
Knowledge-based configuration: Modeling in
MiniZinc

Kostyantyn Shchekotykhin

Alpen-Adria-Universität Klagenfurt, Austria

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Agenda

1 Constraint satisfaction problems
CSP example
Backtracking search for CSPs
Local search
Summary

2 MiniZinc basics
Variables
Formatting output
Data �les
Basic structure of a model

3 Arrays and sets

4 Advanced modeling

5 House con�guration problem

2

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Section 1

Constraint satisfaction problems

3

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Constraint satisfaction problems (CSPs)

Standard search problem:

state is a “black box” – any old data structure that supports
goal test, eval, successor

CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

4

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Vertex-Coloring problem

Given an undirected graph G = (V ,E), where V is a set of
vertices and E is a set of edges, and a set of colors C �nd
such an assignment of colors to vertices that for any edge
(v1, v2) ∈ E colors of the vertices v1 and v2 are di�erent.

The problem is an abstraction of many practical problems:

Configuration of electronic circuits – identification of groups of
non-conflicting components
Compiler optimization – registry allocation (most often used
color)
Scheduling – schedule jobs in time slots and avoid conflicts
(same color)
Pattern matching, e.g. in biochemistry dealing with protein
fragments

5

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: Map-Coloring I

Map-Coloring is a special case of the graph-coloring problem

Given a map assign colors to territories in such a way that no
two neighboring territories have the same color

Consider a map of Australia:

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

6

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: Map-Coloring II

Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red , green, blue}
Constraints: adjacent regions must have different colors e.g.,
WA ̸= NT (if the language allows this), or (WA,NT) ∈
{(red , green), (red , blue), (green, red), (green, blue), . . .}

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

7

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: Map-Coloring III

Solutions are assignments satisfying all constraints, e.g.,
{WA = red ,NT = green,Q = red ,NSW = green,V =
red , SA = blue,T = green}

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

8

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure to speed
up search.

Example

Tasmania is an independent subproblem!

9

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Varieties of CSPs

Discrete variables

�nite discrete domains

n variables with d possible values =⇒ O(dn) complete
assignments
e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

in�nite domains (integers, strings, etc.)

e.g., job scheduling, variables are start/end days for each job
enumeration of possible assignments is not possible
specific constraint languages, e.g. StartJob1 + 5 ≤ StartJob3
linear constraints solvable, nonlinear undecidable

Continuous variables

e.g., start/end times for Hubble Telescope observations

linear constraints solvable in poly time by LP methods

10

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Varieties of constraints

Unary constraints involve a single variable, e.g., SA ̸= green

Binary constraints involve pairs of variables, e.g., SA ̸= WA

Higher-order constraints involve 3 or more variables, e.g.,
cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment →
constrained optimization problems

11

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Backtracking search

Variable assignments are commutative, i.e., [WA = red then
NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each
node =⇒ b = d and there are dn leaves

Depth-�rst search for CSPs with single-variable assignments is
called backtracking search

Backtracking search is the basic uninformed algorithm for
CSPs

Can solve n-queens for n ≈ 25

12

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Backtracking example

13

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Backtracking example

13

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Backtracking example

13

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Backtracking example

13

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1 Which variable should be assigned next?

2 In what order should its values be tried?

3 Can we detect inevitable failure early?

4 Can we take advantage of problem structure?

14

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Minimum remaining values

Minimum remaining values (MRV): choose the variable
with the fewest legal values

15

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Degree heuristic

In some cases MRV does not discriminated between the
variables, i.e. all variables have domains of equal cardinality.

Degree heuristic: choose the variable with the most
constraints on remaining variables

16

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Least constraining value

We have selected a variable, but which value should we try
�rst?

Choose the least constraining value: the one that rules out
the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible!

17

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Forward checking & Arc consistency

Forward checking:

Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Arc consistency is the simplest form of propagation which makes
each arc consistent

Definition

X → Y is consistent i� for every value x of X there is some

allowed y

18

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Local search for CSPs

Hill-climbing, simulated annealing typically work with
�complete� states, i.e., all variables assigned

To apply to CSPs:

allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any con�icted variable

Value selection by min-con�icts heuristic:

Definition

Choose value that violates the fewest constraints, i.e. hillclimb with
h(n) = total number of violated constraints

19

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in the column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

20

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Summary

CSPs are a special kind of problem:

states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking is a depth-�rst search with one variable assigned
per node

Variable and value heuristics help signi�cantly

Forward checking prevents assignments that guarantee later
failure

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Local search allows to get an approximation of a solution in
practice

21

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Section 2

MiniZinc basics

22

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc Resources

Main page

G12 MiniZinc distribution
please select the latest version and your platform below

MiniZinc IDE

Tutorial

Language speci�cations

Gecode solver for FlatZinc or see MiniZinc Challenge for the
others

Håkan Kjellerstrand's Blog

23

http://www.minizinc.org/
http://www.minizinc.org/g12distrib.html
http://www.minizinc.org/ide/index.html
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
http://www.minizinc.org/specifications.html
http://www.gecode.org/flatzinc.html
http://www.minizinc.org/challenge.html
http://www.hakank.org/minizinc/

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Creating CSP models

Constraint programming is usually done in two steps:

creation of an conceptual model, an abstraction of some
real-world problem, and
design of a program that solves the problem

This process, in most of the cases, requires some experiments
with:

different models
different solving techniques
different heuristics/orderings

24

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Modeling languages

Programming language used with some constraint-solving
library: Choco (Java), Gecode(C++),

Constraint programming language (Zinc/MiniZinc, ECLiPSe,
Minion, Prologs)

Mathematical modeling language (AMPL1, OPL2)

Domain speci�c language

These languages vary in:

the level of abstraction from an underlying computer
architecture

expressiveness, i.e. which problems can be speci�ed in a
language

1A Mathematical Programming Language
2Optimization Programming Language

25

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc

MiniZinc is a modeling language being developed mostly by
NICTA (Australia)

Models can be solved with constraint or MIP solver (not all
features are supported by MIP)

MiniZinc ⊂ Zinc � a more powerful modeling language

26

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Coloring example modeled in MiniZinc

% Colouring Australia using nc colours

int: nc = 3;

var 1..nc: wa; var 1..nc: nt; var 1..nc: sa;

var 1..nc: q; var 1..nc: nsw; var 1..nc: v;

var 1..nc: t;

constraint wa != nt; constraint wa != sa;

constraint nt != sa; constraint nt != q;

constraint sa != q; constraint sa != nsw;

constraint sa != v; constraint q != nsw;

constraint nsw != v;

solve satisfy;

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

output ["wa=", show(wa), "\t nt=", show(nt), "\t sa=", show(sa),
"\n", "q=", show(q), "\t nsw=", show(nsw), "\t v=", show(v),
"\n", "t=", show(t), "\n"];

27

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Running MiniZinc

Save the model in au.mzn �le and run mzn au.mzn

The output model should look like

wa=1 nt=3 sa=2

q=1 nsw=3 v=1

t=1

MiniZinc models must have mzn extension and data dzn

use -f option to forward the result of ��attening� to other
solvers. E.g. -f fz will forward fzn �le to Gecode FlatZinc
front-end

the output is saved to an ozn �le that is then reformatted
using the pattern given in output predicate

28

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc life-cycle

MiniZinc FlatZinc
Variable

assignment

Flattening Solver

Problem instance Solution(s)

Modeling
Output

transformation

29

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Parameters and variables I

Parameters correspond to constants in usual programming
languages, i.e. they should have a value and only one

Sample assignments

int: i=3;

int: j; j=3;

Values of decision variables are unknown and should be
determined by a solver

Sample variable declarations:

var int: x;

var 1..i: y;

30

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Parameters and variables II

Identi�ers in MiniZinc start with a letter followed by other
letters, underscores or digits

Moreover, the underscore �_� is the name for an anonymous
decision variable

The basic parameter and variable types are:

integers int; variables also ranges 1..n and sets
floating point numbers float; variables also ranges 1.0..f and
sets
booleans bool
strings string (parameters only)
Sets: set of int: States = 1..7;
Arrays: array[States] of var int: australia;

31

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Operators and expressions

MiniZinc provides the relational operators: =, !=, <, >, <=,
and >=

Integers: +, -, *, div, mod

Floats: +, -, *, /

Casting: int2float

Functions: abs, pow, (only �oats): sqrt, ln, sin, cos and
others

Booleans: /\, \/, implications <-, ->, equivalence <->, and
negation not. Casting bool2int allows to convert results of
Boolean expressions to integers 0 and 1.

32

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: Arithmetic operations I

A backer has 4kg self-raising �our, 6 bananas, 2kg of sugar, 500g
of butter and 500g of cocoa and can make two sorts of cakes. A
banana cake which takes 250g of self-raising �our, 2 mashed
bananas, 75g sugar and 100g of butter, and a chocolate cake which
takes 200g of self-raising �our, 75g of cocoa, 150g sugar and 150g
of butter. We can sell a chocolate cake for $4.50 and a banana
cake for $4.00. The question is how many of each sort of cake
should the baker bake to maximize the pro�t.

33

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Example: Arithmetic operations II

int: priceChoco = 450; int: priceBanana = 400;

var 0..100: b; % no. of banana cakes

var 0..100: c; % no. of chocolate cakes

% flour

constraint 250*b + 200*c <= 4000;

% bananas

constraint 2*b <= 6;

% sugar

constraint 75*b + 150*c <= 2000;

% butter

constraint 100*b + 150*c <= 500;

% cocoa

constraint 75*c <= 500;

% maximize our profit

solve maximize priceBanana*b + priceChoco*c;

output ["no. of banana cakes = ", show(b), "\n",

"no. of chocolate cakes = ", show(c), "\n"];

34

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Output

The output statement output is followed by a list of strings
that should be used to format the solution

Strings can be concatenated by the operator ++
�Northern� ++ � Territories� = �Northern Territories�

show(X) is used to retrieve values of variable and parameters
as srings

35

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Data files

Models can be used with di�erent input parameters

MiniZinc allows speci�cation of parameters in separate data
�les (extension dzn)

In the bakery example di�erent prices for the cakes as well as
di�erent amounts of components used in the cakes can be
speci�ed separately from the model (bakery.dzn)

int: priceChoco = 450; int: priceBanana = 400;

int: flour = 4000; int: bananas = 6;

int: sugar = 2000; int: butter = 500;

int: cocoa = 500;

36

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Basic structure of a model

A MiniZinc model consists of a sequence of items

The model is declarative, that is order of items is not
important

Possible items are:

An inclusion item include <filename (string)>;
An output item output <list of string expressions>;
Declaration of a variable
A constraint constraint <Boolean expression>;
A solve item (only one of the following is allowed)

solve satisfy;
solve maximize <arith. expression>;
solve minimize <arith. expression>;

predicate and test (assert) items
Search annotation items ann

37

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Section 3

Arrays and sets

38

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Sets

Sets are declared by

set of <type> : <name>

Allowed types: integers, �oats or Booleans.

Set can be declared as {e1, . . . , en}
Generated sequences of integers as lower ..upper

Set operations:

card, in, union, intersect, subset, superset, diff, symdiff

Examples:

set of int: Products = {1,2} union {3,4};

int: setCardinality = card(Products);

39

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Arrays

An array is declared by

array[index_set_1,index_set_2, ...] of <type> : <name>

Index sets of an array are sets of integers
Elements of an array can be parameters or decision variables
Built-in function length returns the number of elements in a
dimension of an array
Concatenation of two arrays ++

array[States] of string: names;

array[States,States] of 0..1: inc;

array[States] of var Colors: aust;

int: len = length(inc) ;

% len = 49 = States * States = 7*7

names = ["wa", "nt", "sa", "q"] ++ ["nsw", "v", "t"];

inc = [| 0,1,1,0,0,0,0,

| 1,0,1,1,0,0,0, ... |];

40

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Arrays/Sets Comprehensions

A set comprehension has form

{ expr | generator_1, generator_2, ... where <bool-expr> }

An array comprehension is similar

[expr | generator_1, generator_2, ... where <bool-expr>]

{i + j | i, j in 1..10 where j < i /\ i < 4} =

= {2 + 1, 3 + 1, 3 + 2} = {3, 4, 5}

41

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Iteration

MiniZinc provides a variety of built-in functions for iterating over a
list or set:

Numbers: sum, product, min, max

Constraints: forall, exists

forall (i, j in 1..10 where i < j) (a[i] != a[j]);

% is equivalent to

forall ([a[i] != a[j] | i, j in 1..10 where i < j]);

int: maxColor = max(s in States) (aust[s]);

42

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

A general model of the coloring example I

Data �le containing a problem instance:

Colors = 1..3;

States = 1..7;

names = ["wa", "nt", "sa", "q", "nsw", "v", "t"];

inc = [| 0,1,1,0,0,0,0,

| 1,0,1,1,0,0,0,

| 1,1,0,1,1,1,0,

| 0,1,1,0,1,0,0,

| 0,0,1,1,0,1,0,

| 0,0,1,0,1,0,0,

| 0,0,0,0,0,0,0 |];

43

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

A general model of the coloring example II

Model of the coloring problem:

set of int: Colors;

set of int: States;

array[States] of string: names;

% incidence matrix for the states

array[States,States] of 0..1: inc;

array[States] of var Colors: aust;

constraint forall (st1, st2 in States where inc[st1,st2] > 0) (

aust[st1] != aust[st2]

);

solve satisfy;
output [names[state] ++ "=" ++ show(aust[state]) ++ "\t" | state

in States];

44

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Section 4

Advanced modeling

45

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Global constraints

MiniZinc has a big library of e�ciently implemented global
constraints3

include "globals.mzn";

alldifferent(array[int] of var int:x)
table(array[int] of var int: x, array[int,int] of int:t)
global_cardinality(array[int] of var int: x,

array[int] of int: cover,

array[int] of var int: counts)

alldifferent all variables in the array x must take di�erent
values.
table constrains values of variables in x to the ones given in
the table t (a variable per row)
global_cardinality requires that the number of
occurrences of cover [i] in x is counts[i].

3See http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html

46

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Local Variables

It is often useful to introduce local variables in a test or
predicate

The let expression allows you to do so

let { <var_dec>, ...} in <exp>

It can also be used in other expressions

The variable declaration can contain decision variables and
parameters

Parameters must be initialized

constraint let { var int: s = x1 + x2 + x3 + x4,

int l = lb(x1), int u = ub(x4) } in
l <= s /\ s <= u;

47

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Efficiency in MiniZinc

A problem can be modeled in many di�erent ways

Not every implementation can be solved e�ciently

Information about e�ciency is obtained using the MiniZinc
�ags

solver-statistics [number of choice points]
statistics [number of choice points, memory and time usage]

Extensive experimentation is required to determine relative
e�ciency

48

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Writing Efficient Models I

Add search annotations to the solve item to control
exploration of the search space

<search_type>(variables, varchoice, constrainchoice,

strategy)

solve :: int_search(q, first_fail, indomain_min, complete)

satisfy;

Types: int_search, bool_search (arrays), set_search
Choose the variable:

input_order in order from the array,
first_fail (MRV) with the smallest domain size,
most_constrained with the smallest domain, breaking ties
using the number of constraints

Values: indomain_min assign the smallest domain value4

49

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Writing Efficient Models II

Use global constraints such as alldifferent since they have
better propagation behavior

Try di�erent models for the problem

Add redundant constraints

Bound variables as tightly as possible (avoid var int)

Avoid introducing unnecessary variables

Expert users:

Extend the constraint solver to provide a problem speci�c
global constraint

Extend the constraint solver to provide a problem speci�c
search routine

4See http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf Section
5.6.1 for a complete list of heuristics

50

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Section 5

House configuration problem

51

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

House problem

Customer requirements

1 Declaration of available persons, things and ownership
relations between them

Configuration requirements

1 each thing must be stored in exactly one cabinet

2 a cabinet can contain at most 5 things

3 every cabinet must be placed in exactly one room

4 a room can contain at most 4 cabinets

5 each room belongs to a person

6 and a room may only contain cabinets storing things of the
owner of the room

Goal store all things in a house such that the set of requirements is
ful�lled

52

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc encoding I

include "globals.mzn";

% input

int: cabinetCap = 5; % capacity of a cabinet

int: roomCap = 4; % capacity of a room

array [Things] of Persons : p2t;

set of int: PersonsDomain;

set of int: ThingsDomain;

set of int: CabinetsDomain;

set of int: RoomsDomain;

% enumeration of set elements

set of int: Persons = 1..card(PersonsDomain);
set of int: Things = 1..card(ThingsDomain);
set of int: Cabinets = 1..card(CabinetsDomain);
set of int: Rooms = 1..card(RoomsDomain);

53

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc encoding II

% an array of length |Things| of variables with domain Cabinets

array [Things] of var Cabinets : t2c;

array [Things] of var Rooms : t2r;

array [Cabinets] of var Rooms : c2r;

array[Cabinets] of int : cabinetLower = [0 | i in Cabinets];

array[Cabinets] of int : cabinetUpper =

[cabinetCap | i in Cabinets];

% Built-in global constraint. Each value should belong to the

set Cabinets (i.e. closed) converted to an array, and each

element of Cabinets can be used at least cabinetLower[i]

and at most cabinetUpper[i] times

constraint global_cardinality_low_up_closed(t2c,

[i | i in Cabinets], cabinetLower, cabinetUpper);

54

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc encoding III

% capacity contraint for rooms

array[Rooms] of int : roomLower = [0 | i in Rooms];

array[Rooms] of int : roomUpper =

[roomCap*cabinetCap | i in Rooms];

% each room can contain at most 20 things

constraint global_cardinality_low_up_closed(t2r, [i | i in Rooms],

roomLower, roomUpper);

array[Rooms] of int : roomCabinetUpper = [roomCap | i in Rooms];

constraint global_cardinality_low_up_closed(c2r, [i | i in Rooms],

roomLower, roomCabinetUpper);

55

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc encoding IV

% if thing is stored in a cabinet and in a room then the cabinet

is placed in the room

constraint forall (i in Things) (

let {var int: cabinet = t2c[i], var int: room = t2r[i]} in
c2r[cabinet] = room);

% if 2 different things are placed in the same cabinet they have

to be owned by the same person

constraint forall (i,j in Things where i != j /\ p2t[i] != p2t[j]) (

t2c[i] != t2c[j]);

% if 2 different things are placed in the same room they have to

be owned by the same person

constraint forall (i,j in Things where i != j /\ p2t[i] != p2t[j]) (

t2r[i] != t2r[j]);

56

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

MiniZinc encoding V

ann: search_ann;

solve
:: search_ann

satisfy;

output ["t2c(" ++ show(ThingsDomain[i]) ++ "," ++

show(CabinetsDomain[t2c[i]]) ++ "). " | i in Things]

++ ["c2r(" ++ show(CabinetsDomain[t2c[i]]) ++ "," ++

show(RoomsDomain[t2r[i]]) ++ "). " | i in Things]

57

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Data file

This instance presented in the �rst lecture

% input relations

p2t = [1,1,1,1,1,2];

%sets of names

CabinetsDomain = {500,501,502,503,504};

RoomsDomain = {1000,1001,1002,1003,1004};

PersonsDomain = {1,2};

ThingsDomain = {3,4,5,6,7,8};

% search annotation

search_ann = int_search(t2c, first_fail, indomain_max,

complete));

58

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Optimization

% returns true if a value occurs in the array

predicate used(array[int] of var int: a, int: b) =

exists (t in index_set(a)) (a[t]==b);

% costs defined in the data file

int: roomCost;

int: cabinetCost;

% computation of costs of an assignment

var int: costs =

sum (r in Rooms)(roomCost*bool2int(used(t2r,r)))
+ sum (c in Cabinets)(cabinetCost*bool2int(used(t2c,c)));

solve :: search_ann

minimize costs;

59

Constraint satisfaction problems MiniZinc basics Arrays and sets Advanced modeling House configuration problem

Summary

General observations:

Con�guration problems can be modeled in MiniZinc

Solution of the model can be found using any FlatZinc solver

Various heuristics and orderings can improve the performance

input_order heuristic allows to specify any cariable selection
order

Readability of the language is average

Source �les for MiniZinc 1.65

Model

Data

5Click on the file names to get the model and data file attached to pdf

60

include "globals.mzn";

% input

int: cabinetCap = 5; % capacity of a cabinet

int: roomCap = 4; % capacity of a room

array [Things] of Persons : p2t;

set of int: PersonsDomain;

set of int: ThingsDomain;

set of int: CabinetsDomain;

set of int: RoomsDomain;

% enumeration of set elements

set of int: Persons = 1..card(PersonsDomain);

set of int: Things = 1..card(ThingsDomain);

set of int: Cabinets = 1..card(CabinetsDomain);

set of int: Rooms = 1..card(RoomsDomain);

% an array of length |Things| of variables with domain Cabinets

array [Things] of var Cabinets : t2c;

array [Things] of var Rooms : t2r;

array [Cabinets] of var Rooms : c2r;

array[Cabinets] of int : cabinetLower = [0 | i in Cabinets];

array[Cabinets] of int : cabinetUpper =

 [cabinetCap | i in Cabinets];

% Built-in global constraint. Each value should belong to the set Cabinets (i.e. closed) converted to an array, and each element of Cabinets can be used at least cabinetLower[i] and at most cabinetUpper[i] times

constraint global_cardinality_low_up_closed(t2c,

 [i | i in Cabinets], cabinetLower, cabinetUpper);

% capacity contraint for rooms

array[Rooms] of int : roomLower = [0 | i in Rooms];

array[Rooms] of int : roomUpper =

 [roomCap*cabinetCap | i in Rooms];

% each room can contain at most 20 things

constraint global_cardinality_low_up_closed(t2r, [i | i in Rooms], roomLower, roomUpper);

array[Rooms] of int : roomCabinetUpper = [roomCap | i in Rooms];

constraint global_cardinality_low_up_closed(c2r, [i | i in Rooms], roomLower, roomCabinetUpper);

% if thing is stored in a cabinet and in a room then the cabinet is placed in the room

constraint forall (i in Things) (

 let {var int: cabinet = t2c[i], var int: room = t2r[i]} in c2r[cabinet] = room);

% if 2 different things are placed in the same cabinet they have to be owned by the same person

constraint forall (i,j in Things where i != j /\ p2t[i] != p2t[j]) (

	t2c[i] != t2c[j]);

% if 2 different things are placed in the same room they have to be owned by the same person

constraint forall (i,j in Things where i != j /\ p2t[i] != p2t[j]) (

	t2r[i] != t2r[j]);

% OPTIMIZATION

predicate used(array[int] of var int: a, int: b) =

	exists (t in index_set(a)) (a[t]==b);

int: roomCost;

int: cabinetCost;

var int: costs =

	sum (r in Rooms)(roomCost*bool2int(used(t2r,r)))

 + sum (c in Cabinets)(cabinetCost*bool2int(used(t2c,c)));

ann: search_ann;

solve

:: search_ann

%satisfy;

minimize costs;

output ["t2c(" ++ show(ThingsDomain[i]) ++ "," ++ show(CabinetsDomain[t2c[i]]) ++ "). " | i in Things]

++ ["\n"] ++

["c2r(" ++ show(CabinetsDomain[t2c[i]]) ++ "," ++ show(RoomsDomain[t2r[i]]) ++ "). " | i in Things]

++ ["\nCosts: ", show(costs)]

cabinetCost=1;

roomCost=1;

p2t = [1,1,1,1,1,2];

CabinetsDomain = {500,501,502,503,504};

RoomsDomain = {1000,1001,1002,1003,1004};

PersonsDomain = {1,2};

ThingsDomain = {3,4,5,6,7,8};

search_ann = int_search(t2c, first_fail, indomain_max, complete);

	Constraint satisfaction problems
	CSP example
	Backtracking search for CSPs
	Local search
	Summary

	MiniZinc basics
	Variables
	Formatting output
	Data files
	Basic structure of a model

	Arrays and sets
	Advanced modeling
	House configuration problem

