SAT-Based Problem Solving

Joao Marques-Silval+?

LUniversity College Dublin, Ireland
2IST/INESC—ID, Lisbon, Portugal

University of Calabria, Italy
February 2015

The success of SAT

e Well-known NP-complete decision problem [c71]

The success of SAT

e Well-known NP-complete decision problem [c71]
e In practice, SAT is a success story of Computer Science
— Hundreds (even more?) of practical applications

The success of SAT

e Well-known NP-complete decision problem [c71]
e In practice, SAT is a success story of Computer Science
— Hundreds (even more?) of practical applications

witconrne N0ISE AaIYSiS™ Tochmology Mappi 6
Network Security Management Fault Lucgli]iazt;ﬁ:)eﬁmg Pedigree EﬂﬂSiStEley ngunllgl:yljiu:q]p;::]fmpaog}teign

Maximum Satisfiability Configuration epination Analysis
Softwa e Testmgﬁlter Design SWitching Network Verification

Equivalence Checking RESoUrce Constrained Scheduling

SatiSﬁahiLE}]’ﬂM?gﬂ!E“ EmziesPackaggmm,gynagement Syml?ﬁmé?é;{ecttir_y baluatio
: ' ' outin
Software Mlgglﬁlllgﬂhecklngﬁ‘.’l‘ﬁiﬁlﬂﬁ{lm’ ?%Eﬂﬂ‘s"l;haﬁipﬁonl clTlimetail(llli_n:Z -
. Model Findin
Test Pattern Generation Plannilgg arlugilcasgﬁthesli]s el]esign I]Eh(lsggilnlgg

P"werEStimatiu"Eirﬂ_ﬂitDﬂﬂy Cumputation Genome Rearrangement -
Test Suite Minimization lazy Clause Generation
Pseudo-Boolean Formulas

SAT solver improvement

[Source: Le Berre&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200

T T T 2 T T T T

- Fd v &
| |

o

T T
Limmat (2002)
Zohaff (200)
Berkmin (2002) T
Forklift (2003)
Siege(2003) +
1000 Zchaff (2004) +
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (200
Minisat 2.1 (2008)
800 Precosat (2009)
Glucose (2009)
Clasp (2009) +
Cryptominisat (2010)
Lingeling (2010).
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

v o o

44 BO* X +

3

CPU Time (in seconds)
T
6600060 !

160 180 200

Number of problems solved

These lectures

e Lecture #1: Modern SAT solvers & problem solving with SAT
— Conflict-Driven Clause Learning (CDCL) SAT solvers

» Note: Overview for non-experts

These lectures

e Lecture #1: Modern SAT solvers & problem solving with SAT
— Conflict-Driven Clause Learning (CDCL) SAT solvers

» Note: Overview for non-experts

e Lecture #2: Solving minimal set problems with SAT oracles
— What are minimal sets?
» Minimal unsatisfiability (MUS)
» Maximal satisfiability (MSS/MCS)
» Prime implicants/implicates
» Minimal models / backbones / autarkies / ...

These lectures

e Lecture #1: Modern SAT solvers & problem solving with SAT
— Conflict-Driven Clause Learning (CDCL) SAT solvers

» Note: Overview for non-experts

e Lecture #2: Solving minimal set problems with SAT oracles
— What are minimal sets?

» Minimal unsatisfiability (MUS)

» Maximal satisfiability (MSS/MCS)

» Prime implicants/implicates

» Minimal models / backbones / autarkies / ...

e Lecture #3: Solving optimization problems with SAT oracles
— Which optimization problems?

» Maximum satisfiability (MaxSAT)
» Minimal satisfiability (MinSAT)

» Pseudo-Boolean optimization / Weighted Boolean optimization / ...

SAT-Based Problem Solving

Lecture #1:
SAT Solvers & Problem Solving with SAT

Joao Marques-Silval?

LUniversity College Dublin, Ireland
2|ST/INESC-ID, Lisbon, Portugal

University of Calabria, Italy
February 2015

Part |

CDCL SAT Solvers

Outline

Basic Definitions
DPLL Solvers
CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also —w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula

e Formula can be SAT/UNSAT

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also —w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula

e Formula can be SAT/UNSAT

e Example:
FLEMAFVsS)A(WVa)A(XVB)A(FVZVC)A(bVEV)

— Example models:
» {r,s,a b, c,d}
» {r,s,x,y,w,z,a,b,c,d}

Resolution

e Resolution rule: [DP60,R65]

(aV x) (BVX)
(Vv B)

— Complete proof system for propositional logic

Resolution

e Resolution rule:

(Vv x) (Bvx)
(v B)
— Complete proof system for propositional logic

XVa (xVa) (yVva (yVva

/ N
\/

— Extensively used with (CDCL) SAT solvers

[DP60,R65]

Resolution

e Resolution rule:

(Vv x) (Bvx)
(v B)
— Complete proof system for propositional logic

XVa (xVa) (yVva (yVva

— Extensively used with (CDCL) SAT solvers

e Self-subsuming resolution (with o/ C «):

(aVx) (o VX)

(@)

— () subsumes (a V x)

[DP60,R65]

[e.g. SP04,EBO5]

Unit Propagation

Unit Propagation

F = (NDA(FVS)A
(wVva)A(xVaVvb)
(7VZVc)A(bVEV)

e Decisions / Variable Branchings:
w=1lx=1y=1z=1

Unit Propagation

Level Dec. Unit Prop.

0 0 r——s
F = (r)A(FVs)A .
(wva)A(xVaVvb |
(FVZVc)A(bV

)
cV d) 2 x ——> b
3 y
e Decisions / Variable Branchings: \ \

w=1lx=1y=1z=1 4 z——>c—>d

Unit Propagation

Level Dec. Unit Prop.

0 0 r——s
F = (r)A(FVs)A)
(wVva)A(xVaVvb) |
(FVZVc)A(bVEV) 2 x—b
3 y
e Decisions / Variable Branchings: \ \
w=1lx=1y=1z=1 4 z——>c—>d

e Additional definitions:
— Antecedent (or reason) of an implied assignment
» (bVvEvd)ford
— Associate assignment with decision levels
» w=101, x=102, y=103,z=104
» r=100,d=104, ..

Resolution Proofs

e Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

e An example:
F=@ANMb)A(EV)A(aVb)A(aVvd)A(aVd)

e Resolution proof:

(aV b) (aVe)
N/
(¢) (bVe)
) N/
(b) (b)
N
1

e A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]

Unsatisfiable Cores & Proof Traces

e CNF formula:

F = (©)AB)A(aVc)A(aVvb)A(aVd)A(aVd)

Level Dec. Unit Prop.

0 0 h—> 2
c— |

Implication graph with conflict

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop.

0 0 b—s a

l

c— L

Proof trace L: (3V ¢) (aV b) (&) (b)

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (aVe)
: N/
SRS = @ (bvo)
| N/
Y NG
1

Resolution proof follows structure of conflicts

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Vec)
. N/
U= @ (bvo)
| N/
Y B W
1

Unsatisfiable subformula (core): (&), (b),(3V c),(aV b)

Outline

DPLL Solvers

The DPLL Algorithm

—

Unassigned N

variables ?
lv
Satisfiable
Assign value
to variable
Unit

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

The DPLL Algorithm

—

Unassigned N

variables ?
lv
Satisfiable
Assign value

to variable

1.7

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable

Backtrack &
flip variable

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)

e Optional: pure literal rule

The DPLL Algorithm

Unassigned N

to variable

}7 1
2

Unit
propagation

l 3

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

variables ?
1v Level
Satisfiable
Assign value 0

0

— F = (xVy)A(aVb)A(3Vb)A(aVB)A(5V D)

Dec. Unit Prop.

N

The DPLL Algorithm

—

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2
Unit Y

propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm

4.1 _ _

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2 —
Unit Y

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm

4.1 _ _

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2 —
Unit Y

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm
4.1 _ _

F = (xVy)A(avVb)A(aVb)A(aVb)A(aVb)

Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)
to variable

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &

flip variable

e Optional: pure literal rule

The DPLL Algorithm
4.1 _ _

F = (xVy)A(avVb)A(aVb)A(aVb)A(aVb)

Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)
to variable

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &

flip variable

e Optional: pure literal rule

Outline

CDCL Solvers

What is a CDCL SAT Solver?

e Extend DPLL SAT solver with: [DP60,DLL62)
— Clause learning & non-chronological backtracking [MSS96,8597,297]

» Exploit UIPs [MSS96,55512]

» Minimize learned clauses [SB09,VG09]

» Opportunistically delete clauses [MSS96,MSS99, GNO2]

— Search restarts [GSK98,BMS00,H07,B0g]

Lazy data structures

» Watched literals [MMZZMo1]

Conflict-guided branching

» Lightweight branching heuristics [MMZZMo1]
» Phase saving [PDO7]

How Significant are CDCL SAT Solvers?

CPU Time (in seconds)

GRASP

DPLL

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 T T T T T T T T &
© Limmat 2002) o LI I 08
% Zchaff (2002) = w . VS o %8¢
* Berkmin (2002) u o . g ®
O Forklift (2003) L . o y o
B Siege (2003) + a & Os @
1000 Zchaff (2004) + x o A e £ o b
SatELite (2005) i = N4
Minisat 2 (2006) * S &
4 Picosat (2007) v o8 @
o o
v Rsat (2007) S ° ®
v t 2.1 (2008) * 7 o ¢ ’o‘: %,
800 Precosat (2009) b
+ Glucose (2009) - & G 7O o9 2
O Clasp (2009) ~ £y, & ovae °¢°
o Cryptominisat (2010) o £ ©°f o0
© Lingeling (2010).
© Minisat 2.2 (2010)
600 © Glucose 2 (2011) % h
© Gluemi ;
© Contrasat (z @ﬂ
© Lingeling S§76@01) <«
+
400 E
<+
200 E
o L L
80 100 160 180

Number of problems solved

200

Outline

CDCL Solvers
Clause Learning, UIPs & Minimization

Clause Learning

Level Dec. Unit Prop.
0 0

1 X
2 y
3 z a

Clause Learning

Level Dec. Unit Prop.
0 0

1 X
2 y
3 z\a/

b

e Analyze conflict

Clause Learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z

» Decision variable & literals assigned at lower decision levels

Clause Learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

Clause Learning

Level Dec. Unit Prop.

0 0 _
(aVb) (zvb) (xVvzVa)
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

0 0
(3Vv b) (zvb) (xVvzVa)
- Ve
%) y a\/z
3 z\:a > |
b/

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

<1J i (avbh) (zvb) (xvzVva)
pd
) , (avz)
3 > > a > | (;lz)
\b/

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.
0 0

1 X |_/_

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations

Clause Learning — After Bracktracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z a 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> 7
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

e Learned clauses are always asserting
e Backtracking differs from plain DPLL:

— Always bactrack after a conflict

[MSS96,MSS99]

[MMZZMo1]

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0 0
1 w
2 X

N~

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)
0 0 /
1 w (wV b)
2 (W VRV 3)
g
(wvxVyVzZ)
4

b —— |

e Learn clause (W VXV yVZ)

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)
0 0 /
1 w (wV b)
2 (W VRV 3)
g
(wvxVyVzZ)
4

b —— |

e Learn clause (W VXV yVZ)
e But ais an UIP

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)

o o -

e But ais an UIP

e Learn clause (w V XV 3)

Multiple UIPs

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y
4

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
1 w
2 X
3 y

i
N
o €0
- €= o

|]

Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 X
3 y
4

Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:

— Learn clause (x VZ V a)

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:
3 , — Learn clause (x VZ V a)
e In practice smaller clauses more
: i . . . effective

————
\ l l — Compare with (w VXV yVZ)

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers

e Recent results show it can be beneficial on current instances [sssi2]

Clause Minimization |

Level Dec. Unit Prop.
0 0

Clause Minimization |

Level Dec. Unit Prop.
0 0
1 x——> b
2 y ()?
3 z C m— |

e Learn clause (X V7V ZVb)

Clause Minimization |

Level Dec. Unit Prop. (3ve) (2vbvVve) (xvyVvzva) (RVb)
0 0 l/

1 x ——> b (2vbva)

2 4 (xVyVZzVDh)

e Learn clause (X V7V ZVb)

e Apply self-subsuming resolution (i.e. local minimization) [SB09]

Clause Minimization |

Level Dec. Unit Prop. (ave)
0 0
1 B——>»

e Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyVvzva) (RVb)
0 0
1 B——>»

e Apply self-subsuming resolution (i.e. local minimization)

e Learn clause (X Vy V 2)

Clause Minimization Il

Level Dec. Unit Prop.
0 0

1

e
| X\§<

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

—
| \,2<

e Learn clause (w V X V C)

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

s
| X\Zi

e Learn clause (w V X V €)
e Cannot apply self-subsuming
resolution

— Resolving with reason of c yields
(wVXV3avVbh)

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

s
| X\Zi

e Learn clause (w V X V €)

e Cannot apply self-subsuming
resolution
— Resolving with reason of c yields
(WwVxVavb)

e Can apply recursive minimization

Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _;
0 0

e Cannot apply self-subsuming
! resolution

w a @©
\ / — Resolving with reason of ¢ yields
b (WVXVaVbh)
5 e Can apply recursive minimization
X &
\\-' d——— 1

e Marked nodes: literals in learned clause [SB09]

Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _}
0 0

e Cannot apply self-subsuming
w —> a —> c

resolution
— Resolving with reason of c yields
(wVvxVvavb)
e Can apply recursive minimization

e Marked nodes: literals in learned clause

[SB09]
e Trace back from ¢ until marked nodes or new decision nodes

— Learn clause if only marked nodes visited

Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _}
0 0

Cannot apply self-subsuming
" ’ a ’ ¢ resolution

— Resolving with reason of c yields
(WVXVaVbh)
Can apply recursive minimization

Learn clause (w V X)

e Marked nodes: literals in learned clause (SB09]
e Trace back from ¢ until marked nodes or new decision nodes
— Learn clause if only marked nodes visited

Outline

CDCL Solvers

Search Restarts & Lazy Data Structures

Search Restarts |

e Heavy-tail behavior: [GSK98]

%below

0.7 1

0.6

0.5 1

0.4

0.3 :] ;]]
0 2000 4000 6000 8000 10000 12000 oackiracks

— 10000 runs, branching randomization on industrial instance

e Use rapid randomized restarts (search restarts)

Search Restarts Il

e Restart search after a number
of conflicts

cutoff cutoff Hnion

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

cutoff

cutoff

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

| |
e Works for SAT & UNSAT cutoff
instances. Why?

cutoff

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

e Works for SAT & UNSAT
instances. Why?

e Learned clauses effective after
restart(s)

cutoff

Data Structures Basics

e Each literal / should access clauses containing /
— Why?

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

e Number of clause references equals number of literals, L

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation:

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals
— Watched literals are one example of lazy data structures

» But there are others

Watched Literals

e Important states of a clause

[MMZZMo1]

literalsO = 4
literals1=0
size=5

EONEN

unit

literalsO = 4
literals1= 1
size=5

DX A

satisfied

literalsO = 5
literals1=0
size=5

ROXEO20N

unsatisfied

Watched Literals

[MMZZMo1]
e Important states of a clause ’ : N : ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
W ‘ N unresolved
@5 @3 @1
,,,,,,,,,,,,,,,,,,,,,,,, R e
@5 @3 @7 @1
Vo

satisfied

@5 @3 @ @7 @l

|
’ N ‘ N after backtracking to level 4

@3 @1

Watched Literals

[MMZZMo1]
e Important states of a clause ’ ¢ N ¢ ‘ N
unresolved
e Associate 2 references with @3 @
each clause L
e Deciding unit requires M ‘ N unresolved
traversing all literals @5 @3 @1
—— i e
@5 @3 @7 @1
(I

satisfied

@5 @3 @ @7 @l

’ N ‘ N after backtracking to level 4

@3 @1

Watched Literals

[MMZZMo1]
e Important states of a clause ’ ¢ N ¢ ‘ N
unresolved
e Associate 2 references with @3 @l
each clause L
e Deciding unit requires W ‘ N unresolved
traversing all literals @5 @3 @1
o References unchanged when | I
backtracking W w unit
@5 @3 @7 @1
(I

satisfied

@5 @3 @ @7 @l

’ N ‘ N after backtracking to level 4

@3 @1

Additional Key Techniques

e Lightweight branching le.g. MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

Additional Key Techniques

e Lightweight branching le.g. MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

e Clause deletion policies
— Not practical to keep all learned clauses
— Delete larger clauses [e.g. MSS96]
— Delete less used clauses [e.g. GN02,ES03]

Additional Key Techniques

e Lightweight branching le.g. MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

e Clause deletion policies
— Not practical to keep all learned clauses
— Delete larger clauses [e.g. MSS96]
— Delete less used clauses [e.g. GN02,ES03]

e Proven recent techniques:

— Phase saving [PDO7]

— Literal blocks distance [AS09]

Outline

What Next in CDCL Solvers?

CDCL — A Glimpse of the Future

e Clause learning techniques [e.&. ABHJS08,AS00]

— Clause learning is the key technique in CDCL SAT solvers
— Many recent papers propose improvements to the basic clause
learning approach

e Preprocessing & inprocessing

— Many recent papers [JHB12,HIB11]
— Essential in some applications

e Application-driven improvements
— Incremental SAT

» Handling of assumptions due to MUS extractors [LB13]

Part |l

SAT-Based Problem Solving

How to Solve Problems with SAT?

o CNF encodings

— Represent problem as instance of SAT
— E.g. Eager SMT, Pseudo-Boolean constraints, etc.

How to Solve Problems with SAT?

o CNF encodings
— Represent problem as instance of SAT
— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
e Embedding of SAT solvers
— SAT solver used to implement domain specific algorithm
— White-box integration
— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

How to Solve Problems with SAT?

o CNF encodings
— Represent problem as instance of SAT
— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
e Embedding of SAT solvers
— SAT solver used to implement domain specific algorithm
— White-box integration
— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

e SAT solvers as oracles

— Algorithm invokes SAT solver as (a variant of) an NP oracle
— Black-box integration (using standard interface)
— E.g. MaxSAT, MUSes, (2)QBF, etc.

How to Solve Problems with SAT?

CNF encodings

— Represent problem as instance of SAT

— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
Embedding of SAT solvers

— SAT solver used to implement domain specific algorithm

— White-box integration

— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

SAT solvers as oracles (next lectures)

— Algorithm invokes SAT solver as (a variant of) an NP oracle
— Black-box integration (using standard interface)
— E.g. MaxSAT, MUSes, (2)QBF, etc.

Note:

— CNF encodings most often used with either black-box or white-box

approaches
— SAT techniques adapted in many other domains: QBF, SMT, QBF,
CSP, ASP, ILP, ...

SAT-Based Problem Solving

Planning

Pseudo-
Boolean
Branch&-
Bound
Problem Solving
Encodings

with SAT

Embeddings

OPT SAT

MaxSAT

Oracles

Backbones

e Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.

=

Examples of SAT-Based Problem Solving |

o Function problems in FPNP[log n]
— Unweighted Maximum Satisfiability (MaxSAT)

— Minimal Correction Subsets (MCSes)
— Minimal models

e Function problems in FPNP
— Weighted Maximum Satisfiability (MaxSAT)
— Minimal Unsatisfiable Subformulas (MUSes)
Minimal Equivalent Subformulas (MESes)
— Prime implicates

e Enumeration problems
— Models
— MUSes
— MCSes

MaxSAT

Examples of SAT-Based Problem Solving Il

e Decision problems in ©5
- 2QBF

Function problems in FPZ>

— Propositional formula minimization
— (Weighted) Quantified MaxSAT (QMaxSAT)
— Smallest MUS (SMUS)

e Decision problems in PSPACE
- QBF

Outline

CNF Encodings
SAT Embeddings

Conclusions

Outline

CNF Encodings

Encoding to CNF

e What to encode?
— Boolean formulas
» Tseitin's encoding
» Plaisted& Greenbaum'’s encoding
> oo
— Cardinality constraints
Pseudo-Boolean (PB) constraints
Can also translate to SAT:

Constraint Satisfaction Problems (CSPs)
Answer Set Programming (ASP)
Model Finding

vVvyyvyy

o Key issues:
— Encoding size
— Arc-consistency?

Outline

CNF Encodings
Boolean Formulas

Representing Boolean Formulas / Circuits |

e Satisfiability problems can be defined on Boolean circuits/formulas

e Can represent circuits/formulas as CNF formulas [T68,PG]

— For each (simple) gate, CNF formula encodes the consistent
assignments to the gate's inputs and output

» Given z = OP(x, y), represent in CNF z <> OP(x,y)

— CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fe=(aVve)A(bVc)A(aVbVi) Z:@c
Fe=(FVEIN(EVE)A(rVsVi) ;t

Representing Boolean Formulas / Circuits Il

a b c| Feabe)
Z:@c 0 0 0 0
0 0 1 1
01 0 0
01 1 1
ab 1 00 0
N0 01 11 10 L o 1 !
o(foll o] 1|(0 1 10 1
— 11 1 0

Fe=(aVe)A(bVc)A(aVbVE)

Representing Boolean Formulas / Circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate

— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
D T

Representing Boolean Formulas / Circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate

— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
D T

F = (aVvx)A(bVX)A(GVbBVEX)A
(xVy)A(cVy)AN(XVEVY)A

(yV2)A(dVZ)AN(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and formulas

Outline

CNF Encodings

Cardinality Constraints

Cardinality Constraints

o How to handle cardinality constraints, > 7_; x; < k 7

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
,>,>}

IIA

e Solution #1:

— Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, WBO, etc.

Cardinality Constraints

o How to handle cardinality constraints, > 7_; x; < k 7

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
, >, >

A

e Solution #1:

— Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, WBO, etc.

e Solution #2:

— Encode cardinality constraints to CNF
— Use SAT solver

Equalsl, AtlLeastl & AtMostl Constraints

n

i=1%j = 1 encode with (3°7_; x; < 1) A (D07 x5 > 1)

o lexj > 1: encode with (x3 Vxo V...V x,)

o ZJ’.’lej < 1 encode with:

— Pairwise encoding
» Clauses: O(n®) ; No auxiliary variables
Sequential counter [S05]

» Clauses: O(n) ; Auxiliary variables: O(n)

Bitwise encoding [PO7,FPO1]
» Clauses: O(nlogn) ; Auxiliary variables: O(logn)

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:

o An example: x3 +x +x3 <1

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
xj = (vo = bo)A.. . A(ve—1 = br—1) & (XV(vo = bo)A.. .A(ve—1 = br_1))

o An example: x3 +x +x3 <1

J—1 wvivw
X1 0 00
X2 1 01
X3 2 10

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
xj = (vo = bo)A.. . A(ve—1 = br—1) & (XV(vo = bo)A.. .A(ve—1 = br_1))
— Clauses (x; V (vi <+ b)) = (x;V [;), i=0,...,r — 1, where

> /,'EV,', ifb,':].
» i = v;, otherwise

o An example: x3 +x +x3 <1
J—1 wvivw
X1 0 00
X2 1 01
X3 2 10

(V) A (X1 V)
()_Q V \71) A ()_Q V V())
()_<3 Vv Vl) A ()_(3 Vv \70)

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:

Auxiliary variables vo,...,v,_1 ; r = [logn] (with n > 1)

If x; =1, then vo...v,—1 = by... b1, the binary encoding of j — 1
xi = (vo = bo)A.. . A(vic1 = br—1) < (XV(vo = bo)A. . A(Vr—1 = br—1))
Clauses (x; V (vj <> bi)) = (X; V [;), i =0,...,r — 1, where

> h=v, ifb=1

» Ii = Vvj, otherwise
— If x; = 1, assignment to v; variables must encode j — 1
» All other x variables must take value 0

- If all x; = 0, any assignment to v; variables is consistent

— O(nlogn) clauses ; O(logn) auxiliary variables

e An example: x3 +x +x3 <1

J—1 wvivw
X1 0 00
X2 1 01
X3 2 10

(V) A (X1 V)
(>_<2 vV \71) A ()_Q V V())
()_<3 V Vl) A ()_(3 Vv \70)

General Cardinality Constraints

o General form: 3°7 ; x; < k (or D27 ; x; > k)

— Sequential counters [S05]
» Clauses/Variables: O(n k)

— BDDs [ES06]
» Clauses/Variables: O(nk)

— Sorting networks (ES06]

» Clauses/Variables: O(nlog” n)
— Cardinality Networks: [ANORC09,ANORC11a]
» Clauses/Variables: O(nlog” k)
Pairwise Cardinality Networks: [czI10]

Outline

CNF Encodings

Pseudo-Boolean Constraints

Pseudo-Boolean Constraints

. n
e General form: > 7 ;ajx < b
— Operational encoding [Wos]
» Clauses/Variables: O(n)

» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROO]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

Improved polynomial watchdog encoding [ANORC11b]

» Clauses & aux variables: O(n® log(amax))

Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD

xi 2 e
10
al b
z z
x 1 e x 2 e
0 1 0 1
a b a b
0 1
z z
x3s 2 ITE x3 3 e
0 1 0 1
al b] al o]
1 0 1 0

Encoding PB Constraints with BDDs I

e Encode 3x; +3x + x3 <3
e Extract ITE-based circuit from BDD

e Simplify and create final circuit:

Xy 2| ITE

X2 X3 X3 X2

More on PB Constraints

 How about > 7 ; a;x = k ?

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time [S03,FS02,T03]

More on PB Constraints

 How about > 7 ; a;x = k ?

- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> ;:1 aj xj = k is a subset-sum constraint
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time

e Example:

4x1 +4x0 +3x3+2x4 =5

[S03,FS02,T03]

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
j=1
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

4x1 +4x0 +3x3+2x4 =5

- Replace by (4X1 + 4X2 + 3X3 + 2X4 Z 5) A (4X1 +4X2 + 3X3 + 2X4 S 5)

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
j=1
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

4x1 +4x0 +3x3+2x4 =5

- Replace by (4X1 + 4X2 + 3X3 + 2X4 Z 5) A (4X1 +4X2 + 3X3 + 2X4 S 5)
— Let X3 = 0

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:
4x1 +4x0 +3x3+2x4 =5
- Replace by (4X1 + 4X2 + 3X3 + 2X4 Z 5) A (4X1 +4X2 + 3X3 + 2X4 S 5)

— Let X3 = 0
— Either constraint can still be satisfied, but not both

Outline

CNF Encodings

Encoding CSPs

CSP Constraints

e Many possible encodings:

Direct encoding

Log encoding

Support encoding
Log-Support encoding

Order encoding for finite linear CSPs

[dK89,GJ96,W00]

[Woo0]

[K90,G02]

[Go7]

[TTKBOY]

Direct Encoding for CSP w/ Binary Constraints

Variable x; with domain D;, with m; = |Dj|

Represent values of x; with Boolean variables x; 1, ..., X m,

o mj J—
Require)7 xjx =1 |
— Suffices to require > " x; , > 1 [Woo]

If the pair of assignments x; = v; A x; = v; is not allowed, add
binary clause (i, V Xj.,)

Outline

SAT Embeddings

Embedding SAT Solvers

SAT Solver

e

Assignments + Assignments +
Constraints Explanations

Constraint Propagators
/ Theory Solvers

Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

Typical interface:

— SAT solvers communicates
assignments/constraints to
propagators

— Retrieve resulting assignments or
explanations for inconsistency

Well-known examples (many more):
— Branch&bound PB optimization
— Non-clausal SAT solvers
— Lazy SMT solving

Key problem:

— Keeping up with improvements in
SAT solvers

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > bi, e {Xj!)_(j}vxj € {071}7‘9')”[31' € Ng
JEN

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > bi, e {Xj!)_(j}vxj € {071}7‘9')”[31' € Ng
JEN

¢ Pseudo-Boolean Optimization (PBO):

minimize », @05
JEN

subject to > ajjlj > bj,
JEN

/j € {)97)_(]}7)9' € {071}7aij7bhcj € N(J)r

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > b, /J € {Xj!)_(j}vxj € {Ovl}vafj’bi € N(T
JjeEN

¢ Pseudo-Boolean Optimization (PBO):

minimize », @05
JEN

subject to > ajjlj > bj,
JEN

/j € {)97)_(]}7)9' € {Ovl}vafjvbhcj € N(J)r

e Branch and bound (B&B) PBO algorithm:
— Extend SAT solver
— Must develop propagator for PB constraints
— B&B search for computing optimum cost function value
» Trivial upper bound: all x; =1

[MMS00]

Limitations with Embeddings

e B&B MaxSAT solving:

— Cannot use unit propagation
— Cannot learn clauses

e MUS extraction:
— Decision of clauses to include in MUS based on unsatisfiable
outcomes
— No immediate gain from embedding SAT solvers

Outline

Conclusions

Conclusions

e Overview of modern SAT solvers

— CDCL SAT solvers: clause learning, UIPs, clause minimization,
search restarts, etc.

e Introduction to SAT-based problem solving

— CNF encodings
— Embedding of SAT solvers

e Next lectures: problem solving with SAT oracles

