
Knowledge-based (re)configuration:

an ASP approach

Kostyantyn Shchekotykhin

Alpen-Adria-Universität Klagenfurt

Outline

• More heuristics

– Class of “double” instances

– QuickPUP

• Comparison of different KRRs

• Symmetry breaking

• Portfolio solvers

2

Evaluation of different KRR approaches
[Aschinger et al 2011]

3

Applied KRR methods

• Constraint programming: ECLiPSe-Prolog

v6.0 (CSP)

• Propositional satisfiability testing: MiniSat

v2.0 (SAT)

• Polynomial algorithm (DECPUP)

• Answer set programming: Clingo v3.0 (ASP)

• Integer programming:

– Cbc v2.6.2 in combination with Clp v1.13.2 (CBC)

and

– Cplex v12.1 (CPLEX)

4

Integer programming I

• Modelled with matrixes of Boolean variables

• 𝑠𝑢𝑖𝑗 assign sensor 𝑖 to unit 𝑗 (same for zones)

5

2

2

2

Integer programming II

• 𝑢𝑢𝑖𝑗 unit 𝑖 is a partner of the unit 𝑗

• Boolean variables 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖
𝑠𝑢𝑖𝑗 ≤ 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖 and 𝑧𝑢𝑖𝑗 ≤ 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖

• Objective function

 𝑖 𝑢𝑛𝑖𝑡𝑈𝑠𝑒𝑑𝑖

6

𝑚𝑎𝑥𝑃𝑈 + 1
𝑚𝑎𝑥𝑃𝑈 + 1

𝑚𝑎𝑥𝑃𝑈 + 1

DecPUP overview

• Inspired by a hypertree decomposition algorithm
[Gottob et al., 2002]

• Runs in NLOGSPACE – polynomial time

• Instance check:

– An instance has a solution if every zone or sensor

has a degree less or equal to 2 𝑚𝑎𝑥𝑃𝑈 + 1

• Exploits the fact that cyclic unit graphs (Mod.5)

are more general solution topologies than paths

• Implements memorization of no-goods and two-

step forward checking

7

DecPUP idea

8

z1 s1

z1 s1u1

z1 s1u1

u1

DecPUP algorithm

• Given the zone-sensor graph 𝐺 = 𝑉1, 𝑉2, 𝐸

1. Guesses two subsets of vertices 𝑈1, 𝑈2 ⊆ 𝑉1 ∪ 𝑉2
such that 𝑈𝑖 ∩ 𝑉1 ≤ 2 ≥ 𝑈𝑖 ∩ 𝑉2 𝑖 = 1. . 2

2. Remove assigned vertices 𝐶𝑅 ← 𝑉1 ∪ 𝑉2 ∖
𝑈1 ∪ 𝑈2

Recursive function 𝐶𝑅 , 𝑈1, 𝑈2 , 𝑈𝑖−1, 𝑈𝑖
3. If 𝐶𝑅 = ∅ and requirements hold, then terminate

4. Guess an additional unit 𝑈𝑖+1 (as in steps 1 and 2)

5. Check if all neighbors of 𝑣 ∈ 𝑈𝑖+1 appear in

𝑈𝑖−1 ∪ 𝑈𝑖 ∪ 𝑈𝑖+1
6. Make a recursive call

9

Evaluation instances

• double, double variant:
– two rows of connected rooms, each

room being a zone

– variant – additional zones for each 2

connected rooms vertical to the row

• triple:
– each room being a zone

– in some cases with additional 2 or 4

zones consisting of 2-4 rooms

• grid:

– derived from real interlocking systems

10

[Teppan et al., 2012]

Evaluation for maxPU = 2 I

11

dbl-* – double, dblv-* – double variant, tri-* – triple

Cost … number of units

Runtime in sec., timeout 600 sec.

Evaluation for maxPU = 2 II

12

Evaluation for maxPU = 4

13

More heuristics

14

“Double” instances

• A double row of connected rooms, each room

being a zone

• A variant has additional zones for each 2

connected rooms vertical to the row

Solutions for the double cases

double-80 is solved in 5 seconds (instead TO after 100 min) just by

adding definite Horn clauses to the simple program.

16

z0

z0 z1 z2

z0

z3 z4 z5

z0

z6 z7 z8 z9

z0
z10 z11 z12

z0
z13 z14 z15

z0

z16 z17 z18 z19

d1 d3 d5 d7 d9 d11 d13 d15 d17

d19 d20 d21
d22 d23 d24 d25 d26 d27

1

d0

d2

d4

d6

d8

d10

d12

d14

d16

d18

2

3 4

5

6 7

8 9

10

11 12

13

14

1 d0

z10

Unit Door sensor

Zone

partnerunits
unit2zone
unit2sensor

Encoding extension I

17

% assign first zone to the first unit

firstZone(Y):- Y = #min[zone(X)=X].

firstUnit(Y):- Y = #min[unit(X)=X].

u2z(U,Z):- firstZone(Z), firstUnit(U).

adj(Z1,D,Z2) :- z2s(Z1,D), z2s(Z2,D), Z1<Z2.

% defines a column/numeration of zones

col(Z1,D,Z2):- zone(Z1), zone(Z2),
adj(Z1,D,Z2), #abs(Z2-Z1) > 1 .

Encoding extension II

% assign column on one unit

u2z(U,Z1):- col(Z,_,Z1), u2z(U,Z).

% next column on the next unit

u2z(P,Z2):- u2z(U,Z), zone(Z2), Z2=Z+1,
P #mod 3 > 0, pu(U,P).

% every third unit should be free

u2z(X,Z2):- u2z(U,Z), zone(Z2), Z2=Z+1,
P #mod 3 == 0, partners(U,P), partners(P,X).

18

General heuristic

• For maxPU = 2 there exists a poly-time

algorithm [Aschinger et al., 2011]

• For maxPU >= 3 complexity remains unclear

• Problems of Siemens have maxPU = 4

• SAT, MIP, CP or ASP are unable to find

solutions for mid- and large-size instances
[Aschinger et al, 2011]

• Double works only for one class of instances

• QuickPUP is a general heuristic for solving
[Teppan et al., 2012]

19

QuickPUP overview I

• Recursive backtracking search algorithm

• Three main steps:

1. Order the elements (zones/sensors) in breadth-first

order starting from some zone

20

QuickPUP overview II

2. Assignment step

– Assign element to a new unit

– Else, assign the element to some used unit

• Ordering: from units with less connections to ones

more connections

• Leads to many units not filled to capacity

– Greedy merging procedure for densifying and

merging the units

Variation: Create new units when old units are full

– Densifying is not needed

– Might find a model with minimal number of units

21

QuickPUP overview

3. Use timeout to restart the search with the

goal to test a different starting point

– Start from step 1 and select the next zone to build

the ordering

– Restart Do 1. and 2. for every zone or until a

solution is found

• The algorithm continues until a solution is

found

22

Experimental Setup

• Restart in 1 second

• QuickPup (new unit first)

• QuickPup* (old units first)

• QP and QP* were implemented in Java 1.5.

• Timeout = 600 secs

23

Results

24

Results for real cases: QP << 1 sec – ASP up to 17 minutes

IUCAP=2, UCAP=2 IUCAP=4, UCAP=2

Portfolio solvers

25

Portfolio solvers I

• Modern solvers

– are highly configurable

– implement different heuristics and tie breaking

strategies

• Which solver/solver configuration works best

for my problem?

• Portfolio solvers:

– Claspfolio http://potassco.sourceforge.net/

– ME-ASP https://www.mat.unical.it/ricca/me-asp/

26

http://potassco.sourceforge.net/
https://www.mat.unical.it/ricca/me-asp/

Portfolio solvers: an overview I

• Given a representative set of problems and

their instances

• Extract features characterizing the problem

instances (>100 features)

• Solve each instance with different

configurations/solvers

• Apply machine learning to find “empirical

hardness” of the problem instance

– Statistical model predicting runtime of different

configurations/solvers

27

Portfolio solvers: an overview II

• Given a new program

– extracts a set of features used to classify the

program

– find the best configuration/solver for the instance

• Claspfolio was used for solving double cases

which turned out to be the hardest cases for

all programs

28

Claspfolio, evaluation details

29

• Input: the double case double-20 and simple

program

• Output: chosen solver configuration (set of

options):
--heu=VSIDS --del=3,1.1,1000

--restarts=100,1.5,20000 --local-restarts

• VSIDS – Variable State Independent Decaying Sum

• del – fixes the size and growth factor of the dynamic nogood

database

• restarts – parameterizes a restart policy

• local restarts - exploits local restarts

30

Test case Input
InterUnitCap=4 InterUnitCap=3 InterUnitCap=2

Default opt. Claspfolio Default opt. Claspfolio Default opt. Claspfolio

double-20 20Z,28S,14U 00:00,07 00:00,07 00:00,08 00:00,10 00:04,35 00:00,68

double-40 40Z,58S, 29U 00:02,29 00:00,70 01:51,13 00:05,18 03:43,25 05:39,80

double-60 60Z,88S, 44U 01:55,11 00:05,54 timeout timeout timeout timeout

double-80 80Z,118S,59U timeout 06:41,89 timeout timeout timeout timeout

Test case Input
InterUnitCap=4 InterUnitCap=3 maxPU=2

Default opt. Claspfolio Default opt. Claspfolio Default opt. Claspfolio

double-20 20Z,28S,14U 0:00.07 0:00.07 0:00.08 0:00.10 0:04.33 0:00.68

double-40 40Z,58S, 29U 0:02.29 0:00.72 1:50.67 0:05.18 3:42.38 5:40.10

double-60 60Z,88S, 44U 1:55.33 0:05.60 37:34.89 22:21.08 timeout timeout

double-80 80Z,118S,59U 15:41.67 6:44.38 timeout timeout timeout timeout

Time frame 10 minutes

Time frame 100 minutes

Symmetry breaking in ASP

31

Symmetry breaking I

• Symmetry: one solution can be obtained from

the other by renaming constants

• House problem (e.g. renaming of cabinets)

t2c(1,10), t2c(2,11) -> t2c(1,11), t2c(2,10)

• Same for PUP (renaming of units)

• Simple symmetry breaking

– PUP: assign first sensor to the first unit and the

second one to a unit in the first half of the cycle

– House: assign things with smaller ids to cabinets

with smaller ids

32

Symmetry breaking II

• Problems:

– Finding symmetries is hard

– Blocking them is even harder

• Do all instances have the same symmetries?

• Is automatic detection and blocking of

symmetries possible?

33

Example: House problem

cabinet(10..12).

thing(1..3).

{c2t(X,Y):cabinet(X)}1 :- thing(Y).

placed(T) :- c2t(X,T).

:- thing(X), not placed(X).

27 Models:

c2t(10,3) c2t(10,2) c2t(10,1)

…

c2t(12,3) c2t(12,2) c2t(12,1)

34

Symmetry breaking I

Three types of symmetry breaking for SAT:

• variable (𝐴, 𝐵),

• value (𝐴, ¬𝐴) and

• variable-value 𝐴,¬𝐵

where 𝐴 and 𝐵 are propositional symbols, and

(𝐴, 𝐵) is a permutation that replaces 𝐴 in all

clauses of a CNF with 𝐵 and vice versa

35

Symmetry breaking II

• Permutations in a CNF are generators of

symmetric solutions

• Identification of permutations can be reduced

to the colored graph automorphism problem

• Automorphism is, in some sense, a way of

mapping the object to itself while preserving

all of its structure (coloring), i.e. a symmetry

of a mathematical object

• Algorithms like saucy, nauty or bliss can be

used to find automorphims of a colored graph

36

Grounded program

cabinet(10). cabinet(11). cabinet(12).

thing(1). thing(2). thing(3).

#count{c2t(12,3),c2t(11,3),c2t(10,3)}1.

#count{c2t(12,2),c2t(11,2),c2t(10,2)}1.

#count{c2t(12,1),c2t(11,1),c2t(10,1)}1.

placed(1):-c2t(10,1).

placed(2):-c2t(11,2).

...

:-not placed(2).

:-not placed(1).

37

Graph coloring I

#count{c2t(12,3),c2t(11,3),c2t(10,3)}1.

38

c2t(12,3)

c2t(11,3)

c2t(10,3)

~c2t(12,3)

~c2t(11,3)

~c2t(10,3)

β1

Graph coloring II

• placed(1):-c2t(10,1).

• :-not placed(1).

39

c2t(10,1)

~c2t(10,1)

placed(1)

~placed(1)

β2

placed(1)~placed(1)β3

Symmetry breaking rules

• SBASS was queried to find 6 permutation

sets corresponding to automorphisms of the

colored graph [Drescher et al., 2011]

(19 20)

1 1 2 1 20 19

:- not c2t(10,1), c2t(11,1).

(18 19)

1 1 2 1 19 18

:- not c2t(11,1), c2t(12,1).

• Other four constraints are defined for the

things 2 and 3

40

Breaking the symmetries

• Grounded program is extended with SBASS

SB constraints

• Clasp returns the only model:

cabinet(10) cabinet(11) cabinet(12)

thing(1) thing(2) thing(3)

c2t(10,3) c2t(10,2) c2t(10,1)

placed(1) placed(2) placed(3)

41

SBASS architecture

42

Evaluation

• Limit – number of computed generators

• TO – timeout 600 seconds

43

Some good news :-)

44

Problem instance 1

45

71 zones, 94 sensors,

47 units, interUnitCap = 4

Solution was unknown.

Solution of instance 1

unit2zone(35,64).

...

unit2sensor(1,32).

...

partnerunits(1,35).

partnerunits(35,1)

...

Time:

13 seconds (simple +

parameter learning)

46

Problem instance 2

47

79 zones, 104 sensors,

52 units, interUnitCap = 4

Solution was unknown.

Solution of instance 2

unit2zone(13,79).

...

unit2sensor(47,102).

...

partnerunits(13,47).

partnerunits(47,13).

...

Time: 25 seconds

(simple + parameter

learning)

33

