colors: aust;
int: len = length(inc) ;
% len = 49 = States * States = 7*7
names = ["wa", "nt", "sa", "q"] ++ ["nsw", "v", "t"];
inc = [l 0,1,1,0,0,0,0,
    | 1,0,1,1,0,0,0, ... |];
```


Arrays/Sets Comprehensions

- A set comprehension has form \{ expr | generator_1, generator_2, ... where <bool-expr> \}
- An array comprehension is similar
[expr | generator_1, generator_2, ... where <bool-expr>]
$\{i+j \mid i, j$ in $1 . .10$ where $j<i / \backslash i<4\}=$

$$
=\{2+1,3+1,3+2\}=\{3,4,5\}
$$

Iteration

MiniZinc provides a variety of built-in functions for iterating over a list or set:

■ Numbers: sum, product, min, max
■ Constraints: forall, exists

```
forall (i, j in 1..10 where i < j) (a[i] != a[j]);
% is equivalent to
forall ([a[i] != a[j] | i, j in 1.. 10 where i < j]);
int: maxColor = max(s in States) (aust[s]);
```


A general model of the coloring example I

- Data file containing a problem instance:

Colors = 1..3;
States = 1..7;
names = ["wa", "nt", "sa", "q", "nsw", "v", "t"];
inc $=$
[| $0,1,1,0,0,0,0$,
| 1,0,1,1,0,0,0,
| 1,1,0,1,1,1,0,
| 0,1,1,0,1,0,0,
| $0,0,1,1,0,1,0$,
| 0,0,1,0,1,0,0,
| 0,0,0,0,0,0,0 |];

A general model of the coloring example II

■ Model of the coloring problem:
set of int: Colors;
set of int: States;
array[States] of string: names;
\% incidence matrix for the states
array[States,States] of 0..1: inc;
array[States] of var Colors: aust;
constraint forall (st1, st2 in States where inc[st1,st2] > 0) (
aust[st1] != aust[st2]
);
solve satisfy;
output [names[state] ++ "=" ++ show(aust[state]) ++ "\t" | state in States];

Section 4

Advanced modeling

Global constraints

- MiniZinc has a big library of efficiently implemented global constraints ${ }^{3}$

```
include "globals.mzn";
alldifferent(array[int] of var int:x)
table(array[int] of var int: x, array[int,int] of int:t)
global_cardinality(array[int] of var int: x,
    array[int] of int: cover,
    array[int] of var int: counts)
```

- alldifferent all variables in the array x must take different values.
- table constrains values of variables in x to the ones given in the table t (a variable per row)
- global_cardinality requires that the number of occurrences of cover $[i]$ in x is counts $[i]$.

[^1]
Local Variables

■ It is often useful to introduce local variables in a test or predicate

- The let expression allows you to do so

$$
\text { let \{ <var_dec>, ...\} in <exp> }
$$

- It can also be used in other expressions
- The variable declaration can contain decision variables and parameters
- Parameters must be initialized constraint let $\{$ var int: $s=x 1+x 2+x 3+x 4$, int $l=\mathbf{l b}(x 1)$, int $u=u b(x 4)\}$ in l <= s / s s < u;

Efficiency in MiniZinc

- A problem can be modeled in many different ways

■ Not every implementation can be solved efficiently

- Information about efficiency is obtained using the MiniZinc flags

■ solver-statistics [number of choice points]

- statistics [number of choice points, memory and time usage]
- Extensive experimentation is required to determine relative efficiency

Writing Efficient Models I

■ Add search annotations to the solve item to control exploration of the search space

```
<search_type>(variables, varchoice, constrainchoice,
        strategy)
solve :: int_search(q, first_fail, indomain_min, complete)
satisfy;
```

■ Types: int_search, bool_search (arrays), set_search
■ Choose the variable:
■ input_order in order from the array,
■ first_fail (MRV) with the smallest domain size,
■ most_constrained with the smallest domain, breaking ties using the number of constraints
■ Values: indomain_min assign the smallest domain value ${ }^{4}$

Writing Efficient Models II

■ Use global constraints such as alldifferent since they have better propagation behavior

- Try different models for the problem
- Add redundant constraints
- Bound variables as tightly as possible (avoid var int)
- Avoid introducing unnecessary variables

Expert users:

- Extend the constraint solver to provide a problem specific global constraint
- Extend the constraint solver to provide a problem specific search routine

[^2]
Section 5

House configuration problem

House problem

Customer requirements

1 Declaration of available persons, things and ownership relations between them
Configuration requirements
1 each thing must be stored in exactly one cabinet
2 a cabinet can contain at most 5 things
3 every cabinet must be placed in exactly one room
4 a room can contain at most 4 cabinets
5 each room belongs to a person
6 and a room may only contain cabinets storing things of the owner of the room

Goal store all things in a house such that the set of requirements is fulfilled

MiniZinc encoding

include "globals.mzn";
\% input
int: cabinetCap $=5$; \% capacity of a cabinet
int: roomCap $=4 ; \quad \%$ capacity of a room
array [Things] of Persons : p2t;
set of int: PersonsDomain;
set of int: ThingsDomain;
set of int: CabinetsDomain;
set of int: RoomsDomain;
\% enumeration of set elements
set of int: Persons = 1..card(PersonsDomain);
set of int: Things = 1..card(ThingsDomain);
set of int: Cabinets = 1..card(CabinetsDomain);
set of int: Rooms = 1..card(RoomsDomain);

MiniZinc encoding II

\% an array of length |Things| of variables with domain Cabinets array [Things] of var Cabinets : t2c;
array [Things] of var Rooms : t2r;
array [Cabinets] of var Rooms : c2r;
array[Cabinets] of int : cabinetLower = [0 | i in Cabinets];
array[Cabinets] of int : cabinetUpper =
[cabinetCap | i in Cabinets];
\% Built-in global constraint. Each value should belong to the set Cabinets (i.e. closed) converted to an array, and each element of Cabinets can be used at least cabinetLower[i] and at most cabinetUpper[i] times
constraint global_cardinality_low_up_closed(t2c, [i | i in Cabinets], cabinetLower, cabinetUpper);

MiniZinc encoding III

```
% capacity contraint for rooms
array[Rooms] of int : roomLower = [0 | i in Rooms];
array[Rooms] of int : roomUpper =
    [roomCap*cabinetCap | i in Rooms];
% each room can contain at most 20 things
constraint global_cardinality_low_up_closed(t2r, [i | i in Rooms],
    roomLower, roomUpper);
array[Rooms] of int : roomCabinetUpper = [roomCap | i in Rooms];
constraint global_cardinality_low_up_closed(c2r, [i | i in Rooms],
    roomLower, roomCabinetUpper);
```


MiniZinc encoding IV

\% if thing is stored in a cabinet and in a room then the cabinet is placed in the room
constraint forall (i in Things) (
let $\{v a r$ int: cabinet $=t 2 c[i]$, var int: room $=t 2 r[i]\}$ in c2r[cabinet] = room);
\% if 2 different things are placed in the same cabinet they have to be owned by the same person
constraint forall (i,j in Things where i != j / p $2 \mathrm{t}[\mathrm{i}] \quad$!= p2t[j]) (t2c[i] != t2c[j]);
\% if 2 different things are placed in the same room they have to be owned by the same person
constraint forall (i,j in Things where $i \quad!=j / \backslash p 2 t[i] \quad!=p 2 t[j]$) (t2r[i] != t2r[j]);

MiniZinc encoding V

```
ann: search_ann;
solve
:: search_ann
satisfy;
output ["t2c(" ++ show(ThingsDomain[i]) ++ "," ++
    show(CabinetsDomain[t2c[i]]) ++ "). " | i in Things]
++ ["c2r(" ++ show(CabinetsDomain[t2c[i]]) ++ "," ++
    show(RoomsDomain[t2r[i]]) ++ "). " | i in Things]
```


Data file

This instance presented in the first lecture

```
% input relations
p2t = [1,1,1,1,1,2];
%sets of names
CabinetsDomain = {500,501,502,503,504};
RoomsDomain = {1000,1001,1002,1003,1004};
PersonsDomain = {1,2};
ThingsDomain = {3,4,5,6,7,8};
% search annotation
search_ann = int_search(t2c, first_fail, indomain_max,
    complete));
```


Optimization

```
% returns true if a value occurs in the array
predicate used(array[int] of var int: a, int: b) =
    exists (t in index_set(a)) (a[t]==b);
% costs defined in the data file
int: roomCost;
int: cabinetCost;
% computation of costs of an assignment
var int: costs =
        sum (r in Rooms)(roomCost*bool2int(used(t2r,r)))
    + sum (c in Cabinets)(cabinetCost*bool2int(used(t2c,c)));
```

solve :: search_ann
minimize costs;

Summary

General observations:

- Configuration problems can be modeled in MiniZinc

■ Solution of the model can be found using any FlatZinc solver

- Various heuristics and orderings can improve the performance
- input_order heuristic allows to specify any cariable selection order
- Readability of the language is average

Source files for MiniZinc 1.6^{5}
■ Model house.mzn
■ Data house.dzn

[^3]
[^0]: ${ }^{1}$ A Mathematical Programming Language
 ${ }^{2}$ Optimization Programming Language

[^1]: ${ }^{3}$ See http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html

[^2]: ${ }^{4}$ See http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf Section 5.6.1 for a complete list of heuristics

[^3]: ${ }^{5}$ Click on the file names to get the model and data file attached to pdf

