
Increasing Parallelism while Instantiating ASP
Programs⋆

F. Calimeri, S. Perri, and F. Ricca

Dipartimento di Matematica, Università della Calabria, 87036 Rende (CS), Italy
{calimeri, perri, ricca}@mat.unical.it

Abstract. One of the most hard tasks performed by Answer Set Programming
(ASP) systems is instantiation, which consists of generating variable-freepro-
grams equivalent to those given as input. The efficiency of this task is crucial
for ASP systems performance especially in case of real-world applications where
huge inputs are processed.
We recently proposed a method that exploits the capabilities of multi-processor
machines for the instantiation. This method confirmed to be effective especially
when dealing with programs consisting of many rules. Here, we report some pre-
liminary results on a rewriting-based strategy that makes the existing technique
exploitable even in case of programs with few rules.

1 Introduction

In the last few years, multi-core/multi-processor architectures become standard, thus
making Symmetric MultiProcessing (SMP) [1] common also forentry-level systems
and PCs. In SMP architectures two or more identical processors connect to a single
shared main memory, enabling simultaneous multithread execution. Such technology
might be profitably exploited also in the field of Answer Set Programming (ASP): in-
deed, recent applications of ASP in different emerging areas (see e.g., [2–8]), have
evidenced the practical need for faster and scalable ASP systems.

ASP is a declarative approach to programming proposed in thearea of nonmono-
tonic reasoning and logic programming [9–15] which features a high declarative nature
combined with a relatively high expressive power [16, 17]; unfortunately, this comes at
the price of a high computational cost. The kernel modules ofASP systems work on a
ground instantiation of the input program. Thus, an input programP first undergoes the
so-called instantiation process, which produces a programP ′ semantically equivalent to
P, but not containing any variable. This phase is computationally very expensive; thus,
having an efficient instantiation procedure is, in general,a key feature of ASP systems.

In [18] we proposed a technique for the parallel instantiation of ASP programs,
allowing the performance of instantiators to be improved byexploiting the power of
multiprocessor computers. The technique takes advantage of some structural proper-
ties of input programs in order to reduce the usage of mutex-locks [1], and thus the

⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni dellaProgrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”



time spent by concurrency-control mechanisms. The strategy focuses on two different
aspects of the instantiation process: on the one hand, it examines the structure of the in-
put programP, splits it into modules and, according to the interdependencies between
the modules, decides which of them can be processed in parallel; on the other hand,
it parallelizes the evaluation within each module. The proposed strategy has been im-
plemented into the instantiator module of the ASP system DLV[16], thus obtaining a
parallel ASP instantiator. This new system is effective especially in the evaluation of
programs consisting of several rules with a large amount of input data [18].

Here we present the basic principles concerning a rewriting-based strategy that aims
at improving the system performance even when dealing with programs consisting of
few rules. Basically, input programs are rewritten in such away that the instantiation of
each rule is split into different jobs that can be done in parallel. Results of a preliminary
experimental activity are also presented.

2 Parallel Instantiation of ASP Programs

In this Section the parallel instantiation algorithm of [18], which relies on the DLV
(“standard”) instantiation procedure, is briefly described. A detailed discussion about
the DLV instantiator and the details of the parallel instantiation technique are out of the
scope of this short paper; for further insights we kindly refer the reader to [16, 18, 19].

Roughly, the instantiation module of DLV splits up a given programP into sub-
programs calledmodules. Each of these modules corresponds to a strongly connected
component (SCC) of a particular graph, calleddependency graph (GP ), which, intu-
itively, describes how predicates depend on each other. TheDLV instantiator processes
them, one at a time, according to a (partial) ordering induced by GP , which ensures
that all data needed for the instantiation of a module have been already generated by the
instantiation of the modules preceding it. A procedure called InstantiateComponent is
in charge of instantiating modules, while a procedure called InstantiateRule builds all
the ground instances of a given ruler. A single call toInstantiateRule is sufficient for
completely evaluating non-recursive rules, while recursive ones are processed several
times according to a semi-naı̈ve evaluation technique [20].

The procedure presented in [18] combines two strategies: the first one for the paral-
lel evaluation of different modules, while the second for the concurrent instantiation of
rules within a module. Both strategies avoid the use of mutex-locks: the former by prop-
erly choosing the modules to be evaluated in parallel; the latter by suitably parallelizing
each iteration of the semi-naı̈ve algorithm. The idea is that if there are no two threads in
read/write (nor write/write) conflict on the same data structure, then no synchronization
is needed. This allows one to drastically reduce the so-called parallel overhead.

Parallelizing the Program Instantiation. The parallel instantiation of an input pro-
gramP is based on classical producer-consumers pattern. Amanager thread (producer)
identifies the components that can be processed at a given time, and delegates their
instantiation to a number ofinstantiator threads (consumers). The choice of the com-
ponents to be processed in parallel is made according to the above-mentioned partial
ordering. Intuitively, a componentC from the bunch of components to be instantiated



is given by the manager to the instantiators only if all the information needed has al-
ready been computed.

Parallelizing the Instantiation of a Program Module. Within a single module, each
rule is processed by one thread. First, all non-recursive rules are concurrently evaluated,
then, as soon as all of them are done, recursive ones are processed. In particular, at
the end of each single iteration of the semi-naı̈ve algorithm, instantiators synchronize
in such a way that common structures (like, e.g. current partial interpretation) can be
safely updated by the manager, and next iteration starts.

3 Parallelization of Rule Instantiation: Ideas and Experiments

The technique described above makes parallel the executionof two different steps of the
instantiation process: the evaluation of program modules and the instantiation of rules
within each module. However, it is not fully exploitable in case of programs with few
components and few rules. Consider, for instance, the following disjunctive encoding
for the well-known 3-Colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– col(X, C), col(Y, C), edge(X, Y ).

Predicatesnode andedge represent the input graph; rule(r) guesses the possible
colorings of the graph, and the constraint(c) imposes that two adjacent nodes cannot
have the same color. In this case, the technique proceeds by first instantiatingr, and
then by processing the constraintc only once the extension ofcol has been computed.

Thus, such encoding does not allow the existing technique tomake the evaluation
parallel at all. However, as it is easy to see, one may providedifferent encodings (with
more rules) for the same problem, which are more amenable forthe technique. In gen-
eral, this would require the user to knowhow the evaluation process work, while writing
a program: clearly, such a requirement is not desirable for adeclarative system. Nev-
ertheless, an automatic rewriting of the input program intoan equivalent one, whose
evaluation can be made more parallel, could make transparent this optimization process
to the user. For instance, the following is an alternative encoding for the 3-Colorability
problem which can be obtained by automatically rewriting the original one:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c1) :– col(X, C), col(Y, C), edge1(X, Y ).
(c2) :– col(X, C), col(Y, C), edge2(X, Y ).

The set of edges issplit up into two (equally sized) subsets, represented by predi-
catesedge1 andedge2. The evaluation of constraints(c1) and(c2) is equivalent to the
evaluation of the original constraintc, but the computation now can be carried out in
parallel by two different instantiators. Obviously, this rewriting strategy can be straight-
forwardly extended for allowing more than two instantiators to work in parallel.

This rewriting technique somewhat coincides with the so-called Or-parallelism [21–
23], which is here simulated by splitting obtained via rewriting, without a drastic and
involved modification of a system implementation. In general, this idea allows one to
“split” any encoding; but there are different, sometimes many, ways to rewrite a pro-
gram. For instance, another possible encoding for 3-Colorability could be obtained by



splitting predicatecolor into color1 . . . colorn.1 Or, if possible, one can also consider
to split also two (or more) body predicates, like bothcolor andedge; in this case, the
rewritten program requires also a number of rules, the body of each containing a join be-
tweencolori andedgej , 1 ≤ i, j ≤ n. The choice of the most convenient is not trivial,
and must be made according to several factors. For instance,the instantiation exploits,
for the evaluation of each rule, clever techniques based on join ordering [20, 24] and
backjumping [25]. A “bad” split might reduce or neutralize the benefits provided by
these techniques, thus making the overall time consumed by the parallel evaluation not
optimal (and, in some corner case, even worse than the time required to instantiate the
original encoding). Intuitively, the join ordering techniques establish the body order ac-
cording to several facts, as the (estimated) size (number ofinstances) of body predicates.
While rewriting a ruler, according to the split of a body predicatep into p1, . . . , pn, a
number of rulesr1, . . . , rn is obtained with the same shape asr, but with body pred-
icatesp1, . . . , pn smaller in size w.r.t.p. Thus, the body orderings ofr1, . . . , rn may
differ from the one ofr, possibly significantly affecting the instantiation time.These
considerations are confirmed by some experiments reported in the following section.

Experiments. In order to check the viability of the rewriting for increasing paral-
lelism and to evaluate the effects of different splits on performance, we have carried
out some preliminary experiments. In particular, we considered three well-known prob-
lems, whose standard encodings in disjunctive ASP are not suitable for parallel eval-
uation with the technique of [18], namely 3-Colorability, Reachability (compute the
transitive closure of a given graph), and Same Generation (given a parent-child rela-
tionship, i.e. a tree, find pairs of persons belonging to the same generation). For each
problem we analyzed different splits, but for space reason we refrain from reporting the
corresponding encodings here.

We assessed our encodings by exploiting the parallel instantiator of [18] on a ma-
chine equipped with two Intel Xeon HT (single core) processors clocked at 3.60GHz.
In particular we compared a single-threaded grounding engine (ST in the table) against
a multi-threaded grounding engine (MT ).2 Table 1 reports, for each problem, the aver-
age instantiation time spent by the two engines (each experiment has been repeated five
times), for two different instances. For each problem we tested the standard encoding
against two different rewritten programs; these are based on the split of predicatesedge

and color, respectively, for 3-Colorability, andedge and node for Reachability; for
Same Generation we split onedge and considered two different body orderings. The
results clearly show thatMT always outperfomsST while instantiating split encod-
ings, with a gain close to 50% (the best one can obtain from a two-processor machine),
while, as expected, the standard encodings do not enjoy any gain. Moreover, as dis-
cussed before, different splits produce very different behaviors. Indeed, while the two
splits for Reachability lead to comparable results, for 3-Colorability and Same Genera-
tion the scenario changes. For instance, splittingcolor instead ofedge in 3-Colorability

1 Note that, differently fromedge, color is not an input predicate; splitting on it requires to split
the predicates it depends on and generate new rules accordingly.

2 The maximum number of allowed concurrent instantiator threads was setto the number of
simultaneous (i.e., executed in a different CPU) threads/processes allowed by the hardware.



3Colorability Reachability Same Generation
NoSplit Edge Color NoSplit Edge Node NoSplit Edge1 Edge2

ST 46.4 45.3 202.5 15.8 14.3 14.7 45.11 377.9 22.9
MT 46.5 23.6 104.5 15.6 7.8 8.2 45.20 197.9 15.6

ST 124.2 128.6 544.3 375.2 272.7 281.7 2680.131996.8 449.5
MT 129.4 66.6 278.1 374.3 139.9 144.1 2674.816369.1 274.9

Table 1. Average Grounding Times (s).

nullifies the advantages of parallel computation, and the overall time becomes higher
than the one required by the original encoding. In addition,the results for Same Gen-
eration clearly show how a split can interfere with the join ordering technique, thus
leading to unexpected side-effects: splittingedge caused a noticeable worsening (col-
umnEdge1 of Table1), but a more deep analysis allowed to discover thatthe times can
be drastically reduced by simply changing the body ordering(columnEdge2).

Summarizing, the splitting strategy produces encodings that fully enjoy the parallel
technique (MT gets a 50% off againstST ); importantly, by carefully choosing the pred-
icate(s) to split, the technique presents noticeable gainswhen compared to non-parallel
instantiation (MT with best split halves times againstST with original encoding).

Conclusion Preliminary experiments confirmed that the “split” rewriting is viable, but
cannot be applied trivially. We plan to develop heuristics that allow for selecting the
best predicate to split, in order to implement a smart rewriter that can be seamlessly
integrated in our parallel instantiator. This will lead to take further advantage of multi-
processing, especially in the case of program encodings containing very few rules.

References

1. Stallings, W.: Operating systems (3rd ed.): internals and design principles. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)

2. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

3. Lembo, D., Lenzerini, M., Rosati, R.: Source Inconsistency and Incompleteness in Data
Integration. In: Proceedings of the Knowledge Representation meets Databases Interna-
tional Workshop (KRDB-02), Toulouse France, CEUR Electronic Workshop Proceedings
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-54/
(2002)

4. Soininen, T., Niemelä, I.: Developing a Declarative Rule Language for Applications in Prod-
uct Configuration. In Gupta, G., ed.: Proceedings of the 1st International Workshop on
Practical Aspects of Declarative Languages (PADL’99). Volume 1551 of Lecture Notes in
Computer Science., Springer (1999) 305–319

5. Aiello, L.C., Massacci, F.: Verifying security protocols as planning inlogic programming.
ACM Transactions on Computational Logic2(4) (2001) 542–580



6. Bertino, E., Mileo, A., Provetti, A.: User Preferences VS Minimality in PPDL. In Buccafurri,
F., ed.: Proceedings of the Joint Conference on Declarative Programming APPIA-GULP-
PRODE 2003. (2003) 110–122

7. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In Baral, C.,
Greco, G., Leone, N., Terracina, G., eds.: Logic Programming and Nonmonotonic Reason-
ing — 8th International Conference, LPNMR’05, Diamante, Italy. Volume3662 of Lecture
Notes in Computer Science., Springer Verlag (2005) 317–329

8. Costantini, S., Tocchio, A.: The dali logic programming agent-oriented language. In Alferes,
J.J., Leite, J., eds.: Proceedings of the 9th European Conferenceon Artificial Intelligence
(JELIA 2004). Volume 3229 of Lecture Notes in AI (LNAI)., SpringerVerlag (2004) 685–
688

9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
New Generation Computing9 (1991) 365–385

10. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems22(3) (1997) 364–418

11. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV
System. In Minker, J., ed.: Logic-Based Artificial Intelligence. KluwerAcademic Publishers
(2000) 79–103

12. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: Proceedings of the 16th Interna-
tional Conference on Logic Programming (ICLP’99), Las Cruces, New Mexico, USA, The
MIT Press (1999) 23–37

13. Marek, V.W., Truszczýnski, M.: Stable Models and an Alternative Logic Programming
Paradigm. In Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S., eds.: The Logic
Programming Paradigm – A 25-Year Perspective. Springer Verlag (1999) 375–398

14. Baral, C.: Knowledge Representation, Reasoning and DeclarativeProblem Solving. Cam-
bridge University Press (2003)

15. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog
perspective . Artificial Intelligence138(1–2) (2002) 3–38

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

17. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys33(3) (2001) 374–425

18. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of ASP
Programs. Journal of Algorithms in Cognition, Informatics and Logic (2008) To appear.
Available athttp://dx.doi.org/10.1016/j.jalgor.2008.02.003.

19. Faber, W., Leone, N., Perri, S., Pfeifer, G.: Efficient Instantiation of Disjunctive Databases.
Technical Report DBAI-TR-2001-44, Institut für Informationssysteme, Technische Univer-
sität Wien, Austria (2001) Online athttp://www.dbai.tuwien.ac.at/local/
reports/dbai-tr-2001-44.pdf.

20. Ullman, J.D.: Principles of Database and Knowledge Base Systems.Computer Science Press
(1989)

21. Clark, K.L., Gregory, S.: Parlog: Parallel Programming in Logic. ACM Transactions on
Programming Language Systems8(1) (1986) 1–49

22. Ramakrishnan, R.: Parallelism in Logic Programs. Annals of Mathematics and Artificial
Intelligence3(2–4) (1991) 295–330

23. Leone, N., Restuccia, P., Romeo, M., Rullo, P.: Expliciting Parallelism in the Semi-Naive
Algorithm for the Bottom-up Evaluation of Datalog Programs. Database Technology4(4)
(1993) 245–158



24. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiatorsby Join-Ordering Meth-
ods. In Eiter, T., Faber, W., Truszczyński, M., eds.: Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria. Volume 2173 of
Lecture Notes in AI (LNAI)., Springer Verlag (2001) 280–294

25. Leone, N., Perri, S., Scarcello, F.: BackJumping Techniques for Rules Instantiation in the
DLV System. In: Proceedings of the 10th International Workshop on Non-monotonic Rea-
soning (NMR 2004), Whistler, BC, Canada. (2004) 258–266


