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– SAT oracle corresponds to a witness oracle (more later) [e.g. BKT93]

• SAT oracle queries can be expensive! How to minimize queries?

– Develop more efficient algorithms, i.e. with fewer oracle calls
– Characterize query complexity of function problems

I But, use witness oracles instead of NP oracles
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Detour – the FSAT problem

• FSAT: Compute satisfying assignment (model) for formula F

• How to solve FSAT with NP oracle?

– Check whether F is SAT
– Build model by iteratively checking literals

• How many calls are necessary to solve FSAT with NP oracle?

– Basic algorithm requires linear number of NP oracles calls
– Can we do better than linear?

• Result: [GF93]

FSAT cannot be solved with O(log n) calls unless P = NP

• But with SAT oracle, one call suffices !

– Model is given by witness returned by SAT oracle
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Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?



Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?



Another detour – some challenges

• MUS: [e.g. PW88,SP88,CD91,BDTW93,J01,J04,HLSB06,KBK09,K11,MSL11,BMS11,BLMS12,MSJB13]

– Find M⊆ F s.t. M is unsatisfiable and M is irreducible
– Q1: Algorithms for computing one MUS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MUS?

• MCS: [e.g. R87,BS05,OOF05,LS08,FSZ12,NBE12,MSHJPB13]

– Find C ⊆ F s.t. F \ C is satisfiable and C is irreducible
– Q1: Algorithms for computing one MCS?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

one MCS?

• Backbone: [e.g. MZKST99,KK01,SW01,SKK03,KSTW05,MSJL10,ZWSM11,JLMS15]

– Find set of literals common to all satisfying assignments of F
– Q1: Algorithms for computing the Backbone of F?
– Q2: Worst-case number of queries to NP/SAT oracle to compute

the Backbone of F?



Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions

SAT
oracles

Interfacing
SAT solver

Query 
complexity

Algorithms:
min sets & 

optimization

Reduce #
SAT oracle 

queries



Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions



Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?
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Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation
foreach c ∈M do

if not SAT(M\ {c}) then
M←M\ {c} // If UNSAT(M\ {c}), then c 6∈ M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)



Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation
foreach c ∈M do

if not SAT(M\ {c}) then
M←M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)



More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m × k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k × (1 + log m
k )) [J01,J04]

Dichotomic O(k × logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k × log(1 + m
k )) [MSJB13]

• Additional Techniques:

– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]
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Computing minimal sets is ubiquitous!

Minimal Sets

...

...

MCS

MFS

Backbones

MES

Autarkies

MUS

Primes

• ∴ Develop framework for reasoning about minimal sets !
– Why? Common algorithms & techniques; new insights & results; ...
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• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Complexity results:

– Decision problem: DP-complete [PW88]

– Function problem: in FPNP with lower bound in FPNP
|| [CT95]
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Monotone predicates

• Set of elements R
• Predicate P : 2R → {0, 1}

• P is monotone iff P has the following property: [BM07]

• Minimal Set over Monotone Predicate (MSMP) problem: [MSJB13]

1. Given R and monotone predicate P over R,
2. compute minimal set M⊆ R such that P(M) = 1 holds
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Example reductions to MSMP

MUS MCS

R F F
P(W),W ⊆ R ¬SAT(W) SAT(F \W)

Min. set M, P(M) ¬SAT(M) true SAT(F \M) true

∀M′⊂M,P(M′) ¬SAT(M′) false SAT(F \M′) false
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Reductions to MSMP – a glimpse

Problem R P(W),W ⊆ R
FMUS F ¬SAT(∧c∈W (c))

FMCS F SAT(∧c∈R\W (c))

FMES F ¬SAT(¬F ∧ ∧c∈W (c))

FMDS F SAT(¬F ∧ ∧c∈R\W (c))

FCMFS F SAT(∧c∈R\W (¬c))

FMnM X SAT(F ∧ ∧x∈R\W (¬x))

FPIt L(t) ¬SAT(¬F ∧ ∧l∈W (l))

FPIc L(c) ¬SAT(F ∧ ∧l∈W(¬l))

FLEIt Lt ¬SAT(F ItX ∧ (∨l∈R\W ¬l))

FLEIc Lc ¬SAT(F IcX ∧ (∨l∈R\W l))

FMnES J ¬SAT(¬I ∧ ∧c∈W (c))

FMxES N ¬SAT(J ∧ (∨c∈R\W¬c))

FBBr V ¬SAT(F ∧ (∨l∈R\W¬l))

FBB X ¬SAT(FBB ∧ (∨x∈R\W x ∧ ¬x ′))

FVInd X ¬SAT(FVInd ∧ ∧xi∈W (xi ↔ yi ))

FAut X+ SAT(FAut ∧ ∧x+∈R\W (x+))

· · · · · ·
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MSMP algorithms

• Why MSMP algorithms?

• Adapt algorithms for MUS extraction
– Insertion; Deletion; Dichotomic; QuickXplain; Progression

• Worst-case number of predicate tests:
– Set R with m elements and k the size of largest minimal subset

Algorithm # Predicate tests Reference

Insertion (Default) O(m × k) [SP88,vMW08]

Deletion (Default) O(m) [CD91,BDTW93]

Dichotomic O(k × logm) [HLSB06]

QuickXplain O(k × (1 + log m
k )) [J01,J04]

Progression O(k × log(1 + m
k )) [MSJB13]

– For MUSes/MCSes/PIs/MMs/MESes/etc. each predicate test
represents one query to a SAT oracle

• MSMP algorithms can integrate well-known pruning techniques
– Clause set refinement; Model rotation; etc.* [BDTW93,DHN06,MSL11,BLMS12]

O(m) calls for last 4!
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Deletion algorithm – revisited

Input : Target set T
Output: Minimal subset M
begin

M← T // Precondition: P(T ) holds

foreach u ∈M do // Inv: P(M)

if P(M\ {u}) then // P holds without element

M←M\ {u} // Drop element

return M // Postcondition: M is minimal set s.t. P(M) holds

end

• Number of predicate tests: O(m)



Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M\ {ci} , P(W) , ¬SAT(W)

ci M M\ {ci} P(W) Outcome

c1 c1..c7 c2..c7 1 Drop c1

c2 c2..c7 c3..c7 1 Drop c2

c3 c3..c7 c4..c7 1 Drop c3

c4 c4..c7 c5..c7 0 Keep c4

c5 c4..c7 c4, c6, c7 1 Drop c5

c6 c4, c6, c7 c4, c7 0 Keep c6

c7 c4, c6, c7 c4, c6 0 Keep c7

• MUS: {c4, c6, c7}
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Deletion – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M\ {ci} , P(W) , SAT(F \W)

ci M M\ {ci} F \ (M\ {ci}) P(W) Outcome

c1 c1..c7 c2..c7 c1 1 Drop c1

c2 c2..c7 c3..c7 c1, c2 1 Drop c2

c3 c3..c7 c4..c7 c1..c3 1 Drop c3

c4 c4..c7 c5..c7 c1..c4 1 Drop c4

c5 c5..c7 c6, c7 c1..c5 0 Keep c5

c6 c5, c6, c7 c5, c7 c1..c4, c6 1 Drop c6

c7 c5, c7 c5 c1..c4, c6, c7 0 Keep c7

• MCS: {c5, c7}

Compare with std MSS grow procedure!
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Progression

• Deletion: Check (& remove?) one element at a time

– Pick set of elements given by arithmetic progression

• Progression: Check (& remove) exponentially growing set of
elements

– Pick set of elements given by geometric progression
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Progression algorithm

i ← 0

ν ← min(2i , |T |)

T = ∅?

G ← M ∪ T \ T1..ν
i ← i + 1

T ← T \ T1..ν

j ← BinS(M, T , ν)

T ← T \ T1..j
M ← M ∪ Tj ..j

i ← 0

P(G)?

stop

no

yes

yes no

O(k × log(1 + m
k ))

predicate tests
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Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7}

BinSearch gets

elements of M



Progression – MUS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MUS predicate test: W ,M∪ T \ T1..ν , P(W) , ¬SAT(W)

i ν = min(2i , |T |) M T T \ T1..ν P(W) BinSearch

0 1 ∅ c1..c7 c2..c7 1 –

1 2 ∅ c2..c7 c4..c7 1 –

2 4 ∅ c4..c7 ∅ 0 c4

0 1 c4 c5..c7 c6..c7 1 –

1 2 c4 c6..c7 ∅ 0 c6

0 1 c4, c6 c7 ∅ 0 c7

0 – c4, c6, c7 ∅ – – –

• MUS: {c4, c6, c7} BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}

BinSearch gets

elements of M



Progression – MCS example

c1 c2 c3 c4 c5 c6 c7
(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• MCS predicate test: W ,M∪ T \ T1..ν , P(W) , SAT(F \W)

i ν = (·) M T F \ (M∪ T \ T1..ν) P(W) BinSearch

0 1 ∅ c1..c7 c1 1 –

1 2 ∅ c2..c7 c1, c2, c3 1 –

2 4 ∅ c4..c7 c1..c7 0 c5

0 1 c5 c6..c7 c1..c4, c6 1 –

1 1 c5 c7 c1..c4, c6, c7 0 c7

0 – c5, c7 ∅ – – –

• MCS: {c5, c7}
BinSearch gets

elements of M



Outline

Revisit MUSes

Minimal Sets

Query Complexity

Conclusions



Oracles and query complexity

• Disclaimer: Ongoing work; comments welcome!

• SAT solvers produce witnesses for Y outcomes

– SAT solvers correspond to witness oracles, i.e. SAT oracles

• Some complexity classes for function problems: [e.g. P94,BKT93,JT95]
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Preliminary results

• # of queries to SAT/NP oracle for solving selected (possibly
restricted) function problems:

– Backbones: literals common to all models of F [MZKST99,MSJL10,ZWSM11]

I Assume reference model
I Algorithm: use one query to check each literal

– MUS#1: compute MUS for formulas with exactly 1 MUS

• Why?

Best: O(V − B)

calls [ZWSM11]

Best O(|F|)?

Best O(|F|)?
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Conclusions

• Significant progress in SAT-based (function) problem solving

– MUSes, MCSes, MaxSAT, MinSAT, backbones, autarkies, minimal
models, prime implicants & implicates

– But also, MESes, MFSes, etc. etc.

• Categorized function problems on Boolean formulas:

– Optimization problems
– Computation of minimal sets

• Introduced the MSMP problem

– Framework for reasoning about (many) minimal sets problems

• Overviewed algorithms for optimization problems and for minimal
set computation

– E.g. refine UB, refine LB, binary search, core-guided, etc.
– Insertion, Deletion, Dichotomic, QuickXplain, Progression

• Developed some preliminary query complexity results with witness
oracles

– MCSes, Backbones, MUS#1
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Backbones — proof sketch

• ν(xi ): truth assignment given to xi in given reference model
(optional, but simpler)

• F [X/Yi ]: formula with fresh set of variables Yi , associated with
each xi

• Introduce new variable zi ↔ (F [X/Yi ] ∧ (yi ↔ ¬ν(xi )))

– zi = 1 iff F [X/Yi ] satisfied with yi = ¬ν(xi )

I i.e. zi = 1 iff xi is not a backbone variable

• Construct formula:
var(F)∧
i=1

(zi ↔ (F [X/Yi ] ∧ (yi ↔ ¬ν(xi ))))

• Any zi that can take value 1 represents a non-backbone variable

– Goal is to maximize the number of zi variables with value 1
– Can be modeled with soft clauses: (zi )

• This is a(n unweighted) partial MaxSAT problem

– Can find solution with O(log n) calls to a SAT oracle

• ∴ Backbone is in FPNP[wit, log n]
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• ∴ Backbone is in FPNP[wit, log n]
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Part IV

Computing Minimal Cardinality Sets



Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable

• Recap:
A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Practical relevancy of MaxSAT?

• Package management; Timetabling; Haplotyping; Configuration;
Fault localization; Design debugging; Model based diagnosis;
Telecom feature subscription; Resource constrained scheduling;
Planning; Pseudo Boolean formulas; Binate covering; Filter design;
FPGA routing; Power estimation; Technology mapping; etc.



Other optimization problems (on Boolean variables)

Optimization
Problems

MinSAT

WBO

PBO /
0-1 ILP

UCPBCP

MaxSAT
Minimize #
satisfied cls

Min/max linear cost
function given linear
inequalities on boolean vars

PBO if cls instead
of linear
inequalities

BCP if positive cls

PBO with soft PB
constraints

Can reduce to/from MaxSAT

Extensive work on CNF encodings

Solution approaches mimic the
ones for MaxSAT
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The MaxSAT (r)evolution – weighted partial
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Many MaxSAT algorithms

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models



More on MaxSAT algorithms

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative minimal hitting set (MHS) computation [DB11,DB13a,DB13b]

• Model guided approaches [HMPMS12]

• Branch & bound search [HJ90,LM09]
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Recap last lectures

• CNF encodings of cardinality and PB constraints

– AtMost1, AtMostk , etc.

• SAT oracle: black-box use of SAT solver

– Witness for Y outcomes
– And unsatisfiable core of N outcomes

I Note: can be the complete set of soft clauses

• But also, binary search, progression, etc.
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Design debugging

[SMVLS’07]

Correct circuit

AND

AND

r

s
y

z

Input stimuli: 〈r , s〉 = 〈0, 1〉
Valid output: 〈y , z〉 = 〈0, 0〉

Faulty circuit

AND

r

s
y

zOR

Input stimuli: 〈r , s〉 = 〈0, 1〉
Invalid output: 〈y , z〉 = 〈0, 0〉

• The model:

– Hard clauses: Input and output values
– Soft clauses: CNF representation of circuit

• The problem:

– Maximize number of satisfied clauses (i.e. circuit gates)



Software package upgrades with MaxSAT

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci )

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi )

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)
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[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci )

– Di : dependencies (required packages) for installing pi
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Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

ϕH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

ϕS = {(x1), (x2), (x3), (x4)}



Key engine for MUS enumeration

• MUS: irreducible unsatisfiable set of clauses

– MCS: irreducible set of clauses such that complement is satisfiable
– MSS: subset maximal satisfiable set of clauses

• Enumeration of MUSes finds many applications:

– Model checking with CEGAR, type inference & checking,
etc. [ALS’08,BSW’03]

• How to enumerate MUSes? [E.g. LS’08]

– Use hitting set duality between MUSes and MCSes [E.g. R’87,BL’03]

I An MUS is an irreducible hitting set of a formula’s MCSes
I An MCS is an irreducible hitting set of a formula’s MUSes

– Can enumerate MCSes and then use them to compute MUSes

– Use MaxSAT enumeration for computing all MSSes
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– Can enumerate MCSes and then use them to compute MUSes
– Use MaxSAT enumeration for computing all MSSes



Many other applications – recap

• Error localization in C code [JM’11]

• Haplotyping with pedigrees [GLMSO’10]

• Course timetabling [AN’10]

• Combinatorial auctions [HLGS’08]

• Minimizing Disclosure of Private Information in Credential-Based
Interactions [AVFPS’10]

• Reasoning over Biological Networks [GL’12]

• Binate/unate covering

– Haplotype inference [GMSLO’11]

– Digital filter design [ACFM’08]

– FSM synthesis [e.g. HS’96]

– Logic minimization [e.g. HS’96]

– ...

• ...
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MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)



MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)
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• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)



MaxSAT with iterative SAT solving – definitions

• Cost of assignment:

– Sum of weights of falsified clauses

LB

OPT

UB

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost ≥ OPT
– E.g.

∑
cj∈ϕ wj + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost ≤ LB
– E.g. −1; it may be possible to satisfy all soft clauses

• Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UB1

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UB2

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F∪(
∑

wj rj < UBi )

SAT(G)?

i ← i + 1

UBi ← UpdateUB

return UBi−1

no

yes

LB

OPT

UB0UBk

• Worst-case # of iterations exponential on instance size (# bits)

– Improvement: use binary search instead

• Many example solvers: Minisat+, SAT4J, QMaxSat [ES06,LBP10,KZFH12]



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – example

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0m0= b(LB0 + UB0)/2c

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UB1LB1 = m0 − 1 m1

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .

– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0LB2 UB2
m2

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0
mk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]



MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0UBk

• Invariant: LBk ≤ UBk − 1

• Require
∑

wi ri ≤ m0

• Repeat

– If UNSAT, refine LB1 = m0, . . .
– Compute new mid value m1, . . .
– If SAT, refine UB3 = m2, . . .

• Until LBk = UBk − 1

• Worst-case # of iterations linear on instance size

• Example tools:

– Counter-based MaxSAT solver [FM’06]

– MathSAT [CFGSS’10]

– MSUnCore [HMMS’11]
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Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]



Core-guided solver performance – plain
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Core-guided solver performance – partial
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Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]



Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses

– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms



Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses
– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms



Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Goal: Do not relax all clauses
– Why?

I Some clauses never relevant for computing MaxSAT solution
I Simplify cardinality/PB constraints

• How to relax clauses on demand?
– Relax clauses given computed unsatisfiable cores

I Many alternative ways to instrument code-guided algorithms
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Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMost1 constraint

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

Add new relaxation variables and AtMost1 constraint

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

Instance is now SAT

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed



Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed



MSU3 core-guided algorithm
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Recap binary search for MaxSAT (Bin)

[e.g. FM’06]

(R, ϕW )← Relax(∅, ϕ, Soft(ϕ))
(λ, µ,AM)← (−1,

∑m
i=1 wi + 1, ∅)

while λ < µ− 1 do
ν ← b(λ+ µ)/2c
ϕE ← CNF(

∑
ri∈R wi ri ≤ ν)

(st,A)← SAT(ϕW ∪ ϕE )
if st = true then

(AM , µ)← (A,∑m
i=1 wi A〈ri 〉)

else
λ← ν

return Init(AM)



Towards core-guided MaxSAT

• MaxSAT by iterative SAT solving: all clauses relaxed

• How to relax clauses on demand, given binary search?



Core-guided binary search (Bin-Core)

[HMMS’11]

(R, ϕW , ϕS)← (∅, ϕ, Soft(ϕ))
(λ, µ,AM)← (−1,

∑m
i=1 wi + 1, ∅)

while λ < µ− 1 do
ν ← b(λ+ µ)/2c
ϕE ← CNF(

∑
ri∈R wi ri ≤ ν)

(st, ϕC ,A)← SAT(ϕW ∪ ϕE )
if st = true then

(AM , µ)← (A,∑m
i=1 wi A〈ri 〉)

else
if ϕC ∩ ϕS = ∅ then

λ← ν
else

(R, ϕW )← Relax(R, ϕW , ϕC ∩ ϕS)

return Init(AM)



Bin-Core with disjoint cores (Bin-Core-Dis)

• Organization similar to Bin-Core

• Keep set of disjoint unsatisfiable cores [HMMS’11]

– Need to join unsatisfiable cores

• Integrate lower & upper bounds [HMMS’11,MHMS’12]

– Essential to reduce number of iterations

• Integrate additional pruning techniques [MHMS’12]

– BMO condition
– etc.
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Binary search vs. progression

• Motivation:

12 164 32

WC

C

W/2
Bin search

Progression

– Avoid unnecessary binary search iterations when W � C



MaxSAT using geometric progressions

Progression Iterative(F)
Input: F = FS ∪ FH

(R,FW )← Relax(∅,F ,FS) // Relax & harden soft clause ci with ri
(λ, j)← (0, 0) // LB & progression index
while true do

τ ← 2j − 1 // Tentative UB w/ geom. prog.
if τ >

∑
ri∈R wi then

return BinSearch(FW ,R, λ, ∅) // Bin search if UB ≥ W
(st,A)← SAT(FW ∪ CNF(

∑
ri∈R wi ri ≤ τ))

if st = true then
return BinSearch(FW ,R, λ,A) // Bin search given (actual) UB

else
λ← τ // Update LB
j ← j + 1 // Increase progression index

• Worst-case number of oracle calls: O(logC )
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Earlier work using geometric progressions

• Used for improving lower bounds

– Optimization problems in planning [SS07]

– Job shop scheduling [MSV13]

• Used in algorithms for computing a minimal set subject to a
monotone predicate (MSMP) [MSBJ13]

– E.g. MUSes, MCSes, minimal models, etc. [MSJ14]

– Also used being developed by ILOG [L14]



Progression & core-guided algorithms

• Use geometric progression (instead of binary) search

• Refine computed upper bound with core-guided algorithm:

– Core-guided binary search (Bin Core, BC) [HMMS11]

– Bin Core with disjoint cores (BCD/BCD2) [HMMS11,MHMS12]

– Actually, any core-guided algorithm that refines (LB,UB] can be
used

• Worst case number of oracle calls in O(m + logC )

– O(m + logC ): geometric progression step
– O(m + logC ): BC/BCD/BCD2 step
– Where, O(m) captures the iterative relaxation of soft clauses

– Compare with O(m + logW ) for BC, BCD/BCD2 [HMMS11]



Progression with core-guided binary search

Progression BinCore(F)
Input: F = FS ∪ FH

(R,FW )← (∅,F) // Initially no clauses relaxed
(λ, j)← (0, 0) // LB & progression index
while true do

τ ← 2j − 1 // Tentative UB w/ geom. prog.
if τ >

∑
ri∈R wi then

return BinCore(FW ,R, λ, ∅) // Bin core if UB ≥ W
(st,U ,A)← SAT(FW ∪ CNF(

∑
ri∈R wi ri ≤ τ))

if st = true then
return BinCore(FW ,R, λ,A) // Bin core given (actual) UB

else
if U ∩ FS = ∅ then

λ← τ // Update LB
j ← j + 1 // Increase progression index

else
(R,FW )← Relax(R,FW ,U ∩ FS) // Relax & harden soft clauses
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Why soft cardinality constraints?

• Like MSU3 (and others):

– Use a single relaxation variable per clause

• Like FM:

– Create one new cardinality constraint per core

• Similarly to FM:

– No need for PB constraints: use only AtMostk constraints



Core-guided with soft constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

S1 ≥ 2→ S ′
2 = 0

S1 ≤ 1→ S ′
2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs
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Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki )

4. Create new soft cardinality constraint:

Sj ≤ 1



Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki )

4. Create new soft cardinality constraint:

Sj ≤ 1



Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki )

4. Create new soft cardinality constraint:

Sj ≤ 1



Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki )

4. Create new soft cardinality constraint:

Sj ≤ 1



Handling soft cardinality constraints

• Algorithm for handling soft constraints (iteration j):

1. Find original soft (non-relaxed) clauses in core j : S ′
j

2. Update RHS of each soft cardinality constraint in core, i = 1, . . . , r :

Sk1 ≤ Rk1 + 1, . . . ,Skr ≤ Rkr + 1

3. Create new sum:

Sj , S ′
j +

r∑
i=1

¬(Ski ≤ Rki )

4. Create new soft cardinality constraint:

Sj ≤ 1



Additional detail

• Sums represented in unary
– Output bits of each sum can be used in different constraints

I E.g.: S1 compared both with 1 and 2

– Thus, encodings of sums get reused

• Each sum Sj associated with unsatisfiable core j

– Each sum Sj remains unchanged as the algorithm executes
– Multiple RHSs can be considered for each sum Sj

• BMO condition exploited for weighted instances
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Besides our work ...

• Improvements to MSU3 [ABL13]

– Stratification vs. BMO condition

• Partial MaxSAT resolution [NB14]

• Relaxation search [BDTK14]

– Relate with preferences in SAT [RGM10]

• Incremental cardinality constraints [MSML14]

• Portfolios of solvers [AMS14]



What is BMO? – an example

{ (x1, 3), (x2, 3), (x3, 1), (x4, 1),

(¬x1 ∨ ¬x3,>), (¬x2 ∨ ¬x4,>), (¬x1 ∨ ¬x2,>) }

• How to solve this problem?

• Formula with special structure

– Weighted clauses encode two different criteria

I Optimum must satisfy largest number of clauses with weight 3

– Iteratively optimize wrt each clause weight

I First, target clauses with weight 3
I Next, target clauses with weight 1, but take into account previous

optimum

• Example of Boolean Multilevel Optimization (BMO)
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What is BMO? – the condition

• Set of clauses C
– Partition of C : 〈C1,C2, . . . ,Cm〉
– Clauses weights: 〈w1,w2, . . . ,wm = >〉

• BMO condition requires sufficiently distinct clause weights

wi >
∑

1≤ j<i

wj · |Cj | i = m − 1, . . . , 2

– Start by optimizing wrt to largest weight
– Optimize wrt to i th largest weight, but account for previous optima
– Can harden clauses with already optimized weights

• Example:



What is BMO? – the condition

• Set of clauses C
– Partition of C : 〈C1,C2, . . . ,Cm〉
– Clauses weights: 〈w1,w2, . . . ,wm = >〉

• BMO condition requires sufficiently distinct clause weights

wi >
∑

1≤ j<i

wj · |Cj | i = m − 1, . . . , 2

– Start by optimizing wrt to largest weight
– Optimize wrt to i th largest weight, but account for previous optima
– Can harden clauses with already optimized weights

• Example:
(x3, 1), (x4, 1)
(x1, 3), (x2, 3)
(¬x1 ∨ ¬x3,>)
(¬x2 ∨ ¬x4,>)
(¬x1 ∨ ¬x2,>)

Clauses: {C1,C2,C3}, |C1| = 2, . . .
Weights: {w1 = 1,w2 = 3,w3 = >}
BMO condition holds: 3 > 2× 1



MaxSAT solving with SAT oracles

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [e.g. LBP10]

Binary search Linear* [e.g. FM06]

FM/WMSU1/WPM1 Exponential** [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential** [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted BinCore

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:

– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
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Experimental setup

• All industrial instances from 2014 MaxSAT evaluation

• HPC cluster:

– Intel Xeon E5-2630-v2 2.60GHz processors with 64GB of RAM
– Linux OS

• 1800s timeout and 3.5GB of memory limit

• MaxSAT solvers: best from 2013 & 2014 MaxSAT evaluations

– QMaxSAT2-mt (only partial MaxSAT) [KZFH12]

– pmifumax [J13]

– WPM1 2013 [ABL13]

– Open-WBO-Inc [MSML14]

– Eva500a [NB14]

– MSCG [IMMLMS14]

– MSCG*: current best configuration



Current results – plain MaxSAT industrial
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Current results – partial MaxSAT industrial
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Current results – weighted partial MaxSAT industrial
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Conclusions – today

• Remarkable performance improvements in MaxSAT solving

• Fast growing number of practical applications

• MaxSAT also used for solving other optimization problems

• Very active area of research, with many new algorithms

– Best algorithms in practice are core-guided

• Where to go from here?

– Formula preprocessing?
– Parallelization?
– More work on portfolios?

– Better CNF encodings?
– Better algorithms?
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Conclusions – the three lectures

• Reviewed organization of modern CDCL SAT solvers

• Overviewed problem solving with SAT oracles

• Investigated minimal sets computation with SAT oracles

• Discussed minimal cardinality set (i.e. optimization / MaxSAT)
computation with SAT oracles

• Identified possible research topics



Thanks!

Thanks to the researchers and visitors at UCD, INESC-ID & UofS
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