
Knowledge-based (re)configuration: 

an ASP approach

Kostyantyn Shchekotykhin 

Alpen-Adria-Universität Klagenfurt



Outline
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– Encoding of the configuration problem

– Heuristics and performance analysis
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House (re)configuration problem
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Configuration problem

• Given: a model (classes and their relations), 

its partial instantiation and requirements

• Find: a complete instantiation of the model 

that satisfies all requirements

(Siemens©)

Input
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House configuration problem

Customer requirements:

Declaration of available persons, things and ownership relations 

between them

Configuration requirements:
1. each thing must be stored in exactly one cabinet 

2. a cabinet can contain at most 5 things

3. every cabinet must be placed in exactly one room

4. a room can contain at most 4 cabinets

5. each room belongs to a person

6. and a room may only contain cabinets storing things of the 

owner of the room

Goal: store all things in a house such that the set of requirements 

is fulfilled
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Definitions

• Classes – unary predicates: thing, person, 

cabinet, room

• Relations – binary predicates: p2t, t2c, 
c2r, p2r

• Input – facts:

– Persons, things and relations between them

– Domains of cabinets and rooms – unary 

predicates: cabinetDomain and roomDomain

– Solution schema predicates: cabinet, room, 
t2c, c2r and p2r
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Sample customer requirements

• Customer requirements include:

– Person 1 owns things 3,4,5,6,7 and 

– Person 2 owns thing 8

– There are 2 cabinets and 2 rooms in the components 

catalog

• Encoding

person(1). person(2). thing(3..8).

p2t(1,3..7). p2t(2,8).

cabinetDomain(9..10). roomDomain(15..16).
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ASP Encoding (Gringo 4)

% each thing must be stored in exactly one 
cabinet and a cabinet can contain at most 5 
things

1 {t2c(T,C): cabinetDomain(C)} 1 :- thing(T).

:- cabinet(C), 6 {t2c(T,C) : thing(T)}.

cabinet(C) :- t2c(_,C).
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ASP Encoding

% each room belongs to a person

p2r(P,R) :- p2t(P,T), t2c(T,C), c2r(C,R).

% a room may only contain cabinets storing 
things of one person

:- p2r(P1,R), p2r(P2,R), P1 != P2.
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Sample solution: ASP encoding

• Solution:

cabinet(9). cabinet(10). room(15). room(16). 
p2r(1,15). p2r(2,16). c2r(9,15). c2r(10,16). 
t2c(3,9).  t2c(8,10). ... 
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House reconfiguration problem I

Additional customer requirements: 

• definitions of long and short things – unary 

predicates thingLong and thingShort

thingLong(3). ...thingShort(7). thingLong(8).

thing(21). thingLong(21).

• definitions of new things

thing(21). p2t(1,21).
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Legacy configuration

• Use terms to encode the legacy solution 

(reification of a solution)

• Unary predicate legacyConfig

legacyConfig(cabinet(9)). 
legacyConfig(cabinet(10)). ...
legacyConfig(c2r(9,15)). ... 
legacyConfig(t2c(3,9)). ...
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House reconfiguration problem II

Additional configuration requirements:

• a cabinet is either small or high

• a long thing can only be put into a high cabinet

• a small cabinet occupies 1 and a high cabinet 2 of 4 

cabinet places available in a room

• all legacy cabinets are small

Inconsistent 

configuration
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Additional constraints I

thing(X) :- thingLong(X).

thing(X) :- thingShort(X).

1 {thingLong(X); thingShort(X)} 1 :- thing(X).

% same for cabinets

1 {cabinetHigh(X); cabinetSmall(X)} 1 :-
cabinet(X).

cabinetHigh(C) :- thingLong(T), t2c(T,C).

ThingThingShort ThingLong
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Additional constraints II

% 4 slots in a room

cabinetSize(X,1) :- cabinetSmall(X).

cabinetSize(X,2) :- cabinetHigh(X).

:- 5 <= #sum{S,C : cabinetSize(C,S), 
c2r(C,R)}, room(R).

% all legacy cabinets are small: holds only 
for cabinets reused in a new configuration
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Transformation rules

• Parts of the legacy configuration can either be reused or 

deleted

∀  𝑋 𝑙𝑒𝑔𝑎𝑐𝑦𝐶𝑜𝑛𝑓𝑖𝑔 𝑝  𝑋 → 𝑟𝑒𝑢𝑠𝑒 𝑝  𝑋 ∨ 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝  𝑋

where 𝑝(  𝑋) is an n-place predicate 𝑝 used in a 

configuration with a vector of terms  𝑋

• Reused individuals, relations are asserted

∀  𝑋[𝑟𝑒𝑢𝑠𝑒 𝑝  𝑋 → 𝑝(  𝑋)]

• Deleted individuals, relations should be excluded

∀  𝑋 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝  𝑋 ∧ 𝑝  𝑋 →⊥
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House transformation rules

• Some parts of the legacy configuration must 

be preserved

person(P) :- legacyConfig(person(P)).

• Other parts can either be reused or deleted

1 {reuse(t2c(T,C)); delete(t2c(T,C))} 1 :-
legacyConfig(t2c(T,C)).

cabinetDomain(X) :- legacyConfig(cabinet(X)).

1 {reuse(cabinet(X)); delete(cabinet(X))} 1
:- legacyConfig(cabinet(X)).
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Objective function I

• Introduce costs for each action:

– Creation costs:  individuals and relation tuples absent in 

the legacy configuration

– Reuse costs: individuals and relation tuples present in 

both reconfiguration and legacy configuration

– Deletion costs: individuals and relation tuples of legacy 

configuration absent in the reconfiguration

• Optimization criterion: minimize sum of all costs
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Objective function II

• Creation costs
∀  𝑋,  𝑌,𝑊 𝑛𝑒𝑤 𝑝(  𝑋) ∧ 𝑝(  𝑋) ∧ 𝛼  𝑋,  𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝  𝑋 ,𝑊

• Reuse costs
∀  𝑋,  𝑌,𝑊 𝑟𝑒𝑢𝑠𝑒 𝑝(  𝑋) ∧ 𝛽  𝑋,  𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑟𝑒𝑢𝑠𝑒 𝑝  𝑋 ,𝑊

• Deletion costs
∀  𝑋,  𝑌,𝑊 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝  𝑋 ∧ 𝛾  𝑋,  𝑌,𝑊 → 𝑐𝑜𝑠𝑡 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝  𝑋 ,𝑊

where 𝛼, 𝛽, 𝛾 are conjunctions of atoms defining case specific 

costs; 𝑛𝑒𝑤 is domain predicate which is true for every 𝑝  𝑋
which is not in a legacy configuration

• Optimization criterion: min 𝑊∈  𝑊𝑊

where  𝑊 = 𝑊: 𝑐𝑜𝑠𝑡 𝑜𝑝(𝑝  𝑋) ,𝑊 , 𝑝 ∈ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑚𝑎
and 𝑜𝑝 ∈ 𝑐𝑟𝑒𝑎𝑡𝑒, 𝑟𝑒𝑢𝑠𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒
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House objective function

• Differentiate between domain elements used 

in legacy solution and new once

• Encoding using xDomainNew/1 predicate

– x stands for a type, e.g. cabinet

cost(create(cabinetHigh(X)),W) :-
cabinetHigh(X), cabinetHighCost(W),

cabinetDomainNew(X).
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Reconfiguration solution I

Initial state

21

Reconfiguration

• Reusing and changing a cabinet to high costs less than creating a 

new one

• Creation of a high cabinet costs more than reuse of an old one 

modified  to high
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Reconfiguration solution II

Initial state

22

Reconfiguration

• Creation of a new cabinet costs less than reuse of an existing 

cabinet and changing its size

• Deletion of a cabinet costs more than 0
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Reconfiguration problems

• Empty: the legacy solution is empty

• Long: some of the things are declares as long

• New room: at least one new room must be 

created to find a solution

• Swap: any solution describes a rearrangement 

of cabinets in rooms
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Modeling approaches

• ASP

– Problem representation is encoded in ASP 

(Gringo) modeling language

– ASP program is solved by Gringo 3.0.3 + clasp 

2.0.2

• CP

– CP model is written in MiniZinc

– The instances were solved using Gecode 3.7.1,  

which is a Finite Domain solver written in C++
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CP variable orderings I

• Fill cabinets first:

– assign things to cabinets, i.e. fix values of the 

variables in the array t2c

– variables in the array are selected using 

first_fail heuristic and values indomain_min
heuristic

– assign values to variables in c2r, i.e. place 

cabinets in rooms, using the same heuristics as 

above

– the order of other variables is determined by the 

solver (Gecode)
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CP variable orderings II

• Long things first:

– for each person place first longs things into 

cabinets and then short things

– after each fifth thing assignment place a cabinet 

into a room

– input_order variable selection heuristic is used 

to apply the ordering described above 

– indomain_min heuristic is used to select the 

values

– the order of other variables is determined by the 

solver (Gecode)
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Evaluation I

*only creation costs for individuals are taken into account, CP – long things first
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Evaluation II

*only creation costs for individuals are taken into account, CP – fill cabinets first
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Evaluation summary

The overall runtime of Clasp is better than runtime of 

Gecode. ASP outperformed CP on the Empty, New 

Room and Swap instances. 

CP allows incorporation of problem-relevant heuristics 

by means of search annotations which improved the 

runtime for Long scenario. 

In many cases CP was able to identify the optimal 

model, but failed to prove the optimality.
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Partner Units Configuration problem
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Partner Units Problem (PUP)

Given a consistent configuration of door 

sensors and zones, find a valid assignment of 

units that satisfies all requirements, minimizing 

the number of units used
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Requirements

• each zone as well as each door sensor must 

be connected to exactly one unit;

• each unit can control at most two door 

sensors and at most two zones;

• if a unit controls a sensor that contributes to a 

zone controlled by another unit, then the two 

units must be connected directly, i.e. one unit 

becomes a partner unit of the other and vice 

versa;

• each unit can have at most n partner units
[ASP Competition, 2011]
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PUP example
Solution

Not a solution

z1

s1

s2

s3

s4

z2

z1
s1

s2

s3

s4

z2

u1

u2

z1
s1

s2

s3

s4

z2

u1

u2

u3

Input

z1 z2s1

s3
s4s2
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UML representation

Relations

Input: z2s/2, zone/1, sensor/1

Output: unit/1, u2z/2, u2s/2, pu/2
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ASP encoding I

z2s(z1,s1; z1,s2; z1,s3). 
z2s(z2,s3; z2,s4).

zone(Z) :- z2s(Z,S).

sensor(S) :- z2s(Z,S).

#const maxPU=2.

#const upper=7. #const lower=2. 

z1

s1

s2

s3

s4

z2

z1
s1

s2

s3

s4

z2

u1

u2𝑙𝑜𝑤𝑒𝑟 =  max(#𝑧𝑜𝑛𝑒𝑠, #𝑠𝑒𝑛𝑠𝑜𝑟𝑠)
2

𝑢𝑝𝑝𝑒𝑟 = #𝑧𝑜𝑛𝑒𝑠 + #𝑠𝑒𝑛𝑠𝑜𝑟𝑠
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ASP encoding II

lower {unit(1..upper)} upper.

1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).

:- unit(U), 3 { u2z(U,Z): zone(Z) }.

1 { u2s(U,D) : unit(U) } 1 :- sensor(D).

:- unit(U), 3 { u2s(U,D): sensor(D)}.

pu(U,P) :- u2z(U,Z), z2s(Z,D), u2s(P,D), U!=P.

pu(U,P) :- pu(P,U), unit(U), unit(P).

:- unit(U), maxPU+1 { pu(U,P): unit(P)}.
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Test cases

37

single-11:
11Z, 6S, 6U, 22 connections between

zones and sensors, each door is a

sensor

double, double variant:
• a double row of connected rooms,

each room being a zone

• a variant has additional zones for

each 2 connected rooms vertical to

the row

triple:
• each room being a zone 

• in some cases with additional 2 or 

4 zones consisting of 2-4 rooms  



EDB Configuration Cos* Simple program

p10v3.edb 15U,30Z, 28D,3PU 00:15,0 00:59,65

p10v4.edb 30U,60Z, 58D,4PU timeout 00:01,56

p20v4.edb 20U,30Z, 40D,4PU 00:16,0 00:00,25

p102.edb 14U,20Z, 28D,2PU timeout 00:00,10

p203.edb 29U,40Z, 58D,3PU 00:40,0 timeout

p303.edb 44U,60Z, 88D,3PU 02:30,0 timeout, solved in 08:46 min

p403.edb 59U,80Z,117D,3PU timeout timeout

r10.edb 20U,32Z, 40D,4PU 00:02,0 00:00,42

r12.edb 20U,34Z, 40D,4PU 00:10,0 00:00,74

r20.edb 40U,64Z, 79D,4PU <1 sec 00:41,68

r22.edb 40U,60Z, 79D,4PU <1 sec 00:17,72

r30.edb 59U,90Z,118D,4PU timeout timeout, solved in 08:38 min

Evaluation results

*Cos – Legacy constraints system, timeout 3 minutes
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Stochastic local search

39

*

*

* http://www.tcs.hut.fi/Software/



Evaluation details

Solver: UBCSAT1,2

Tested algorithms: GSAT (greedy SAT), GWSAT
modification of GSAT with a simple random walk procedure, 
WalkSAT, Conflict-Directed Random Walk also known as 
Papadimitriou's algorithm, adaptive Novelty+ one of the 
most effective SLS algorithms2, adaptive G2WSAT 
combines adaptive noise and look-ahead in local search

Results: experiments showed that SLS methods are unable 
to find solutions even of the mid-sized PU problem instances 
provided by SIE.  

1. http://www.satlib.org/ubcsat/algorithms/

2. http://ubcsat.dtompkins.com/home

3. Biere, A., Heule, M., van Maaren, H., and Walsh, T.: Handbook of 
Satisfiability, IOS Press, 2009

40
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Selected evaluation results

S – solution found TO – time out (3 minutes)

Test case Input MiniSAT GSAT GWSAT

simple-3 3Z, 4S, 2U, 2PU S TO S

doublev-60 30Z, 40S, 20U, 4PU S TO TO

double-20 20Z, 28S, 14U, 3PU S TO TO

double-40 40Z, 58S, 29U, 3PU TO TO TO

Test case WalkSAT CRWalk ANovelty+ AG2WSAT

simple-3 S S S S

doublev-60 TO TO TO TO

double-20 TO TO TO TO

double-40 TO TO TO TO

41



Modification 1

• In the worst case, 𝑚𝑎𝑥𝑃𝑈 + 1 units 

units can be used to connect 

zones to sensors via units. 

• A zone can be connected either to 

one of the units controlling 

previously connected zones and 

their door sensors or to an 

additional unit.

42

𝑈𝑃 𝑍 = 𝑍 ∗ 𝑚𝑎𝑥𝑃𝑈 + 1 + 1

1

0

2

UnitsZones

1

2

3

4

5

6

7



Program Mod.1

1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),   
UP=Z*(maxPU+1)+1.
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Modification 2

• More precise 

approximation of the 

number of units required 

to control all zones with 

smaller indexes and their 

door sensors

𝑍𝐷𝑍 = 𝑧2𝑠 𝑍𝑖 , 𝐷 : 𝑍𝑖 < Z

𝑈𝑃 𝑍 =  𝑍𝐷𝑍 2 + 1

1

0

2

UnitsZones

1

2

3

4

1

0

4

Door 
sensors

1

2

3
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Program Mod.2

1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z), 
UP=Y/2+1, Y={z2s(Z1,D):Z1<Z}.
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Modification 3 

The number of units that can

control a door sensor 𝐷 is

determined as:

1

0

Zones

0

Door 
sensors

1

n

...
...

𝑈𝑃 𝐷 = max 𝑍𝐷𝐷
𝑍𝐷𝐷 = { 𝑍𝑖 + 1 𝑚𝑎𝑥𝑃𝑈 + 1 : 𝑧2𝑠(𝑍𝑖 , 𝐷)}

1

0

UnitsZones

1

2

3

4

5

6

0

Door 
sensors

1
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Program Mod.3

1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 { u2s(U,D) : unit(U) } 1 :- sensor(D).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z), 
UP=Z*(maxPU+1)+1.

1 {u2s(U,D) : unit(U), U<=UP} 1 :- z2s(Z,D), 
UP=(Z+1)*(maxPU+1).

47



Modification 4

48

• Combines Modification 2 with limits on possible 

unit-sensor relations as in Modification 3 

• Overview of modifications:

SimpleMod.1

Mod.2 

Mod.3

Mod.4 ⊆⊥ ⊆⊆ ⊤

# models



Modification 5

If a maximum number of 

partner unit equals 2 and a 

configuration exists, then 

there will be a configuration 

with the following partner 

units connection.

[Aschinger at al., 2011]

Partner 
units

1

2

3

4

5

6
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Program Mod.5

% generate a path

pu(U1,U2) :- unit(U1), unit(U2), U1=U2-1.

% create a cycle

pu(lower,1).
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Example

#const lower = 4.

#const maxPU = 2.

z2s(0,1). z2s(0,4). 
z2s(0,6).

z2s(1,0). z2s(1,1).

z2s(1,2). z2s(1,3).

z2s(1,4). z2s(1,5).
1

0

UnitsZones

1

2

3

4

0

Door 
sensors

3

2

6

1

3

3

4

5
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SIE test cases: single & small
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single-11

small-8
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Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

with maxPU=2 (interUnitCap)
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SIE test cases: double

1

10

100

1000

10000

100000

1000000

double-20
double-40

double-60
double-80
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ti
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. m
s

EDB

Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

Timeout 600000

with maxPU=2 (interUnitCap)
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SIE test cases: double variant

1

10

100

1000

10000

100000

1000000

doublev-30
(2 PU)

doublev-30
(3 PU)

doublev-30
(4 PU)

doublev-60
(2 PU)

doublev-60
(3 PU) doublev-60

(4 PU)

R
u

n
ti

m
e

. m
s

EDB

Simple Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 GG

PU denotes a value of maxPU

Timeout 600000
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Evaluation summary

• Simple ASP encoding shows performance 

comparable with a CP encoding

• Application of local search:

– not advised if problem is solvable with complete 

algorithms

– advised in case complete algorithms fail

• Heuristics help to improve the performance 

on specific instances
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