
Lifting Databases to Ontologies?

Gisella Bennardo, Giovanni Grasso, Salvatore Maria Ielpa, Nicola Leone,
Francesco Ricca

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{lastname}@mat.unical.it

Abstract. Nowadays it is widely recognized that ontologies are a fun-
damental tool for knowledge representation and reasoning; and, in par-
ticular, they have been recently exploited for setting out business enter-
prise information (obtaining the so-called enterprise/corporate ontolo-
gies). Enterprise ontologies offer a clean view of the enterprise knowl-
edge, simplifying the retrieval of information and the discovery of new
knowledge through powerful reasoning mechanisms.

However, enterprise ontologies are not widely used yet, mainly because of
two major obstacles: (i) the specification of a real-world enterprise ontol-
ogy is an hard task, developing an enterprise ontology by scratch would
be a time-consuming and expensive task; and, (ii) usually, enterprises
already store their relevant information in large database systems, and
do not want to load the information again in the ontologies; moreover,
these databases have to keep their autonomy since many applications
work on them. In this paper we propose a solution that combines the
advantages of an ontology representation language (i.e., high expressive
power and clean representation of data) having powerful reasoning ca-
pabilities, with the capability to efficiently exploit a large (and, often
already existent) enterprise database. In particular, we allow to “lift” an
existing database to an ontology. The database is kept and the exist-
ing applications can still work on it, but the user can take profit of the
new ontological view of the data, and exploit powerful reasoning mecha-
nisms for consistency checking, knowledge discovery, and other advanced
knowledge-based tasks.

Kewwords: Logic Programming, Answer Set Programming, Ontology
Languages, Enterprise Ontologies, Databases.

1 Introduction

Nowadays, the need for knowledge-based technologies is emerging in several ap-
plication areas and, in particular, both enterprises and large organizations are
looking for powerful instruments for knowledge-representation and reasoning.

? Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresen-
tazione di conoscenza: estensioni e tecniche di ottimizzazione.”



II

In this field, ontologies [1] have been recognized to be a fundamental tool.
Indeed, ontologies are well-suited formal tools to provide a clean abstract speci-
fication of the entities of a given domain and powerful reasoning capabilities. In
particular, they have been recently exploited for specifying terms and definitions
relevant to business enterprises, obtaining the so-called enterprise/corporate on-
tologies.

Enterprise/Corporate ontologies can be used to share/manipulate the infor-
mation already present in a company. Indeed, they provide for a “conceptual
view” expressing at the intensional level complex relationships among the enti-
ties of enterprise domains. In this way, they can offer a convenient access to the
enterprise knowledge, simplifying the retrieval of information and the discovery
of new knowledge through powerful reasoning mechanisms.

However, enterprise ontologies are not widely used yet, mainly because of
two major obstacles:

(i) the specification of a real-world enterprise ontology is an hard task;
(ii) usually, enterprises already store their relevant information in large database

systems.

As far as point (i) is concerned, it can be easily seen that developing an
enterprise ontology by scratch would be a time-consuming and expensive task,
requiring the cooperation of knowledge engineers with domain experts. More-
over, (ii) the obtained specification must incorporate the knowledge (mainly
regarding concept instances) already present in the enterprise information sys-
tems. This knowledge is often stored in large (relational) database systems, and
loading it again in the ontologies may be unpractical or even unfeasible. This
happens because of the large amount of data to deal with, but also because these
databases have to keep their autonomy (considering that many applications work
on them).

In this paper we propose a solution that combines the advantages of an ontol-
ogy representation language (i.e., high expressive power and clean representation
of data) having powerful reasoning features, with the capability to efficiently ex-
ploit a large (and, often already existent) enterprise database. In particular,
we allow to “lift” an existing database to an ontology in the spirit of [2]. The
database is kept and the existing applications can still work on it, but the user
can take profit of the new ontological view of the data, and exploit powerful
reasoning mechanisms for consistency checking, knowledge discovery, and other
advanced knowledge-based tasks.

This has been done by properly extending the OntoDLV system [3, 4] lan-
guage by suitable constructs, called virtual class and virtual relation, that allows
one to specify the instances of an ontology concept/relation when they “already
exist” autonomously in a relational database.

More in detail, OntoDLV implements a powerful logic-based ontology rep-
resentation language, called OntoDLP, which is an extension of (disjunctive)
Answer Set Programming [5–7] (ASP) with all the main ontology constructs in-
cluding classes, inheritance, relations, and axioms. OntoDLP is strongly typed,



III

and it combines in a natural way the modeling power of ontologies with a pow-
erful “rule-based” language.1

Suppose now that it is given an existing database; then, we can analyze
its schema and comfortably recognize both entities and relationships that the
database engineer stored on it, and we can represent it by means of an OntoDLP
ontology. This gives us a clean and high level specification of the knowledge
present in the given database, but the obtained intensional specification is not
linked with it. Since, up to now, both ontology specification and logic programs
have to be specified directly in the OntoDLP syntax in order to exploited the
ontology, then the database should be loaded into the OntoDLV system (which,
as previously pointed out, is inconvenient). To overcome this limitation, we pur-
posely extended the OntoDLV language in order to directly specify how the
instances of an OntoDLP class have to be obtained from the given database. In
particular, we introduced virtual classes (and virtual relations), that are classes
(and relations) whose instances are specified by means of special logic rules.
Those rules admit a special kind of logic predicates which represent database
tables/views or even SQL queries results. Basically, those rules define a mapping
among the data in the database and the corresponding instances of the ontology.
Given that, the obtained ontology specification can be exploited as usual, and
all the powerful features on OntoDLP (from advanced type-checking to complex
reasoning) can be exploited on existing data.

Moreover, we extended the OntoDLV system in order to implement virtual
classes and virtual relations, in such a way that it seamlessly provide to the
users both abstract browsing and query facility on the ontology and efficient
query processing on existing data sources.

The remainder of the paper is organized as follows. In the next section,
we provide a brief overview of the original OntoDLP language. In Section 3
we show, by means of an example, how an existing database can be lift to an
ontology by exploiting virtual classes. Section 4 overviews the architecture and
the implementation of virtual classes in the OntoDLV system. Eventually, in
Section 5 we draw conclusions and compare related works.

2 The OntoDLP language

In this section we briefly describe OntoDLP, an ontology representation and
reasoning language which provides the most important ontological constructs,
namely classes, attributes, relations, inheritance and axioms, and combines them
with the reasoning capabilities of ASP. For a detailed description refer to [3, 4].

Hereafter, we assume the reader to be familiar with ASP syntax and seman-
tics, for further details refer to [5, 9].

Classes. A class can be thought of as a collection of individuals that belong
together because they share some properties. Classes can be defined in OntoDLP

1 In general, disjunctive ASP, and thus OntoDLP, can represent every problem in the
complexity class ΣP

2 and ΠP
2 (under brave and cautious reasoning, respectively) [8].



IV

by using the keyword class followed by its name. Class attributes can be specified
by means of pairs (attribute-name : attribute-type), where attribute-name is the
name of the property and attribute-type is the class the attribute belongs to.

For instance, person, food, and place are classes of individuals, that can be
defined in OntoDLV as follows:

class place(name :string).
class food(name :string , origin :place).
class person(name :string , father :person,mother :person, birthplace :place).

Class attributes in OntoDLP model the properties that must be present in
all class instances; properties that might be present or not might be modeled,
for instance, by using relations. Moreover, class definitions can be recursive (e.g.,
in class person both father and mother are of type person), and attribute types
can exploit the built-in classes string and integer (respectively representing the
class of all alphanumeric strings and the class of non-negative integers).

Objects. Domains contain individuals which are called objects or instances.
Each individual in OntoDLP belongs to a class and is uniquely identified by
a constant called object identifier (oid). Objects are declared by asserting a
special kind of logic facts (asserting that a given instance belongs to a class).
For example, with the fact:

john : person(name :“John”, father : jack ,mother :ann, birthplace :rome).

we declare that john is an instances of the class person. Note that, when we
declare an instance, we immediately give an oid to the instance which may be
used to fill an attribute of another object. In the example above, the attribute
birthplace is filled with the oid rome (identifying an instance of Place) modeling
the fact that john is born in Rome; in the same way, jack and ann are suitable
oids respectively filling the attributes father, mother (both of type person).

Oids are proper of a given base class, i.e., base classes cannot share indi-
viduals. However, an individual may belong to different classes when other two
modeling tools are employed (that will be described later), namely: inheritance
and collection classes.

Inheritance. Concepts in an ontology are usually organized in taxonomies by
using the specialization/generalization mechanism (which is called inheritance
in object-oriented languages). For instance, employees are a special category of
person having extra attributes, like salary and company . OntoDLV supports
inheritance by means of the special binary relation isa. In particular, the above-
mentioned employee class can be declared as follows:

class employee isa {person}(salary : integer , boss :person).

In this case, person is a more generic concept or superclass and employee is
a specialization (or subclass) of person. Moreover, an instance of employee will
have the local attributes salary and boss, in addition to those that are defined
in person. We say that the latter are “inherited” from the superclass person.
Hence, each proper instance of employee will also be automatically considered
an instance of person (the opposite does not hold!).



V

Collection Classes The notions of base class and base relation introduced
above correspond, from a database point of view, to the extensional part of the
OntoDLP language. However, there are many cases in which some property or
some class of individuals can be “derived” (or inferred) from the information
already stated in an ontology. In particular, OntoDLP allows one to specify the
instances of a class by means of logic rules, thus obtaining a Collection class.

For instance, the class richEmployee can be defined as follows:

collection class richEmployee(name :string){
E : richEmployee(name :N) :− E : employee(name :N, salary :S), S > 1000000.}

Basically, this class collects instances defined by another class (i.e., person)
and performs a re-classification based on some information which is already
present in the ontology.

Importantly, the programs (set of rules) defining collection classes must be
normal and stratified (see e.g., [10, 11]).

Relations. Another important feature of an ontology language is the ability to
model relationships among individuals. Relations are declared like classes: the
keyword relation (instead of class) precedes a list of attributes.

As an example, we model a relationship between person and living place as
follows:

relation personLivesIn(individual :person, location :place).

The instances of a relation are called tuples; for instance, we can assert that
john lives in rome by writing a logic fact as follows:

personLivesIn(individual : john, location :rome).

Contrary to class instances, tuples are not equipped with an oid.
As for classes, also relations can be defined via rules, obtaining the so-called

intensional relations.
We complete the description of relations observing that OntoDLP allows

one also to organize them in taxonomies. Basically, attributes and tuples are
inherited by following the same criterions defined above for classes.

Axioms and Consistency. Axioms are a consistency-control construct mod-
eling sentences that are always true. For example, we may enforce that a person
cannot be father of itself as follows:

:− X : person(father :X ).

If an axiom is violated, we say that the ontology is inconsistent (i.e., it con-
tains information which is contradictory or not compliant with the domain’s
intended perception).

Reasoning modules and queries. In addition to the ontology specification,
OntoDLP provides powerful reasoning and querying capabilities by means of the
language components reasoning modules and queries.

In practice, a reasoning module is a disjunctive logic program conceived to
reason about the data described in an ontology. Reasoning modules are identified



VI

by a name and are defined by a set of (possibly disjunctive) logic rules and
integrity constraints; clearly, the rules of a module can access the information
present in the ontology.

An important feature of the language is the possibility of asking queries, on
both he ontology and the predicates defined in reasoning modules. Queries offer
the possibility of extract knowledge implicitly contained in the ontology. As an
example, we ask for the list of person having a father who is born in Rome as
follows:

X : person(father :person(birthplace :place(name :“Rome”)))?

3 Virtual Classes and Virtual Relations

In this section we show how an existing database database can be “lift” to an
OntoDLP ontology. In particular, the new features of the language, namely,
virtual classes and virtual relations, which have been conceived for dealing with
this problem, will be illustrated by exploiting the following example.

Suppose that a Banking Enterprise asks for building an ontology of its domain
of interest. This request has arisen from the need of an uniform view of the
knowledge stored in the enterprise information system, which is shared among
all the enterprise branches. Indeed, ontologies offer a clear high-level perspective
of a domain, which can be, thus, analyzed by exploiting more expressive and
powerful querying/reasoning methods.

The schema of the existing database exploited by the information system of
the banking enterprise is reported in Table 1.

The first step that must be done is to reconstruct the semantics of data stored
in this database.

It is worth noting that, in general, a database schema is the product of a
previously-done modeling step on the domain of interest. Usually, the result
of this conceptual-design phase is a semantic data model which describes the
structure of the entities stored in the database. Likely, the database engineers
exploited the Entity-Relationship Model (ER-model) [12], that consists of a set of
basic objects (called entities), and of relationships among these objects. The ER-
model underlying a database can be reconstructed by reverse-engineering (there
are few well-known rules for obtaining a database schema from an ER-model)
or can be directly obtained from the documentation of the original project.

Suppose now that, we obtained the ER-model corresponding to the database
of Table 1. In particular, the corresponding ER diagram is shown in Figure 1.
From this diagram it is easy to recognize that the enterprise is organized into
branches, which are located into a given place and also have an asset and an
unique name. A bank customer is identified by its social-security number and,
in addition, the bank stores information about customer’s name, street and
living place. Moreover, customers may have accounts and can take out loans.
The bank offers two types of accounts: saving-accounts with an interest-rate,
and checking-accounts with a overdraft-amount. To each account is assigned an
unique account-number, and maintains last access date. Moreover, accounts can



VII

Table name attributes

branch-name
Branch branch-city

assets

customer-name
Customer social-security

customer-street
customer-city

customer-social-sec
Depositor account-number

access-date

account-number
Saving-account balance

interest-rate

account-number
Checking-account balance

overdraft-amount

loan-number
Loan amount

branch-name

customer-social-sec
Borrower loan-number

loan-number
Payment payment-number

payment-date
payment-amount

Table 1. The Banking Enterprise database.



VIII

������� ���	��


������� �����
 �
name

������� ���	��
 � ��� 
 �����

������� �����

-city

������� ��� � �����
urity

borr
������


acc
�������

acc
������� � �

umber bala
�����

� ������� ������������
s

������������

�������	����� � �����
ber

�������	����� � �
ate

�������	����� � ��������
t

����������� �
or

� ���
n

� ������� ���������
 ���	���
nt

isa

������� ������� �������������

� ��� ��
 ����� � 
 ��� �

����������� ����� �������������
������
 ��
 ��� � � ���	���

nt

� ������� ��
 ���
ch

��
 �����
h

��
 ��������� �����
e

��������� �

��
 ��������� ���
ty

Fig. 1. The Banking Enterprise ER diagram

be held by more than one customer, and obviously one customer can have various
accounts(depositors). Note that, in the case of accounts, the ER-model exploits
specialization/generalization construct. A loan is identified by a unique loan-
number and, as well as accounts, can be held by several customers (borrowers).
In addition, the bank keeps track of the loan amount and payments and also of
the branch at the loan originates. For each payment the bank records the date
and the amount; for a specific loan a payment-number univocally identifies a
particular payment.

All this information we obtained so-far, represents a good starting point for
defining an ontology that describes the banking enterprise domain. Indeed, we
can easily exploit it for identifying ontology concepts and for detecting which
tables store the information regarding their instances.

At this point, what we have to do for “lifting” the banking database to a
banking ontology is to create an OntoDLP (base) class, with name c, for each
concept c in the domain, and exploit special logic rules to specify a mapping
between class c and its instances “stored” in the database. A class c defined by
means of such kind of mapping rules is called virtual, because its instances come
from an external source but, as far as reasoning and querying are concerned,
they appear directly specified in OntoDLP.

Thus, in more detail, a virtual class is defined by using the keywords virtual

class followed by its name, and specifying a list of attributes by means of pairs
(attribute-name : attribute-type); while, as previously pointed out, its instances
are defined by means of rules, which contain some special predicates that allows
one to access the original database tables. For example, we model the branch



IX

entity as follows:

virtual class branch(name :string , city :string , assets : integer){
f(BN) : branch(name :BN , city :BC , assets :A) :−

[db1, ”SELECT branch-name AS BN , branch-city AS BC , assets AS A
FROM branch ”]}

Note how the rule acts as mapping between the data contained in table branch
and the instances of class branch by exploiting a new type of atom (called SQL
atom) which contains an SQL query. More in detail, a SQL atom consists of a
pair [db object identifier, sql query] enclosed in square brackets. The db object
identifier plays a crucial role, because identifies the database on which the sql
query will be performed. As a matter of fact, data sources are specified directly
in OntoDLP as instances of the built-in class dbSource as follows:

db1 : dbSource(connectionURI :“http : //mydb.mysite.com”, user :“myUser”,
password :“myPsw”).

This statement is automatically recognized, since the system automatically pro-
vides those declarations:

class externalSource .
class dbSource isa {externalSource}(connectionURI :string , user :string ,

password :string).

Note that such a mechanism allows to build an ontology starting from one
or more databases, just specifying more dbSources. Moreover, this scheme is
sufficiently general to be (in the future) extended also to access other kind of
sources beside databases.

An important issue to be better described in the above example regards the
way how object identifiers for virtual class instances are built. First of all, note
that while the database stores values, ontologies manage instances each of which
is uniquely identified by an object identifier, which is not merely a value. This is
the well-known impedance mismatch problem. We provide a specific mechanisms
for facing this problem, in which values appearing in the databases are kept,
someway, distinct from object identifiers appearing in the ontology. To this end,
all the instances of a virtual class are identified by means of a functional object
identifier that is suitably built from data values stored at the databases. In our
example, the head of the mapping rule contains the functional term f(BN), that
builds, for each instance of branch, a functional object identifier composed of the
functor f containing the value of the name attribute stored at the table branch.2

2 Note that name is a key for table branch. Since object identifiers in OntoDLP
uniquely identify instances, it is preferable to exploit only keys for defining func-
tional object identifiers. This simple policy ensures that we will obtain an admissible
ontology; however, in order to obtain the maximum flexibility, the responsibility of
writing a “right” ontology mapping is left to the ontology engineer.



X

In practice, if the branch table stores a tuple (Spagna, Rome, 1000000), then
the associated instance in the ontology will be:

f(Spagna) : branch(name :Veneto, city :Rome, assets :1000000 )

In this way we build the functional object identifier f(Spagna) starting from
the data value Spagna, keeping data values alphabet distinct from the one of
functional object identifiers.

We say that a virtual class declared by means of SQL atoms is in sql notation,
but we provided, in addition, a more direct notation for accessing database
tables, called logical notation.

In particular, the virtual class branch can be equivalently defined as follows:

virtual class branch(name :string , city :string , assets : integer){
f(BN) : branch(name :BN , city :BC , assets :A) :−

branch@db1(branch-name :BN , branch-city :BC , assets :A).}

The logical notation differs from the sql one by using sourced atoms in replac-
ing of SQL atoms. A sourced atoms consist of a name (branch) that identifies a
table ”at” (@) a specific database source (db1 ), in addition to a list of attribute-
names (that must match those in the table) linked to values or variables.

Hereafter, we will use the logical notation in all the examples of virtual classes
and virtual relations.

The next entity we focus on is customer, for dealing with it we define another
virtual class as follows:

virtual class customer(ssn :string ,name :string , street :string , city :string){
c(SSN) : customer(ssn :SSN ,name :N , street :S , city :C ) :−

customer@db1(social-security :SSN , customer -name :N , customer -street :S ,
customer -city :C ).}

Note that, in this case we used the functional term c(SSN) in order to assign
to each instance a suitable functional object identifier built on the social -security
attribute value. Actually, we use one fresh functor for each virtual class; in this
way, we are sure that functional object identifiers, belonging to different classes,
are distinct. In our example, the customer and the branch class instances, are
thus made disjoint. In fact, the former uses the functor f , while the latter uses
the functor c.

Following the same methodology, we can define a virtual class for the loan
entity:

virtual class loan(number : integer , loaner :branch, amount : integer){
l(N) : loan(number :N , loaner : f (L), amount :A) :−

loan@db1(loan-number :N , branch-name :L, amount :A).}

The above examples is slightly different from the ones so far illustrated. In
fact, the loan class has an attribute (loaner) of type branch, which is a virtual
class too. In this case we have to carefully deal with functional terms in order
to ensure referential integrity. As shown above in our example, we face this
conditions by properly using functional object identifiers. Note in fact that the



XI

mapping uses the functional term f(L) to build values for the loaner attribute
(rule’s head of the loan virtual class).

Basically, since the branch class use the functor f to build its object identi-
fiers, then we also use the same functor where an object identifier of branch is
expected. In this way, we maintain referential integrity constraints unchanged
at the ontology level, achieving a consistency-safe results.

In the next example we stress the above idea while modeling the payment
entity:

virtual class payment(ref -loan : loan,number : integer , payDate :date,
amount : integer){

p(l(L), N) : payment(ref -loan : l(L),number :N , payDate :D , amount :A) :−
payment@db1(loan-number :L, payment-number :N , payment-date :D ,

payment-amount :A).}

Also in this case we deal with referential integrity constraints by using a
proper functional term l(L) where a loan object identifier is expected (ref -loan
attribute); moreover, since payments are identified by a pair (payment-number,
relaive loan) each instance of payment will be identified by a functional object
identifier with two arguments: one of these is a functional object identifier of
type loan; and, the other is the loan number.

As far as accounts are concerned, we know from the ER-model that they are
specialized in two types: saving-accounts and checking-accounts. This situation
can be easily dealt with in OntoDLP by exploiting inheritance (see Section 2).
Thus, we introduce a virtual class named account as follows:

virtual class account(number : integer , balance : integer).

and, in addition, we provide two virtual classes savingAccount and checkingAc-
count both subclasses of account which contain the mappings with the corre-
sponding database tables:

virtual class savingAccount isa {account}(interestRate : integer){
acc(N) : savingAccount(number :N , balance :B , interestRate : I ) :−

saving-account @db1(account-number :N , balance :L, interest-rate : I ).}

virtual class checkingAccount isa {account}(overdraft : integer){
acc(N) : checkingAccount(number :N , balance :B , overdraft : I ) :−

checking-account @db1(account-number :N , balance :L, overdraft-amount : I ).}

Up to now, we specified all the concepts in the banking domain, but we
miss model relationship between them. For instance, the ER diagram clearly
shows that customers and loans are in relationship through relations borrower
and depositor. To deal with this problem, OntoDLP allows to define also virtual
relations besides virtual classes. Hence, we can directly model both borrower
and depositor as follows:

virtual relation borrower(cust :customer , loan : loan){
borrower(cust :c(C ), loan : l(L)) :−

borrower@db1(customer -social-sec :C , loan-number :L).}



XII

virtual relation depositor(cust :customer , account :account , , lastAccess :date){
depositor(cust :c(C ), account :acc(A), lastAccess :D) :−

depositor@db1(customer -social-sec :C , account-number :A, access-date :d).}

It is worth noting that a virtual relation differs from a virtual class mainly
because the latter does not specify object identifiers for its instances (tuples).
In fact, virtual relations represent some properties that link individuals already
present in the ontology. However, as previously pointed out, we have to care-
fully take into account integrity constrains by properly using functional object
identifiers.

4 Virtual Entities Implementation

In this Section we describe how virtual classes and virtual relations have been
implemented into the OntoDLV system. To this end, we first describe the gen-
eral architecture of the system, and then we detail the modules that have been
introduced/extended for dealing with the new features. We refrain from giving
an in-depth description of all technical details underlying the implementation of
OntoDLV, rather we present the main new features of the system.

4.1 OntoDLV Architecture

OntoDLV is a complete framework that allows one to specify, navigate, query
and perform reasoning on OntoDLP ontologies.

The system architecture of OntoDLV, depicted in Figure 2, can be divided
in three abstraction layers. The lowest layer, named OntoDLV core contains
the components implementing the main functionalities of the system; above it,
the Application Programming Interface (API) act as a facade for supporting for
the development of applications based on the core; while the Graphical User
Interface (GUI) is the end-user interface of the system.

In turn, the OntoDLV core is made of three submodules, namely: Persistency
Manager, Type Checker, and Rewriter. The Persistency Manager provides all the
methods needed to store and manipulate the ontology components. In particular,
this module of the system is able to deal with large distributed ontologies. Indeed,
ontologies can be stored transparently in a number of text files and/or database
management systems, possibly distributed across several machines.

Text files in OntoDLP format are analyzed by the Parser module that builds
in main memory an image of the ontology components it recognizes; while, the
DB Manager module is able to manipulate ontology entities that are imported
into the system and stored in mass-memory by exploiting relational databases.
In order to deal with virtual classes and virtual relations, we introduced a new
submodule of the persistency manager, called Virtual Entity Manager, which
will be described more in detail in the next subsection.

The Persistency Manager builds a global view of the distributed ontology
which can be then exploited by the other components of the kernel, namely:
Type Checker and Rewriter.



XIII

Fig. 2. The OntoDLV architecture.

The Type Checker module verifies the admissibility of an ontology by exploit-
ing a number of type checking routines. It is important to say that, if the loaded
ontology contains some admissibility problem (e.g., a class is declared twice)
the type checker builds a precise description of the problem. This information
can be exploited by external applications, and in particular the user interface
of OntoDLV relies on this feature for helping the ontology design during the
development process.

The Rewriter module translates OntoDLP ontologies, axioms, reasoning mod-
ules and queries to an equivalent ASP program [3] which, in the general case
runs on the DLV system [9]. DLV is a state-of-the art ASP system that has
been shown to perform efficiently on both hard and “easy” (having polynomial
complexity) problems. Moreover, if the rewritten program is stratified and non
disjunctive, then the evaluation is efficiently carried out on mass memory by
exploiting a specialized version of DLV, called DLVDB [?]. This feature has been
purposely introduced to implement in an efficient way virtual classes and virtual
relations. To this end, the original rewriter of OntoDLV has been extended to
deal with the new features as described in the next subsection.

Finally, we recall that third parties are allowed for developing their own
knowledge-based applications on top of OntoDLV by exploiting a rich Appli-
cation Programming Interface: the OntoDLV API [13]. Moreover, the end user
exploits the system through an easy-to-use and intuitive visual development en-
vironment called GUI (Graphical User Interface), which is built on top of the
OntoDLV API. The OntoDLV GUI was designed to be simple for a novice to
understand and use, and powerful enough to support experienced users.

4.2 Extension of the OntoDLV core: Virtual Entity Manager and

New Rewriter

The implementation of virtual classes and virtual relation has been carried out
by properly improving the Rewriter module and by adding a new submodule
of the Persistency Manager, namely: the Virtual Entity Manager. The latter is
in charge to make available suitable methods form defining, manipulating and
storing both virtual classes and relations definitions.



XIV

More in detail, the Virtual Entity Manager implements two different usage
modalities for virtual entities, that we call off-line and on-line modes. The first
consists of materializing in OntoDLV the instances of virtual entities according
with their respective mapping rules. Basically, a suitable routine performs the
SQL queries on the proper database and each tuples of the result set is stored into
the internal data structures (basically, instances are stored into the existing DB
manager module). The off-line mode is preferable when one wants to migrate the
database into an ontology, or when parts of a proprietary database are one-time
granted to third parties. In fact, once the materialization is obtained, the source
database can be disconnected, since the data are stored into the OntoDLV persis-
tency manager. Obviously, depending on database size, instance materialization
could be time-consuming or even unpractical and, in addition, one may want
keep the information in the database (which is accessed by legacy applications)
in order to deal always with “updated” information. In this case the on-line
mode is preferable, in which queries are performed directly at the sources. In
fact, our implementation allows to efficiently perform reasoning/querying tasks
directly on databases, with a very limited usage of main-memory. This can be
achieved by exploiting DLVDB [?], a specialized version of DLV that addresses
the problem of reasoning on massive amounts of (possibly distributed) data.

In order to integrate DLVDB in OntoDLV we extended the Rewriter module
to generate the mapping statements that DLVDB requires. In fact, to properly
carry out the program evaluation, it is necessary to specify the mappings between
input and output data and program predicates. For a better understanding, in
the following we show which mappings are needed to rewrite the virtual class
branch. We recall that the branch definition is:

virtual class branch(name :string , city :string , assets : integer){
f(BN) : branch(name :BN , city :BC , assets :A) :−

branch@db1(branch-name :BN , branch-city :BC , assets :A).}

Then the following directives for DLVDB are generated by the new rewriter:

USEDB “http : //mydb.mysite.com”:myUser:myPsw.

USE branch (branch-name, branch-city , assets)

MAPTO branchPredicate (varchar,varchar,integer).

The above directive specifies the database source (USEDB) on which the
SQL query will be performed. Moreover, the listed attributes of the table branch
(USE) are mapped (MAPTO) on the logic predicate branchPredicate. In this
case, branchPredicate is the predicate name used internally to rewrite in standard
ASP the class branch.

Note that, for obtaining the integration of a legacy database system we dealt
with several non-trivial technical problems that are mainly due to the different



XV

ways in which different DBMSs store/represent data.3 However, we refrain from
reporting them here, mainly because of their inherent technical nature.

5 Conclusion and Related Work

In this paper we proposed a solution that allows one to “lift” an existing database
to an ontology. The result is the natural combination of the advantages of an on-
tology language (clean high-level view of the information and powerful reasoning
capabilities) with the efficient exploitation of a large already-existent databases.

This has been obtained by properly extending the OntoDLV and system by
means of virtual classes and virtual relations. The new modeling constructs allow
the knowledge engineer for defining the instances of classes and relations of an
enterprise ontology by means of special logic rules, which act as a mapping from
the information stored in database tables to concept instances. In this way, the
database is kept and the possibly already-existing applications can still work
on it, but the user can take profit of the new ontological view of the data, and
he/she can exploit the powerful reasoning mechanisms of the OntoDLV system
for consistency checking, knowledge discovery, and other advanced knowledge-
based tasks.

As a matter of fact, the problem of linking ontology to databases is not new [2]
and has been studied also for other ontology languages. For instance, in [14] a set
of pre-existing data sources is linked to the description logic DL-LiteA. In this
approach, a very similar solution for creating object identifiers form database
values (which exploits function symbols) is used and, query answering on the
obtained ontology is very efficient/scalable (it can be performed in LogSpace
in the size of the original database). This makes the solution proposed in [14]
very effective when dealing with large databases, and complexity-wise cheaper
than our approach. However, the language of OntoDLV is much more expressive
than DL-LiteA. Indeed, OntoDLP can express in a natural way more complex
reasoning tasks on the ontology, which can be very useful for an enterprise, like
e.g. solving an instance of the team building problem.4

References

1. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199–220

2. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS ’02: Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, New York, USA, ACM (2002) 233–246

3 For example, there are several strings representation formats (quoted, unquoted,
system reserved chars, etc.) or several different date types. Not all DBMS vendors
adopt the same representation, so our routine must ”understand” different formats
and convert them properly according with the OntoDLV data-type system.

4 Which amounts to finding a team of employees which satisfies some constraints on
a project, like the overall budget, the maximum number of members, and so on.



XVI

3. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The
DLV+ System. Journal of Applied Logics 5 (2007) 545–573

4. Dell’Armi, T., Gallucci, L., Leone, N., Ricca, F., Schindlauer, R.: OntoDLV: an
ASP-based System for Enterprise Ontologies. In: Proceedings ASP07 - Answer Set
Programming: Advances in Theory and Implementation. (2007)

5. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. NGC 9 (1991) 365–385

6. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the
A-Prolog perspective . AI 138 (2002) 3–38

7. Minker, J.: Overview of Disjunctive Logic Programming. AMAI 12 (1994) 1–24
8. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22 (1997)

364–418
9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:

The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7

(2006) 499–562
10. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.

In: Foundations of Deductive Databases and Logic Programming. Washington DC
(1988) 89–148

11. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and
Logic Programs. In: Foundations of Deductive Databases and Logic Programming.
(1988) 193–216

12. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer
Science Press (1989)

13. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for
an ASP-based Ontology Language. In: Proceedings of the Workshop on Software
Engineering for Answer Set Programming (SEA’07). (2007) 56–70

14. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking Ontologies to Data. Journal on Data Semantics (2008) 133–173


