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Evaluation of different KRR approaches 
[Aschinger et al 2011]
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Applied KRR methods

• Constraint programming: ECLiPSe-Prolog 

v6.0 (CSP)

• Propositional satisfiability testing: MiniSat

v2.0 (SAT)

• Polynomial algorithm (DECPUP)

• Answer set programming: Clingo v3.0 (ASP)

• Integer programming: 

– Cbc v2.6.2 in combination with Clp v1.13.2 (CBC) 

and 

– Cplex v12.1 (CPLEX)
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Integer programming I

• Modelled with matrixes of Boolean variables

• 𝑠𝑢𝑖𝑗 assign sensor 𝑖 to unit 𝑗 (same for zones)
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Integer programming II

• 𝑢𝑢𝑖𝑗 unit 𝑖 is a partner of the unit 𝑗

• Boolean variables 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖
𝑠𝑢𝑖𝑗 ≤ 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖 and 𝑧𝑢𝑖𝑗 ≤ 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖

• Objective function

 𝑖 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖
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DecPUP overview

• Inspired by a hypertree decomposition algorithm 
[Gottob et al., 2002]

• Runs in NLOGSPACE – polynomial time

• Instance check:

– An instance has a solution if every zone or sensor 

has a degree less or equal to 2 𝑚𝑎𝑥𝑃𝑈 + 1

• Exploits the fact that cyclic unit graphs (Mod.5) 

are more general solution topologies than paths

• Implements memorization of no-goods and two-

step forward checking

7



DecPUP idea
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DecPUP algorithm

• Given the zone-sensor graph 𝐺 = 𝑉1, 𝑉2, 𝐸

1. Guesses two subsets of vertices 𝑈1, 𝑈2 ⊆ 𝑉1 ∪ 𝑉2
such that 𝑈𝑖 ∩ 𝑉1 ≤ 2 ≥ 𝑈𝑖 ∩ 𝑉2 𝑖 = 1. . 2

2. Remove assigned vertices 𝐶𝑅 ← 𝑉1 ∪ 𝑉2 ∖
𝑈1 ∪ 𝑈2

Recursive function 𝐶𝑅 , 𝑈1, 𝑈2 , 𝑈𝑖−1, 𝑈𝑖
3. If 𝐶𝑅 = ∅ and requirements hold, then terminate

4. Guess an additional unit 𝑈𝑖+1 (as in steps 1 and 2) 

5. Check if all neighbors of 𝑣 ∈ 𝑈𝑖+1 appear in

𝑈𝑖−1 ∪ 𝑈𝑖 ∪ 𝑈𝑖+1
6. Make a recursive call 
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Evaluation instances

• double, double variant:
– two rows of connected rooms, each 

room being a zone 

– variant – additional zones for each 2 

connected rooms vertical to the row 

• triple:
– each room being a zone 

– in some cases with additional 2 or 4 

zones consisting of 2-4 rooms 

• grid:

– derived from real interlocking systems
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[Teppan et al., 2012]



Evaluation for maxPU = 2  I
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dbl-* – double, dblv-* – double variant, tri-* – triple 

Cost … number of units  

Runtime in sec., timeout 600 sec.



Evaluation for maxPU = 2  II
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Evaluation for maxPU = 4
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More heuristics
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“Double” instances

• A double row of connected rooms, each room

being a zone

• A variant has additional zones for each 2

connected rooms vertical to the row



Solutions for the double cases

double-80 is solved in 5 seconds (instead TO after 100 min) just by 

adding definite Horn clauses to the simple program.
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Encoding extension I
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% assign first zone to the first unit

firstZone(Y):- Y = #min[zone(X)=X].

firstUnit(Y):- Y = #min[unit(X)=X].

u2z(U,Z):- firstZone(Z), firstUnit(U).

adj(Z1,D,Z2) :- z2s(Z1,D), z2s(Z2,D), Z1<Z2. 

% defines a column/numeration of zones

col(Z1,D,Z2):- zone(Z1), zone(Z2),
adj(Z1,D,Z2), #abs(Z2-Z1) > 1 .



Encoding extension II

% assign column on one unit

u2z(U,Z1):- col(Z,_,Z1), u2z(U,Z).

% next column on the next unit

u2z(P,Z2):- u2z(U,Z), zone(Z2), Z2=Z+1, 
P #mod 3 > 0, pu(U,P).

% every third unit should be free

u2z(X,Z2):- u2z(U,Z), zone(Z2), Z2=Z+1, 
P #mod 3 == 0, partners(U,P), partners(P,X).
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General heuristic

• For maxPU = 2 there exists a poly-time 

algorithm [Aschinger et al., 2011]

• For maxPU >= 3 complexity remains unclear

• Problems of Siemens have maxPU = 4

• SAT, MIP, CP or ASP are unable to find 

solutions for mid- and large-size instances 
[Aschinger et al, 2011]

• Double works only for one class of instances

• QuickPUP is a general heuristic for solving 
[Teppan et al., 2012]
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QuickPUP overview I

• Recursive backtracking search algorithm

• Three main steps:

1. Order the elements (zones/sensors) in breadth-first 

order starting from some zone
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QuickPUP overview II

2. Assignment step

– Assign element to a new unit

– Else, assign the element to some used unit

• Ordering: from units with less connections to ones 

more connections

• Leads to many units not filled to capacity

– Greedy merging procedure for densifying and 

merging the units

Variation: Create new units when old units are full

– Densifying is not needed

– Might find a model with minimal number of units
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QuickPUP overview

3. Use timeout to restart the search with the 

goal to test a different starting point

– Start from step 1 and select the next zone to build 

the ordering

– Restart Do 1. and 2. for every zone or until a 

solution is found

• The algorithm continues until a solution is 

found
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Experimental Setup

• Restart in 1 second

• QuickPup (new unit first)

• QuickPup* (old units first)

• QP and QP* were implemented in Java 1.5.

• Timeout = 600 secs
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Results
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Results for real cases: QP << 1 sec – ASP up to 17 minutes

IUCAP=2, UCAP=2 IUCAP=4, UCAP=2



Portfolio solvers
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Portfolio solvers I

• Modern solvers

– are highly configurable

– implement different heuristics and tie breaking 

strategies

• Which solver/solver configuration works best 

for my problem?

• Portfolio solvers:

– Claspfolio http://potassco.sourceforge.net/

– ME-ASP https://www.mat.unical.it/ricca/me-asp/
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Portfolio solvers: an overview I

• Given a representative set of problems and 

their instances

• Extract features characterizing the problem 

instances (>100 features)

• Solve each instance with different 

configurations/solvers

• Apply machine learning to find “empirical 

hardness” of the problem instance

– Statistical model predicting runtime of different 

configurations/solvers
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Portfolio solvers: an overview II

• Given a new program 

– extracts a set of features used to classify the 

program 

– find the best configuration/solver for the instance

• Claspfolio was used for solving double cases 

which turned out to be the hardest cases for 

all programs
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Claspfolio, evaluation details 
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• Input: the double case double-20 and simple 

program

• Output: chosen solver configuration (set of 

options):
--heu=VSIDS --del=3,1.1,1000 

--restarts=100,1.5,20000 --local-restarts

• VSIDS – Variable State Independent Decaying Sum

• del – fixes the size and growth factor of the dynamic nogood

database

• restarts – parameterizes a restart policy

• local restarts - exploits local restarts
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Test case Input
InterUnitCap=4 InterUnitCap=3 InterUnitCap=2

Default opt. Claspfolio Default opt. Claspfolio Default opt. Claspfolio

double-20 20Z,28S,14U 00:00,07 00:00,07 00:00,08 00:00,10 00:04,35 00:00,68

double-40 40Z,58S, 29U 00:02,29 00:00,70 01:51,13 00:05,18 03:43,25 05:39,80

double-60 60Z,88S, 44U 01:55,11 00:05,54 timeout timeout timeout timeout

double-80 80Z,118S,59U timeout 06:41,89 timeout timeout timeout timeout

Test case Input
InterUnitCap=4 InterUnitCap=3 maxPU=2

Default opt. Claspfolio Default opt. Claspfolio Default opt. Claspfolio

double-20 20Z,28S,14U 0:00.07 0:00.07 0:00.08 0:00.10 0:04.33 0:00.68

double-40 40Z,58S, 29U 0:02.29 0:00.72 1:50.67 0:05.18 3:42.38 5:40.10

double-60 60Z,88S, 44U 1:55.33 0:05.60 37:34.89 22:21.08 timeout timeout

double-80 80Z,118S,59U 15:41.67 6:44.38 timeout timeout timeout timeout

Time frame 10 minutes

Time frame 100 minutes



Symmetry breaking in ASP
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Symmetry breaking I

• Symmetry: one solution can be obtained from 

the other by renaming constants

• House problem (e.g. renaming of cabinets)

t2c(1,10), t2c(2,11) -> t2c(1,11), t2c(2,10)

• Same for PUP (renaming of units)

• Simple symmetry breaking

– PUP: assign first sensor to the first unit and the 

second one to a unit in the first half of the cycle

– House: assign things with smaller ids to cabinets 

with smaller ids
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Symmetry breaking II

• Problems:

– Finding symmetries is hard

– Blocking them is even harder

• Do all instances have the same symmetries?

• Is automatic detection and blocking of 

symmetries possible?

33



Example: House problem

cabinet(10..12). 

thing(1..3).

{c2t(X,Y):cabinet(X)}1 :- thing(Y).

placed(T) :- c2t(X,T).

:- thing(X), not placed(X).

27 Models: 

c2t(10,3) c2t(10,2) c2t(10,1)

…

c2t(12,3) c2t(12,2) c2t(12,1)
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Symmetry breaking I

Three types of symmetry breaking for SAT:

• variable (𝐴, 𝐵), 

• value (𝐴, ¬𝐴) and

• variable-value 𝐴,¬𝐵

where 𝐴 and 𝐵 are propositional symbols, and

(𝐴, 𝐵) is a permutation that replaces 𝐴 in all 

clauses of a CNF with 𝐵 and vice versa
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Symmetry breaking II

• Permutations in a CNF are generators of 

symmetric solutions

• Identification of permutations can be reduced 

to the colored graph automorphism problem

• Automorphism is, in some sense, a way of 

mapping the object to itself while preserving 

all of its structure (coloring), i.e. a symmetry 

of a mathematical object

• Algorithms like saucy, nauty or bliss can be 

used to find automorphims of a colored graph
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Grounded program

cabinet(10). cabinet(11). cabinet(12).

thing(1). thing(2). thing(3).

#count{c2t(12,3),c2t(11,3),c2t(10,3)}1.

#count{c2t(12,2),c2t(11,2),c2t(10,2)}1.

#count{c2t(12,1),c2t(11,1),c2t(10,1)}1.

placed(1):-c2t(10,1).

placed(2):-c2t(11,2).

...

:-not placed(2).

:-not placed(1).
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Graph coloring I

#count{c2t(12,3),c2t(11,3),c2t(10,3)}1.
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Graph coloring II

• placed(1):-c2t(10,1).

• :-not placed(1).
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Symmetry breaking rules

• SBASS was queried to find 6 permutation 

sets corresponding to automorphisms of the 

colored graph [Drescher et al., 2011]

(19 20)

1 1 2 1 20 19

:- not c2t(10,1), c2t(11,1).

(18 19)

1 1 2 1 19 18

:- not c2t(11,1), c2t(12,1).

• Other four constraints are defined for the 

things 2 and 3
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Breaking the symmetries

• Grounded program is extended with SBASS 

SB constraints

• Clasp returns the only model:

cabinet(10) cabinet(11) cabinet(12) 

thing(1) thing(2) thing(3) 

c2t(10,3) c2t(10,2) c2t(10,1) 

placed(1) placed(2) placed(3)
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SBASS architecture
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Evaluation

• Limit – number of computed generators

• TO – timeout 600 seconds
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Some good news :-) 
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Problem instance 1 
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71 zones, 94 sensors,

47 units, interUnitCap = 4

Solution was unknown.



Solution of instance 1

unit2zone(35,64).

...

unit2sensor(1,32).

...

partnerunits(1,35).

partnerunits(35,1)

...

Time:

13 seconds (simple + 

parameter learning)
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Problem instance 2
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79 zones, 104 sensors,

52 units, interUnitCap = 4 

Solution was unknown.



Solution of instance 2

unit2zone(13,79).

...

unit2sensor(47,102). 

...

partnerunits(13,47).

partnerunits(47,13).

...

Time: 25 seconds

(simple + parameter 

learning)
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