SAT-Based Problem Solving

Joao Marques-Silva ${ }^{1,2}$

${ }^{1}$ University College Dublin, Ireland
${ }^{2}$ IST/INESC-ID, Lisbon, Portugal

University of Calabria, Italy
February 2015

The success of SAT

- Well-known NP-complete decision problem

The success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science - Hundreds (even more?) of practical applications

The success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science
- Hundreds (even more?) of practical applications
 Software Testing ifiter resig Switching Network Verification

Quantified Boolean Formulas

Haplotyping
Test Pattern Generation

SAT solver improvement

[Source: Le Berre\&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20 mn timeout

These lectures

- Lecture \#1: Modern SAT solvers \& problem solving with SAT
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Note: Overview for non-experts

These lectures

- Lecture \#1: Modern SAT solvers \& problem solving with SAT
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Note: Overview for non-experts
- Lecture \#2: Solving minimal set problems with SAT oracles
- What are minimal sets?
- Minimal unsatisfiability (MUS)
- Maximal satisfiability (MSS/MCS)
- Prime implicants/implicates
- Minimal models / backbones / autarkies / ...

These lectures

- Lecture \#1: Modern SAT solvers \& problem solving with SAT
- Conflict-Driven Clause Learning (CDCL) SAT solvers
- Note: Overview for non-experts
- Lecture \#2: Solving minimal set problems with SAT oracles
- What are minimal sets?
- Minimal unsatisfiability (MUS)
- Maximal satisfiability (MSS/MCS)
- Prime implicants/implicates
- Minimal models / backbones / autarkies / ...
- Lecture \#3: Solving optimization problems with SAT oracles
- Which optimization problems?
- Maximum satisfiability (MaxSAT)
- Minimal satisfiability (MinSAT)
- Pseudo-Boolean optimization / Weighted Boolean optimization / ...

SAT-Based Problem Solving

Lecture \#1:
SAT Solvers \& Problem Solving with SAT

Joao Marques-Silva ${ }^{1,2}$
${ }^{1}$ University College Dublin, Ireland
${ }^{2}$ IST/INESC-ID, Lisbon, Portugal

University of Calabria, Italy
February 2015

Part I
CDCL SAT Solvers

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Formula can be SAT/UNSAT

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers
- Self-subsuming resolution (with $\alpha^{\prime} \subseteq \alpha$):

$$
\frac{(\alpha \vee x) \quad\left(\alpha^{\prime} \vee \bar{x}\right)}{(\alpha)}
$$

- (α) subsumes $(\alpha \vee x)$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Level Dec. Unit Prop.

2

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings: $w=1, x=1, y=1, z=1$

Level Dec. Unit Prop.

- Additional definitions:
- Antecedent (or reason) of an implied assignment
- $(\bar{b} \vee \bar{c} \vee d)$ for d
- Associate assignment with decision levels
- $w=1$ @ $1, x=1$ @ $2, y=1 @ 3, z=1 @ 4$
- $r=1 @ 0, d=1 @ 4, \ldots$

Resolution Proofs

- Refutation of unsatisfiable formula by iterated resolution operations produces resolution proof
- An example:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

- Resolution proof:

- A modern SAT solver can generate resolution proofs using clauses learned by the solver

Unsatisfiable Cores \& Proof Traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Implication graph with conflict

Unsatisfiable Cores \& Proof Traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Proof trace $\perp:(\bar{a} \vee c)(a \vee b)(\bar{c})(\bar{b})$

Unsatisfiable Cores \& Proof Traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Resolution proof follows structure of conflicts

Unsatisfiable Cores \& Proof Traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Unsatisfiable subformula (core): $(\bar{c}),(\bar{b}),(\bar{a} \vee c),(a \vee b)$

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

The DPLL Algorithm

- Optional: pure literal rule

The DPLL Algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

- Optional: pure literal rule

The DPLL Algorithm

The DPLL Algorithm

The DPLL Algorithm

The DPLL Algorithm

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The DPLL Algorithm

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.
$0 \emptyset$
$1 \quad \bar{x} \longrightarrow y$
2

The DPLL Algorithm

- Optional: pure literal rule

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

What is a CDCL SAT Solver?

- Extend DPLL SAT solver with:
[DP60,DLL62]
- Clause learning \& non-chronological backtracking [MSS96,BS97,Z97]
- Exploit UIPs
[MSS96,SSS12]
- Minimize learned clauses
- Opportunistically delete clauses
- Search restarts
- Lazy data structures
- Watched literals
[MMZZM01]
- Conflict-guided branching
- Lightweight branching heuristics
- Phase saving

How Significant are CDCL SAT Solvers?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs \& Minimization
Search Restarts \& Lazy Data Structures

What Next in CDCL Solvers?

Clause Learning

Level Dec. Unit Prop.

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

Clause Learning - After Bracktracking

Clause Learning - After Bracktracking

Level Dec. Unit Prop.

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

Level	Dec.	Unit Prop.	Level	Dec.
0	\emptyset		0	\emptyset
1	x		1	$x \longrightarrow \bar{z}$
2	y			
3				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow \bar{z}$	
2	y				
3	z				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1
- Learned clauses are always asserting
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

Unique Implication Points (UIPs)

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)

Unique Implication Points (UIPs)

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- But a is an UIP

Unique Implication Points (UIPs)

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- But a is an UIP
- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{a})$

Multiple UIPs

Level Dec. Unit Prop.

Multiple UIPs

Level Dec. Unit Prop.

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$

Multiple UIPs

Level Dec. Unit Prop.

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- In practice smaller clauses more effective
- Compare with $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- Multiple UIPs proposed in GRASP
- First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- In practice smaller clauses more effective
- Compare with $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- Multiple UIPs proposed in GRASP
- First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances

Clause Minimization I

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization I

Level Dec. Unit Prop.

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z})$

Clause Minimization II

Level Dec. Unit Prop.

Clause Minimization II

Clause Minimization II

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$

Clause Minimization II

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization

Clause Minimization II

- Learn clause ($\bar{W} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause

Clause Minimization II

- Learn clause ($\bar{W} \vee \bar{X} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Learn clause if only marked nodes visited

Clause Minimization II

- Learn clause ($\bar{W} \vee \bar{X} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Learn clause if only marked nodes visited

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs \& Minimization
Search Restarts \& Lazy Data Structures

What Next in CDCL Solvers?

Search Restarts I

- Heavy-tail behavior:

- 10000 runs, branching randomization on industrial instance
- Use rapid randomized restarts (search restarts)

Search Restarts II

- Restart search after a number of conflicts

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)
- Works for SAT \& UNSAT
 instances. Why?

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)
- Works for SAT \& UNSAT instances. Why?
- Learned clauses effective after restart(s)

Data Structures Basics

- Each literal / should access clauses containing /
- Why?

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation:

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals
- Watched literals are one example of lazy data structures
- But there are others

Watched Literals

- Important states of a clause
literals0 $=4$
literals $1=0$
size $=5$

unit
literals $0=4$
literals $1=1$
size $=5$

satisfied
literals $0=5$
literals $1=0$
size $=5$

unsatisfied

Watched Literals

- Important states of a clause
- Associate 2 references with each clause

Watched Literals

- Important states of a clause
- Associate 2 references with each clause
- Deciding unit requires traversing all literals

after backtracking to level 4

Watched Literals

- Important states of a clause
- Associate 2 references with each clause
- Deciding unit requires traversing all literals
- References unchanged when backtracking

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
- Delete less used clauses

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
- Delete less used clauses
- Proven recent techniques:
- Phase saving
- Literal blocks distance

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

CDCL - A Glimpse of the Future

- Clause learning techniques
- Clause learning is the key technique in CDCL SAT solvers
- Many recent papers propose improvements to the basic clause learning approach
- Preprocessing \& inprocessing
- Many recent papers
- Essential in some applications
- Application-driven improvements
- Incremental SAT
- Handling of assumptions due to MUS extractors

Part II

SAT-Based Problem Solving

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles
- Algorithm invokes SAT solver as (a variant of) an NP oracle
- Black-box integration (using standard interface)
- E.g. MaxSAT, MUSes, (2)QBF, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles (next lectures)
- Algorithm invokes SAT solver as (a variant of) an NP oracle
- Black-box integration (using standard interface)
- E.g. MaxSAT, MUSes, (2)QBF, etc.
- Note:
- CNF encodings most often used with either black-box or white-box approaches
- SAT techniques adapted in many other domains: QBF, SMT, QBF, CSP, ASP, ILP, ...

SAT-Based Problem Solving

- Some apps associated with more than one concept: planning, BMC, lazy clause generation, etc.

Examples of SAT-Based Problem Solving I

- Function problems in $\mathrm{FP}^{N P}[\log n]$
- Unweighted Maximum Satisfiability (MaxSAT)
- Minimal Correction Subsets (MCSes)
- Minimal models
- ...
- Function problems in FPNP
- Weighted Maximum Satisfiability (MaxSAT)
- Minimal Unsatisfiable Subformulas (MUSes)
- Minimal Equivalent Subformulas (MESes)
- Prime implicates
- Enumeration problems
- Models
- MUSes
- MCSes
- MaxSAT
- ...

Examples of SAT-Based Problem Solving II

- Decision problems in Σ_{2}^{P}
- 2QBF
- ...
- Function problems in $\mathrm{FP}^{\Sigma_{2}^{P}}$
- Propositional formula minimization
- (Weighted) Quantified MaxSAT (QMaxSAT)
- Smallest MUS (SMUS)
- ...
- Decision problems in PSPACE
- QBF
- ...

Outline

CNF Encodings

SAT Embeddings

Conclusions

Outline

CNF Encodings

SAT Embeddings

Conclusions

Encoding to CNF

- What to encode?
- Boolean formulas
- Tseitin's encoding
- Plaisted\&Greenbaum's encoding
- ...
- Cardinality constraints
- Pseudo-Boolean (PB) constraints
- Can also translate to SAT:
- Constraint Satisfaction Problems (CSPs)
- Answer Set Programming (ASP)
- Model Finding
- ...
- Key issues:
- Encoding size
- Arc-consistency?

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

Conclusions

Representing Boolean Formulas / Circuits I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can represent circuits/formulas as CNF formulas
[T68,PG86]
- For each (simple) gate, CNF formula encodes the consistent assignments to the gate's inputs and output
- Given $z=\mathrm{OP}(x, y)$, represent in CNF $z \leftrightarrow \mathrm{OP}(x, y)$
- CNF formula for the circuit is the conjunction of CNF formula for each gate

$$
\mathcal{F}_{c}=(a \vee c) \wedge(b \vee c) \wedge(\bar{a} \vee \bar{b} \vee \bar{c})
$$

$$
\mathcal{F}_{t}=(\bar{r} \vee t) \wedge(\bar{s} \vee t) \wedge(r \vee s \vee \bar{t})
$$

Representing Boolean Formulas / Circuits II

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

$$
\begin{aligned}
\mathcal{F}= & (a \vee x) \wedge(b \vee x) \wedge(\bar{a} \vee \bar{b} \vee \bar{x}) \wedge \\
& (x \vee \bar{y}) \wedge(c \vee \bar{y}) \wedge(\bar{x} \vee \bar{c} \vee y) \wedge \\
& (\bar{y} \vee z) \wedge(\bar{d} \vee z) \wedge(y \vee d \vee \bar{z}) \wedge(z)
\end{aligned}
$$

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

- Note: $z=d \vee(c \wedge(\neg(a \wedge b)))$
- No distinction between Boolean circuits and formulas

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

Conclusions

Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Solution \#1:
- Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
- Difficult to keep up with advances in SAT technology
- For SAT/UNSAT, best solvers already encode to CNF
- E.g. Minisat+, WBO, etc.

Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Solution \#1:
- Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
- Difficult to keep up with advances in SAT technology
- For SAT/UNSAT, best solvers already encode to CNF
- E.g. Minisat+, WBO, etc.
- Solution \#2:
- Encode cardinality constraints to CNF
- Use SAT solver

Equals1, AtLeast1 \& AtMost1 Constraints

- $\sum_{j=1}^{n} x_{j}=1:$ encode with $\left(\sum_{j=1}^{n} x_{j} \leq 1\right) \wedge\left(\sum_{j=1}^{n} x_{j} \geq 1\right)$
- $\sum_{j=1}^{n} x_{j} \geq 1$: encode with $\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right)$
- $\sum_{j=1}^{n} x_{j} \leq 1$ encode with:
- Pairwise encoding
- Clauses: $\mathcal{O}\left(n^{2}\right)$; No auxiliary variables
- Sequential counter
- Clauses: $\mathcal{O}(n)$; Auxiliary variables: $\mathcal{O}(n)$
- Bitwise encoding
- Clauses: $\mathcal{O}(n \log n)$; Auxiliary variables: $\mathcal{O}(\log n)$
- ...

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee I_{i}\right), i=0, \ldots, r-1$, where
- $I_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee I_{i}\right), i=0, \ldots, r-1$, where
- $I_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- If $x_{j}=1$, assignment to v_{i} variables must encode $j-1$
- All other x variables must take value 0
- If all $x_{j}=0$, any assignment to v_{i} variables is consistent
- $\mathcal{O}(n \log n)$ clauses ; $\mathcal{O}(\log n)$ auxiliary variables
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

General Cardinality Constraints

- General form: $\sum_{j=1}^{n} x_{j} \leq k$ (or $\sum_{j=1}^{n} x_{j} \geq k$)
- Sequential counters
- Clauses/Variables: $\mathcal{O}(n k)$
- BDDs
- Clauses/Variables: $\mathcal{O}(n k)$
- Sorting networks
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} n\right)$
- Cardinality Networks:
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} k\right)$
- Pairwise Cardinality Networks:
- ...

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

Conclusions

Pseudo-Boolean Constraints

- General form: $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not guarantee arc-consistency
- BDDs
- Worst-case exponential number of clauses
- Polynomial watchdog encoding
- Let $\nu(n)=\log (n) \log \left(a_{\max }\right)$
- Clauses: $\mathcal{O}\left(n^{3} \nu(n)\right)$; Aux variables: $\mathcal{O}\left(n^{2} \nu(n)\right)$
- Improved polynomial watchdog encoding
- Clauses \& aux variables: $\mathcal{O}\left(n^{3} \log \left(a_{\max }\right)\right)$

Encoding PB Constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs II

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=5
$$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=5
$$

- Replace by $\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \geq 5\right) \wedge\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \leq 5\right)$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=5
$$

- Replace by $\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \geq 5\right) \wedge\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \leq 5\right)$
- Let $x_{3}=0$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=5
$$

- Replace by $\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \geq 5\right) \wedge\left(4 x_{1}+4 x_{2}+3 x_{3}+2 x_{4} \leq 5\right)$
- Let $x_{3}=0$
- Either constraint can still be satisfied, but not both

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

Conclusions

CSP Constraints

- Many possible encodings:
- Direct encoding
- Log encoding
- Support encoding
- Log-Support encoding
- Order encoding for finite linear CSPs

Direct Encoding for CSP w/ Binary Constraints

- Variable x_{i} with domain D_{i}, with $m_{i}=\left|D_{i}\right|$
- Represent values of x_{i} with Boolean variables $x_{i, 1}, \ldots, x_{i, m_{i}}$
- Require $\sum_{k=1}^{m_{i}} x_{i, k}=1$
- Suffices to require $\sum_{k=1}^{m_{i}} x_{i, k} \geq 1$
- If the pair of assignments $x_{i}=v_{i} \wedge x_{j}=v_{j}$ is not allowed, add binary clause $\left(\bar{x}_{i, v_{i}} \vee \bar{x}_{j, v_{j}}\right)$

Outline

CNF Encodings

SAT Embeddings

Conclusions

Embedding SAT Solvers

- Modify SAT solver to interface problem-specific propagators (or theory solvers)
- Typical interface:
- SAT solvers communicates assignments/constraints to propagators
- Retrieve resulting assignments or explanations for inconsistency
- Well-known examples (many more):
- Branch\&bound PB optimization
- Non-clausal SAT solvers
- Lazy SMT solving
- Key problem:
- Keeping up with improvements in SAT solvers

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

- Pseudo-Boolean Optimization (PBO):

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j \in N} c_{j} \cdot x_{j} \\
\text { subject to } & \sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \\
& I_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i}, c_{j} \in \mathbb{N}_{0}^{+}
\end{array}
$$

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

- Pseudo-Boolean Optimization (PBO):

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j \in N} c_{j} \cdot x_{j} \\
\text { subject to } & \sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \\
& I_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i}, c_{j} \in \mathbb{N}_{0}^{+}
\end{array}
$$

- Branch and bound (B\&B) PBO algorithm:
- Extend SAT solver
- Must develop propagator for PB constraints
- B\&B search for computing optimum cost function value
- Trivial upper bound: all $x_{j}=1$

Limitations with Embeddings

- B\&B MaxSAT solving:
- Cannot use unit propagation
- Cannot learn clauses
- MUS extraction:
- Decision of clauses to include in MUS based on unsatisfiable outcomes
- No immediate gain from embedding SAT solvers

Outline

CNF Encodings

SAT Embeddings

Conclusions

Conclusions

- Overview of modern SAT solvers
- CDCL SAT solvers: clause learning, UIPs, clause minimization, search restarts, etc.
- Introduction to SAT-based problem solving
- CNF encodings
- Embedding of SAT solvers
- Next lectures: problem solving with SAT oracles

