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INTRODUCTION

Computer applications pervade our life, and these days
many problems of everyday life are dealt with in an auto-
matedway.However, not all problems are easy to solve by a
computer, some have an increased intrinsic complexity.
Finding efficient and correct methods for solving them is
not an easy task. Traditional software engineering is
focused on an imperative, algorithmic approach, in which
the computer is basically being told what steps should be
followed in order to solve the given problem. Finding good
algorithms for hard problems requires skill and knowledge
and is often not obvious. This can be dealt with by involving
an expert, but there is a serious drawback: When the
specification of the problem changes slightly, perhaps
only because additional information on the nature of the
problem becomes available, major reengineering is often
necessary. The main problem is that the knowledge about
the problem and its solutions has been represented impli-
citly by representing a specific way of solving the problem
rather than the problem itself. The case of updating repre-
sentations is sometimes called elaboration tolerance.

An alternative that suits elaboration tolerance better is
called declarative programming. In this approach, the
problem and its solutions are specified explicitly. That is,
it is expressed what features the problem and its solution
must have, rather than specifying how a solution is to be
obtained. Methods like this actually come natural in
science but also in everyday life. Before we try to work
out how to solve a problem, we usually first try to under-
stand it and figure out how a solution would like, before
trying to find amethod, to obtain a solution. One of the first
to put this approach into perspective in computer science
was John McCarthy in the 1950s (1). He also postulated
that themost natural language for specifying problems and
solutions would be logic and, in particular, predicate logic.

In fact, logic is an excellent candidate for declarative
programming: It provides a simple and abstract formalism,
and in addition, it has the potential for automation. Similar
to an abstract or electronic machine that can execute an
imperativemodel (analgorithm) inorder toobtaina solution
of the modeled problem, computational logic has produced
tools that allow for automatically obtaining solutions, given
a declarative specification in logic. Indeed, many people
nowadays use this way of solving problems: Queries to
relational databases together with the database schemata
are indeeddeclarative specifications of the solutions that the
query results provide. And, indeed, the probably most
widely used database query language, SQL, is basically
predicate logic written in a particular way (2).

However, one wants to go beyond databases as they are
used today. Ithas been shown that relational databases and
query languages like SQL can only represent fairly simple
problems. For instance, problems like finding the cheapest

tour of several cities, or filling a container with items of
different size, such that the value transported in the con-
tainer is maximized, are typical problems that probably
cannot be solved using SQL. It might seem unusual to use
the word ‘‘probably’’ here, but underlying this conjecture is
one of the most famous open problems in computer
science—the question of whether P equals NP. These are
complexity classes; basically, every problem has some
intrinsic complexity,which is based onhowmany resources
are required to solve it on a standard machine model, in
terms of the size of the problem input. P is defined as the
class of problems, which require atmost an amount of time,
which can be expressed as a polynomial over the input size
(which is variable). NP is just a slight alteration, in which
instead of a deterministic machine model, a nondetermi-
nistic machine model is assumed. A nondeterministic
machine is a somewhat unusual concept: Instead of execut-
ing commands one-by-one, always going from one machine
state to another, a nondeterministicmachinemay be in two
or more states (at the same time) after having executed a
command. In a sense, this means that the machine has the
possibility to store and work with an unbounded number of
machine states at any time. Intuitively, one would expect
that a deterministic and a nondeterministic machine are
quite different from each other, and that the nondetermi-
nistic machine can solve more problems under the same
time constraints.However, up to now, nobodyhas been able
to prove convincingly neither that P and NP are different,
nor that they are equal. However, intuitively one would
expect that they are different, and people have shown that
many more unintuitive results would follow if P and NP
coincided.

Logic programming is an attempt to use declarative
programming with logic that goes beyond problems in P
and, thus, beyond traditional databases. The main con-
struct in logic programming is a rule, a expression that
looks like Head Body, where Body is a logic conjunction
possibly involving negation, and Head is either an atomic
formula or a logic disjunction. This can be seen as a logic
formula ( denoting implication),with the specialmeaning
that Head is defined by that rule. In the beginning of the
field (as described in the following section), logic program-
ming actually attempted to become a full-scale ‘‘program-
ming language.’’ Its most famous language, Prolog (3),
aimed at this, but had to renounce to full declarativity in
order to achieve that goal. For instance, in Prolog rules, the
order inside Body matters, as does the order among rules
(most notably for termination). Moreover, Prolog also had
several nonlogical constructs.

Answer set programming (ASP) is a branch of logic pro-
gramming, which does not aspire to create a full general-
purpose language. In this respect, it is influenced by
database languages, as also these are not general-purpose
languages, but suffice for a particular class of problems.
ASPdoes,however, attempt to enlarge the class of problems
that can be expressed by the language. Although, as
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mentioned, SQL probably cannot express hard problems in
NP, ASP definitely can. Actually, ASP can express all
problems in the complexity class

Pp
2 and its complementQp

2 , which are similar toNP, but probably somewhat larger
(but at least equally large).

In ASP, the rule construct Head  Body (where Head
can be a disjunction) is read like a formula in nonmonotonic
logics rather than classical logic. Nonmonotonic logics are
an effort to formulate a logic of common sense that is
adapting the semantics of logic such that it corresponds
better to our everyday reasoning, which is characterized by
thepresence of incompleteknowledge, hypothetical reason-
ing, and default assumptions. It can be argued that non-
monotonic logics are much better suited in such a setting
than classical logic.

Summarizing, ASP is a formalism that has emerged
from logic programming. Its main representation feature
are rules,which are interpreted according to common sense
principles. It allows for declarative specifications of a rich
class of programs, generalizing the declarative approach of
databases. In ASP, one writes a program (a collection of
rules), which represent a problem to be solved. This pro-
gram, together with some input, which is also expressed by
a collection of rules, possesses a collection of solutions
(possibly also no solution), which correspond to the solu-
tions of the modeled problem. Since these solutions are
usually sets, the term ‘‘answer set’’ has been coined.

Concerning terminology, ASP is sometimes used in a
somewhat broader sense, referring to any declarative form-
alism representing solutions as sets. However, the more
frequent understanding is the one adopted in this article,
which dates back to Ref. 4. Moreover, since ASP is themost
prominent branch of logic programming in which rule
heads may be disjunctive, sometimes the term ‘‘disjunctive
logic programming’’ can be found referring explicitly to
ASP. Yet other terms for ASP are A-Prolog and stable logic
programming. For complementary introductory material
on ASP, we refer to Refs. 5 and 6.

LOGIC PROGRAMMING

The roots of answer set programming lie predominantly in
logic programming, nonmonotonic reasoning, and data-
bases. In this section, we give an overview on the history
of logic programming from the perspective of answer set
programming. It, therefore, does not cover several impor-
tant subfields of logic programming, such as constraint
logic programming (7) or abductive logic programming (8).

As mentioned, probably the first to suggest logic, and in
particular predicate logic, as a programming language was
John McCarthy in the 1950s (1). McCarthy’s motivating
example was set in artificial intelligence, and involved
planning as its main task, an agenda on which was con-
tinuously elaborated; see, for instance, Ref. 9.

Developments in computational logic, most notably
the specification of the resolution principle and unification
as a computational method by J. Alan Robinson in 1965
(10), acted as a catalyst for the rise of logic programm-
ing. This development eventually really set off when a
working system, Prolog, developed by a group aroundAlain

Colmerauer in Marseilles, France, became available (3). A
few other, somewhat more restricted systems had been
available before, but Prolog was to make the breakthrough
for logic programming.

One of the primeadvocates ofwhatwould becomeknown
as the logic programming paradigm has been Robert
Kowalski, who provided the philosophical basis and con-
cretizations of the logic programming paradigm, for
instance, in Refs. 11 and 12. Kowalski also collaborated
withColmerauer on Prolog, and in the realm of his group in
Edinburgh, Scotland, alternative implementations of Pro-
log were created. There has also been a standardization
effort for the language, which would become known as
Edinburgh Prolog and served as the de facto specification
ofProlog formanyyears until the definition of ISOProlog in
1995 (13).

However, logic programming, and Prolog in particular,
was inspired by, but not the same as classical first-order
logic. Initially the differences were not entirely clear. The
first effort to provide a formal definition for the semantics of
logic programming was also undertaken by Kowalski, who
together with Maarten van Emden gave a semantics based
on fixpoints of operators for a restricted class of logic
programs (Horn programs, also called positive programs)
in Ref. 14. This fixpoint semantics essentially coincided
with minimal Herbrand models and with resolution-based
query answering on Horn programs. The major feature
missing in Horn programs is negation—however, Prolog
did have a negation operator.

Indeed, the quest for finding a suitable semantics in the
spirit of minimal models for programs containing negation
turned out to be far from straightforward. A first attempt
was made by Keith Clark in Ref. 15 by defining a transfor-
mation of the programs to formulas in classical logic, which
are then interpreted using the classical model semantics.
However, the approach gave arguably unintuitive results
for programs with positive recursion. In particular, the
obtained semantics does not coincide with the minimal
model semantics on positive programs. At about the
same time, Raymond Reiter formulated the Closed World
Assumption in Ref. 16, which can be seen as the philoso-
phical basis of the treatment of negation. Another mile-
stone in the research on the intended semantics for
programs with negation has been the definition of what
later became known uniformly as perfect model semantics
for programs that can be stratified on negation, in Refs. 17
and 18. The basic idea of stratification is that programs can
be partitioned in subprograms (strata) such that the rules
of each stratum contain negative predicates only if they are
defined in other strata. In thisway, it is possible to evaluate
the program by separately evaluating its partitions in such
a way that a given ‘‘stratum’’ is processed whenever the
ones from which it (negatively) depends have already been
processed.

Although an important step forward, it is obvious that
not all logic programs are stratified. In particular, pro-
grams that are recursive through negation are never stra-
tified, and the problem of assigning a semantics to
nonstratified programs still remained open. There were
basically two approaches for finding suitable definitions:
The first approach was giving up the classical setting of

2 ANSWER SET PROGRAMMING



models that assign two truth values, and introduce a third
value, intuitively representing unknown. This approach
required a somewhat different definition, because in the
two-valued approach, one would give a definition only for
positive values, implicitly stating that all other constructs
are considered to be negative. For instance, for minimal
models, oneminimizes the true elements, implicitly stating
that all elements not contained in the minimal model will
be false. With three truth values, this strategy is no longer
applicable, as elements that are not true can be either
false or undefined. For resolving this, Allen Van Gelder,
Kenneth Ross, and John Schlipf introduced the notion of
unfounded sets inRef. 19, in order to definewhich elements
of the program should be definitely false. Combining exist-
ing techniques for defining the minimal model with
unfounded sets, they defined the notion of a well-founded
model. In this way, any program would still be guaranteed
to have a single model, just like there is a unique minimal
model for positive programs and a unique perfect model for
stratified programs.

The second approach consisted of viewing logic prog-
rams as formulas in nonmonotonic logics (see, for instance,
Ref. 20 for an overview) rather than formulas of classical
logic (with an additional minimality criterion) and as a
corollary, abandoning the unique model property. Among
the first to concretize this were Michael Gelfond in Ref. 21,
who proposed to view logic programs as formulas of auto-
epistemic logic, andNicole Bidoit and Christine Froidevaux
in Ref. 22, who proposed to view logic programs as formulas
ofdefault logic.Bothof thesedevelopmentshavebeenpicked
upbyMichaelGelfondandVladimirLifschitz,who inRef. 23
defined the notion of stable models, which is inspired by
nonmonotonic logics, however does not refer explicitly to
these, but rather relies ona reduct that effectively emulates
nonmonotonic inference. It was this surprisingly simple
formulation, which did not require previous knowledge
on non-classical logics that has become well known. Differ-
ent towell-foundedmodels, theremay existno, one, ormany
stable models for one program. However, well-founded and
stable models are closely related; for instance, the well-
founded model of a program is contained in each stable
model (cf. Ref. 24). Moreover, both approaches coincide
with perfect models on stratified programs.

Yet another, somewhat orthogonal line of research con-
cerned theuse of disjunction in rule heads. This construct is
appealing, because it allows for direct nondeterministic
definitions. Prolog and many other logic programming
languages traditionally donot provide such a feature, being
restricted to so-called definite rules. Jack Minker has been
a pioneer and advocate of having disjunctions in programs.
In Ref. 25, he formulated the Generalized Closed World
Assumption, which gave a simple and intuitive semantics
for disjunctive logic programs. This concept has been ela-
borated on over the years, most notably by the Extended
GCWAdefined in Ref. 26. Eventually, also the stablemodel
semantics has been extended to disjunctive programs in
Ref. 27 by just minimally altering the definition of Ref. 23.
On the other hand, defining an extension of well-founded
models for disjunctive programs remains a controversial
matter to this date with various rivalling definitions,
(cf. Ref. 28).

The final step toward answer set programming in the
traditional sense has been the addition of a second kind of
negation, which has a more classical meaning than nega-
tion as failure. Combining this feature with disjunctive
stable models of Ref. 27 led to the definition of answer
sets in Ref. 4.

FORMAL DEFINITION OF ASP

Inwhat follows,weprovide a formal definition of the syntax
and semantics of answer set programming in the spirit of
Ref. 4, that is, disjunctive logic programming involving two
kinds of negation (referred to as strong negation and nega-
tion as failure), under the answer sets semantics.

Syntax

Following a convention dating back to Prolog, strings start-
ing with uppercase letters denote logical variables,
whereas strings starting with lowercase letters denote
constants. A term is either a variable or a constant. Note
that, as common in ASP, function symbols are not consid-
ered.

An atom is an expression Pðt1; . . . ; tnÞ, where p is a
predicate of arity n and t1; . . . ; tn are terms. A classical
literal l is either an atom p (in this case, it is positive), or
anegatedatom:p (in this case, it isnegative).Anegationas
failure (NAF) literal lll is of the form l or not l, where l is a
classical literal; in the former case lll is positive, and in the
latter case negative. Unless stated otherwise, by literal we
mean a classical literal.

Given a classical literal l, its complementary literal : l is
defined as: p if l¼ p andp if l¼: p. A setL of literals is said
to be consistent if, for every literal l2L, its complementary
literal is not contained in L.

A disjunctive rule (rule, for short) r is a construct

a1 V $ $ $ Van b1; . . . ; bk; not bkþ1; . . . ; not bm: ð1Þ

where a1; . . . ; an; b1; . . . ; bm are classical literals and
n& 0; m& k& 0. The disjunction a1 V $ $ $ Van is called
the head of r, whereas the conjunction b1; . . . ; bk, not
bkþ1; . . ., not bm is referred to as the body of r. A rule
without head literals (i.e., n ¼ 0) is usually referred to as
an integrity constraint. A rule having precisely one head
literal (i.e., n ¼ 1) is called a normal rule. If the body is
empty (i.e., k¼m¼ 0), it is called a fact, and in this case, the
‘‘ ’’ sign is usually omitted.

The following notation will be useful for additional
discussion. If r is a rule of form (1), then HðrÞ ¼
fa1; . . . ;ang is the set of literals in the head and BðrÞ ¼
BþðrÞ[B'ðrÞ is the set of the body literals, where BþðrÞ
(the positive body) is fb1; . . . ; bkg and B'ðrÞ (the negative
body) is fbkþ1; . . . ; bmg. An ASP program P is a finite set
of rules. A not-free program P (i.e., such that
8 r2P : B'ðrÞ ¼ ;) is called positive or Horn,1 and a
_ -free program P (i.e., such that 8 r2P : jHðrÞj ( 1) is
called normal logic program.

1In positive programs, negation as failure (not) does not occur,
whereas strong negation (:) may be present.
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In ASP, rules in programs are usually required to be
safe. The motivation of safety comes from the field of
databases, where safety has been introduced as a means
to guarantee that queries (programs in the case of ASP) do
not depend on the universe (the set of constants) consid-
ered. As an example, a fact p(X). gives rise to the truth of
p(a) when the universe fag is considered, whereas it gives
rise to the truth of p(a) and p(b) when the universe fa; bg
is considered. Safe programs do not suffer from this
problem when at least the constants occurring in the
program are considered. For a detailed discussion, we refer
to Ref. 2.

A rule is safe if each variable in that rule also appears in
at least one positive literal in the body of that rule. An ASP
program is safe, if each of its rules is safe, and in the
following we will only consider safe programs.

A term (anatom, a rule, a program, etc.) is called ground,
if no variable appears in it. Sometimes a ground program is
also called propositional program.

Example 3.1. Consider the following program:

r1 : aðXÞ _ bðXÞ cðX;YÞ; dðYÞ; not eðXÞ:
r2 :  cðX;YÞ; kðYÞ; eðXÞ; not bðXÞ:
r3 : m n; o; að1Þ:
r4 : eð1; 2Þ:

r1 is a disjunctive rule withHðr1Þ ¼ faðXÞ; bðXÞg; Bþðr1Þ ¼
fcðX;YÞ;dðYÞg, and B::ðr1Þg ¼ feðXÞg:r2 is an integrity
constraint with Bþðr2Þ ¼ fcðX;YÞ; kðYÞ; eðXÞg, and
B'ðr2Þ ¼ fbðXÞg: r3 is a ground, positive, and nondis-
junctive rule with Hðr3Þ ¼ fmg;Bþðr3Þ ¼ fn; o;að1Þg, and
B'ðr3Þ ¼ ;: r4, finally, is a fact (note that  is omitted).
Moreover, all of the rules are safe. &

Semantics

We next describe the semantics of ASP programs, which
is based on the answer set semantics originally defined
in Ref. 4. However, different than Ref. 4, only consistent
answer sets are considered, as it is now standard practice.

We note that in ASP the availability of some preinter-
preted predicates is assumed, such as ¼; <; > :However, it
would also be possible to define them explicitly as facts, so
they are not treated in a special way here.

Herbrand Universe and Literal Base. For any program P,
the Herbrand universe, denoted by UP, is the set of all
constants occurring in P. If no constant occurs in P, UP
consists of one arbitrary constant2. The Herbrand literal
base BP is the set of all ground (classical) literals construc-
tible from predicate symbols appearing in P and constants
in UP (note that, for each atom P, BP contains also the
strongly negated literal :p).

Example 3.2. Consider the following program:

P0 ¼ f
r1 : aðXÞ _ bðXÞ cðX;YÞ:
r2 : cðXÞ cðX;YÞ; not bðXÞ:
r4 : cð1; 2Þ:
g

then, the universe is UP0 ¼ {1,2}, and the base is BP0 ¼
{a(1), a(2), b(1), b(2), c(1), c(2), c(1,1), c(1,2), c(2,1), c(2,2),
:a(1),:a(2),:b(1),:b(2),:c(1),:c(2),:c(1,1),:c(1,2),:c(2,1),
:c(2,2)}. &

Ground Instantiation. For any rule r, Ground(r) denotes
the set of rules obtained by replacing each variable in r by
constants inUP in all possible ways. For any programP, its
ground instantiation is the set GroundðPÞ ¼ [ r2P
Ground(r). Note that for propositional programs, P ¼
GroundðPÞ holds.

Example 3.3. Consider again problemP0 of Example 3.2.
Its ground instantiation is:

GroundðP0Þ ¼ f
g1 : að1Þ_ bð1Þ cð1; 1Þ: g2 : að1Þ_ bð1Þ cð1; 2Þ:
g3 : að2Þ_ bð2Þ cð2; 1Þ: g4 : að2Þ_ bð2Þ cð2; 2Þ:
g5 : eð1Þ cð1; 1Þ; not bð1Þ: g6 : eð1Þ cð1; 2Þ; not bð1Þ:
g7 : eð2Þ cð2; 1Þ; not bð2Þ: g8 : eð2Þ cð2; 2Þ; not bð2Þ:
g9 : cð1; 2Þ:
g

Note that the atom cð1; 2Þ was already ground in P0,
whereas the rules g1; . . . ; g4 ðresp: g5; . . . ; g8Þ are obtained
by replacing the variables in r1 (resp. r2) with constants in
UP0

. &

Answer Sets. For every program P, its answer sets are
defined using its ground instantiation GroundðPÞ in two
steps: First the answer sets of positive disjunctive pro-
grams are defined, and then the answer sets of general
programsare defined by a reduction to positive disjunctive
programs and a stability condition.

An interpretation l is a consistent3 set of ground clas-
sical literals I)Bpw.r.t. a program P. A consistent inter-
pretation X)BP is called closed under P (where P is a
positive disjunctive datalog program), if, for every
r2GroundðPÞ; HðrÞ \ X 6¼ ; whenever BðrÞ)X. An inter-
pretation which is closed underP is also calledmodel ofP.
An interpretation X)BP is an answer set for a positive
disjunctive program P, if it is minimal (under set inclu-
sion) among all (consistent) interpretations that are
closed under P.

Example 3.4. The positive program P1 ¼ fa_ : b_ c:g
has the answer sets fag; f: bg; and fcg; note that they
are minimal and correspond to the multiple ways of satis-
fying the disjunction. Its extension P2 ¼ P1 [f a:g has

2Actually, since the language does not contain function symbols
and since rules are required to be safe, this extra constant is not
needed. However, we have kept the classic definition in order to
avoid confusion.

3A set I)BP is consistent if for each positive classical literal such
that l2 I it holds that : l =2 I.
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the answer sets f: bg and fcg, since comparing P2 with P1,
the additional constraint is not satisfied by interpre-
tation fag. Moreover, the positive program P3 ¼
P2 [f: b c: ; c : b:g has the single answer set
f: b; cg (indeed, the remaining consistent closed interpre-
tation fa; : b; cg is not minimal). Although, it is easy to see
that, P4 ¼ P3 [f cg has no answer set. &

The reduct or Gelfond–Lifschitz transform of a ground
program P w.r.t. a set X)BP is the positive ground pro-
gram PX, obtained from P by

* Deleting all rules r2P for which B'ðrÞ\X 6¼ ; holds
* Deleting the negative body from the remaining rules

An answer set of a program P is a set X)BP such that X is
an answer set of GroundðPÞX .

Example 3.5. For the negative ground program P5 ¼
fa not b:g; A ¼ fag is the only answer set, as P A

5 ¼ fa:g.
For example, forB ¼ fbg;P B

5 ¼ ;, and soB is not an answer
set. &

Example 3.6. Consider againprogramP0 ofExample3.2,
whose ground instantiationGroundðP0Þ has been reported
in Example 3.3. A naÿve way to compute the answer sets of
P0 is to consider all possible interpretations, checking
whether they are answer sets of GroundðP0Þ.

For instance, consider interpretation I0 ¼ fcð1; 2Þ;að1Þ;
eð1Þg; the corresponding reduct GroundðP0ÞI0 contains
rules g1; g2; g3; g4; g9; plus eð1Þ cð1; 1Þ; eð1Þ cð1; 2Þ;
eð2Þ cð2; 1Þ; and eð2Þ cð2; 2Þ; obtained by canceling
the negative literals from g5; g6; g7; and g8, respectively.
We can thus verify that I0 is an answer set forGroundðP0ÞI0
and therefore also an answer set for GroundðP0Þ and P0.

Let us now consider the interpretation I1 ¼ fcð1; 2Þ;
bð1Þ; eð1Þg; which is a model of GroundðP0Þ. The reduct
GroundðP0ÞI1 contains rules g1; g2; g3; g4; g9 plus both
eð2Þ cð2; 1Þ and eð2Þ cð2; 2Þ (note that both g5 and g6
are deleted because bð1Þ2 I1). I1 is not an answer set of
GroundðP0ÞI1 because fcð1; 2Þ; bð1Þg+ I1 is. As a conse-
quence, I1 is not an answer set of P0.

It can be verified that P0 has two answer sets, I0 and
fcð1; 2Þ; bð1Þg: &

KNOWLEDGE REPRESENTATION AND REASONING IN ASP

ASP has been exploited in several domains, ranging from
classical deductive databases to artificial intelligence. ASP
can be used to encode problems in a declarative fashion;
indeed, the power of disjunctive rules allows for expressing
problems that are more complex than NP, and the
(optional) separation of a fixed, non-ground program
from an input database allows one to obtain uniform solu-
tions over varying instances.

More importantly, many problems of comparatively
high computational complexity can be solved in a natural
manner by following a ‘‘Guess&Check’’ programming
methodology, which was originally introduced in Ref. 29
and refined in Ref. 30. The idea behind this method can be
summarized as follows:Adatabase of facts is used to specify

an instance of the problem, whereas a set of (usually dis-
junctive4) rules, called the ‘‘guessing part,’’ is used to define
the search space; solutions are then identified in the search
space by another (optional) set of rules, called ‘‘checking
part,’’ which impose some admissibility constraint. Basi-
cally, the answer sets of the program, which combines the
input database with the guessing part, represent ‘‘solution
candidates’’ those candidates are then filtered, by adding
the checking part, which guarantee that the answer sets of
the resulting program represent precisely the admissible
solutions for the input instance. To grasp the intuition
behind the role of both the guessing and the checking parts,
consider the following example.

Example 4.1. Suppose that we want to partition a set of
persons in two groups, while avoiding that father and
children belong to the same group. Following the
guess&check methodology, we use a disjunctive rule to
‘‘guess’’ all the possible assignments of persons to groups
as follows:

groupðP; 1Þ_ groupðP; 2Þ personðPÞ:

To understand what this rule does, consider a simple
instance of the problem, in which there are two persons:
joe and his father john. This instance is represented by four
facts

personð johnÞ: personð joeÞ: fatherð john; joeÞ:

Wecanverify that the answer sets of the resulting program
(facts plus disjunctive rule) correspond to all possible
assignments of the three persons to two groups:

fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;1Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;2Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;1Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;2Þg

However, we want to discard assignments in which father
and children belong to the same group. To this end, we add
the checking part by writing the following constraint:

 groupðP1;GÞ; groupðP2;GÞ; fatherðP1;P2Þ:

The answer sets of the augmented program are then the
intending ones, where the checking part has acted as a sort
of filter:

fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;2Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;1Þg

&

In the following, we illustrate the usage of ASP as a tool
for knowledge representation and reasoning by example.
In particular, we first deal with a problem motivated by

4Some ASP variants use choice rules as guessing part (see Refs.
31–33). Moreover, in some cases, it is possible to emulate disjunc-
tionbyunstratifiednormal rulesby ‘‘shifting’’ thedisjunction to the
body (31–36), but this is not possible in general.
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classical deductive database applications; then we exploit
the ‘‘Guess&Check’’ programming style to show how a
number of well-known harder problems can be encoded in
ASP.

Reachability. Givenafinite directed graphG¼ (V,A), we
want to compute all pairs of nodes ða; bÞ2V , V such that b
is reachable from a through a nonempty sequence of arcs in
A. In different terms, the problem amounts to computing
the transitive closure of the relation A.

The input graph is encoded by assuming that A is
represented by the binary relation arc(X, Y), where a fact
arc(a, b) means that G contains an arc from a to b; i.e.,
ða; bÞ2A; although the set of nodes V is not explicitly
represented, since the nodes appearing in the transitive
closure are implicitly given by these facts.

The following program then defines a relation reach-
able(X, Y) containing all facts reachable(a, b) such that b is
reachable from a through the arcs of the input graph G:

r1 : reachableðX;YÞ arcðX;YÞ:
r2 : reachableðX;YÞ arcðX;UÞ; reachableðU;YÞ:

The first rule states that that nodeY is reachable fromnode
X if there is an arc in the graph from X to Y, whereas the
second rule reprents the transitive closure by stating that
nodeY is reachable from nodeX if a nodeU exists such that
U is directly reachable from X (there is an arc from X toU)
and Y is reachable from U.

As an example, consider a graph represented by the
following facts:

arcð1; 2Þ: arcð2; 3Þ: arcð3; 4Þ:

The single answer set of the program reported above
together with these three facts program is freachable
ð1; 2Þ; reachableð2; 3Þ; reachableð3; 4Þ; reachableð1; 3Þ;
reachableð2; 4Þ; reachableð1; 4Þ;arcð1; 2Þ;arcð2; 3Þ;
arcð3; 4Þg. The first three reported literals are inferred by
exploiting the rule r1, whereas the other literals containing
the predicate reachable are inferred by using rule r2.

In the following section, we describe the usage of the
‘‘Guess&Check’’ methodology.

Hamiltonian Path. Given a finite directed graph G ¼
(V, A) and a node a2V of this graph, does a path in G exist
starting at a and passing through each node in V exactly
once?

This is a classical NP-complete problem in graph theory.
Suppose that the graph G is specified by using facts over
predicates node (unary) and arc (binary), and the starting
node a is specified by the predicate start (unary). Then,
the following program Php solves the Hamiltonian Path
problem:

r1 : inPathðX;YÞ_ outPathðX;YÞ arcðX;YÞ:
r2 : reachedðXÞ startðXÞ:
r3 : reachedðXÞ reachedðYÞ; inPathðX;YÞ:
r4 :  inPathðX;YÞ; inPathðX;Y1Þ;Y <>Y1:
r5 :  inPathðX;YÞ; inPathðX1;YÞ;X <>X1:
r6 :  nodeðXÞ; not reachedðXÞ; not startðXÞ:

The disjunctive rule (r1) guesses a subsetS of the arcs to be
in the path, whereas the rest of the program checks
whether S constitutes a Hamiltonian Path. Here, an
auxiliary predicate reached is defined, which specifies
the set of nodes that are reached from the starting
node. Doing this is very similar to reachability, but the
transitivity is defined over the guessed predicate inPath
using rule r3. Note that as reached is completely deter-
mined by the guess for inPath, no further guessing is
needed.

In the checkingpart, thefirst twoconstraints (namely, r4
and r5) ensure that the set of arcs S selected by inPath
meets the following requirements, which any Hamiltonian
Pathmust satisfy: (1) theremust not be two arcs starting at
the same node, and (2) theremust not be two arcs ending in
the same node. The third constraint enforces that all nodes
in the graph are reached from the starting node in the
subgraph induced by S.

Let us next consider an alternative program P0hp, which
also solves theHamiltonian Path problem, but intertwines
the reachability with the guess:

r1 : inPathðX;YÞ_outPathðX;YÞ reachedðXÞ;arcðX;YÞ:
r2 : inPathðX;YÞ_ outPathðX;YÞ startðXÞ; arcðX;YÞ:
r3 : reachedðXÞ inPathðY ; XÞ:
r4 :  inPathðX;YÞ; inPathðX;Y1Þ; Y<>Y1:
r5 :  inPathðX;YÞ; inPathðX1;YÞ; X<>X1:
r6 :  nodeðXÞ; not reachedðXÞ; not startðXÞ:

Here, the two disjunctive rules (r1 and r2), together with the
auxiliary rule r3, guess a subset S of the arcs to be in the
path, whereas the rest of the program checks whether S
constitutes a Hamiltonian Path. Here, reached is defined in
a different way. In fact, inPath is already defined in a way
that only arcs reachable from the starting node will be
guessed. The remainder of the checking part is the same
as in Php.

RamseyNumbers. In theprevious example,wehave seen
how a search problem can be encoded in an ASP program
whose answer sets correspond to the problem solutions.We
now build a program whose answer sets witness that a
property does not hold; i.e., the property at hand holds if
and only if the program has no answer set. We next apply
the above programming scheme to awell-knownproblem of
number and graph theory.

The Ramsey number R(k, m) is the smallest integer n
such that, no matter how we color the arcs of the com-
plete undirected graph (clique) with n nodes using two
colors, say red and blue, there is a red clique with k nodes
(a red k-clique) or a blue clique with m nodes (a blue
m-clique).

Ramsey numbers exist for all pairs of positive integers
k and m (37). We next show a program Pra that allows us
to decide whether a given integer n is not the Ramsey
Number R(3,4). By varying the input number n, we can
determine R(3,4), as described below. Let F ra be the
collection of facts for input predicates node and arc encod-
ing a complete graph with n nodes. Pra is the following
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program:

r1 : blueðX;YÞ_ redðX;YÞ arcðX;YÞ:
r2 :  redðX;YÞ; redðX;ZÞ; redðY ;ZÞ:
r3 :  blueðX;YÞ; blueðX;ZÞ; blueðY ;ZÞ;

blueðX;WÞ; blueðY ;WÞ; blueðZ;WÞ:

Intuitively, the disjunctive rule r1 guesses a color for each
edge. The first constraint (r2) eliminates the colorings
containing a red clique (i.e., a complete graph) with three
nodes, and the second constraint (r3) eliminates the color-
ings containing a blue cliquewith fournodes. Theprogram
Pra [F ra has an answer set if and only if there is a coloring
of the edges of the complete graph onnnodes containingno
red clique of size 3 and no blue clique of size 4. Thus, if
there is an answer set for a particular n, then n is not
R(3,4); that is, n < R(3, 4). On the other hand, if Pra [F ra

has no answer set, then n & R(3,4). Thus, the smallest n
such that no answer set is found is the Ramsey number R
(3,4).

Strategic Companies. In the examples considered so far,
the complexity of the problems is located atmost on the first
level of the Polynomial Hierarchy (38) (in NP or co-NP).We
next demonstrate that alsomore complex problems, located
at the second level of the Polynomial Hierarchy, can be
encoded in ASP. To this end, we now consider a knowledge
representation problem, inspired by a common business
situation, which is known under the name Strategic Com-
panies (39).

Suppose there is a collection C ¼ fc1; . . . ; cmg of compa-
nies ci owned by a holding, a set G ¼ fg1; . . . ; gng of goods,
and for each ci we have a set Gi )G of goods produced by ci
and a set Oi )C of companies controlling (owning) ci. Oi is
referred to as the controlling set of ci. This control can be
thought of as a majority in shares; companies not in C,
which we do not model here, might have shares in compa-
nies as well. Note that, in general, a company might have
more than one controlling set. Let the holding produce all
goods in G; i.e., G ¼ [ ci 2CGi.

A subset of the companies C0)C is a production-
preserving set if the following conditions hold: (1) The
companies in C0 produce all goods in G; i.e.,
[ ci 2C0Gi ¼ G. (2) The companies in C0 are closed under
the controlling relation; i.e. ifOi )C0 for some i ¼ 1; . . . ;m;
then ci 2C0 must hold.

A subset-minimal set C0, which is production-preser-
ving, is called a strategic set. A company ci 2C is called
strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold.
Indeed, intuitively, selling any nonstrategic company does
not reduce the economic power of the holding. Computing
strategic companies is on the second level of the Polynomial
Hierarchy (39).

In the following discussion, we consider a simplified
setting as considered in Ref. 39, where each product is
produced by at most two companies (for each
g2G; jfcijg2Gigj ( 2) and each company is jointly con-
trolled by at most three other companies; i.e., jOij ( 3 for
i ¼ 1; . . . ;m. Assume that for a given instance of Strategic
Companies, F st contains the following facts:

* company(c) for each c2C
* prod_byðg; c j; ckÞ, if fcijg2Gig ¼f c j; ckg, where cj and
ck may possibly coincide

* contr_byðci; ck; cm; cnÞ, if ci 2C and Oi ¼ fck; cm; cng,
where ck; cm;, and cn are not necessarily distinct.

We next present a program Pst, which characterizes this
hard problem using only two rules:

r1 : startðYÞ _ startðZÞ prod byðX;Y ;ZÞ:
r2 : startðWÞ contr byðW ;X;Y ;ZÞ; stratðXÞ;

startðYÞ; startðZÞ:

Here strat(X) means that company X is a strategic com-
pany. The guessing part of the program consists of the
disjunctive rule r1, and the checking part consists of the
normal rule r2. The program Pst is surprisingly succinct,
given that Strategic Companies is a hard problem.

The programPst exploits theminimization that is inher-
ent to the semantics of answer sets for the check whether a
candidate set C0 of companies that produces all goods and
obeys company control is also minimal with respect to this
property.

The guessing rule r1 intuitively selects one of the com-
panies c1 and c2 that produce some item g, which is
described by prod_by(g, c1, c2). If there was no company
control information, the minimality of answer sets would
naturally ensure that the answer sets of F st [fr1g corre-
spond to the strategic sets; no further checking would be
needed. However, in case control information is available,
the rule r2 checks that no company is sold that would be
controlled by other companies in the strategic set, by simply
requesting that this companymust be strategic aswell. The
minimality of the strategic sets is automatically ensured by
the minimality of answer sets.

The answer sets ofF st [Pst correspond one-to-one to the
strategic sets of the holding described in F st; company c is
thus strategic iff strat(c) is in some answer set of F st [Pst.

An important note here is that the checking ‘‘constraint’’
r2 interferes with the guessing rule r1: applying r2 may
‘‘spoil’’ the minimal answer set generated by r1. For exam-
ple, suppose the guessing part gives rise to a ground rule

r3 : stratðc1Þ _ stratðc2Þ prod byðg; c1; c2Þ:

and the fact prod_by(g, c1, c2) is given in F st. Now suppose
the rule is satisfied in the guessing part bymaking strat(c1)
true. If, however, in the checking part an instance of rule r2
is applied that derives strat(c2), then the application of the
rule r3 to derive strat(c1) is invalidated, as theminimality of
answer sets implies that rule r3 cannot justify the truth of
strat(c1), if another atom in its head is true.

FURTHER READING AND RELATED ISSUES

In this section, we consider some additional topics that
allow the reader to have a broader picture of ASP. In
particular, we introduce the general architecture of ASP
systems, and we briefly describe several language exten-
sions that have been proposed so far.
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System Algorithms

Initially somewhat impeded by complexity considerations,
reasonable algorithms and systems supportingASPbecame
available in the second half of the 1990s. The first widely
used ones were Smodels (33,40), supporting nondisjunctive
ASP, and DLV (30), supporting ASP (with disjunction) as
defined in Ref 4. These two systems have been improved
over the years and are still in widespread use. Later on,
more systems for nondisjunctive ASP, like ASSAT (41,42),
Cmodels (5), andClasp (43) becameavailable, andalsomore
disjunctive ASP systems became available with the advent
of GnT (44) and cmodels-3 (45).

Although, as discussed below, the systems do not use the
same techniques, they basically agree on the general archi-
tecture depicted in Fig. 1.

The evaluation flow of the computation is outlined in
detail. Upon startup, the input specified by the user is
parsed and transformed into the internal data structures
of the system.5

In general, an input program P contains variables, and
the first step of a computation of an ASP system is to
eliminate these variables, generating a ground instantia-
tion ground(P) of P. This variable-elimination process is
called instantiation of the program (or grounding) and is
performed by the Instantiator module (see Fig. 1).

A naÿve Instantiator would produce the full ground
instantiation Ground(P) of the input, which is, however,
undesirable from a computational point of view, as in
general many useless ground rules would be generated.
All of the systems therefore employ different procedures,
which are geared toward keeping the instantiated program
as small as possible. Anecessary condition is, of course, that
the instantiated program must have the same answer sets
as the original program. However, it should be noted that
the Instantiator solves a problem, which is in general
EXPTIME-hard, the produced ground program being
potentially of exponential size with respect to the input
program. Optimizations in the Instantiator, therefore,
often have a big impact, as its output is the input for the
followingmodules, which implement computationally hard
algorithms. Moreover, if the input program is normal and
stratified, the Instantiator module is, in some cases, able to
compute directly its stable model (if it exists).

The subsequent computations, which constitute the
nondeterministic part of an ASP system, are then per-
formed on ground(P) by both the Ground Reasoner and
the Model Checker. Roughly, the former produces some

‘‘candidate’’ answer set, whose stability is subsequently
verified by the latter. The existing ASP systems mainly
differ in the technique employed for implementing the
Ground Reasoner. There are basically two approaches,
whichwewill refer to as search-based and rewriting-based.
In the search-based approach, theGround Reasoner imple-
ments a backtracking search algorithm, which works
directly on the ground instantiation of the input program.
Search-based systems, like DLV and Smodels, are often
referred to as ‘‘native’’ ASP systems, because the employed
algorithms directly manipulate logic programs and are
optimized for those. In the rewriting-based approach, the
Ground Reasoner transforms the ground program into a
propositional formula and then invokes a Boolean satisfia-
bility solver for finding answer set candidates.

As previously pointed out, the Model Checker verifies
whether an answer set candidate at hand is an answer set
for the input program. This task is as hard as the problem
solved by the Ground Reasoner for disjunctive programs,
whereas it is trivial for nondisjunctive programs. However,
there is also a class of disjunctive programs, called Head-
Cycle-Free programs (34), for which the task solved by the
Model Checker is provably simpler, which is exploited in
the system algorithms.

Finally, once ananswer set hasbeen found,ASPsystems
typically print it in text format, and possibly the Ground
Reasoner resumes in order to look for additional answer
sets.

Language Extensions

The work on ASP started with standard rules, but fairly
soon implementations extending the basic language
started to emerge. The most important extensions to the
ASP language can be grouped in three main classes:

* Optimization constructs
* Aggregates
* Preference handling

Optimization Constructs. The basic ASP language can be
used to solve complex search problems, but it does not
natively provide constructs for specifying optimization pro-
blems (i.e., problems where some goal function must be
minimized or maximized). Two extensions of ASP have
been conceived for solving optimization problems: weak
constraints (30,46) and optimize statements (33).

In the basic language, constraints are rules with an
empty head and represent a condition that must be satis-
fied, and for this reason, they are also called strong con-
straints. Contrary to strong constraints, weak constraints
allow us to express desiderata, that is, conditions that

Figure 1. General architecture of an ASP
system.

Model Checker

Input
Program Instantiator Ground Reasoner Output

5The input is usually read from text files, but some systems also
interface to relational databases for retrieving facts stored in
relational tables.

8 ANSWER SET PROGRAMMING



should be satisfied. Thus, they may be violated, and their
semantics involves minimizing the number of violated
instances of weak constraints. In other words, the presence
of strong constraints modifies the semantics of a program
by discarding all models that do not satisfy some of them,
whereas weak constraints identify an approximate solu-
tion, that is, one inwhich (weak) constraints are satisfied as
much as possible.

Froma syntactic point of view, aweak constraint is like a
strong one where the implication symbol is replaced by
. The informalmeaning of aweak constraint B is ‘‘try to

falsify B’’ or ‘‘B should preferably be false.’’ Additionally, a
weight and a priority level for the weak constraint may be
specified after the constraint enclosed in brackets (by
meansof positive integers or variables).Whennot specified,
the weak constraint is assumed to have weight 1 and
priority level 1, respectively.

In this case, we are interested in the answer sets that
minimize the sum of weights of the violated (unsatisfied)
weak constraints in the highest priority level and, among
them, those that minimize the sum of weights of the
violated weak constraints in the next lower level, and
so on. In other words, the answer sets are considered
along a lexicographic ordering along the priority levels
over the sum of weights of violated weak constraints.
Therefore, higher values for weights and priority levels
allow for marking weak constraints of higher importance
(e.g., the most important constraints are those having the
highest weight among those with the highest priority
level).

As an example, consider the Traveling Salesman Pro-
blem (TSP). TSP is a variant of the Hamiltonian Cycle
problem considered earlier, which amounts to finding the
shortest (minimal cost) Hamiltonian cycle in a directed
numerically labeled graph. This problem can be solved
by adapting the encoding of the Hamiltonian cycle problem
given in Section 4 in order to deal with labels, by adding
only one weak constraint.

Supposeagain that the graphG is specifiedbypredicates
node (unary) andarc (ternary), and that the startingnode is
specified by the predicate start (unary).

The ASP program with weak constraints solving the
TSP problem is thus as follows:

r1 : inPathðX;Y ;CÞ _ outPathðX;Y ;CÞ arcðX;Y ;CÞ:
r2 : reachedðXÞ startðXÞ:
r3 : reachedðXÞ reachedðYÞ; inPathðY ;X;CÞ:
r4 :  inPathðX;Y ; Þ; inPathðX;Y1; Þ;Y <>Y1:
r5 :  inPathðX;Y ; Þ; inPathðX1;Y ; Þ;X <>X1:
r6 :  nodeðXÞ; not reachedðXÞ:
r7 : inPathðX;Y ;CÞ:½C; 1.

The last weak constraint (r7) states the preference
to avoid taking arcs with high cost in the path, and has
the effect of selecting those answer sets for which the total
cost of arcs selected by inPath (which coincides with the
length of the path) is the minimum (i.e., the path is the
shortest).

The TSP encoding provided above is an example of the
‘‘guess, check and optimize’’ programming pattern (30),

which extends the original ‘‘guess and check’’ (see
Section 4) by adding an additional ‘‘optimization part,’’
which mainly contains weak constraints. In the example
above, the optimization part contains only the weak con-
straint r7.

Optimize statements are syntactically somewhat sim-
pler. They assign numeric values to a set of ground literals,
and thereby select those answer sets for which the sum of
thevalues assigned to literals thatare true in the respective
answer sets are maximal or minimal. It is not hard to see
that weak constraints can emulate optimize statements,
but not vice versa.

Aggregates. There are some simple properties, often
originating in real-world applications, which cannot be
encoded in a simple and natural manner using ASP. Espe-
cially properties that require the use of arithmetic opera-
tors on a set of elements satisfying some conditions (like
sum, count, or maximum) require rather cumbersome
encodings (often requiring an ‘‘external’’ ordering relation
over terms), if one is confined to classic ASP.

Similar observations have also been made in related
domains, notably database systems, which led to the defini-
tion of aggregate functions.Especially in database systems,
this concept is by now both theoretically and practically
fully integrated. When ASP systems became used in real
applications, it became apparent that aggregates are
needed also here. First, cardinality and weight constraints
(33), which are special cases of aggregates, have been
introduced. However, in general, one might want to use
also other aggregates (like minimum, maximum, or aver-
age), and it is not clear how to generalize the framework of
cardinality and weight constraints to allow for arbitrary
aggregates. To overcome this deficiency, ASP has been
extended with special atoms handling aggregate functions
(47–53). Intuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets of
constants to a constant.

An aggregate function is of the form f(S), whereS is a set
term of the form {Vars : Conj}, where Vars is a list of
variables and Conj is a conjunction of standard atoms,
and f is an aggregate function symbol.

The most common aggregate functions compute the
number of terms, the sum of non-negative integers, and
the minimum/maximum term in a set.

Aggregates are especially useful when real-world pro-
blemshave to be dealtwith.Consider the following example
application6. A project team has to be built from a set of
employees according to the following specifications:

1. At least a given number of different skills must be
present in the team.

2. The sum of the salaries of the employees working in
the team must not exceed the given budget.

Suppose that our employees are provided by several
facts of the form emp(EmpId, Skill, Salary); the minimum

6In the example, we adopted the syntax of the DLV system, the
same aggregate functions can be specified also by exploiting other
ASP dialects.
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number of different skills and the budget are specified by
the facts nSkill(N) and budget(B). We then encode each
property statedabovebyanaggregate atom,andweenforce
it by an integrity constraint:

r1: inðIÞ_ outðIÞ empðI;Sk;SaÞ:
r3: nSkillðMÞ;not#countfSk:empðI;Sk;SaÞ;inðIÞg>¼M:
r4: budgetðBÞ;not#sumfSa;I: empðI;Sk;SaÞ;inðIÞg<¼B:

Intuitively, the disjunctive rule ‘‘guesses’’ whether an
employee is included in the team or not, whereas the two
constraints correspond one-to-one to the requirements.
Indeed, the function #count counts the number of employ-
ees in the team, whereas #sum sums the salaries of the
employees that are part of the team.

Note that thanks to the aggregates, the translation of
the specifications is straightforward.

Preference Handling. ASP programs usually follow a
‘‘guess and check’’ programming pattern (see Section 4),
where a set of rules (the guessing part) is used to guess a
solution (or equivalently, to generate answer set candi-
dates), whereas another set of rules, called the checking
part, is added to discard solutions that are not admissible.
This methodology allows the programmer to distinguish
between solutions and nonsolutions. However, in many
realistic applications, the possibility to make more fine-
grained distinctions is required, and in particular, distinc-
tions betweenmore and less preferred solutions are needed
(see Ref. 54 for a discussion). For this reason, there has
been a substantial amount of work on extending ASP
programs with preferences, and in particular, the major
focus has been on qualitative approaches. This stems from
the fact that for a variety of applications, numerical infor-
mation is hard to obtain (preference elicitation is difficult)
and often turns out to be unnecessary (see Ref. 54). Still,
language extensions based on quantitative information,
such as the weak constraints mentioned above, emulate
qualitative preferences under certain conditions, and vice
versa. There are two basic possibilities for representing
qualitative preferences. In one approach, the preference is
specified among rules, mirroring the fact that some rules
maybemore reliable than others, and striving touse a set of
rules that is as preferred as possible for giving a reason to
an answer. In the second approach, the preferences are
specified among literals, reflecting information on either
the likelihood or the desirability of the affirmations repre-
sented by the literals.

In the first kind of formalisms, preferences are specified
bymeans of an ordering among rules. Formally, an ordered
logic program is a pair (P,<)whereP is a logic programand
<) (P , P) is a strict partial order. Given r1, r2 2 P, the
relation r1< r2 expresses that r2 hashigher priority than r1.

For example, consider the following program:

r1 : : a: r2 : b : a; not c: r3 : c not b:

This program has two answer sets, one given by {:a, b} and
the other given by {:a, c}. For the first answer set, rules r1
and r2 are applied; for the second, r1 and r3. However,
assume that we have reason to prefer r2 to r3 expressed

by r3 < r2. In this case, we would want to obtain just the
first answer set and we say say that the first is a preferred
answer set.

In general, defining which answer sets should be the
preferred ones in this setting is not always as obvious as in
the example above, and indeed several approaches have
been proposed. A comprehensive comparison of threemajor
semantics, defined by Delgrande, Schaub, Tompits (55), by
Brewka and Eiter (56), and by Wang, Zhou, Lin (57), has
been presented in Ref. 58.

In the second representational approach, preferences
are represented among atoms, literals, or formulas. One
way of specifying this has been proposed inRef. 59, which is
the use of ordered disjunction in rule heads. In particular,
the operator , in rule heads acts as a disjunction also
specifying preferences. The meaning of a rule a1 , $ $ $ ,
an body, is that if the body is satisfied, then some aimust
be in the answer set, most preferably a1, if this is impos-
sible, then a2, and so on. The formal semantics is defined by
means of answer sets of split programs and of rule satisfac-
tion degrees. There are some degrees of freedom when
aggregating the satisfaction degrees of several rules, lead-
ing to different semantics, themain ones being cardinality-
based, set-inclusion-based, and Pareto-based.

In the ordered disjunction approach, the construction of
answer sets is amalgamated with the expression of prefer-
ences. Optimization programs (60), on the other hand,
strictly separate these two aspects. An optimization pro-
gram is a pair (Pgen, Ppref). Here, Pgen is an arbitrary logic
programused togenerateanswer sets.Allwe require is that
it produces sets of literals as its answer sets. Ppref is a
preference program. Preference programs consist of pre-
ference rules of the form c1 >$ $ $>cn  body, where the ci
are Boolean combinations of literals built from _, ^, : and
not. As in the case of ordered disjunction, the semantics of
these programs is based on the degree of satisfaction of
preference rules, and as in the case of ordered disjunctions,
there are several options for aggregating these satis-
faction degrees for defining semantics.

Another ASP extension suitable for preference handling
has been presented in Ref. 61. There, standard ASP has
been enriched by introducing consistency-restoring rules
(CR-rules) and preferences, leading to the CR-Prolog lan-
guage. Basically, in this language, besides standard ASP
rules one may specify CR-rules, which are expressions of
the form: r : a1 _ $ $ $ _ an þ body ðn& 1Þ. The intuitive
meaning of the CR-rule r is as follows: If body is true,
then one of a1; . . . ;an is ‘‘possibly’’ believed to be true.
Importantly, the name of CR-prolog rules can be directly
exploited to specify preferences among them. In particular,
if the fact prefer(r1, r2) is added to a CR-program, then rule
r1 is preferred over rule r2. This allows one to encode partial
orderings among preferred answer sets by explicitly writ-
ing preferences among CR-rules.

Other Extensions. ASP has been extended in other direc-
tions in order tomeet the requirements of different applica-
tion domains; hence, there is a number of interesting
languages having the roots on ASP. For instance, ASP
has been exploited for defining and implementing action
languages (i.e., languages conceived for dealing with
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actions and change)k (62), ande (63), whereas inRef. 64, a
framework for abduction with penalization has been
proposed and implemented as a front-end for the ASP
system DLV. A logic language called ID-Logic (65) has
been introduced to deal with classical logic with inductive
definitions (which correspond semantically to logic rules).
Other ASP extensions have been conceived to deal with
Ontologies (i.e., abstract models of a complex domain). In
particular, in Ref. 66, an ASP-based language for ontology
specification and reasoning has been proposed, which
extends ASP in order to deal with complex real-world
entities, like classes, objects, compound objects, axioms,
and taxonomies. In Ref. 67, an open world semantics for
ASP programs has been proposed. Moreover, in Ref. 68, an
extension of ASP, called HEX-Programs, which supports
higher order atoms as well as external atoms has been
proposed. External atoms allows one to embed external
sources of computation in a logic program. Thus, HEX-
programs are useful for various tasks, including meta-
reasoning, data type manipulations, and reasoning on
top of Description Logics (DL) (69) ontologies. Template
predicates have been introduced in Ref. 70. Template
predicates are special intensional predicates defined by
means of generic reusable subprograms, which have
been conceived for easing coding and improving readability
and compactness of programs. Finally, nested programs,
allowing for nested logical expressions to occur in rules,
have also been studied (71,72).

Applications

Answer set programming has been successfully applied to
many areas, including:

* Information integration. ASP has been exploited for
supporting consistent query answering, in informa-
tion integration systemsunder the so-calledGlobal-as-
View approach (73–75), also in the presence of data
inconsistencies and data incompleteness.

* Configuration and verification management. In pro-
duct configuration (76), ASP has been used as a
declarative semantics providing formal definitions
for main concepts in product configuration, including
configuration models, requirements, and valid config-
urations. And, in particular, in the field of software
configuration, a prototype configurator for the com-
plete Debian Linux system distribution has been
implemented by using ASP (17).

* Knowledge management. ASP has a strong potential
for exploitation in the area of knowledge management
and semantic technologies.

An ASP-based system for ontology representation
and reasoning, called OntoDLV (66), is employed in
many real-world applications, ranging from e-learning
to enterprise ontologies and agent-based applications.
In Ref. 78, an ASP-based approach to the problem of
recognizing and extracting information from unstruc-
tureddocumentshasbeenpresented. InRefs.79and80,
a system for content classification, called OLEX, is
presented, which exploits ASP to extract concepts and
semantic metadata from documents.

* Security engineering. In Ref. 81, it is shown how secur-
ityprotocols canbe specifiedandverified efficiently and
effectively by embedding reasoning about actions into
logic programming. In particular, two significant case
studies in protocol verification have been modeled: the
classical Needham–Schroeder public-key protocol and
the Aziz–Diffie key agreement protocol for mobile
communication.

Moreover, applications from various areas can be found
in the literature, including auctions (82), scheduling (83),
policy description (84), workflow management (85), outlier
detection (86), linguistics (87),multiagent systems (88–90),
and e-learning (90).

Concluding, ASP is an appealing tool for knowledge
representation and reasoning, and thanks to the appli-
cability of the implementations of ASP solvers to real-world
problems, ASP is tackling many industrially relevant
applications.

It is worth noting that ASP systems are currently away
from comfortably enabling the development of industry-
level applications, and like any other programming lan-
guage, ASP needs tools and development methodologies to
facilitate and improve the coding process.At the time of this
writing, the field of software engineering for ASP has been
already settled by the ASP community (91), and it is cur-
rently evolving. Indeed, both methodologies (see Section 4)
and prototype tools are already available (see Refs. 66, 70,
and 91–94).
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