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Abstract. Answer Set Programming (ASP), referred to also as Disjunctive Logic Program-
ming under the stable model semantics (DLP), is a powerful formalism for Knowledge
Representation and Reasoning. ASP has been the subject of intensive research studies, and,
also thanks to the availability of some efficient ASP systems, has recently gained quite some
popularity and is applied also in relevant industrial projects. The Italian logic programming
community has been very active in this area, some ASP results achieved in Italy are widely
recognized as milestones on the road to the current state of the art. After a formal definition
of ASP, this chapter surveys the main contribution given by the Italian community to the
ASP field in the last 25 years.

1 Introduction

Answer Set Programming (ASP), [1–5] referred to also as Disjunctive Logic Programming under
the stable model semantics (DLP), is a powerful formalism for Knowledge Representation and
Reasoning. Bloomed from the work of Gelfond, Lifschitz [2, 3] and Minker [6–9] in the 1980ies,
it has enjoyed a continuously increasing interest within the scientific community. One of the main
reasons for the success of ASP is the high expressive power of its language: ASP programs,
indeed, allow us to express, in a precise mathematical sense, every property of finite structures
over a function-free first-order structure that is decidable in nondeterministic polynomial time
with an oracle in NP [10, 11] (i.e., ASP captures the complexity class ΣP

2 = NPNP). Thus,
ASP allows us to encode also programs which cannot be translated to SAT in polynomial time.
Importantly, ASP is fully declarative (the ordering of literals and rules is immaterial), and the
ASP encoding of a large variety of problems is very concise, simple, and elegant [12].

Example 1. To see an elegant ASP encoding, consider 3-Colorability, a well-known NP-complete
problem. Given a graph, the problem is to decide whether there exists an assignment of one of
three colors (say, red, green, or blue) to each node such that adjacent nodes always have different
colors. Suppose that the graph is represented by a set of facts F using a unary predicate node(X)
and a binary predicate arc(X,Y ). Then, the following ASP program (in combination with F)
computes all 3-Colorings (as stable models) of that graph.

r1 : color(X, red) ∨ color(X, green) ∨ color(X, blue) :- node(X).
r2 : :- color(X1, C), color(X2, C), arc(X1, X2).

Rule r1 expresses that each node must either be colored red, green, or blue;1 due to minimality of
the answer sets models, a node cannot be assigned more than one color. The subsequent integrity
constraint checks that no pair of adjacent nodes (connected by an arc) is assigned the same color.

1 Variable names start with an upper case letter and constants start with a lower case letter.



Thus, there is a one-to-one correspondence between the solutions of the 3-Coloring problem
and the answer sets of F ∪{r1, r2}. The graph is 3-colorable if and only if F ∪{r1, r2} has some
answer set. �

Unfortunately, the high expressiveness of ASP comes at the price of a high computational
cost in the worst case, which makes the implementation of efficient systems a difficult task.
Nevertheless, starting from the second half of the 1990ies, and even more in the latest years, a
number of efficient ASP systems have been released [13–22], that encouraged a number of appli-
cations in many real-world and industrial contexts [23–31]. These applications have confirmed
the viability of the ASP exploitation for advanced knowledge-based tasks, and stimulated further
research in this field.

The Italian research community produced, in the latest 25 years, a significant contribution
in the area, addressing the whole spectrum of issues cited above; this contribution ranged from
theoretical results and characterizations [32–37] to practical applications [23, 24, 26–31, 38–43],
stepping through language extensions [13, 40, 44–66], evaluation algorithms and optimization
techniques [67–76]. Several of the achieved results are widely recognized as milestones on the
road to the current state of the art; this is, for instance, the case of the DLV project [13], that
produced one of the world leading ASP systems. The Italian community is currently very active
on ASP, it contributes in pushing forward the state of the art, as witnessed by the most recent
results like, e.g., the ASP extension to deal with infinite domains which is at the frontier of the
ASP research [57, 59, 60, 62, 63, 66].

The rest of the Chapter is structured as follows: in Section 2, ASP is formally introduced,
syntax and semantics of the language are presented; Section 3 focuses on ASP properties and its
theoretical characterizations; Section 4 surveys linguistic extensions; Section 5 reports on ASP
with infinite domains; Section 6 first introduces the general architecture of ASP systems, and then
surveys algorithms and optimization techniques; Section 7 first describes DLV and number of
other ASP-based systems, and then reports on real-world ASP applications; eventually, Section 8
collects a number of further contributions of the Italian ASP community.

2 The ASP Language

In what follows, we provide a formal definition of the syntax and semantics of Answer Set
Programming in the spirit of [3].

2.1 Syntax

Following a convention dating back to Prolog, strings starting with uppercase letters denote
logical variables, while strings starting with lower case letters denote constants. A term is either
a variable or a constant.2 An atom is an expression p(t1, . . .,tn), where p is a predicate of arity
n and t1,. . . ,tn are terms. A literal l is either an atom p (positive literal) or its negation not p

(negative literal). Two literals are said to be complementary if they are of the form p and not p

for some atom p. Given a literal l, not.l denotes its complementary literal. Accordingly, given a
set L of literals, not.L denotes the set {not.l | l ∈ A}. A set L of literals is said to be consistent
if, for every literal l ∈ L, its complementary literal is not contained in L.

A disjunctive rule (rule, for short) r is a construct:

a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm. (1)

2 Note that, as common in ASP, function symbols are not considered unless explicitly specified.



where a1, · · · , an, b1, · · · , bm are literals and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an

is called the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm is referred to as
the body of r. A rule without head literals (i.e. n = 0) is usually referred to as an integrity
constraint. A rule having precisely one head literal (i.e. n = 1) is called a normal rule. If the
body is empty (i.e. k = m = 0), it is called a fact, and in this case the “ :- ” sign is usually
omitted. The following notation will be useful for further discussion. If r is a rule of form (1),
then H(r) = {a1, . . ., an} is the set of literals in the head and B(r) = B+(r) ∪ B−(r) is the
set of the body literals, where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the negative
body) is {bk+1, . . . , bm}. An ASP program (also called Disjunctive Logic Program or DLP
program) P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅) is
called positive or Horn,3 and a v-free program P (i.e., such that ∀r ∈ P : |H(r)| ≤ 1) is called
normal logic program. In ASP, rules in programs are usually required to be safe. The motivation
of safety comes from the field of databases; for a detailed discussion, we refer to [77]. A rule
r is safe if each variable in r also appears in at least one positive literal in the body of r. An
ASP program is safe, if each of its rules is safe, and in the following we will only consider safe
programs. A term (an atom, a rule, a program, etc.) is called ground, if no variable appears in it.
Sometimes a ground program is also called propositional program.

2.2 Semantics

We next describe the semantics of ASP programs, which is based on the answer set semantics
originally defined in [3]. However, different to [3] only consistent answer sets are considered, as
it is now standard practice. In ASP the availability of some pre-interpreted predicates is assumed,
such as =, <, >. However, it would also be possible to define them explicitly as facts, so they
are not treated in a special way.

Herbrand Universe and Literal Base. For any program P , the Herbrand universe, denoted by
UP , is the set of all constants occurring in P . If no constant occurs in P , UP consists of one
arbitrary constant. The Herbrand literal base BP is the set of all ground literals constructible
from predicate symbols appearing in P and constants in UP .

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained by replac-
ing each variable in r by constants in UP in all possible ways. For any program P , its ground
instantiation is the set grnd(P ) =

⋃
r∈P

Ground(r). Note that for propositional programs,
P = grnd(P ) holds.

Answer Sets For every program P , its answer sets are defined by using its ground instantiation
grnd(P ) in two steps: first the answer sets of positive disjunctive programs are defined, then the
answer sets of general programs are defined by a reduction to positive disjunctive programs and
a stability condition. An interpretation I is a consistent set of ground literals I ⊆ BP w.r.t. a
program P . A consistent interpretation X ⊆ BP is called closed under P (where P is a positive
disjunctive datalog program), if, for every r ∈ grnd(P ), H(r) ∩ X 6= ∅ whenever B(r) ⊆ X .
An interpretation which is closed under P is also called model of P . An interpretation X ⊆ BP

is an answer set for a positive disjunctive program P , if it is minimal (under set inclusion) among
all (consistent) interpretations that are closed under P .

Example 2. The positive program P1 = {a∨ b∨ c.} has the answer sets {a}, {b}, and {c}; they
are minimal and correspond to the multiple ways of satisfying the disjunction. Its extension P2 =

3 In positive programs negation as failure (not) does not occur, while strong negation (¬) may be present.



P1 ∪{ :- a.} has the answer sets {b} and {c}: comparing P2 with P1, the additional constraint is
not satisfied by interpretation {a}. Moreover, the positive program P3 = P2 ∪ {b :- c. , c :- b.}
has the single answer set {b, c} (indeed, the remaining consistent closed interpretation {a, b, c}
is not minimal). It is easy to see that, P4 = P3 ∪ { :- c} has no answer set. �

The reduct or Gelfond-Lifschitz transform [2, 3] of a ground program P w.r.t. a set X ⊆ BP

is the positive ground program P X , obtained from P by: (i) deleting all rules r ∈ P for which
B−(r) ∩X 6= ∅ holds; (ii) deleting the negative body from the remaining rules. An answer set
of a program P is a set X⊆BP such that X is an answer set of grnd(P )X .

Example 3. For the negative ground program P5 = {a :- not b.}, A = {a} is the only answer
set, as P A

5 = {a.}. For example for B = {b}, P B
5 = ∅, and so B is not an answer set. �

3 Properties and Theoretical Characterizations

The Italian research community provided relevant contributions to the study of ASP and its theo-
retical characterizations. In this respect, the main results have been achieved by the work in [32];
there, the authors provide: a declarative characterization of answer sets in terms of unfounded
sets; a generalization of the well-founded (WP ) operator to disjunctive logic programs; a fixpoint
semantics for function-free programs; an algorithm for answer set computation; a deep analy-
sis of the main computational problems related to the concepts. In the this Section, we briefly
discuss these contributions.

The definition of unfounded sets for disjunctive logic programs was given as an extension
of the analogous concept defined for (disjunction-free) logic programs [78]. As for normal logic
programs, they single out the atoms that are (definitely) not derivable from a given program w.r.t.
a fixed interpretation; thus, according to the closed-world assumption [79], they single out atoms
that can be stated to be false. In a disjunctive logic program P , the union of unfounded sets for
P may not be an unfounded set for P; thus, the existence of the greatest unfounded set (i.e., an
unfounded set that contains all other unfounded sets) is not guaranteed as in the case of normal
programs. Authors proved that for unfounded-free interpretations (i.e., interpretations that do
not contain any unfounded atom), the union of different unfounded sets is an unfounded set; the
greatest unfounded set of P w.r.t. I , denoted GUSP(I), is the union of all unfounded sets.

Several interesting relationships between answer sets and unfounded sets were also discov-
ered, which led to a simple, yet elegant, characterization of answer sets in terms of unfounded
sets: disjunctive answer sets coincide with the unfounded-free models of P , and a model of P is
an answer set iff the set of false atoms coincides with the greatest unfounded set.

Authors of [32] defined also a suitable extension of the well-founded operator WP of Van
Gelder et al. [78] to the disjunctive case; this allowed to achieve another important result: the
definition of a fixpoint semantics for disjunctive answer sets in terms of WP . The set of answer
sets of P coincides with the set of the (total) fixpoints of WP . By exploiting the theoretical
results, the authors designed an algorithm for the computation of the answer set semantics of
disjunctive programs. The key idea is that, since answer sets are total interpretations, computing
their entire negative portion is superfluous; rather, it is sufficient to restrict the computation to
those negative literals that are necessary to derive the positive part. To this end, the notion of
possibly-true literals is introduced, which plays a crucial role in the computation. The algorithm
is based on a controlled search in the space of the interpretations, and the stability of a generated
model (answer set candidate) is tested by checking whether it is unfounded-free. This is done by
means of a function that runs in polynomial time on head-cycle-free (HCF) programs [80, 81].
In the general case, the algorithm for the computation of answer sets runs in polynomial space
and single exponential time.



4 Language Extensions

The standard language of ASP has been extended in several ways in order to improve its ex-
pressiveness. The Italian community provided contributions regarding two of the most relevant
extensions of ASP: Optimization Constructs and Aggregates.

4.1 Optimization Constructs

The basic ASP language can be used to solve complex search problems, but does not natively
provide constructs for specifying optimization problems (i.e. problems where some goal function
must be minimized or maximized). The extension conceived for solving optimization problems
consists of Weak Constraints [44, 13]. In the basic language, constraints represent a condition
that must be satisfied; for this reason, they are also called strong constraints. Contrary to strong
constraints, weak constraints allow us to express desiderata, that is, conditions that should be
satisfied. Thus, they may be violated, and their semantics involves minimizing the number of
violations. From a syntactic point of view, a weak constraint is like a strong one where the
implication symbol :- is replaced by :∼ . The informal meaning of a weak constraint :∼ B. is
“try to falsify B,” or “B should preferably be false.”. Additionally, a weight and a priority level
for the weak constraint may be specified after the constraint enclosed in brackets (by means of
positive integers or variables). If not specified, the default value for weight and priority level is
1. In this case, the answer sets are considered which minimize the sum of weights of the violated
(unsatisfied) weak constraints in the highest priority level and, among them, are took those which
minimize the sum of weights of the violated weak constraints in the next lower level, and so on.

4.2 Aggregates

There are some simple properties, often arising in real-world applications, which cannot be en-
coded in a simple and natural manner using ASP [45–48, 82–84]. Especially properties that re-
quire the use of arithmetic operators on a set of elements satisfying some conditions (like sum,
count, or maximum) require rather cumbersome encodings (often requiring an “external” order-
ing relation over terms), if one is confined to classic ASP. Similar observations have also been
made in related domains, notably database systems, which led to the definition of aggregate func-
tions. Especially in database systems this concept is by now both theoretically and practically
fully integrated. When ASP systems started to be used in real applications, the need for aggre-
gates become apparent also here. Hence, ASP has been extended with special atoms handling
aggregate functions [45–48]. Intuitively, an aggregate function can be thought of as a (possibly
partial) function mapping multisets of constants to a constant. The most common aggregate func-
tions compute the number of terms, the sum of non-negative integers, and minimum/maximum
term in a set. Aggregates are especially useful when real-world problems have to be dealt with.

4.3 Other Extensions

In order to meet requirements of different application domains, ASP has been extended in other
directions; thus, there is a number of interesting languages having the roots on ASP.

For instance, ASP has been exploited for defining and implementing action language (i.e.,
a language conceived for dealing with actions and change) K [49], while, in [50] a framework
for abduction with penalization has been proposed and implemented as a front-end for the ASP
system DLV. Other ASP extensions have been conceived to deal with Ontologies (i.e. abstract



models of a complex domain). In particular, in [40] an ASP-based language for ontology spec-
ification and reasoning has been proposed, which extends ASP in order to deal with complex
real-world entities, like classes, objects, compound objects, axioms, and taxonomies. In [51] an
extension of ASP, called HEX-Programs, which supports higher-order atoms as well as external
atoms has been proposed. External atoms allows one to embed external sources of computation
in a logic program. Thus, HEX-programs are useful for various tasks, including meta-reasoning,
data type manipulations, and reasoning on top of Description Logics (DL) [85] ontologies. Tem-
plate predicates have been introduced in [52]; they are special intensional predicates defined by
means of generic reusable subprograms, which have been conceived for easing coding and im-
proving readability and compactness of programs, and allowing more effective code reusability.
An extension of ASP by the introduction of the notion of resource in proposed in [53]. The re-
sulting framework, named RASP, declaratively supports quantitative reasoning on consumption
and production of resources. Various forms of preferences, policies, and cost-based criteria can
be used to model the processes that produce/consume resources [54]. In [55] standard ASP has
been enriched by introducing consistency-restoring rules (cr-rules) and preferences, leading to
the CR-Prolog language. Basically, in this language, besides standard ASP rules one may spec-
ify CR-rules, that are expressions of the form: r:a1 ∨ . . .∨ an :-+body (n ≥ 1). The intuitive
meaning of CR-ruler is: if body is true then one of a1, . . . , an is “possibly” believed to be true.
Importantly, the name of CR-prolog rules can be directly exploited to specify preferences among
them. In particular, if the fact prefer(r1, r2) is added to a CR-program, then rule r1 is pre-
ferred over rule r2. This allows one to encode partial orderings among preferred answer sets by
explicitly writing preferences among CR-rules.

In [56] Normal Form Nested (NFN) programs, a non-propositional language similar to Nested
Logic Programming (NLP) [86] has been proposed. NFN programs often allows for more con-
cise ASP representations by permitting a richer syntax in rule heads and bodies. It is worth noting
that, NFN programs do allow for variables, whereas NLP are propositional. Since with the pres-
ence of variables domain independence is no longer guaranteed, the class of safe NFN programs
is defined, which are guaranteed to be domain independent. Moreover, it is shown that for NFN
programs which are also NLPs, the new semantics coincides with the one of[86]; while keep-
ing the standard meaning of answer sets on ASP programs with variables. Finally, an algorithm
which translates NFN programs into ASP programs is provided.

5 ASP with Infinite Domains

The first ASP languages were based on extensions of Datalog, that is, function-free logic pro-
grams.4 Without function symbols, ASP programs can only reason about finite domains, and
have limited data modeling abilities. Such restrictions were motivated by complexity considera-
tions, as answer set reasoning with unrestricted first-order normal programs is Π1

1 -complete, and
hence highly undecidable. However, by introducing suitable alternative syntactic restrictions, it
is possible to improve the tradeoff between complexity and expressiveness.

In particular, the introduction of function symbols in ASP languages lead to several bene-
fits [57]: (i) Data encapsulation support, as function symbols are the main logic programming
construct for data abstraction [87]; (ii) Enhanced problem solving power, as the class of solv-
able problems can be extended beyond the second level of the polynomial hierarchy (that is, the
class of problems solvable with Disjunctive Datalog with negation); (iii) Support for recursive
data structures, such as lists, XML documents, etc. Such data structures are extremely common

4 In this section we use the term function to refer to uninterpreted functions (or constructors) as in pure
logic programming.



in modern applications and functions constitute the most natural way of encoding them; (iv)
Simulation and extension of description logics [88]; in this context, function symbols are needed
to encode existential quantification through skolemization. Such work is of strategic importance
given the important role that description logics play in the semantic web.

The first class of computationally well-behaved ASP programs with function symbols, called
finitary programs, is due to the Italian logic programming community. They have been intro-
duced in [58], and soon after have been followed by ω-restricted programs [89]. The latter
address the challenges of ASP with functions only partially. The answer sets of ω-restricted
programs are all finite, and recursion over recursive data structures is not allowed—therefore
ω-restricted programs address essentially data encapsulation only. Finitary programs consti-
tute a more ambitious effort, capable of supporting ASP programs with infinite and infinitely
many answer sets, and a large class of recursive predicates, including the standard list- and tree-
manipulation programs [57].

Finitary programs are characterized by two restrictions. To simplify the presentation here
we deal only with normal (i.e. disjunction-free) logic programs—see [59, 60] for an account of
disjunctive programs. The first restriction applies to recursion, and is expressed in terms of the
notion of dependency graph of a program P , whose set of nodes is the Herbrand base BP . The
dependency graph contains a directed edge (A,A′) if and only if there exists a rule r ∈ grnd(P )
such that A ∈ H(r) and A′ ∈ B(r). The edge is labelled positive if A′ ∈ B+(r), and negative
if A′ ∈ B−(r). Then we say that A depends on A′ if there exists a path from A to A′ in the
dependency graph.

Now we are ready to formulate the first restriction: a program P is finitely recursive iff every
atom in the Herbrand base of P depends only on finitely many other ground atoms. Finitely
recursive programs enjoy a number of nice theoretical properties proved in [59]:5

– they enjoy an analog of the compactness property of first-order logic;
– inconsistency checking and skeptical inference are semidecidable;
– the semantics of a finitely recursive program P can be approximated through a chain of finite

programs P1 ⊆ P2 ⊆ · · · ⊆ Pi ⊆ · · · ⊆ grnd(P ).

The second restriction is based on odd-cycles, that are cycles in the dependency graph con-
taining an odd number of negative edges. A normal program is finitary iff it is finitely recursive
and its dependency graph contains only finitely many odd-cycles.

Finitary programs are very expressive; they comprise a number of useful predicates, includ-
ing the standard list manipulation predicates, QBF metainterpreters, and programs for reasoning
about actions, just to name a few [57]. Moreover, they enjoy very good computational proper-
ties [57, 61]. If the set of atoms occurring in an odd-cycle is given, then: (a) ground credulous
queries and ground skeptical queries are all decidable; (b) unrestricted ground credulous queries
and ground skeptical queries are semidecidable.

Another Italian contribution in this field is the class of finitely ground programs [62]. They
are characterized by means of an intelligent grounding transformation that turns any given dis-
junctive program P with functions into an equivalent ground program; P is finitely ground if this
transformation yields a finite program. Finitely ground programs—due to the nature of the intelli-
gent grounding—are well-suited for bottom-up evaluation, while finitary programs are naturally
well-suited for top-down evaluations. As a consequence finitely ground programs are easier to
support in systems like DLV that adopt a bottom-up grounding approach. Finitely ground pro-
grams have no restrictions on odd-cycles (and do not need them to be fed to the reasoner as an
input). On the other hand, they are required to be safe, which rules out a number of interesting

5 Another contribution of the Italian community; best paper award at ICLP 2007.



programs, such as list- and tree-manipulation programs. Moreover, like ω-restricted programs,
their semantics is always finite, both in terms of the size and the number of answer sets.

In an interesting recent work [63], however, the duality between the two program classes is
starting to be reconciled, by showing how given a positive finitely recursive program P and a
query Q one can construct—by a magic set transformation—a finitely ground program P ′ that
yields the same answer to Q as P .

The classes of finitary and finitely ground programs, unfortunately, are not decidable. This
result motivated further works aimed at characterizing decidable classes of well-behaved pro-
grams with function symbols. The fathers of finitely ground programs introduced finite domain
programs, a subclass of finitely ground programs that can be effectively recognized [62].

This line of research is having an impact on the activity of other groups outside Italy. In
[90], an extension of finite domain programs is proposed. In [88, 91, 92], another family of ef-
fectively recognizable, well-behaved programs is investigated. This is a very interesting line of
investigation, as it covers description logics, and it may eventually lead to interesting nonmono-
tonic extensions thereof. Moreover, these works adopt a different strategy for achieving inference
decidability, based on a tree-model property and on a reasoning method analogous to blocking.

5.1 Calculi and implementations

Further contributions stemming from the Italian community comprise resolution-based calculi
for skeptical and credulous ASP reasoning with function symbols. Skeptical resolution [64] con-
sists of five inference rules: resolution, negation as failure, a structural rule for removing suc-
cessful literals, a rule for detecting contradictions, and a split rule for generating new hypotheses
and carrying out reasoning by cases. The skeptical resolution calculus is complete for all finitely
recursive programs [59]. Recently, a credulous resolution calculus [65] has been theoretically
studied and experimentally evaluated on a few standard problems with encouraging results that
deserve further investigations. The main advantage of resolution calculi is that they need no prior
instantiation (grounding) of the input program; instantiation is incremental and on-demand, as
in classical resolution. Support for function symbols is also being introduced in DLV for finitely
ground programs [66]. We expect it to be soon extended to finitary programs by means of suitable
extensions of the magic sets transformation adopted in [63].

5.2 Open issues

ASP with infinite domains is a lively area which is being further developed by several research
groups across the world. The main ongoing investigations concern:

– extending the known decidable classes of well-behaved ASP programs;
– the systematic derivation of new classes of well-behaved programs with functions through

the composition of modules belonging to known well-behaved classes [93];
– the development and improvement of reasoning mechanisms for ASP with infinite domains;
– the relationships between finitary and finitely ground programs.

6 Algorithms and Optimization Techniques

The general architecture of an ASP system, depicted in Figure 1, helps in understanding the
evaluation flow of the computation carried out by a typical ASP system. Upon startup, the input
specified by the user is parsed and transformed into the internal data structures of the system.6

6 The input is usually read from text files, but some systems also interface to relational databases for
retrieving facts stored in relational tables.



Input
program OutputModelGeneratorInstantiator

StabilityChecker

Fig. 1. General architecture of an ASP system.

In general, an input program P contains variables, and the first step of a computation of an
ASP system is to eliminate these variables, generating a ground instantiation grnd(P ) of P .
This variable-elimination process is called instantiation of the program (or grounding), and is
performed by the Instantiator module (see Figure 1). A naı̈ve Instantiator would produce the
full ground instantiation grnd(P ), which is, however, undesirable from a computational point
of view, as in general many useless ground rules would be generated. An ASP system, therefore,
employs a more sophisticated procedure geared towards keeping the instantiated program as
small as possible. A necessary condition is, of course, that the instantiated program must have the
same answer sets as the original program; however, it should be noted that the Instantiator solves
a problem which is in general EXPTIME-hard, the produced ground program being potentially
of exponential size with respect to the input program. Optimizations in the Instantiator therefore
often have a big impact, as its output is the input for the following modules, which implement
computationally hard algorithms. Moreover, if the input program is normal and stratified, the
Instantiator module is, in some cases, able to directly compute its answer sets (if it exists).

The subsequent computations, which constitute the non-deterministic part of an ASP system,
are then performed on grnd(P ) by both the Model Generator and the Model Checker. Roughly,
the former produces some “candidate” answer set, whose stability is subsequently verified by
the latter. Model generation is the non-deterministic core of an ASP system, and it is usually im-
plemented as a backtracking search similar to the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [94] for SAT solving. Basically, starting from the empty (partial) interpretation, the
ModelGenerator module repeatedly assumes truth-values for atoms (branching step), subse-
quently computing their deterministic consequences (propagation step). This is done until either
an answer set candidate is found or an inconsistency is detected. Candidate answer sets are then
checked by exploiting the Model Checker module; whereas, if an inconsistency is detected cho-
sen literals have to be undone (backtracking). For disjunctive programs model cheking is as hard
as the problem solved by the Model Generator, while it is trivial for non-disjunctive programs.
Finally, once an answer set has been found, ASP systems typically print it in text format, and
possibly the Model Generator resumes in order to look for further solutions.

All the aspects of the evaluation of ASP programs have been subject of analysis by the
Italian research community; the obtained results, divided by evaluation task, are surveyed in the
following.

Instantiation. The first contributions in this respect dates back to 1999, when some optimization
techniques, based on a rewriting of the input program, have been proposed aiming at reducing
the size of the instantiation generated by the grounder [67]. Since computing all the possible
instantiations of a rule is, basically, analogous to computing all the answers of a conjunctive
query joining the extensions of literals of the rule body, in [68], a new join-ordering technique
was proposed that sensibly improves the instantiation procedures of ASP systems. Some year
later, in [69] a new backjumping technique for the instantiation of a rule has been proposed which
allows for reducing both the size of the generated grounding and the time needed for producing
it. All the above mentioned techniques have been incorporated in the grounder of the DLV
system, and allowed for relevant improvements of the performance of the system. Notably, to our



knowledge, the technique in [69] has been successfully exploited also by other two grounders,
namely GrinGo [95], and GIDL [96]. In the last few years, in order to exploit the power of
modern multi-core/multiprocessor computers, a number of strategies for the parallelization of
the instantiation procedure have been proposed [70, 71]. In particular, three levels of parallelism
can be exploited during the instantiation process, namely, components, rules and single rule
level. The first two levels were first employed in [70] while the third one was presented in [71].
Also these techniques have been implemented into the DLV grounder, and the resulting parallel
instantiator proved to be effective on modern multi-core machines when handling both real-
world and classical problem instances [70, 71]. Moreover, a distributed instantiator working on
a Beowulf [97] cluster was presented in [98].

Model Generation. The Italian research community provided relevant contribution regarding
all the aspects of model generation. About the propagation step, peculiar properties of ASP
programs have been exploited in [72, 99], that allow to prune the search space by combining
extension of the well-founded operator for disjunctive programs with a number of techniques
based on disjunctive ASP program properties. The efficiency of the whole model generation pro-
cess depends also on two othe crucial features: a good heuristic (branching rule) to choose the
branching literal (i.e., the criterion determining the literal to be assumed true at a given stage
of the computation); and a smart recovery procedure for undoing the choices causing incon-
sistencies. To this end, both look-ahead [73] and look-back [74, 75] techniques and heuristics
specifically conceived for enhancing the model generation process were proposed and imple-
mented in the state-of-the-art ASP system DLV [13]. In a lookahead heuristic [73] each possible
choice literal is tentatively assumed, its consequences are computed, and some characteristic val-
ues on the result are recorded. The look-ahead heuristics of [73] “layers” several criteria based
on peculiar properties of ASP, and basically drive the search towards “supported” interpretations
(since answer sets are supported interpretations (cfr. [32, 100, 101]). In a look-back heuristics
usually choices are made in such a way that the atoms most involved in conflicts are chosen first.
Motivated by heuristics implemented in SAT solvers like Chaff [102], a family of new look-back
heuristics tailored for disjunctive ASP programs has been proposed in [75]. Look-back heuristics
are mainly exploited in conjunction with backjumping, where the set of chosen literals that are
relevant for an inconsistency are detected, and the system goes back in the search until at least
one choice that “entail” the inconsistency is undone. In [74] a reason calculus that allows for
determining the relevance for an inconsistency has been proposed; here the information about
the choices (“reasons”) whose truth-values have caused truth-values of other deterministically
derived atoms is collected and exploited for backjumping.

Native ASP systems exploit backtracking search algorithms that work directly on the ground
instantiation of the input program, like the ones described above. An alternative approach to
model generation is based on a rewriting into a propositional formula which is then evaluated by
a boolean satisfiability solver for finding answer sets. Giunchiglia and Maratea, in collaboration
with the members of the Texas Action Group at Austin, led by Prof. Vladimir Lifschitz, designed
a SAT-based approach to normal logic programs [103, 104, 18], which is now considered the ref-
erence SAT-based work in ASP. A comparison among the techniques employed by ASP systems
underlying strengths and weaknesses of each approach was provided in [105, 106]. Going be-
yond the classical methods of computing the answer sets of a logic program in [107] a method
is presented that does not require a preliminary grounding phase. Moreover, the techniques for
parallel evaluation of ground ASP programs on clusters were studied in [98].

Model Checking is a crucial step of the computation of the answer sets. There are two main
reason for the importance of the model checking step: the exponential number of possible models



(model candidates); and the hardness of stable model checking. Note that, when disjunction is
allowed in the head, deciding whether a given model is a stable model of a propositional ASP
program is co-NPcomplete [11]. In [76] a new transformation T , which reduces stable model
checking to UNSATi.e., to deciding whether a given CNF formula is unsatisfiable, is introduced.
Thus, the stability of an answer set candidate M of a program P can be verified by calling a SAT
solver on the CNF formula obtained by applying T to P . The transformation is very efficient:
it runs in logarithmic space and no new symbol is added. This approach to model checking was
implemented in the ASP system DLV [13] and some experiments confirmed its efficacy [76].

7 Systems and Applications

Several ASP systems are available nowadays, and a number of practically relevant real-world
applications of ASP have been developed. In the following, we first present DLV [13], a state-
of-the-art ASP systems, which is widely used all over the world and is actively developed by
Italian researchers; then we mention some relevant systems and application based on ASP.

7.1 The DLV System

The DLV system [13] is widely considered one of the state-of-the-art implementations of answer
set programming. The development of DLV started at the end of 1996, within a research project
funded by the Austrian Science Funds (FWF) and led by Nicola Leone at the Vienna University
of Technology. The first stable release became available in 1997, and at present, DLV is the sub-
ject of an international cooperation between the University of Calabria and the Vienna University
of Technology. After its first release, the DLV system has been significantly improved over and
over in the last years. In particular, the language of DLV was enriched in several ways and cur-
rently supports the main ASP extensions: disjunction, aggregates, weak-constraints, and function
symbols (see Section 4 and Section 5). Relevant optimization techniques have been incorporated
into the DLV engine, including database techniques for efficient instantiation, advanced pruning
operators, look-ahead and look-back techniques for model generation, and innovative techniques
for answer-set checking (see Section 6). Moreover, in order to deal with data-intensive applica-
tions a database oriented version of DLV, called DLVDB , has been recently proposed [108,
109]. DLVDB is able to evaluate large amount of data by exploiting an evaluation strategy work-
ing mostly onto the database, where input data reside. DLVDB embodies some query-oriented
optimization strategies, like magic-sets [42], capable of significantly improving query evaluation
performances. As a result, at the time being, DLV is generally recognized to be a state-of-the-art
implementation of disjunctive ASP. Importantly, DLV is widely used by researchers all over the
world, it is employed in real-world applications (see next Section), and it is competitive from
the viewpoint of efficiency with the most advanced systems in the area of Answer Set Program-
ming [110, 111].

7.2 ASP-based Products

In this section three industrial products strongly based on ASP, and, in particular, on DLV are
presented, namely: OntoDLV [39, 40], OLEX [28, 29], HıLεX [30, 31].

• OntoDLV [39, 40] is a system for ontologies specification and reasoning. The language of
OntoDLV is an extension of (disjunctive) ASP with all the main ontology constructs including
classes, inheritance, relations, and axioms. Importantly, OntoDLV supports a powerful interop-
erability mechanism with OWL, allowing the user to retrieve information from external OWL
Ontologies and to exploit this data in OntoDLP ontologies and queries. OntoDLV facilitates the



development of complex applications in a user-friendly visual environment; it features a rich Ap-
plication Programming Interface (API) [112], and it is endowed with a robust persistency-layer
for saving information transparently on a DBMS, and it seamlessly integrates DLV [13].

• OLEX [28, 29] (OntoLog Enterprise Categorizer System) is a corporate classification sys-
tem supporting the entire content classification life-cycle, including document storage and orga-
nization, ontology construction, pre-processing and classification. OLEX exploits a reasoning-
based approach to text classification which synergically combines: (i) ontologies for the formal
representation of the domain knowledge; (ii) pre-processing technologies for a symbolic repre-
sentation of texts and (iii) ASP as categorization rule language. Logic rules, indeed, provides a
natural and powerful way to encode how document contents may relate to ontology concepts.

• HıLεX [30, 31] is an advanced system for ontology-based information extraction from semi-
structured and unstructured documents. HıLεX implements a semantic approach to the informa-
tion extraction problem able to deal with different document formats (html, pdf, doc, ...). HıLεX
is based on OntoDLP for describing ontologies, and supports a language that is founded on the
concept of ontology descriptor. A “descriptor” looks like a production rule in a formal attribute
grammar, where syntactic items are replaced by ontology elements. Each descriptor allows us to
describe: (i) an ontology object in order to recognize it in a document; or (ii) how to “generate”
a new object that, in turn, may be added in the original ontology. The obtained specification is
rewritten in ASP and evaluated by means of the DLV system.

7.3 Applications

We briefly illustrate here a a number of real-world applications based on DLV or on DLV-based
products. They can be grouped in two classes: industrial applications of DLV (developed by the
company Exeura s.r.l) and other applications [38].

Industrial Applications. The main commercial applications exploiting DLV are the following:
• Team Building in the Gioia-Tauro Seaport. A system based on DLV has been developed

to automatically produce an optimal allocation of the available personnel of the international
seaport of Gioia Tauro. The system currently employed by the transshipment company ICO BLG
can build new teams satisfying a number of constraints or complete the allocation automatically
when the roles of some key employees are fixed manually.

• E-Tourism. IDUM [23] is an intelligent e-tourism system. IDUM system helps both em-
ployees and customers of a travel agency in finding the best possible travel solution in a short
time. In IDUM an ontology modeling the tourism scenario was developed by using OntoDLV,
and is automatically filled by processing the offers received by a travel agent with HıLεX. IDUM
mimics the behavior of the typical employee of a travel agency by running a set of specifically
devised logic programs that reason on the information contained in the tourism ontology. The
result is a system that combines the speed of computers with the knowledge of a travel agent.

• Automatic Itinerary Search. In this application, a web portal conceived for better exploiting
the whole transportation system of the Italian region Calabria, including both public and private
companies. The system is very precise, it tells you where and what time to catch your bus/train,
where to get off and transfer, how long your trip will take, walking directions etc. A set of
specifically devises ASP programs are used to build the required itineraries.

• e-Government. In this field, an application of the OLEX system was developed, in which
legal acts and decrees issued by public authorities are classified. The system was validated with
the help of the employees of the Calabrian Region administration, and it performed very well by
obtaining an f-measure of 92% and a mean precision of 96% in real-world documents.

• e-Medicine. OLEX was employed for developing a system able to classify automatically
case histories and documents containing clinical diagnoses. The system was commissioned, with



the goal of conducting epidemiological analyses, by the ULSS n.8 (which is, a local authority for
health services) of the area of Asolo, in the Italian region Veneto. The system has been deployed
and is currently employed by the personnel of the ULSS of Asolo.

Other Applications. The European Commission funded a project on Information Integration,
which produced a sophisticated and efficient data integration system, called INFOMIX, which
uses DLV at its computational core [26]. The powerful mechanisms for database interoperability,
together with magic sets [41, 42] and other database optimization techniques, which are imple-
mented in DLV, make DLV very well-suited for handling information integration tasks. And
DLV (in INFOMIX) was succesfully employed to develop in a real-life integration system for
the information system of the University of Rome “La Sapienza” The DLV system has been
experimented also with an application for Census Data Repair [27], in which errors in census
data are identified and eventually repaired.

DLV has been employed at CERN, the European Laboratory for Particle Physics, for an ad-
vanced deductive database application that involves complex knowledge manipulation on large-
sized databases.

The Polish company Rodan Systems S.A. has exploited DLV in a tool for the detection
of price manipulations and unauthorized use of confidential information, which is used by the
Polish Securities and Exchange Commission.

In the area of self-healing Web Services, moreover, DLV is exploited for implementing the
computation of minimum cardinality diagnoses [43].

In [113] MASEL, A Multi Agent System for E-Learning and Skill Management has been
proposed. In MASEL personalized learning paths are automatically composed by exploiting
suitable ASP programs run on the DLV system. A prototype tool implementing MASEL using
JADE (Java Agent DEvelopment Framework) was developed.

In [114] a complete on-line exam taking portal has been described, called EXAM. The system
allows teachers and students to be assisted in the whole process of assessment test building, exam
taking, and test correction. The system exploits ASP for automatically generating assessment
tests based on user defined constraints: a teacher is made able to build up an assessment test
template; her preferences are then translated into a logic specification executable by DLV.

8 Further Contributions

This Section briefly mentions several other contributions to the ASP field due to the work of
Italian researchers.

In [115, 116], an integrated information retrieval agent based on an ASP inference engine,
named GSA2, has been presented. The GSA2 approach is general and reusable, and the result
constitutes a good example of real implementation of agents based on logics.

The first purely syntactic characterization of answer sets in the context of logic programming
has been introduced in [33]. In the same work, it has been pointed out explicitly that answer sets
are supersets of the well-founded model (wfm) and can thus be in principle computed after a
simplification w.r.t. the wfm (this property was independently discovered in [117]). In [34], the
authors introduced a graphical representation of ASP programs, called Extended Dependency
Graph (EDG). EDG is defined on a simplified form of programs called kernel. In [35, 36], kernel
programs have been exploited for defining an algorithm for answer set computation, as answer
sets can be characterized as admissible colorings of the EDG. Moreover, the kernel normal form
and other normal forms of ASP programs have been studied in [37]. In [118], some features
that graph representations of ASP programs should exhibit, especially isomorphism between
a program and the corresponding graph, have been identified. It turns out that isomorphism is



possible only if the graph representation formalism is able to distinguish the cycles occurring
in the program, and the different connections among them. Investigating the program structure
is also important for understanding the effects of updates of given program on the existence,
the number and the content of answer sets. In particular, a graph representation can be useful
to understand what happens after asserting lemmas [119] and/or adding new rules [120]. The
work [121] showed that representations like the EDG (or others that have been proposed in the
literature), which are oriented to atoms and rules, can be usefully condensed into more compact
representations, called Cycle Graph, which is oriented to components. In the Cycle Graph, ver-
tices are not atoms or rules, but significant subprograms. The Cycle Graph allows the relationship
between the syntax of programs and the existence of answer sets to be investigated, and thus can
be the basis of software engineering methodologies for answer set programming. In [122] incon-
sistency and incompleteness in data integration are handled by introducing an “helper model”
acting as a mediator between the global conceptual data model and the data sources.

ASP has been exploited as a core inference engine for a system for qualitative management of
probabilistic uncertainty [123–125]. The system supports basic reasoning tasks by mechanizing
various notions of comparative preference notions that represent plausible models of cognitive
unconscious humans mental processes.

ASP has been integrated with arithmetic and finite domain constraint solvers in [126]. The
benefits, besides enhanced expressiveness, comprise reduced memory requirements because the
part of a program involving constraints needs not be instantiated. Consequently, it was possible
to extend significantly the size of the problems solved by an ASP planner for Space Shuttle
operations.

The mutual interdependence of ASP-based agents has been investigated [127–130] at Uni-
versità Mediterranea of Reggio Calabria. In [127], agreements possibly reached by a collection
of agents are represented. In [128, 129], a community of agents where individual’s conclusions
rely on others’ ones is modeled by nested social predicates. This language is refined in [130] by
adding social aggregates and a form of reasoning where models include also “unfounded” inter-
pretations in case they are mutually supported by multiple agents. Finally, a form of preferences
under uncertainty is modeled under ASP in [131].
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set programming system competition. In Baral, C., Brewka, G., Schlipf, J., eds.: Logic Programming
and Nonmonotonic Reasoning — 9th International Conference, LPNMR’07. Volume 4483 of Lecture
Notes in Computer Science., Tempe, Arizona, Springer Verlag (May 2007) 3–17

111. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second Answer Set Pro-
gramming Competition. In Erdem, E., Lin, F., Schaub, T., eds.: Proceedings of Logic Programming
and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009. Volume 5753., springer (2009) 637–654

112. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for an ASP-based
Ontology Language. In Vos, M.D., Schaub, T., eds.: Proceedings of the Workshop on Software Engi-
neering for Answer Set Programming (SEA’07). (2007) 56–70

113. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills management context. AI
Communications – The European Journal on Artificial Intelligence 19(2) (2006) 137–154

114. Ianni, G., Ricca, F., Panetta, C.: Specification of Assessment-Test Criteria through ASP Specification.
In: Answer Set Programming: Advances in Theory and Implementation, Bath, UK, Research Press
International, P.O. Box 144, Bristol BS 1YA (2005) 293–302

115. Ianni, G., Calimeri, F., Lio, V., Galizia, S.: Reasoning about the semantic web using answer set
programming. In: APPIA-GULP-PRODE. (2003) 324–336



116. Ianni, G., Ricca, F., Calimeri, F., Lio, V., Galizia, S.: An agent system reasoning about the web and
the user. In: WWW (Alternate Track Papers & Posters). (2004) 492–493

117. Subrahmanian, V., Nau, D., Vago, C.: Wfs + branch and bound = stable models. IEEE Transactions
on Knowledge and Data Engineering 7(3) (1995) 362–377

118. Costantini, S.: Comparing different graph representations of logic programs under the answer set
semantics. In: Proc. of the AAAI Spring Symposium “Answer Set Programming: Towards Efficient
and Scalable Knowledge Representation and Reasoning”. (2001) Stanford, CA.

119. Costantini, S., Lanzarone, G.A., Magliocco, G.: Asserting lemmas in the stable model semantics. In
Maher, M., ed.: Logic Programming – Proc. of the 1996 Joint International Conference and Sympo-
sium, The MIT Press, USA (1996)

120. Costantini, S., Intrigila, B., Provetti, A.: Coherence of updates in answer set programming. In Brewka,
G., Peppas, P., eds.: Proc. of the IJCAI-2003 Workshop on Nonmonotonic Reasoning, Action and
Change, NRAC03. (2003) 66–72

121. Costantini, S.: On the existence of stable models of non-stratified logic programs. J. on Theory and
Practice of Logic Programming 6(1-2) (2006)

122. Costantini, S., Formisano, A., Omodeo, E.G.: Mappings between domain models in answer set pro-
gramming. In De Vos, M., Provetti, A., eds.: Answer Set Programming, Advances in Theory and
Implementation, Proc. of the 2nd Intl. ASP’03. Volume 78 of CEUR Workshop Proc. (2003)

123. Capotorti, A., Formisano, A.: Comparative uncertainty: theory and automation. Mathematical Struc-
tures in Computer Science 18(1) (2008)

124. Capotorti, A., Formisano, A., Murador, G.: Qualitative uncertainty orderings revised. Electronic
Notes in Theoretical Computer Science 169 (2007) 43–59

125. Capotorti, A., Formisano, A.: Management of uncertainty orderings through ASP. In Bouchon-
Meunier, B., Coletti, G., Yager, R.R., eds.: Modern Information Processing: From Theory to Appli-
cations. Elsevier (2004) ISBN: 0-444-52075-9.

126. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and constraint solv-
ing. In Gabbrielli, M., Gupta, G., eds.: ICLP. Volume 3668 of Lecture Notes in Computer Science.,
Springer (2005) 52–66

127. Buccafurri, F., Gottlob, G.: Multiagent Compromises, Joint Fixpoints, and Stable Models. In: Com-
putational Logic: Logic Programming and Beyond. (2002) 561–585

128. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In Baral, C., Greco,
G., Leone, N., Terracina, G., eds.: Logic Programming and Nonmonotonic Reasoning — 8th In-
ternational Conference, LPNMR’05, Diamante, Italy. Volume 3662 of Lecture Notes in Computer
Science., Springer Verlag (September 2005) 317–329

129. Buccafurri, F., Caminiti, G.: Logic programming with social features. TPLP 8(5–6) (2008) 643–690
130. Buccafurri, F., Caminiti, G., Laurendi, R.: A Logic Language with Stable Model Semantics for Social

Reasoning. In: ICLP. (2008) 718–723
131. Buccafurri, F., Caminiti, G., Rosaci, D.: Logic Programs with Multiple Chances. In: ECAI. (2006)

347–351
132. de la Banda, M.G., Pontelli, E., eds.: Logic Programming, 24th International Conference, ICLP

2008, Udine, Italy, December 9-13 2008, Proceedings. In de la Banda, M.G., Pontelli, E., eds.: ICLP.
Volume 5366 of Lecture Notes in Computer Science., Springer (2008)

133. Erdem, E., Lin, F., Schaub, T., eds.: Logic Programming and Nonmonotonic Reasoning, 10th In-
ternational Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings. In
Erdem, E., Lin, F., Schaub, T., eds.: LPNMR. Volume 5753 of Lecture Notes in Computer Science.,
Springer (2009)

134. Hill, P.M., Warren, D.S., eds.: Logic Programming, 25th International Conference, ICLP 2009,
Pasadena, CA, USA, July 14-17, 2009. Proceedings. In Hill, P.M., Warren, D.S., eds.: ICLP. Vol-
ume 5649 of Lecture Notes in Computer Science., Springer (2009)


