I ncreasing Par allelism while | nstantiating ASP
Programs*

F. Calimeri, S. Perri, and F. Ricca

Dipartimento di Matematica, Univeraidella Calabria, 87036 Rende (CS), Italy
{calineri, perri, ricca}@mt.unical.it

Abstract. One of the most hard tasks performed by Answer Set Programming
(ASP) systems is instantiation, which consists of generating variablepfree
grams equivalent to those given as input. The efficiency of this taskutsatr

for ASP systems performance especially in case of real-world applicatibere
huge inputs are processed.

We recently proposed a method that exploits the capabilities of multi-prcess
machines for the instantiation. This method confirmed to be effectiveciediye
when dealing with programs consisting of many rules. Here, we reporé pre-
liminary results on a rewriting-based strategy that makes the existing teghniq
exploitable even in case of programs with few rules.

1 Introduction

In the last few years, multi-core/multi-processor ardttitees become standard, thus
making Symmetric MultiProcessing (SMP) [1] common also datry-level systems
and PCs. In SMP architectures two or more identical proecessannect to a single
shared main memory, enabling simultaneous multithreadutia. Such technology
might be profitably exploited also in the field of Answer Sedbgtamming (ASP): in-
deed, recent applications of ASP in different emerging au(see e.g., [2-8]), have
evidenced the practical need for faster and scalable ASBrags

ASP is a declarative approach to programming proposed i@ of nonmono-
tonic reasoning and logic programming [9-15] which feawaédnigh declarative nature
combined with a relatively high expressive power [16, 1 Tfantunately, this comes at
the price of a high computational cost. The kernel module&S#® systems work on a
ground instantiation of the input program. Thus, an inpogpam@ first undergoes the
so-called instantiation process, which produces a progtasemantically equivalent to
P, but not containing any variable. This phase is computatipivery expensive; thus,
having an efficient instantiation procedure is, in generéey feature of ASP systems.

In [18] we proposed a technique for the parallel instargiatbf ASP programs,
allowing the performance of instantiators to be improvedeploiting the power of
multiprocessor computers. The technigue takes advantagente structural proper-
ties of input programs in order to reduce the usage of mudeksl [1], and thus the

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni deitagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresemntazith conoscenza:
estensioni e tecniche di ottimizzazione.”

time spent by concurrency-control mechanisms. The stydtemises on two different
aspects of the instantiation process: on the one hand,ntiera the structure of the in-
put programpP, splits it into modules and, according to the interdepentsnbetween
the modules, decides which of them can be processed in ga@tl the other hand,
it parallelizes the evaluation within each module. The pemal strategy has been im-
plemented into the instantiator module of the ASP system [P16], thus obtaining a
parallel ASP instantiator. This new system is effectiveeegdly in the evaluation of
programs consisting of several rules with a large amoumntit data [18].

Here we present the basic principles concerning a rewrliged strategy that aims
at improving the system performance even when dealing witlynams consisting of
few rules. Basically, input programs are rewritten in suetes that the instantiation of
each rule is split into different jobs that can be done in belrd&Results of a preliminary
experimental activity are also presented.

2 Paralle Instantiation of ASP Programs

In this Section the parallel instantiation algorithm of [1&hich relies on the DLV
(“standard”) instantiation procedure, is briefly descdbA detailed discussion about
the DLV instantiator and the details of the parallel insttiin technique are out of the
scope of this short paper; for further insights we kindl\erehe reader to [16, 18, 19].

Roughly, the instantiation module of DLV splits up a giverogram? into sub-
programs callednodules. Each of these modules corresponds to a strongly connected
component (SCC) of a particular graph, calldsgbendency graph (Gp), which, intu-
itively, describes how predicates depend on each otherDIMeinstantiator processes
them, one at a time, according to a (partial) ordering induzg G, which ensures
that all data needed for the instantiation of a module haee béready generated by the
instantiation of the modules preceding it. A procedureecHlhstantiateComponent is
in charge of instantiating modules, while a procedure dditstantiateRule builds all
the ground instances of a given ruleA single call tolnstantiateRule is sufficient for
completely evaluating non-recursive rules, while reagrsines are processed several
times according to a semi-ive evaluation technique [20].

The procedure presented in [18] combines two strategiedirit one for the paral-
lel evaluation of different modules, while the second far doncurrent instantiation of
rules within a module. Both strategies avoid the use of migeks: the former by prop-
erly choosing the modules to be evaluated in parallel; ttterlay suitably parallelizing
each iteration of the semi-nee algorithm. The idea is that if there are no two threads in
read/write (nor write/write) conflict on the same data stnee, then no synchronization
is needed. This allows one to drastically reduce the sedglérallel overhead.

Parallelizing the Program Instantiation. The parallel instantiation of an input pro-
gram?P is based on classical producer-consumers pattemarfager thread (producer)
identifies the components that can be processed at a given éind delegates their
instantiation to a number ohstantiator threads (consumers). The choice of the com-
ponents to be processed in parallel is made according tobineamentioned patrtial
ordering. Intuitively, a componerit from the bunch of components to be instantiated

is given by the manager to the instantiators only if all thi@imation needed has al-
ready been computed.

Parallelizing the I nstantiation of a Program Module. Within a single module, each
rule is processed by one thread. First, all non-recursiesare concurrently evaluated,
then, as soon as all of them are done, recursive ones arespeatdn particular, at
the end of each single iteration of the semiweaalgorithm, instantiators synchronize
in such a way that common structures (like, e.g. curreniganterpretation) can be
safely updated by the manager, and next iteration starts.

3 Paralldization of Rulelnstantiation: | deas and Experiments

The technique described above makes parallel the exeaiftioi different steps of the
instantiation process: the evaluation of program moduhesthe instantiation of rules
within each module. However, it is not fully exploitable iase of programs with few
components and few rules. Consider, for instance, theviglig disjunctive encoding
for the well-known 3-Colorability problem:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(¢) = col(X,C), col(Y,C), edge(X,Y).

Predicatesiode andedge represent the input graph; rule) guesses the possible
colorings of the graph, and the constrajat imposes that two adjacent nodes cannot
have the same color. In this case, the technique proceedssbynftantiating-, and
then by processing the constrainnly once the extension @bl has been computed.

Thus, such encoding does not allow the existing techniqueake the evaluation
parallel at all. However, as it is easy to see, one may pradiffierent encodings (with
more rules) for the same problem, which are more amenabltédéaechnique. In gen-
eral, this would require the user to kntww the evaluation process work, while writing
a program: clearly, such a requirement is not desirable fbedarative system. Nev-
ertheless, an automatic rewriting of the input program emoequivalent one, whose
evaluation can be made more parallel, could make transpiismptimization process
to the user. For instance, the following is an alternativeoeling for the 3-Colorability
problem which can be obtained by automatically rewriting ¢higinal one:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(c1) = col(X,C), col(Y,C), edgel(X,Y).
(c2) = col(X,C), col(Y,C), edge2(X,Y).

The set of edges isplit up into two (equally sized) subsets, represented by predi-
catesedgel andedge2. The evaluation of constraints;) and(cz) is equivalent to the
evaluation of the original constraiat but the computation now can be carried out in
parallel by two different instantiators. Obviously, thésuriting strategy can be straight-
forwardly extended for allowing more than two instantiatty work in parallel.

This rewriting technique somewhat coincides with the Seed#r-parallelism[21-
23], which is here simulated by splitting obtained via réing, without a drastic and
involved modification of a system implementation. In gehetas idea allows one to
“split” any encoding; but there are different, sometimesypavays to rewrite a pro-
gram. For instance, another possible encoding for 3-Chilitsacould be obtained by

splitting predicateolor into color; . . . color,.* Or, if possible, one can also consider
to split also two (or more) body predicates, like batlior andedge; in this case, the
rewritten program requires also a number of rules, the bédgch containing a join be-
tweencolor; andedge;, 1 < i, j < n. The choice of the most convenient is not trivial,
and must be made according to several factors. For insttre@)stantiation exploits,
for the evaluation of each rule, clever techniques baseaionordering [20, 24] and
backjumping [25]. A “bad” split might reduce or neutralizgetbenefits provided by
these techniques, thus making the overall time consumeklebpdrallel evaluation not
optimal (and, in some corner case, even worse than the tiquéreel to instantiate the
original encoding). Intuitively, the join ordering teckyoies establish the body order ac-
cording to several facts, as the (estimated) size (numbestainces) of body predicates.
While rewriting a ruler, according to the split of a body predicaténto py,...,p,, a
number of rules, ..., r, is obtained with the same shaperadut with body pred-
icatesp, ..., p, sSmaller in size w.r.tp. Thus, the body orderings of,...,r, may
differ from the one ofr, possibly significantly affecting the instantiation tinehese
considerations are confirmed by some experiments repartie ifollowing section.

Experiments. In order to check the viability of the rewriting for increagi paral-
lelism and to evaluate the effects of different splits onfgrenance, we have carried
out some preliminary experiments. In particular, we comsd three well-known prob-
lems, whose standard encodings in disjunctive ASP are niatbdel for parallel eval-
uation with the technique of [18], namely 3-Colorabilitye&hability (compute the
transitive closure of a given graph), and Same Generatimer{ga parent-child rela-
tionship, i.e. a tree, find pairs of persons belonging to tmesgeneration). For each
problem we analyzed different splits, but for space reasenefrain from reporting the
corresponding encodings here.

We assessed our encodings by exploiting the parallel itiatanof [18] on a ma-
chine equipped with two Intel Xeon HT (single core) processocked at 3.60GHz.
In particular we compared a single-threaded groundingren@iT” in the table) against
a multi-threaded grounding engin&/(").? Table 1 reports, for each problem, the aver-
age instantiation time spent by the two engines (each expatihas been repeated five
times), for two different instances. For each problem weetbshe standard encoding
against two different rewritten programs; these are basdtesplit of predicatesdge
and color, respectively, for 3-Colorability, anddge and node for Reachability; for
Same Generation we split arge and considered two different body orderings. The
results clearly show that/T' always outperfoms'T while instantiating split encod-
ings, with a gain close to 50% (the best one can obtain fromoagrecessor machine),
while, as expected, the standard encodings do not enjoy ainy Bloreover, as dis-
cussed before, different splits produce very differentavédrs. Indeed, while the two
splits for Reachability lead to comparable results, for@e€ability and Same Genera-
tion the scenario changes. For instance, splittirigr instead okdge in 3-Colorability

! Note that, differently fronedge, color is not an input predicate; splitting on it requires to split
the predicates it depends on and generate new rules accordingly.

2 The maximum number of allowed concurrent instantiator threads wee $ieé number of
simultaneous (i.e., executed in a different CPU) threads/proceésescby the hardware.

3Colorability Reachability Same Generation
NoSplit‘Edge‘Color NoSplit‘Edge‘Node NoSplit‘ Edgel‘EdgeQ
ST 46.4 45.3 202.5 15.8 14.3 14.7 45.11 377.9 229
MT 46.59 23.6 104.5 156 7.8 8.2 45.20 197.9 15.6
ST 124.2128.6 544.3 375.2272.7281.7] 2680.131996.8 449.5
MT 129.4 66.6 278.1| 374.3139.9144.1| 2674.816369.1 274.9

Table 1. Average Grounding Times (s).

nullifies the advantages of parallel computation, and theral/time becomes higher
than the one required by the original encoding. In additiba,results for Same Gen-
eration clearly show how a split can interfere with the jomdering technique, thus
leading to unexpected side-effects: splittinfye caused a noticeable worsening (col-
umn Edge; of Tablel), but a more deep analysis allowed to discoverthizatimes can
be drastically reduced by simply changing the body ordef@atumn Edges).
Summarizing, the splitting strategy produces encodingsfthly enjoy the parallel
technique (/T gets a 50% off agains$tT’); importantly, by carefully choosing the pred-
icate(s) to split, the technique presents noticeable galren compared to non-parallel
instantiation (/7" with best split halves times againsi” with original encoding).

Conclusion Preliminary experiments confirmed that the “split” rewrdiis viable, but
cannot be applied trivially. We plan to develop heuristicattallow for selecting the
best predicate to split, in order to implement a smart rewtihat can be seamlessly
integrated in our parallel instantiator. This will lead &ié further advantage of multi-
processing, especially in the case of program encodingsicamg very few rules.

References

1. Stallings, W.: Operating systems (3rd ed.): internals and designigleac Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)

2. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, Med®, G., lanni, G., Katka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Stanksg, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and frsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference ondgdament of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 91679

3. Lembo, D., Lenzerini, M., Rosati, R.: Source Inconsistency awgrhpleteness in Data
Integration. In: Proceedings of the Knowledge Representation meetb&x®s Interna-
tional Workshop (KRDB-02), Toulouse France, CEUR Electronic \Wbdp Proceedings
http://sunsite.informatik.rw h-aachen. de/ Publ i cati ons/ CEUR- W5/ Vol - 54/
(2002)

4. Soininen, T., Niemé, |.: Developing a Declarative Rule Language for Applications in Prod-
uct Configuration. In Gupta, G., ed.: Proceedings of the 1st Infierrel Workshop on
Practical Aspects of Declarative Languages (PADL'99). Volumell&6Lecture Notes in
Computer Science., Springer (1999) 305-319

5. Aiello, L.C., Massacci, F.: Verifying security protocols as planningpigjic programming.
ACM Transactions on Computational Log2¢4) (2001) 542-580

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Bertino, E., Mileo, A., Provetti, A.: User Preferences VS Minimality PIR_. In Buccafurri,

F., ed.: Proceedings of the Joint Conference on Declarative &roging APPIA-GULP-
PRODE 2003. (2003) 110-122

. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Syste In Baral, C.,

Greco, G., Leone, N., Terracina, G., eds.: Logic ProgrammingNonmonotonic Reason-
ing — 8th International Conference, LPNMR’05, Diamante, Italy. Volus6é2 of Lecture
Notes in Computer Science., Springer Verlag (2005) 317-329

. Costantini, S., Tocchio, A.: The dali logic programming agent-orétlaieguage. In Alferes,

J.J., Leite, J., eds.: Proceedings of the 9th European ConfeoenAetificial Intelligence
(JELIA 2004). Volume 3229 of Lecture Notes in Al (LNAI)., Springeerlag (2004) 685—
688

. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Biigjunctive Databases.

New Generation Computing(1991) 365-385

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Trartgats on Database
System=2(3) (1997) 364-418

Eiter, T., Faber, W., Leone, N., Pfeifer, G.. Declarative RnobSolving Using the DLV
System. In Minker, J., ed.: Logic-Based Atrtificial Intelligence. Kluweademic Publishers
(2000) 79-103

Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.:céadlings of the 16th Interna-
tional Conference on Logic Programming (ICLP’99), Las CrucemsyMexico, USA, The
MIT Press (1999) 23-37

Marek, V.W., Truszc#yski, M.: Stable Models and an Alternative Logic Programming
Paradigm. In Apt, K.R., Marek, V.W., Truszadzaski, M., Warren, D.S., eds.: The Logic
Programming Paradigm — A 25-Year Perspective. Springer Ver2@9(1375-398

Baral, C.: Knowledge Representation, Reasoning and DeclaRat#em Solving. Cam-
bridge University Press (2003)

Gelfond, M., Leone, N.: Logic Programming and Knowledge Regntation — the A-Prolog
perspective . Artificial Intelligenc&38(1-2) (2002) 3—38

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., P&rj,Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transsicticomputational
Logic 7(3) (2006) 499-562

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity anghEessive Power of Logic
Programming. ACM Computing Surve®8(3) (2001) 374—-425

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism feidtistantiation of ASP
Programs. Journal of Algorithms in Cognition, Informatics and Logi@g0@) To appear.
Available atht t p: / / dx. doi . org/ 10. 1016/ . j al gor. 2008. 02. 003.

Faber, W., Leone, N., Perri, S., Pfeifer, G.: Efficient Ingdion of Disjunctive Databases.
Technical Report DBAI-TR-2001-44, Institufif Informationssysteme, Technische Univer-
sitat Wien, Austria (2001) Online aitt p: // www. dbai . t uwi en. ac. at/ | ocal /
reports/dbai-tr-2001-44. pdf.

Ullman, J.D.: Principles of Database and Knowledge Base Sys@ngputer Science Press
(1989)

Clark, K.L., Gregory, S.: Parlog: Parallel Programming in LogkCM Transactions on
Programming Language SysteB(4) (1986) 1-49

Ramakrishnan, R.: Parallelism in Logic Programs. Annals of Madtiemand Artificial
Intelligence3(2—4) (1991) 295-330

Leone, N., Restuccia, P., Romeo, M., Rullo, P.: Expliciting Parattelisthe Semi-Naive
Algorithm for the Bottom-up Evaluation of Datalog Programs. Databasbntgogy 4(4)
(1993) 245-158

24. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiatgrgoin-Ordering Meth-
ods. In Eiter, T., Faber, W., Truszdzski, M., eds.: Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR'01, Vienna, Aaistfolume 2173 of
Lecture Notes in Al (LNAI)., Springer Verlag (2001) 280-294

25. Leone, N., Perri, S., Scarcello, F.: BackJumping TechniqueRdles Instantiation in the
DLV System. In: Proceedings of the 10th International Workshop on-idonotonic Rea-
soning (NMR 2004), Whistler, BC, Canada. (2004) 258-266

