Embodiment of Al

How robots can interpret environment information and act, consequently

May 11th - 15th 2020, 9:30 am - 6:00 pm Università della Calabria https://bit.ly/2020-embodimentofai

Elena De Momi, Prof.

DEIB, Politecnico di Milano elena.demomi@polimi.it

Sara Moccia, PhD Hang Su, PhD

Alberto Favaro Alice Segato Zhen Li Chiara Di Vece Guido Caccianiga

Theory

- Introduction to robotics -
 - Basics on kinematics, dynamics and control
 - Path planning -
 - Computer vision -

Practice

- ROS -
- Unity/Rviz -
- Reinforcement learning for path planning
 - Natural image detection -
 - Robot control -
 - Surgical robot simulation -

Hands on

Students challenge -

EMBODIMENT OF AI: COURSE PROGRAM

M 11	T 12	W 13	T 14	F 14
9:30 - 11:00 Introduction on robotics and Intelligence in	9 <u>:30 - 11:00</u> Path planning	9 <u>:30 - 10:00</u> Sensors	9:30 - 11:30 Dynamics and control	9:30 - 13:00 Challenge preparation and possible new ideas
robotics 11:30 - 13:00 Kinematics and inverse kinematics	Path planning with MATLAB and reinforcement learning	10:30 - 13:00 Computer vision with focus on endoscopic	Da Vinci surgical robot	
Lunch Break	Lunch Break	Lunch Break	Lunch Break	Lunch Break
15:00-15:30 ROS introduction	15:00-15:30 ASP for path search	15:00-18:00 Challenge: Natural- image detection tasks	15:00-16:30 Robot control task in simulation and	
15:30-16:00 Gazebo	15:30-18:00 Reinforcement learning practice and		challenge: path drawing on a rought surface with force interacion using ROS	weighted peer evaluation
16:00-16:30 DVRK simulation environment	challenge: RL for path planning		and KUKA simulation 17:00-18:00	
16:30-17:00 Unity			Da Vinci simulation task	
<u>17:00-18:00</u> Challenges presentation				