ll ALPEN-ADRIA

AAAAAAAAAAAAAAAAAA

Knowledge-based (re)configuration:
an ASP approach

Kostyantyn Shchekotykhin

Alpen-Adria-Universitat Klagenfurt

UNI-KLU.AC.AT ll



Outline Moo
* House (re)configuration problem

— Configuration problem in ASP

— Extension for the reconfiguration problem

— Performance comparison with CSP

 Partner Units Problem
— Problem description

— Encoding of the configuration problem
— Heuristics and performance analysis




AAAAAAAAAAAAAAAAAAA

House (re)configuration problem
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» Given: a model (classes and their relations),
Its partial instantiation and requirements

* Find: a complete instantiation of the model

that satisfies all requirements
— .

Per=son \ Room

1 o.r

Input

Thing Cabirat

n.5 1

(Siemens©)




House configuration problem | | [RGO

AAAAAAAAAAAAAAAAAAA

Customer requirements:

Declaration of available persons, things and ownership relations
between them

Configuration requirements:
each thing must be stored in exactly one cabinet

a cabinet can contain at most 5 things

every cabinet must be placed in exactly one room
a room can contain at most 4 cabinets

each room belongs to a person

and a room may only contain cabinets storing things of the
owner of the room

o bk wWhE

Goal: store all things in a house such that the set of requirements

is fulfilled
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« Classes — unary predicates: thing, person,
cabinet, room

* Relations — binary predicates: p2t, t2c,
c2r, p2r

* |Input — facts:

— Persons, things and relations between them

— Domains of cabinets and rooms — unary
predicates: cabinetbDomain and roomDomain

— Solution schema predicates: cabinet, room,
t2c, c2r and p2r
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« Customer requirements include:
— Person 1 owns things 3,4,5,6,7 and
— Person 2 owns thing 8

— There are 2 cabinets and 2 rooms in the components
catalog

* Encoding
person(1l). person(2). thing(3..8).
p2t(1,3..7). p2t(2,8).

cabinetDomain(9..10). roomDomain(15..16).
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% each thing must be stored in exactly one

cabinet and a cabinet can contain at most 5
things

1 {t2c(T,C): cabinetDomain(C)} 1 :- thing(T).

:- cabinet(C), 6 {t2c(T,C) : thing(T)}.
cabinet(C) :- t2c(_,CQ).
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% each room belongs to a person
p2r(P,R) :- p2t(P,T), t2c(T,C), c2r(C,R).

% a room may only contain cabinets storing
things of one person

:- p2r(P1,R), p2r(P2,R), P1 != P2,
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e Solution:

cabinet(9). cabinet(10). room(15). room(16).
p2r(1,15). p2r(2,16). c2r(9,15). c2r(10,16).
t2c(3,9). t2c(8,10).

SRER

e T
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Additional customer requirements:

« definitions of long and short things — unary
predicates thingLong and thingShort

thinglLong(3). ...thingShort(7). thinglLong(8).
thing(21). thinglLong(21).

* definitions of new things

thing(21). p2t(1,21).
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« Use terms to encode the legacy solution
(reification of a solution)

* Unary predicate legacyConfig

legacyConfig(cabinet(9)).
legacyConfig(cabinet(10)).
legacyConfig(c2r(9,15)).
legacyConfig(t2c(3,9)).

1% personi 16
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Additional configuration requirements:
« a cabinet is either small or high
« along thing can only be put into a high cabinet

« a small cabinet occupies 1 and a high cabinet 2 of 4
cabinet places available in a room

 all legacy cabinets are small

| persons o pesn2 Inconsistent
: configuration
10
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ThingShort Thing ThinglLong

4‘> <]7

thing(X) :- thinglLong(X).

thing(X) :- thingShort(X).

1 {thingLong(X); thingShort(X)} 1 :- thing(X).

% same for cabinets

1 {cabinetHigh(X); cabinetSmall(X)} 1 :-
cabinet(X).

cabinetHigh(C) :- thinglLong(T), t2c(T,C).
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% 4 slots 1n a room

cabinetSize(X,1) :- cabinetSmall(X).

cabinetSize(X,2) :- cabinetHigh(X).

:- 5 <= #sum{S,C : cabinetSize((C,S),
c2r(C,R)}, room(R).

% all legacy cabinets are small: holds only
for cabinets reused in a new configuration
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« Parts of the legacy configuration can either be reused or
deleted

vX|legacyConfig(p(X)) - reuse(p(X)) v delete(p(X))]

where p(X) is an n-place predicate p used in a
configuration with a vector of terms X

 Reused individuals, relations are asserted
V)?[reuse(p()?)) - p(X)]
 Deleted individuals, relations should be excluded
vX|delete(p(X)) Ap(X) >1]
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« Some parts of the legacy configuration must
be preserved

person(P) :- legacyConfig(person(P)).

* Other parts can either be reused or deleted
1 {reuse(t2c(T,C)); delete(t2c(T,C))} 1 :-
legacyConfig(t2c(T,C)).

cabinetDomain(X) :- legacyConfig(cabinet(X)).

1 {reuse(cabinet(X)); delete(cabinet(X))} 1
:- legacyConfig(cabinet(X)).

e T



Obijective function | | |

* Introduce costs for each action:

— Creation costs: Iindividuals and relation tuples absent in
the legacy configuration

— Reuse costs: individuals and relation tuples present in
both reconfiguration and legacy configuration

— Deletion costs: individuals and relation tuples of legacy
configuration absent in the reconfiguration

* Optimization criterion: minimize sum of all costs
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* Creation costs

VX, Y, Wlnew(pX)) Ap(X) Aa(X,Y,W) > cost(create(p(X)), W)]
« Reuse costs

vX,Y, W[reuse(p()?)) ABX,Y, W) - cost(reuse(p()?)), W)]
* Deletion costs

vX,Y,W|delete(p(X)) Ay(X,Y,W) - cost(delete(p(X)),W)]

where «, 8,y are conjunctions of atoms defining case specific
costs; new is domain predicate which is true for every p(X)
which is not in a legacy configuration

* Optimization criterion: min ), .7 W

where W = {W: cost(op(p(X)), W), p € SolutionSchema}

and op € {create, reuse, delete}



House objective function '“ ONIVERSITAT

 Differentiate between domain elements used
In legacy solution and new once

* Encoding using xDomainNew/1 predicate
— X stands for a type, e.g. cabinet

cost(create(cabinetHigh(X)),W) :-
cabinetHigh(X), cabinetHighCost(W),
cabinetDomainNew(X).
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Reconfiguration solution | il

Initial state 15 persont 16

21 ) I
(15 ||& ({7
| S| ) S - 10 L1l

« Reusing and changing a cabinet to high costs less than creating a
new one

« Creation of a high cabinet costs more than reuse of an old one
modified to high

15 Person 1

3 B EEE
Reconfiguration 3 . I
B0
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Reconfiguration solution |l “lUNIVERs'mT
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Initial state 15 pargon

21 ) I
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« Creation of a new cabinet costs less than reuse of an existing
cabinet and changing its size
« Deletion of a cabinet costs more than O

15

Reconfiguration B I
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« Empty: the legacy solution is empty
* Long: some of the things are declares as long

« New room: at least one new room must be
created to find a solution

« Swap: any solution describes a rearrangement
of cabinets in rooms
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« ASP

— Problem representation is encoded in ASP
(Gringo) modeling language

— ASP program is solved by Gringo 3.0.3 + clasp
2.0.2

+ CP
— CP model is written in MiniZinc

— The instances were solved using Gecode 3.7.1,
which is a Finite Domain solver written in C++
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* Fill cabinets first:

— assign things to cabinets, i.e. fix values of the
variables in the array t2c

— variables in the array are selected using
first fail heuristic and values indomain_min
heuristic

— assign values to variables in c2r, i.e. place
cabinets in rooms, using the same heuristics as
above

— the order of other variables is determined by the
solver (Gecode)
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* Long things first:
— for each person place first longs things into
cabinets and then short things

— after each fifth thing assignment place a cabinet
Into a room

— input_order variable selection heuristic is used
to apply the ordering described above

— indomain_min heuristic is used to select the
values

— the order of other variables is determined by the
solver (Gecode)
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Evaluation summary il

The overall runtime of Clasp is better than runtime of
Gecode. ASP outperformed CP on the Empty, New
Room and Swap instances.

CP allows incorporation of problem-relevant heuristics
by means of search annotations which improved the
runtime for Long scenario.

In many cases CP was able to identify the optimal
model, but failed to prove the optimality.
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Partner Units Configuration problem




Partner Units Problem (PUP) '“ﬂhf’v%“mm

Given a consistent configuration of door
sensors and zones, find a valid assignment of
units that satisfies all requirements, minimizing
the number of units used
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e each zone as well as each door sensor must
be connected to exactly one unit;

 each unit can control at most two door
sensors and at most two zones:

* If a unit controls a sensor that contributes to a
zone controlled by another unit, then the two
units must be connected directly, I.e. one unit
becomes a partner unit of the other and vice
versa,;

* each unit can have at most n partner units
[ASP Competition, 2011]
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Solution
Input
z1 ul <i::====
sl z1 z2
1 33
S2 Ca s4 z2 u2 <=
= 0

Not a solution

z1 ul

K

) z2 uz

=
m
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Zones SaNsSOrs
Zone DoorSensor
1. Zonezsensor 1.7
id: string id: string
zones | 0.2 Sensors 0.2
unit unit
ComUnit
unit2zone 1 1 unitZsensor
id: sting
0.2
patnerunits

Relations
Input: z2s/2, zone/1l, sensor/1
Output: unit/1, u2z/2, u2s/2, pu/2



ASP encoding | il

AAAAAAAAAAAAAAAAAAA

z2s(z1,s1; z1,s2; z1,s3). i
z2s(z2,s3; z2,s4).

z1 S2
zone(Z) .- z2s(Z,S). s3
sensor(S) :- z2s(Z,S). 22
s4
#const maxPU=2.
sl
#const upper=7. #const lower=2. i u1<i:

s2

s3
z2 uz

lower — max(#zones, #sensors) /
- 2

/\

s4

upper = #zones + #sensors
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lower {unit(1..upper)} upper.

1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).
;- unit(U), 3 { u2z(U,Z): zone(Z) }.

1 { u2s(U,D) : unit(U) } 1 :- sensor(D).
:- unit(U), 3 { u2s(U,D): sensor(D)}.

pu(U,P) :- u2z(U,z), z2s(Z,D), u2s(P,D), U!=P.
pu(U,P) :- pu(P,U), unit(U), unit(P).
:- unit(U), maxPU+l1 { pu(U,P): unit(P)}.

36
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single-11.:

117, 6S, 6U, 22 connections between | | | | | |
zones and sensors, each door is a | | | | | |
sensor

double, double variant: e el

 a double row of connected rooms,
each room being a zone

 a variant has additional zones for |.____! [ - [ - |
each 2 connected rooms vertical to
the row O i e W— B

triple: T S »

« each room being a zone
* In some cases with additional 2 or

4 zones consisting of 2-4 rooms '




Evaluation results | | [

AAAAAAAAAAAAAAAAAAA

EDB Configuration Cos* Simple program

p10v3.edb 15U,30Z, 28D,3PU 00:15,0 00:59,65

p10v4.edb 30U,60Z, 58D,4PU timeout 00:01,56

p20v4.edb 20U,30Z, 40D,4PU 00:16,0 00:00,25

p102.edb 14U,20Z, 28D,2PU timeout 00:00,10

p203.edb 29U,407Z, 58D,3PU 00:40,0 timeout

p303.edb 441,607, 88D,3PU 02:30,0 timeout, solved in 08:46 min
p403.edb 59U,807,117D,3PU timeout timeout

r10.edb 20U,32Z, 40D,4PU 00:02,0 00:00,42

r12.edb 20U,34Z, 40D,4PU 00:10,0 00:00,74

r20.edb 40U,647Z, 79D,4PU <1 sec 00:41,68

r22.edb 40U,60Z, 79D,4PU <1 sec 00:17,72

r30.edb 59U,907,118D,4PU timeout timeout, solved in 08:38 min

*Cos — Legacy constraints system, timeout 3 minutes
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Facts (EDB)

Grounded
program

Ip2sat *
(with preprocessors)

Grounder
(Iparse format)

Program (IDB)

* Model
@ Interpreter

CNF
(DIMACS format)

SAT solver
ubcsat, minisat

Failure or
unsatisfiable

* http://www.tcs.hut.fi/Software/ @
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Solver;: UBCSAT!2

Tested algorithms: GSAT (greedy SAT), GWSAT
modification of GSAT with a simple random walk procedure,
WalkSAT, Conflict-Directed Random Walk also known as
Papadimitriou's algorithm, adaptive Novelty+ one of the
most effective SLS algorithms?, adaptive G2WSAT
combines adaptive noise and look-ahead in local search

Results: experiments showed that SLS methods are unable
to find solutions even of the mid-sized PU problem instances
provided by SIE.

1. http://www.satlib.org/ubcsat/algorithms/
2. http://ubcsat.dtompkins.com/home

3. Biere, A., Heule, M., van Maaren, H., and Walsh, T.: Handbook of
Satisfiability, I0S Press, 2009



http://www.satlib.org/ubcsat/algorithms/
http://ubcsat.dtompkins.com/home

Selected evaluation results || [
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Test case Input MiniSAT GSAT GWSAT
simple-3 3Z,4S, 2U, 2PU S TO S
doublev-60 30Z, 40S, 20U, 4PU S TO TO
double-20 20Z, 28S, 14U, 3PU S TO TO
double-40 40Z, 58S, 29U, 3PU TO TO TO
Test case WalkSAT CRWalk ANovelty+ AG2WSAT
simple-3 S S S S
doublev-60 TO TO TO TO
double-20 TO TO TO TO
double-40 TO TO TO TO
S — solution found TO — time out (3 minutes)
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Z Unit '
ones e In the worst case, maxPU + 1 units

units can be used to connect
zZones to sensors via units.

A zone can be connected either to
one of the units controlling
previously connected zones and
their door sensors or to an
additional unit.

UP(Z) =7 (maxPU +1) + 1
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Program Mod.1 ||

1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Z*(maxPU+1)+1.
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* More precise
Door i i
oo Zones Units apprommatlor_l of the_
number of units required
to control all zones with
smaller indexes and their

door sensors

7D, = {22s(Z;,D): Z; < 7}
UP(Z) = |ZD,|/2 + 1
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1 {u2z(U,Z) : unit(U) } 1 :- zone(Z).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Y/2+1, Y={z2s(Z1,D):Z1<Z}.
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Modification 3 '“ UNIVERSITAT
Door . .

SENSOrsS ones Zones Units

OO
="

The number of units that can
control a door sensor D IS
determined as:

UP(D) = max(ZDp)

ZDp = {(Z; + 1)(maxPU + 1): z2s(Z;, D)}
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1 { u2z(U,Z) : unit(U) } 1 :- zone(Z).
1 { u2s(U,D) : unit(U) } 1 :- sensor(D).

1 {u2z(U,Z) : unit(U), U<=UP} 1 :- zone(Z),
UP=Z*(maxPU+1)+1.

1 {u2s(U,D) : unit(U), U<=UP} 1 :- z2s(Z,D),
UP=(Z+1)*(maxPU+1).
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* Combines Modification 2 with limits on possible
unit-sensor relations as in Modification 3

* QOverview of modifications:

Mod.2 ¢

~

Mod.1 € Simple < T
Mod.3 Z

] € Mod.4

n 0

# mode%




Modification 5

If a maximum number of
partner unit equals 2 and a
configuration exists, then
there will be a configuration
with the following partner
units connection.

[Aschinger at al., 2011]
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% generate a path
pu(U1,U2) :- unit(Ul), unit(U2), U1=U2-1.

% create a cycle
pu(lower,1).
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, Door
Zones Units #tconst lower
Sensors

| |
N B

#tconst maxPU

z2s(0,1). z2s(0,4).
z25(0,6).

22s5(1,0). z2s(1,1).
z2s(1,2). z2s(1,3).
z2s(1,4). z2s(1,5).
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1000

100

Runtime, ms
=
o

small-7

single-11

small-8

small-no

EDB

MSimple ®WMod.1 WMod.2 EMMod.3 WMod.4 uMod.5GG
with maxPU=2 (interUnitCap)
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SIE test cases: double lll

Timeout 600000
100000

10000

1000

100

Runtime. ms

10

double-20
double-40

double-60

double-80

EDB

MSimple @WMod.1 WMod.2 EMMod.3 MMod.4 uMod.5GG

with maxPU=2 (interUnitCap)
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Timeout 600000
100000

10000

1000

100

Runtime. ms

10

1

doublev-30
(2 PU) doublev-30

(3 PU)

doublev-30
(4 PU)

doublev-60
(2 PU)

doublev-60
(3 PU)

doublev-60

PU denotes a value of maxPU (4 PU)

EDB
MSimple ®Mod.1 wWMod.2 ®EMod.3 WMod.4 W Mod.5GG
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Evaluation summary | | R

« Simple ASP encoding shows performance
comparable with a CP encoding

« Application of local search:

— not advised if problem is solvable with complete
algorithms

— advised in case complete algorithms fail

« Heuristics help to improve the performance
on specific instances




