
Knowledge-based (re)configuration:

an ASP approach

Kostyantyn Shchekotykhin

Alpen-Adria-Universität Klagenfurt

Outline

• House (re)configuration problem

– Configuration problem in ASP

– Extension for the reconfiguration problem

– Performance comparison with CSP

• Partner Units Problem

– Problem description

– Encoding of the configuration problem

– Heuristics and performance analysis

2

House (re)configuration problem

3

Configuration problem

• Given: a model (classes and their relations),

its partial instantiation and requirements

• Find: a complete instantiation of the model

that satisfies all requirements

(Siemens©)

Input

4

House configuration problem

Customer requirements:

Declaration of available persons, things and ownership relations

between them

Configuration requirements:
1. each thing must be stored in exactly one cabinet

2. a cabinet can contain at most 5 things

3. every cabinet must be placed in exactly one room

4. a room can contain at most 4 cabinets

5. each room belongs to a person

6. and a room may only contain cabinets storing things of the

owner of the room

Goal: store all things in a house such that the set of requirements

is fulfilled
5

Definitions

• Classes – unary predicates: thing, person,

cabinet, room

• Relations – binary predicates: p2t, t2c,
c2r, p2r

• Input – facts:

– Persons, things and relations between them

– Domains of cabinets and rooms – unary

predicates: cabinetDomain and roomDomain

– Solution schema predicates: cabinet, room,
t2c, c2r and p2r

6

Sample customer requirements

• Customer requirements include:

– Person 1 owns things 3,4,5,6,7 and

– Person 2 owns thing 8

– There are 2 cabinets and 2 rooms in the components

catalog

• Encoding

person(1). person(2). thing(3..8).

p2t(1,3..7). p2t(2,8).

cabinetDomain(9..10). roomDomain(15..16).

7

ASP Encoding (Gringo 4)

% each thing must be stored in exactly one
cabinet and a cabinet can contain at most 5
things

1 {t2c(T,C): cabinetDomain(C)} 1 :- thing(T).

:- cabinet(C), 6 {t2c(T,C) : thing(T)}.

cabinet(C) :- t2c(_,C).

8

ASP Encoding

% each room belongs to a person

p2r(P,R) :- p2t(P,T), t2c(T,C), c2r(C,R).

% a room may only contain cabinets storing
things of one person

:- p2r(P1,R), p2r(P2,R), P1 != P2.

9

Sample solution: ASP encoding

• Solution:

cabinet(9). cabinet(10). room(15). room(16).
p2r(1,15). p2r(2,16). c2r(9,15). c2r(10,16).
t2c(3,9). t2c(8,10). ...

10

House reconfiguration problem I

Additional customer requirements:

• definitions of long and short things – unary

predicates thingLong and thingShort

thingLong(3). ...thingShort(7). thingLong(8).

thing(21). thingLong(21).

• definitions of new things

thing(21). p2t(1,21).

11

Legacy configuration

• Use terms to encode the legacy solution

(reification of a solution)

• Unary predicate legacyConfig

legacyConfig(cabinet(9)).
legacyConfig(cabinet(10)). ...
legacyConfig(c2r(9,15)). ...
legacyConfig(t2c(3,9)). ...

12

House reconfiguration problem II

Additional configuration requirements:

• a cabinet is either small or high

• a long thing can only be put into a high cabinet

• a small cabinet occupies 1 and a high cabinet 2 of 4

cabinet places available in a room

• all legacy cabinets are small

Inconsistent

configuration

13

Additional constraints I

thing(X) :- thingLong(X).

thing(X) :- thingShort(X).

1 {thingLong(X); thingShort(X)} 1 :- thing(X).

% same for cabinets

1 {cabinetHigh(X); cabinetSmall(X)} 1 :-
cabinet(X).

cabinetHigh(C) :- thingLong(T), t2c(T,C).

ThingThingShort ThingLong

14

Additional constraints II

% 4 slots in a room

cabinetSize(X,1) :- cabinetSmall(X).

cabinetSize(X,2) :- cabinetHigh(X).

:- 5 <= #sum{S,C : cabinetSize(C,S),
c2r(C,R)}, room(R).

% all legacy cabinets are small: holds only
for cabinets reused in a new configuration

15

Transformation rules

• Parts of the legacy configuration can either be reused or

deleted

∀ 𝑋 𝑙𝑒𝑔𝑎𝑐𝑦𝐶𝑜𝑛𝑓𝑖𝑔 𝑝 𝑋 → 𝑟𝑒𝑢𝑠𝑒 𝑝 𝑋 ∨ 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝 𝑋

where 𝑝(𝑋) is an n-place predicate 𝑝 used in a

configuration with a vector of terms 𝑋

• Reused individuals, relations are asserted

∀ 𝑋[𝑟𝑒𝑢𝑠𝑒 𝑝 𝑋 → 𝑝(𝑋)]

• Deleted individuals, relations should be excluded

∀ 𝑋 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝 𝑋 ∧ 𝑝 𝑋 →⊥

16

House transformation rules

• Some parts of the legacy configuration must

be preserved

person(P) :- legacyConfig(person(P)).

• Other parts can either be reused or deleted

1 {reuse(t2c(T,C)); delete(t2c(T,C))} 1 :-
legacyConfig(t2c(T,C)).

cabinetDomain(X) :- legacyConfig(cabinet(X)).

1 {reuse(cabinet(X)); delete(cabinet(X))} 1
:- legacyConfig(cabinet(X)).

17

Objective function I

• Introduce costs for each action:

– Creation costs: individuals and relation tuples absent in

the legacy configuration

– Reuse costs: individuals and relation tuples present in

both reconfiguration and legacy configuration

– Deletion costs: individuals and relation tuples of legacy

configuration absent in the reconfiguration

• Optimization criterion: minimize sum of all costs

18

Objective function II

• Creation costs
∀ 𝑋, 𝑌,𝑊 𝑛𝑒𝑤 𝑝(𝑋) ∧ 𝑝(𝑋) ∧ 𝛼 𝑋, 𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝 𝑋 ,𝑊

• Reuse costs
∀ 𝑋, 𝑌,𝑊 𝑟𝑒𝑢𝑠𝑒 𝑝(𝑋) ∧ 𝛽 𝑋, 𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑟𝑒𝑢𝑠𝑒 𝑝 𝑋 ,𝑊

• Deletion costs
∀ 𝑋, 𝑌,𝑊 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝 𝑋 ∧ 𝛾 𝑋, 𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝 𝑋 ,𝑊

where 𝛼, 𝛽, 𝛾 are conjunctions of atoms defining case specific

costs; 𝑛𝑒𝑤 is domain predicate which is true for every 𝑝 𝑋
which is not in a legacy configuration

• Optimization criterion: min 𝑊∈ 𝑊𝑊

where 𝑊 = 𝑊: 𝑐𝑜𝑠𝑡 𝑜𝑝(𝑝 𝑋) ,𝑊 , 𝑝 ∈ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑚𝑎
and 𝑜𝑝 ∈ 𝑐𝑟𝑒𝑎𝑡𝑒, 𝑟𝑒𝑢𝑠𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒

19

House objective function

• Differentiate between domain elements used

in legacy solution and new once

• Encoding using xDomainNew/1 predicate

– x stands for a type, e.g. cabinet

cost(create(cabinetHigh(X)),W) :-
cabinetHigh(X), cabinetHighCost(W),

cabinetDomainNew(X).

20

Reconfiguration solution I

Initial state

21

Reconfiguration

• Reusing and changing a cabinet to high costs less than creating a

new one

• Creation of a high cabinet costs more than reuse of an old one

modified to high

21

Reconfiguration solution II

Initial state

22

Reconfiguration

• Creation of a new cabinet costs less than reuse of an existing

cabinet and changing its size

• Deletion of a cabinet costs more than 0

22

Reconfiguration problems

• Empty: the legacy solution is empty

• Long: some of the things are declares as long

• New room: at least one new room must be

created to find a solution

• Swap: any solution describes a rearrangement

of cabinets in rooms

23

Modeling approaches

• ASP

– Problem representation is encoded in ASP

(Gringo) modeling language

– ASP program is solved by Gringo 3.0.3 + clasp

2.0.2

• CP

– CP model is written in MiniZinc

– The instances were solved using Gecode 3.7.1,

which is a Finite Domain solver written in C++

24

CP variable orderings I

• Fill cabinets first:

– assign things to cabinets, i.e. fix values of the

variables in the array t2c

– variables in the array are selected using

first_fail heuristic and values indomain_min
heuristic

– assign values to variables in c2r, i.e. place

cabinets in rooms, using the same heuristics as

above

– the order of other variables is determined by the

solver (Gecode)

25

CP variable orderings II

• Long things first:

– for each person place first longs things into

cabinets and then short things

– after each fifth thing assignment place a cabinet

into a room

– input_order variable selection heuristic is used

to apply the ordering described above

– indomain_min heuristic is used to select the

values

– the order of other variables is determined by the

solver (Gecode)

26

Evaluation I

*only creation costs for individuals are taken into account, CP – long things first

0,01

0,1

1

10

100

1000

em
p

ty
_

p
0

5
t0

2
5

em
p

ty
_

p
1

0
t0

5
0

em
p

ty
_

p
1

5
t0

7
5

em
p

ty
_

p
2

0
t1

0
0

em
p

ty
_

p
2

5
t1

2
5

em
p

ty
_

p
3

0
t1

5
0

em
p

ty
_

p
3

5
t1

7
5

em
p

ty
_

p
4

0
t2

0
0

lo
n

g_
p

0
2

t0
3

0

lo
n

g_
p

0
4

t0
6

0

lo
n

g_
p

0
6

t0
9

0

lo
n

g_
p

0
8

t1
2

0

lo
n

g_
p

1
0

t1
5

0

lo
n

g_
p

1
2

t1
8

0

lo
n

g_
p

1
4

t2
1

0

lo
n

g_
p

1
6

t2
4

0

R
u

n
ti

m
e

 (
se

co
n

d
s)

CP optimum

ASP optimum

Optimum
(not proved)

Timeout
(suboptimal)

No solution

27

Evaluation II

*only creation costs for individuals are taken into account, CP – fill cabinets first

0,01

0,1

1

10

100

1000

n
ew

ro
o

m
_

p
0

2
t0

2
4

n
ew

ro
o

m
_

p
0

4
t0

4
8

n
ew

ro
o

m
_

p
0

6
t0

7
2

n
ew

ro
o

m
_

p
0

8
t0

9
6

n
ew

ro
o

m
_

p
1

0
t1

2
0

n
ew

ro
o

m
_

p
1

2
t1

4
4

n
ew

ro
o

m
_

p
1

4
t1

6
8

n
ew

ro
o

m
_

p
1

6
t1

9
2

sw
ap

_r
0

2
t0

3
5

sw
ap

_r
0

4
t0

7
0

sw
ap

_r
0

6
t1

0
5

sw
ap

_r
0

8
t1

4
0

sw
ap

_r
1

0
t1

7
5

sw
ap

_r
1

2
t2

1
0

sw
ap

_r
1

4
t2

4
5

sw
ap

_r
1

6
t2

8
0

R
u

n
ti

m
e

(s
ec

o
n

d
s)

CP optimum

ASP optimum

Optimum
(not proved)

Timeout
(suboptimal)

28

Evaluation summary

The overall runtime of Clasp is better than runtime of

Gecode. ASP outperformed CP on the Empty, New

Room and Swap instances.

CP allows incorporation of problem-relevant heuristics

by means of search annotations which improved the

runtime for Long scenario.

In many cases CP was able to identify the optimal

model, but failed to prove the optimality.

29

Partner Units Configuration problem

30

Partner Units Problem (PUP)

Given a consistent configuration of door

sensors and zones, find a valid assignment of

units that satisfies all requirements, minimizing

the number of units used

31

Requirements

• each zone as well as each door sensor must

be connected to exactly one unit;

• each unit can control at most two door

sensors and at most two zones;

• if a unit controls a sensor that contributes to a

zone controlled by another unit, then the two

units must be connected directly, i.e. one unit

becomes a partner unit of the other and vice

versa;

• each unit can have at most n partner units
[ASP Competition, 2011]

32

PUP example
Solution

Not a solution

z1

s1

s2

s3

s4

z2

z1
s1

s2

s3

s4

z2

u1

u2

z1
s1

s2

s3

s4

z2

u1

u2

u3

Input

z1 z2s1

s3
s4s2

33

UML representation

Relations

Input: z2s/2, zone/1, sensor/1

Output: unit/1, u2z/2, u2s/2, pu/2

34

ASP encoding I

z2s(z1,s1; z1,s2; z1,s3).
z2s(z2,s3; z2,s4).

zone(Z) :- z2s(Z,S).

sensor(S) :- z2s(Z,S).

#const maxPU=2.

#const upper=7. #const lower=2.

z1

s1

s2

s3

s4

z2

z1
s1

s2

s3

s4

z2

u1

u2𝑙𝑜𝑤𝑒𝑟 = max(#𝑧𝑜𝑛𝑒𝑠, #𝑠𝑒𝑛𝑠𝑜𝑟𝑠)
2

𝑢𝑝𝑝𝑒𝑟 = #𝑧𝑜𝑛𝑒𝑠 + #𝑠𝑒𝑛𝑠𝑜𝑟𝑠

35

ASP encoding II

lower {unit(1..upper)} upper.

1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).

:- unit(U), 3 { u2z(U,Z): zone(Z) }.

1 { u2s(U,D) : unit(U) } 1 :- sensor(D).

:- unit(U), 3 { u2s(U,D): sensor(D)}.

pu(U,P) :- u2z(U,Z), z2s(Z,D), u2s(P,D), U!=P.

pu(U,P) :- pu(P,U), unit(U), unit(P).

:- unit(U), maxPU+1 { pu(U,P): unit(P)}.

36

Test cases

37

single-11:
11Z, 6S, 6U, 22 connections between

zones and sensors, each door is a

sensor

double, double variant:
• a double row of connected rooms,

each room being a zone

• a variant has additional zones for

each 2 connected rooms vertical to

the row

triple:
• each room being a zone

• in some cases with additional 2 or

4 zones consisting of 2-4 rooms

EDB Configuration Cos* Simple program

p10v3.edb 15U,30Z, 28D,3PU 00:15,0 00:59,65

p10v4.edb 30U,60Z, 58D,4PU timeout 00:01,56

p20v4.edb 20U,30Z, 40D,4PU 00:16,0 00:00,25

p102.edb 14U,20Z, 28D,2PU timeout 00:00,10

p203.edb 29U,40Z, 58D,3PU 00:40,0 timeout

p303.edb 44U,60Z, 88D,3PU 02:30,0 timeout, solved in 08:46 min

p403.edb 59U,80Z,117D,3PU timeout timeout

r10.edb 20U,32Z, 40D,4PU 00:02,0 00:00,42

r12.edb 20U,34Z, 40D,4PU 00:10,0 00:00,74

r20.edb 40U,64Z, 79D,4PU <1 sec 00:41,68

r22.edb 40U,60Z, 79D,4PU <1 sec 00:17,72

r30.edb 59U,90Z,118D,4PU timeout timeout, solved in 08:38 min

Evaluation results

*Cos – Legacy constraints system, timeout 3 minutes
38

Stochastic local search

39

*

*

* http://www.tcs.hut.fi/Software/

Evaluation details

Solver: UBCSAT1,2

Tested algorithms: GSAT (greedy SAT), GWSAT
modification of GSAT with a simple random walk procedure,
WalkSAT, Conflict-Directed Random Walk also known as
Papadimitriou's algorithm, adaptive Novelty+ one of the
most effective SLS algorithms2, adaptive G2WSAT
combines adaptive noise and look-ahead in local search

Results: experiments showed that SLS methods are unable
to find solutions even of the mid-sized PU problem instances
provided by SIE.

1. http://www.satlib.org/ubcsat/algorithms/

2. http://ubcsat.dtompkins.com/home

3. Biere, A., Heule, M., van Maaren, H., and Walsh, T.: Handbook of
Satisfiability, IOS Press, 2009

40

http://www.satlib.org/ubcsat/algorithms/
http://ubcsat.dtompkins.com/home

Selected evaluation results

S – solution found TO – time out (3 minutes)

Test case Input MiniSAT GSAT GWSAT

simple-3 3Z, 4S, 2U, 2PU S TO S

doublev-60 30Z, 40S, 20U, 4PU S TO TO

double-20 20Z, 28S, 14U, 3PU S TO TO

double-40 40Z, 58S, 29U, 3PU TO TO TO

Test case WalkSAT CRWalk ANovelty+ AG2WSAT

simple-3 S S S S

doublev-60 TO TO TO TO

double-20 TO TO TO TO

double-40 TO TO TO TO

41

Modification 1

• In the worst case, 𝑚𝑎𝑥𝑃𝑈 + 1 units

units can be used to connect

zones to sensors via units.

• A zone can be connected either to

one of the units controlling

previously connected zones and

their door sensors or to an

additional unit.

42

𝑈𝑃 𝑍 = 𝑍 ∗ 𝑚𝑎𝑥𝑃𝑈 + 1 + 1

1

0

2

UnitsZones

1

2

3

4

5

6

7

Program Mod.1

1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Z*(maxPU+1)+1.

43

Modification 2

• More precise

approximation of the

number of units required

to control all zones with

smaller indexes and their

door sensors

𝑍𝐷𝑍 = 𝑧2𝑠 𝑍𝑖 , 𝐷 : 𝑍𝑖 < Z

𝑈𝑃 𝑍 = 𝑍𝐷𝑍 2 + 1

1

0

2

UnitsZones

1

2

3

4

1

0

4

Door
sensors

1

2

3

44

Program Mod.2

1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Y/2+1, Y={z2s(Z1,D):Z1<Z}.

45

Modification 3

The number of units that can

control a door sensor 𝐷 is

determined as:

1

0

Zones

0

Door
sensors

1

n

...
...

𝑈𝑃 𝐷 = max 𝑍𝐷𝐷
𝑍𝐷𝐷 = { 𝑍𝑖 + 1 𝑚𝑎𝑥𝑃𝑈 + 1 : 𝑧2𝑠(𝑍𝑖 , 𝐷)}

1

0

UnitsZones

1

2

3

4

5

6

0

Door
sensors

1

46

Program Mod.3

1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 { u2s(U,D) : unit(U) } 1 :- sensor(D).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Z*(maxPU+1)+1.

1 {u2s(U,D) : unit(U), U<=UP} 1 :- z2s(Z,D),
UP=(Z+1)*(maxPU+1).

47

Modification 4

48

• Combines Modification 2 with limits on possible

unit-sensor relations as in Modification 3

• Overview of modifications:

SimpleMod.1

Mod.2

Mod.3

Mod.4 ⊆⊥ ⊆⊆ ⊤

models

Modification 5

If a maximum number of

partner unit equals 2 and a

configuration exists, then

there will be a configuration

with the following partner

units connection.

[Aschinger at al., 2011]

Partner
units

1

2

3

4

5

6

49

Program Mod.5

% generate a path

pu(U1,U2) :- unit(U1), unit(U2), U1=U2-1.

% create a cycle

pu(lower,1).

50

Example

#const lower = 4.

#const maxPU = 2.

z2s(0,1). z2s(0,4).
z2s(0,6).

z2s(1,0). z2s(1,1).

z2s(1,2). z2s(1,3).

z2s(1,4). z2s(1,5).
1

0

UnitsZones

1

2

3

4

0

Door
sensors

3

2

6

1

3

3

4

5

51

SIE test cases: single & small

1

10

100

1000

small-7
single-11

small-8
small-no

R
u

n
ti

m
e

, m
s

EDB

Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

with maxPU=2 (interUnitCap)

52

SIE test cases: double

1

10

100

1000

10000

100000

1000000

double-20
double-40

double-60
double-80

R
u

n
ti

m
e

. m
s

EDB

Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

Timeout 600000

with maxPU=2 (interUnitCap)

53

SIE test cases: double variant

1

10

100

1000

10000

100000

1000000

doublev-30
(2 PU)

doublev-30
(3 PU)

doublev-30
(4 PU)

doublev-60
(2 PU)

doublev-60
(3 PU) doublev-60

(4 PU)

R
u

n
ti

m
e

. m
s

EDB

Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

PU denotes a value of maxPU

Timeout 600000

54

Evaluation summary

• Simple ASP encoding shows performance

comparable with a CP encoding

• Application of local search:

– not advised if problem is solvable with complete

algorithms

– advised in case complete algorithms fail

• Heuristics help to improve the performance

on specific instances

55

