
SAT-Based Problem Solving

Lecture #2:

Solving Minimal Set Problems with SAT Oracles

Joao Marques-Silva1,2

1University College Dublin, Ireland

2IST/INESC-ID, Lisbon, Portugal

University of Calabria, Italy

February 2015

Part III

Computing Subset Minimal Sets

SAT solving in practice

• SAT is a success story of Computer Science

– Hundreds (even more?) of practical applications

• Many formulated as decision problems; many others not

SAT solving in practice

• SAT is a success story of Computer Science

– Hundreds (even more?) of practical applications

• Many formulated as decision problems; many others not

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise

Function (Search) Problems

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

Recap MUS,

MCS, MSS,

MES, MFS, ...!

Decision vs. function problems

Answer Problem Type

Yes/No Decision Problems

Otherwise Function (Search) Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

Recap MUS,

MCS, MSS,

MES, MFS, ...!

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?

– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?

– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes

– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls

– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

How to solve function problems?

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

• SAT oracle 6= (standard) NP oracle. Why?
– SAT oracles compute witnesses for Y outcomes
– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle

Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !
– Model is given by witness returned by SAT oracle

Problem solving with SAT oracles – general case

Problem solving with SAT oracles

Decision Problems

Function Problems

AI Planning*

Model Checking

CEGAR Loops
...

MaxSAT MinSAT

Optimization Problems

PBO

WBO ...

MUSes MCSes
Primes Min Models

Autarkies
Backbones

Minimal Sets

...MFSes

Problem solving with SAT oracles – our work (2007-...)

Problem solving with SAT oracles

Decision Problems

Function Problems

AI Planning*

Model Checking

CEGAR Loops
...

MaxSAT MinSAT

Optimization Problems

PBO

WBO ...

MUSes MCSes
Min Models Backbones

Minimal Sets

...MFSes
Primes

Autarkies

But also, MESes,
groups, variables,

circuits, SMUS,...

Problem solving with SAT oracles – our work (2007-...)

Problem solving with SAT oracles

Decision Problems

Function Problems

AI Planning*

Model Checking

CEGAR Loops
...

MaxSAT MinSAT

Optimization Problems

PBO

WBO ...

MUSes MCSes
Min Models Backbones

Minimal Sets

...MFSes
Primes

Autarkies

But also, MESes,
groups, variables,

circuits, SMUS,...

Problem solving with SAT oracles – some challenges

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min set &

optim

Reduce #
SAT solver

calls

Problem solving with SAT oracles – some challenges

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min set &

optim

Reduce #
SAT solver

calls

Problem solving with SAT oracles – some challenges

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT solver

calls

Problem solving with SAT oracles – some challenges

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT oracle

queries

Problem solving with SAT oracles – some challenges

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT oracle

queries

Problem solving with SAT oracles – these talks

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT solver

calls

Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?

Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?

Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?

Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT oracle

queries

Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

UNSAT instance; not irreducible

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

Hide clause (¬x1 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

SAT instance → keep clause (¬x1 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

Hide clause (¬x3 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

UNSAT instance → remove clause (¬x3 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

Hide clause (x1 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

SAT instance → keep clause (x1 ∨ x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

Hide clause (¬x3)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

UNSAT instance → remove clause (¬x3)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

Hide clause (¬x2)

An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

SAT instance → keep clause (¬x2)

An Example

(¬x1 ∨ x2)
(x1 ∨ x2)
(¬x2)

Computed MUS

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation
foreach c ∈M do

if not SAT(M\ {c}) then
M←M\ {c} // If UNSAT(M\ {c}), then c 6∈ M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation
foreach c ∈M do

if not SAT(M\ {c}) then
M←M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)

More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m × k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Dichotomic O(k × logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k × log(1 + m
k)) [MSJB13]

• Additional Techniques:

– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]

More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m × k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Dichotomic O(k × logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k × log(1 + m
k)) [MSJB13]

• Additional Techniques:

– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]

Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

Computing minimal sets is ubiquitous!

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

Minimal Sets

• MUSes are minimal sets

– Extensive work since the mid 80s

Computing minimal sets is ubiquitous!

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

Minimal Sets

• Backbones(!) are minimal sets

– Extensive work since the late 90s

Computing minimal sets is ubiquitous!

Primes...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Minimal Sets

• MCSes are minimal sets

– Extensive work since the mid 80s

Computing minimal sets is ubiquitous!

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

Minimal Sets

• Autarkies(!) & primes are also minimal sets

– Extensive work since the 80s & 30s(!), resp.

Computing minimal sets is ubiquitous!

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

Minimal Sets

• MESes, MFSes (and many more!) are minimal sets

– Work since the 00s & 90s, etc.

Computing minimal sets is ubiquitous!

Minimal Sets

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

• ∴ Develop framework for reasoning about minimal sets !
– Why? Common algorithms & techniques; new insights & results; ...

Example – MUSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]

Example – MUSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]

Example – MUSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]

Example – MUSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]

Example – MUSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Complexity results:

– Function problem: can be solved with O(log n) calls to a SAT
oracle. Why?

Monotone predicates

• Set of elements R
• Predicate P : 2R → {0, 1}

• P is monotone iff P has the following property: [BM07]

• Minimal Set over Monotone Predicate (MSMP) problem: [MSJB13]

1. Given R and monotone predicate P over R,
2. compute minimal set M⊆ R such that P(M) = 1 holds

Monotone predicates

• Set of elements R
• Predicate P : 2R → {0, 1}

• P is monotone iff P has the following property: [BM07]

=⇒ If P(R0) = 1 holds and
R0 ⊆ R1 ⊆ R, then P(R1) = 1
also holds

– Note: P(R) = 1 must hold;
otherwise no minimal set

R

R0

R1

• Minimal Set over Monotone Predicate (MSMP) problem: [MSJB13]

1. Given R and monotone predicate P over R,
2. compute minimal set M⊆ R such that P(M) = 1 holds

Monotone predicates

• Set of elements R
• Predicate P : 2R → {0, 1}

• P is monotone iff P has the following property: [BM07]

=⇒ If P(R0) = 1 holds and
R0 ⊆ R1 ⊆ R, then P(R1) = 1
also holds

– Note: P(R) = 1 must hold;
otherwise no minimal set

R

R0

R1

• Minimal Set over Monotone Predicate (MSMP) problem: [MSJB13]

1. Given R and monotone predicate P over R,
2. compute minimal set M⊆ R such that P(M) = 1 holds

Example reductions to MSMP

MUS MCS

R F F
P(W),W ⊆ R ¬SAT(W) SAT(F \W)

Min. set M, P(M) ¬SAT(M) true SAT(F \M) true

∀M′⊂M,P(M′) ¬SAT(M′) false SAT(F \M′) false

Example reductions to MSMP

MUS MCS

R F F
P(W),W ⊆ R ¬SAT(W) SAT(F \W)

Min. set M, P(M) ¬SAT(M) true SAT(F \M) true

∀M′⊂M,P(M′) ¬SAT(M′) false SAT(F \M′) false

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

MUS: W P(W) , ¬SAT(W)

c1c2c3c4c5c6c7 1

c2c3c4c5c6c7 1

c3c4c5c6c7 1

c4c5c6c7 1

c4c6c7 1 M
c4c7 0

c6c7 0

...

Example reductions to MSMP

MUS MCS

R F F
P(W),W ⊆ R ¬SAT(W) SAT(F \ W)

Min. set M, P(M) ¬SAT(M) true SAT(F \M) true

∀M′⊂M,P(M′) ¬SAT(M′) false SAT(F \M′) false

Example reductions to MSMP

MUS MCS

R F F
P(W),W ⊆ R ¬SAT(W) SAT(F \ W)

Min. set M, P(M) ¬SAT(M) true SAT(F \M) true

∀M′⊂M,P(M′) ¬SAT(M′) false SAT(F \M′) false

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

MCS: W F \W P(W) , SAT(F \W)

c1c2c3c4c5c6c7 ∅ 1

c1c2c3c4c5c7 c6 1

c1c2c3c5c7 c4c6 1

c1c2c5c7 c3c4c6 1

c1c5c7 c2c3c4c6 1

c5c7 c1c2c3c4c6 1 M
c5 c1c2c3c4c6c7 0

c7 c1c2c3c4c5c6 0

Reductions to MSMP – a glimpse

Problem R P(W),W ⊆ R
FMUS F ¬SAT(∧c∈W (c))

FMCS F SAT(∧c∈R\W (c))

FMES F ¬SAT(¬F ∧ ∧c∈W (c))

FMDS F SAT(¬F ∧ ∧c∈R\W (c))

FCMFS F SAT(∧c∈R\W (¬c))

FMnM X SAT(F ∧ ∧x∈R\W (¬x))

FPIt L(t) ¬SAT(¬F ∧ ∧l∈W (l))

FPIc L(c) ¬SAT(F ∧ ∧l∈W(¬l))

FLEIt Lt ¬SAT(F ItX ∧ (∨l∈R\W ¬l))

FLEIc Lc ¬SAT(F IcX ∧ (∨l∈R\W l))

FMnES J ¬SAT(¬I ∧ ∧c∈W (c))

FMxES N ¬SAT(J ∧ (∨c∈R\W¬c))

FBBr V ¬SAT(F ∧ (∨l∈R\W¬l))

FBB X ¬SAT(FBB ∧ (∨x∈R\W x ∧ ¬x ′))

FVInd X ¬SAT(FVInd ∧ ∧xi∈W (xi ↔ yi))

FAut X+ SAT(FAut ∧ ∧x+∈R\W (x+))

· · · · · ·

Reductions to MSMP – a glimpse

Problem R P(W),W ⊆ R
FMUS F ¬SAT(∧c∈W (c))

FMCS F SAT(∧c∈R\W (c))

FMES F ¬SAT(¬F ∧ ∧c∈W (c))

FMDS F SAT(¬F ∧ ∧c∈R\W (c))

FCMFS F SAT(∧c∈R\W (¬c))

FMnM X SAT(F ∧ ∧x∈R\W (¬x))

FPIt L(t) ¬SAT(¬F ∧ ∧l∈W (l))

FPIc L(c) ¬SAT(F ∧ ∧l∈W(¬l))

FLEIt Lt ¬SAT(F ItX ∧ (∨l∈R\W ¬l))

FLEIc Lc ¬SAT(F IcX ∧ (∨l∈R\W l))

FMnES J ¬SAT(¬I ∧ ∧c∈W (c))

FMxES N ¬SAT(J ∧ (∨c∈R\W¬c))

FBBr V ¬SAT(F ∧ (∨l∈R\W¬l))

FBB X ¬SAT(FBB ∧ (∨x∈R\W x ∧ ¬x ′))

FVInd X ¬SAT(FVInd ∧ ∧xi∈W (xi ↔ yi))

FAut X+ SAT(FAut ∧ ∧x+∈R\W (x+))

· · · · · ·

MSMP algorithms

• Why MSMP algorithms?

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Progression O(k × log(1 + m
k)) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!

MSMP algorithms

• Why MSMP algorithms? Common algorithms & techniques, ...

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Progression O(k × log(1 + m
k)) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!

MSMP algorithms

• Why MSMP algorithms? Common algorithms & techniques, ...

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Progression O(k × log(1 + m
k)) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!

MSMP algorithms

• Why MSMP algorithms? Common algorithms & techniques, ...

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Progression O(k × log(1 + m
k)) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!

MSMP algorithms

• Why MSMP algorithms? Common algorithms & techniques, ...

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k)) [J01,J04]

Progression O(k × log(1 + m
k)) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!

Deletion algorithm – revisited

Input : Target set T
Output: Minimal subset M
begin

M← T // Precondition: P(T) holds

foreach u ∈M do // Inv: P(M)

if P(M\ {u}) then // P holds without element

M←M\ {u} // Drop element

return M // Postcondition: M is minimal set s.t. P(M) holds

end

• Number of predicate tests: O(m)

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!

Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7} Compare with std MSS grow procedure!

From deletion to progression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 4 8 16

Deletion

Progression

• Deletion: Check (& remove?) one element at a time

– Pick set of elements given by arithmetic progression

• Progression: Check (& remove) exponentially growing set of
elements

– Pick set of elements given by geometric progression

From deletion to progression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 4 8 16

Deletion

Progression

• Deletion: Check (& remove?) one element at a time

– Pick set of elements given by arithmetic progression

• Progression: Check (& remove) exponentially growing set of
elements

– Pick set of elements given by geometric progression

Progression algorithm

i ← 0

ν ← min(2i , |T |)

T = ∅?

G ← M ∪ T \ T1..ν
i ← i + 1

T ← T \ T1..ν

j ← BinS(M, T , ν)

T ← T \ T1..j
M ← M ∪ Tj ..j

i ← 0

P(G)?

stop

no

yes

yes no

O(k × log(1 + m
k))

predicate tests

Progression algorithm

i ← 0

ν ← min(2i , |T |)

T = ∅?

G ← M ∪ T \ T1..ν
i ← i + 1

T ← T \ T1..ν

j ← BinS(M, T , ν)

T ← T \ T1..j
M ← M ∪ Tj ..j

i ← 0

P(G)?

stop

no

yes

yes no

O(k × log(1 + m
k))

predicate tests

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M

Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7} BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M

Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}
BinSearch gets

elements of M

Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

Oracles and query complexity

• Disclaimer: Ongoing work; comments welcome!

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]

Oracles and query complexity

• NP oracles vs. witness oracles

– Given instance:

NP oracle witness oracle

Accepts(Y) / Rejects(N) ! !

Returns poly-size Y witness % !

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]

Oracles and query complexity

• NP oracles vs. witness oracles

– Given instance:

NP oracle witness oracle

Accepts(Y) / Rejects(N) ! !

Returns poly-size Y witness % !

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]

Oracles and query complexity

• NP oracles vs. witness oracles

– Given instance:

NP oracle witness oracle

Accepts(Y) / Rejects(N) ! !

Returns poly-size Y witness % !

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]

NP oracles FPNP[log n]
?
⊆ FPNP

||
?
⊆ FPNP

witness oracles FPNP[wit, log n]

Oracles and query complexity

• NP oracles vs. witness oracles

– Given instance:

NP oracle witness oracle

Accepts(Y) / Rejects(N) ! !

Returns poly-size Y witness % !

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]

NP oracles FPNP[log n]
?
(FPNP

||
?
(FPNP

witness oracles FPNP[wit, log n]

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n)

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n)

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

Backbones

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

Backbones O(n), ||

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

Backbones O(n), ||
MUS#1

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

Backbones O(n), ||
MUS#1 O(n), ||

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS O(n) O(log n)

MUS O(n) O(n)

Backbones O(n), || O(log n)

MUS#1 O(n), || O(log n)

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS FPNP FPNP[wit, log n]

MUS FPNP FPNP

Backbones FPNP
|| FPNP[wit, log n]

MUS#1 FPNP
|| FPNP[wit, log n]

• Why?

FPNP[log n] if

goal is number

“Easier” than com-

puting SAT witness!

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS FPNP FPNP[wit, log n]

MUS FPNP FPNP

Backbones FPNP
|| FPNP[wit, log n]

MUS#1 FPNP
|| FPNP[wit, log n]

• Why?
FPNP[log n] if

goal is number

“Easier” than com-

puting SAT witness!

Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

Problem NP Oracles SAT Oracles

MCS FPNP FPNP[wit, log n]

MUS FPNP FPNP

Backbones FPNP
|| FPNP[wit, log n]

MUS#1 FPNP
|| FPNP[wit, log n]

• Why?

FPNP[log n] if

goal is number

“Easier” than com-

puting SAT witness!

Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

Conclusions

• Significant progress in SAT-based (function) problem solving

– MUSes, MCSes, MaxSAT, MinSAT, backbones, autarkies, minimal
models, prime implicants & implicates

– But also, MESes, MFSes, etc. etc.

• Categorized function problems on Boolean formulas:

– Optimization problems
– Computation of minimal sets

• Introduced the MSMP problem

– Framework for reasoning about (many) minimal sets problems

• Overviewed algorithms for optimization problems and for minimal
set computation

– E.g. refine UB, refine LB, binary search, core-guided, etc.
– Insertion, Deletion, Dichotomic, QuickXplain, Progression

• Developed some preliminary query complexity results with witness
oracles

– MCSes, Backbones, MUS#1

Research directions

• New minimal set problems?

– And new optimization problems?

• New algorithms?

• New pruning techniques?

• New implementation techniques?

– How about preprocessing ?
– How about parallelization ?

• Query complexity results?

– Also, FPT reductions to SAT?

• How about enumeration problems?

– MUSes, MCSes, MaxSAT, etc.

• ...

Research directions

• New minimal set problems?

– And new optimization problems?

• New algorithms?

• New pruning techniques?

• New implementation techniques?

– How about preprocessing ?
– How about parallelization ?

• Query complexity results?

– Also, FPT reductions to SAT?

• How about enumeration problems?

– MUSes, MCSes, MaxSAT, etc.

• ...

SAT
oracles

Interfacing
SAT solver

Query
complexity

Algorithms:
min sets &

optimization

Reduce #
SAT oracle

queries

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))

– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))

– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))

– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable
– Goal is to maximize the number of zi variables with value 1

– Can be modeled with soft clauses: (zi)
• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable
– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable
– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable
– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem
– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

Backbones — proof sketch

• ν(xi): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi)))
– zi = 1 iff F [X/Yi] satisfied with yi = ¬ν(xi)

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi] ∧ (yi ↔ ¬ν(xi))))

• Any zi that can take value 1 represents a non-backbone variable
– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem
– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]

– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]

– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1

– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

MUS#1 — proof sketch

• F [X/Yi]: formula with fresh set of variables Yi , associated with
each ci

• Introduce new variable zi ↔ (F \ ci)[X/Yi]
– zi = 1 iff (F \ {ci})[X/Yi] satisfied

I i.e. zi = 1 iff ci is in MUS, since there is exactly one MUS

• Construct formula:

|F|∧
i=1

(zi ↔ (F \ ci)[X/Yi])

• Any zi that can take value 1 represents an MUS clause

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi)

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ MUS#1 is in FPNP[wit, log n]

SAT-Based Problem Solving

Lecture #3:

Solving Optimization Problems with SAT Oracles

Joao Marques-Silva1,2

1University College Dublin, Ireland

2IST/INESC-ID, Lisbon, Portugal

University of Calabria, Italy

February 2015

Part IV

Computing Minimal Cardinality Sets

Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable

• Recap:
A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable

• Recap:
A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable

• Recap:
A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable

• Recap:
A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

Practical relevancy of MaxSAT?

• Package management; Timetabling; Haplotyping; Configuration;
Fault localization; Design debugging; Model based diagnosis;
Telecom feature subscription; Resource constrained scheduling;
Planning; Pseudo Boolean formulas; Binate covering; Filter design;
FPGA routing; Power estimation; Technology mapping; etc.

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear inequalities BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT

The MaxSAT (r)evolution

48.1% more

instances solved!

The MaxSAT (r)evolution – plain industrial instances

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
pmifumax-13

WPM1-11
wbo-1.4a-10

wbo1.6-cnf-12

Source: [MaxSAT 2014 organizers]

48.1% more

instances solved!

The MaxSAT (r)evolution – plain industrial instances

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
pmifumax-13

WPM1-11
wbo-1.4a-10

wbo1.6-cnf-12

Source: [MaxSAT 2014 organizers]

48.1% more

instances solved!

The MaxSAT (r)evolution – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

71.5% more

instances solved!

The MaxSAT (r)evolution – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

71.5% more

instances solved!

The MaxSAT (r)evolution – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

51.5% more

instances solved!

The MaxSAT (r)evolution – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

51.5% more

instances solved!

Many MaxSAT algorithms

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

More on MaxSAT algorithms

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative minimal hitting set (MHS) computation [DB11,DB13a,DB13b]

• Model guided approaches [HMPMS12]

• Branch & bound search [HJ90,LM09]

More on MaxSAT algorithms – somewhat out of date

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative minimal hitting set (MHS) computation [DB11,DB13a,DB13b]

• Model guided approaches [HMPMS12]

• Branch & bound search [HJ90,LM09]

Recap last lectures

• CNF encodings of cardinality and PB constraints

– AtMost1, AtMostk , etc.

• SAT oracle: black-box use of SAT solver

– Witness for Y outcomes
– And unsatisfiable core of N outcomes

I Note: can be the complete set of soft clauses

• But also, binary search, progression, etc.

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Design debugging

[SMVLS’07]

Correct circuit

AND

AND

r

s
y

z

Input stimuli: 〈r , s〉 = 〈0, 1〉
Valid output: 〈y , z〉 = 〈0, 0〉

Faulty circuit

AND

r

s
y

zOR

Input stimuli: 〈r , s〉 = 〈0, 1〉
Invalid output: 〈y , z〉 = 〈0, 0〉

• The model:

– Hard clauses: Input and output values
– Soft clauses: CNF representation of circuit

• The problem:

– Maximize number of satisfied clauses (i.e. circuit gates)

Software package upgrades with MaxSAT

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

Software package upgrades with MaxSAT

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

ϕH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

ϕS = {(x1), (x2), (x3), (x4)}

Key engine for MUS enumeration

• MUS: irreducible unsatisfiable set of clauses

– MCS: irreducible set of clauses such that complement is satisfiable
– MSS: subset maximal satisfiable set of clauses

• Enumeration of MUSes finds many applications:

– Model checking with CEGAR, type inference & checking,
etc. [ALS’08,BSW’03]

• How to enumerate MUSes? [E.g. LS’08]

– Use hitting set duality between MUSes and MCSes [E.g. R’87,BL’03]

I An MUS is an irreducible hitting set of a formula’s MCSes
I An MCS is an irreducible hitting set of a formula’s MUSes

– Can enumerate MCSes and then use them to compute MUSes

– Use MaxSAT enumeration for computing all MSSes

Key engine for MUS enumeration

• MUS: irreducible unsatisfiable set of clauses

– MCS: irreducible set of clauses such that complement is satisfiable
– MSS: subset maximal satisfiable set of clauses

• Enumeration of MUSes finds many applications:

– Model checking with CEGAR, type inference & checking,
etc. [ALS’08,BSW’03]

• How to enumerate MUSes? [E.g. LS’08]

– Use hitting set duality between MUSes and MCSes [E.g. R’87,BL’03]

I An MUS is an irreducible hitting set of a formula’s MCSes
I An MCS is an irreducible hitting set of a formula’s MUSes

– Can enumerate MCSes and then use them to compute MUSes

– Use MaxSAT enumeration for computing all MSSes

Key engine for MUS enumeration

• MUS: irreducible unsatisfiable set of clauses

– MCS: irreducible set of clauses such that complement is satisfiable
– MSS: subset maximal satisfiable set of clauses

• Enumeration of MUSes finds many applications:

– Model checking with CEGAR, type inference & checking,
etc. [ALS’08,BSW’03]

• How to enumerate MUSes? [E.g. LS’08]

– Use hitting set duality between MUSes and MCSes [E.g. R’87,BL’03]

I An MUS is an irreducible hitting set of a formula’s MCSes
I An MCS is an irreducible hitting set of a formula’s MUSes

– Can enumerate MCSes and then use them to compute MUSes

– Use MaxSAT enumeration for computing all MSSes

Key engine for MUS enumeration

• MUS: irreducible unsatisfiable set of clauses

– MCS: irreducible set of clauses such that complement is satisfiable
– MSS: subset maximal satisfiable set of clauses

• Enumeration of MUSes finds many applications:

– Model checking with CEGAR, type inference & checking,
etc. [ALS’08,BSW’03]

• How to enumerate MUSes? [E.g. LS’08]

– Use hitting set duality between MUSes and MCSes [E.g. R’87,BL’03]

I An MUS is an irreducible hitting set of a formula’s MCSes
I An MCS is an irreducible hitting set of a formula’s MUSes

– Can enumerate MCSes and then use them to compute MUSes
– Use MaxSAT enumeration for computing all MSSes

Many other applications – recap

• Error localization in C code [JM’11]

• Haplotyping with pedigrees [GLMSO’10]

• Course timetabling [AN’10]

• Combinatorial auctions [HLGS’08]

• Minimizing Disclosure of Private Information in Credential-Based
Interactions [AVFPS’10]

• Reasoning over Biological Networks [GL’12]

• Binate/unate covering

– Haplotype inference [GMSLO’11]

– Digital filter design [ACFM’08]

– FSM synthesis [e.g. HS’96]

– Logic minimization [e.g. HS’96]

– ...

• ...

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)

MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)

MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)

MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UB1

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UB2

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi)

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0m0= b(LB0 + UB0)/2c

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UB1LB1 = m0 − 1 m1

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .

– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0LB2 UB2
m2

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0
mk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

Core-guided solver performance – plain

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
pmifumax-13

WPM1-11
wbo-1.4a-10

wbo1.6-cnf-12

Source: [MaxSAT 2014 organizers]

Core-guided solver performance – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses

– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms

Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses
– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms

Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses
– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT
Fu&Malik’s Algorithm
MSU3 Algorithm

Our Recent Work

Some Results

Conclusions

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMost1 constraint

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

Add new relaxation variables and AtMost1 constraint

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

Instance is now SAT

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT
Fu&Malik’s Algorithm
MSU3 Algorithm

Our Recent Work

Some Results

Conclusions

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMost1 constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and AtMost1 constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work
Core-Guided Binary Search
Progressions in MaxSAT
Soft Cardinality Constraints

Some Results

Conclusions

Recap binary search for MaxSAT (Bin)

[e.g. FM’06]

(R, ϕW)← Relax(∅, ϕ, Soft(ϕ))
(λ, µ,AM)← (−1,

∑m
i=1 wi + 1, ∅)

while λ < µ− 1 do
ν ← b(λ+ µ)/2c
ϕE ← CNF(

∑
ri∈R wi ri ≤ ν)

(st,A)← SAT(ϕW ∪ ϕE)
if st = true then

(AM , µ)← (A,∑m
i=1 wi A〈ri 〉)

else
λ← ν

return Init(AM)

Towards core-guided MaxSAT

• MaxSAT by iterative SAT solving: all clauses relaxed

• How to relax clauses on demand, given binary search?

Core-guided binary search (Bin-Core)

[HMMS’11]

(R, ϕW , ϕS)← (∅, ϕ, Soft(ϕ))
(λ, µ,AM)← (−1,

∑m
i=1 wi + 1, ∅)

while λ < µ− 1 do
ν ← b(λ+ µ)/2c
ϕE ← CNF(

∑
ri∈R wi ri ≤ ν)

(st, ϕC ,A)← SAT(ϕW ∪ ϕE)
if st = true then

(AM , µ)← (A,∑m
i=1 wi A〈ri 〉)

else
if ϕC ∩ ϕS = ∅ then

λ← ν
else

(R, ϕW)← Relax(R, ϕW , ϕC ∩ ϕS)

return Init(AM)

Bin-Core with disjoint cores (Bin-Core-Dis)

• Organization similar to Bin-Core

• Keep set of disjoint unsatisfiable cores [HMMS’11]

– Need to join unsatisfiable cores

• Integrate lower & upper bounds [HMMS’11,MHMS’12]

– Essential to reduce number of iterations

• Integrate additional pruning techniques [MHMS’12]

– BMO condition
– etc.

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work
Core-Guided Binary Search
Progressions in MaxSAT
Soft Cardinality Constraints

Some Results

Conclusions

Binary search vs. progression

• Motivation:

12 164 32

WC

C

W/2
Bin search

Progression

– Avoid unnecessary binary search iterations when W � C

MaxSAT using geometric progressions

Progression Iterative(F)
Input: F = FS ∪ FH

(R,FW)← Relax(∅,F ,FS) // Relax & harden soft clause ci with ri
(λ, j)← (0, 0) // LB & progression index
while true do

τ ← 2j − 1 // Tentative UB w/ geom. prog.
if τ >

∑
ri∈R wi then

return BinSearch(FW ,R, λ, ∅) // Bin search if UB ≥ W
(st,A)← SAT(FW ∪ CNF(

∑
ri∈R wi ri ≤ τ))

if st = true then
return BinSearch(FW ,R, λ,A) // Bin search given (actual) UB

else
λ← τ // Update LB
j ← j + 1 // Increase progression index

• Worst-case number of oracle calls: O(logC)

MaxSAT using geometric progressions

Progression Iterative(F)
Input: F = FS ∪ FH

(R,FW)← Relax(∅,F ,FS) // Relax & harden soft clause ci with ri
(λ, j)← (0, 0) // LB & progression index
while true do

τ ← 2j − 1 // Tentative UB w/ geom. prog.
if τ >

∑
ri∈R wi then

return BinSearch(FW ,R, λ, ∅) // Bin search if UB ≥ W
(st,A)← SAT(FW ∪ CNF(

∑
ri∈R wi ri ≤ τ))

if st = true then
return BinSearch(FW ,R, λ,A) // Bin search given (actual) UB

else
λ← τ // Update LB
j ← j + 1 // Increase progression index

• Worst-case number of oracle calls: O(logC)

Earlier work using geometric progressions

• Used for improving lower bounds

– Optimization problems in planning [SS07]

– Job shop scheduling [MSV13]

• Used in algorithms for computing a minimal set subject to a
monotone predicate (MSMP) [MSBJ13]

– E.g. MUSes, MCSes, minimal models, etc. [MSJ14]

– Also used being developed by ILOG [L14]

Progression & core-guided algorithms

• Use geometric progression (instead of binary) search

• Refine computed upper bound with core-guided algorithm:

– Core-guided binary search (Bin Core, BC) [HMMS11]

– Bin Core with disjoint cores (BCD/BCD2) [HMMS11,MHMS12]

– Actually, any core-guided algorithm that refines (LB,UB] can be
used

• Worst case number of oracle calls in O(m + logC)

– O(m + logC): geometric progression step
– O(m + logC): BC/BCD/BCD2 step
– Where, O(m) captures the iterative relaxation of soft clauses

– Compare with O(m + logW) for BC, BCD/BCD2 [HMMS11]

Progression with core-guided binary search

Progression BinCore(F)
Input: F = FS ∪ FH

(R,FW)← (∅,F) // Initially no clauses relaxed
(λ, j)← (0, 0) // LB & progression index
while true do

τ ← 2j − 1 // Tentative UB w/ geom. prog.
if τ >

∑
ri∈R wi then

return BinCore(FW ,R, λ, ∅) // Bin core if UB ≥ W
(st,U ,A)← SAT(FW ∪ CNF(

∑
ri∈R wi ri ≤ τ))

if st = true then
return BinCore(FW ,R, λ,A) // Bin core given (actual) UB

else
if U ∩ FS = ∅ then

λ← τ // Update LB
j ← j + 1 // Increase progression index

else
(R,FW)← Relax(R,FW ,U ∩ FS) // Relax & harden soft clauses

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work
Core-Guided Binary Search
Progressions in MaxSAT
Soft Cardinality Constraints

Some Results

Conclusions

Why soft cardinality constraints?

• Like MSU3 (and others):

– Use a single relaxation variable per clause

• Like FM:

– Create one new cardinality constraint per core

• Similarly to FM:

– No need for PB constraints: use only AtMostk constraints

Core-guided with soft constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 1

Aux sums: S1 =
∑6

i=1 ri ;

Add relaxation variables and AtMost1 constraint

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 1

Aux sums: S1 =
∑6

i=1 ri ;

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Add new relaxation variables (S ′2), update AtMostk constraint and add
new AtMost1 constraint

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Add new relaxation variables (S ′2), update AtMostk constraint and add
new AtMost1 constraint

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Instance is now SAT

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

BinCore solution is |ϕ| − I = 12− 2 = 10

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Core-guided with soft constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

BinCore solution is |ϕ| − I = 12− 2 = 10

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki)

4. Create new soft cardinality constraint:

Sj ≤ 1

Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki)

4. Create new soft cardinality constraint:

Sj ≤ 1

Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki)

4. Create new soft cardinality constraint:

Sj ≤ 1

Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki)

4. Create new soft cardinality constraint:

Sj ≤ 1

Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki)

4. Create new soft cardinality constraint:

Sj ≤ 1

Additional detail

• Sums represented in unary
– Output bits of each sum can be used in different constraints

I E.g.: S1 compared both with 1 and 2

– Thus, encodings of sums get reused

• Each sum Sj associated with unsatisfiable core j

– Each sum Sj remains unchanged as the algorithm executes
– Multiple RHSs can be considered for each sum Sj

• BMO condition exploited for weighted instances

Additional detail

• Sums represented in unary
– Output bits of each sum can be used in different constraints

I E.g.: S1 compared both with 1 and 2

– Thus, encodings of sums get reused

• Each sum Sj associated with unsatisfiable core j

– Each sum Sj remains unchanged as the algorithm executes
– Multiple RHSs can be considered for each sum Sj

• BMO condition exploited for weighted instances

Additional detail

• Sums represented in unary
– Output bits of each sum can be used in different constraints

I E.g.: S1 compared both with 1 and 2

– Thus, encodings of sums get reused

• Each sum Sj associated with unsatisfiable core j

– Each sum Sj remains unchanged as the algorithm executes
– Multiple RHSs can be considered for each sum Sj

• BMO condition exploited for weighted instances

Besides our work ...

• Improvements to MSU3 [ABL13]

– Stratification vs. BMO condition

• Partial MaxSAT resolution [NB14]

• Relaxation search [BDTK14]

– Relate with preferences in SAT [RGM10]

• Incremental cardinality constraints [MSML14]

• Portfolios of solvers [AMS14]

What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure

– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)

What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure

– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)

What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure
– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)

What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure
– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)

What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure
– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)

What is BMO? – the condition

• Set of clauses C
– Partition of C : 〈C1,C2, . . . ,Cm〉
– Clauses weights: 〈w1,w2, . . . ,wm = >〉

• BMO condition requires sufficiently distinct clause weights

wi >
∑

1≤ j<i

wj · |Cj | i = m − 1, . . . , 2

– Start by optimizing wrt to largest weight
– Optimize wrt to i th largest weight, but account for previous optima
– Can harden clauses with already optimized weights

• Example:

What is BMO? – the condition

• Set of clauses C
– Partition of C : 〈C1,C2, . . . ,Cm〉
– Clauses weights: 〈w1,w2, . . . ,wm = >〉

• BMO condition requires sufficiently distinct clause weights

wi >
∑

1≤ j<i

wj · |Cj | i = m − 1, . . . , 2

– Start by optimizing wrt to largest weight
– Optimize wrt to i th largest weight, but account for previous optima
– Can harden clauses with already optimized weights

• Example:
(x3, 1), (x4, 1)
(x1, 3), (x2, 3)
(¬x1 ∨ ¬x3,>)
(¬x2 ∨ ¬x4,>)
(¬x1 ∨ ¬x2,>)

Clauses: {C1,C2,C3}, |C1| = 2, . . .
Weights: {w1 = 1,w2 = 3,w3 = >}
BMO condition holds: 3 > 2× 1

MaxSAT solving with SAT oracles

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [e.g. LBP10]

Binary search Linear* [e.g. FM06]

FM/WMSU1/WPM1 Exponential** [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential** [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted BinCore

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:

– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Experimental setup

• All industrial instances from 2014 MaxSAT evaluation

• HPC cluster:

– Intel Xeon E5-2630-v2 2.60GHz processors with 64GB of RAM
– Linux OS

• 1800s timeout and 3.5GB of memory limit

• MaxSAT solvers: best from 2013 & 2014 MaxSAT evaluations

– QMaxSAT2-mt (only partial MaxSAT) [KZFH12]

– pmifumax [J13]

– WPM1 2013 [ABL13]

– Open-WBO-Inc [MSML14]

– Eva500a [NB14]

– MSCG [IMMLMS14]

– MSCG*: current best configuration

Current results – plain MaxSAT industrial

30 32 34 36 38 40 42 44
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

MSCG∗

Open-WBO-Inc
MSCG
pmifumax

Current results – partial MaxSAT industrial

400 420 440 460 480 500
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

MSCG∗

Open-WBO-Inc
MSCG
QMaxSAT2-mt

Current results – weighted partial MaxSAT industrial

320 330 340 350 360 370
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

Eva500a
MSCG
MSCG∗

WPM1-2013

Outline

Example Applications

Iterative MaxSAT

Core-Guided MaxSAT

Our Recent Work

Some Results

Conclusions

Conclusions – today

• Remarkable performance improvements in MaxSAT solving

• Fast growing number of practical applications

• MaxSAT also used for solving other optimization problems

• Very active area of research, with many new algorithms

– Best algorithms in practice are core-guided

• Where to go from here?

– Formula preprocessing?
– Parallelization?
– More work on portfolios?

– Better CNF encodings?
– Better algorithms?

Conclusions – today

• Remarkable performance improvements in MaxSAT solving

• Fast growing number of practical applications

• MaxSAT also used for solving other optimization problems

• Very active area of research, with many new algorithms

– Best algorithms in practice are core-guided

• Where to go from here?

– Formula preprocessing?
– Parallelization?
– More work on portfolios?

– Better CNF encodings?
– Better algorithms?

Conclusions – today

• Remarkable performance improvements in MaxSAT solving

• Fast growing number of practical applications

• MaxSAT also used for solving other optimization problems

• Very active area of research, with many new algorithms

– Best algorithms in practice are core-guided

• Where to go from here?

– Formula preprocessing?
– Parallelization?
– More work on portfolios?
– Better CNF encodings?

– Better algorithms?

Conclusions – today

• Remarkable performance improvements in MaxSAT solving

• Fast growing number of practical applications

• MaxSAT also used for solving other optimization problems

• Very active area of research, with many new algorithms

– Best algorithms in practice are core-guided

• Where to go from here?

– Formula preprocessing?
– Parallelization?
– More work on portfolios?
– Better CNF encodings?
– Better algorithms?

Conclusions – the three lectures

• Reviewed organization of modern CDCL SAT solvers

• Overviewed problem solving with SAT oracles

• Investigated minimal sets computation with SAT oracles

• Discussed minimal cardinality set (i.e. optimization / MaxSAT)
computation with SAT oracles

• Identified possible research topics

Thanks!

Thanks to the researchers and visitors at UCD, INESC-ID & UofS

J. Argelich, F. Arif, A. Belov, H. Chen,
C. Dodaro, F. Heras, A. Ignatiev, M. Janota,

I. Lynce, V. Manquinho, C. Menćıa,
A. Morgado, J. Planes, A. Previti,

and many others

