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Abstract. Most of the Answer Set Programming (ASP) systems are endowed
with an instantiation module, which generates a new program equivalent to the
input one, but not containing variables. The instantiation process may be com-
putationally expensive, especially for solving real-world problems, where large
amounts of data have to be processed: this has been confirmed by recent appli-
cations of ASP in different emerging areas, such as knowledge management or
information extraction/integration, where also scalability has been recognized as
a crucial issue.
In this paper we present a new strategy for the parallel instantiation, that allows
to improve both performances and scalability of ASP systems by exploiting the
power of multiprocessor computers. Indeed, in the last few years, the micropro-
cessors technologies have been moving to multi-core architectures; this makes the
real Symmetric MultiProcessing (SMP) finally available even on non-dedicated
machines, and paves the way to the development of more scalable softwares.
We have implemented such approach into the ASP system DLV, and carried out
an experimental analysis which confirms the validity of the proposed strategy,
expecially for real-world applications.

1 Introduction

ASP is a declarative approach to programming proposed in the area of nonmonotonic
reasoning and logic programming [1–3]. The main advantage of ASP is its high ex-
pressiveness; unfortunately, this comes at the price of a high computational cost, which
has made the implementation of efficient ASP systems a difficult task. Several efforts
have been spent to this end, and, after some pioneering work [4, 5], a number of mod-
ern systems are now available. The most widespread ones are DLV [6], GnT [7], and
Cmodels-3 [8]; many other support various fragments of the ASP language. The ker-
nel modules of ASP systems operate on a ground instantiation of the input program,
i.e. a program that does not contains any variable, but is semantically equivalent to the
original input [9]. Consequently, any given program P first undergoes the so called
instantiation process computing from P an equivalent ground program P ′. This pre-
processing phase is computationally very expensive; thus, having a good and scalable
instantiation procedure is, in general, a key feature of ASP systems.
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Many optimization techniques have been proposed for this purpose [10–12]; nev-
ertheless, performances of instantiators are still not acceptable, especially in case of
real-world problems, where the input data may be huge and also scalability is crucial.
Indeed, the recent application of ASP in different emerging areas, such as knowledge
management or information extraction/integration [13–15], have confirmed the practi-
cal need of more performant and scalable ASP systems.

Besides the other techniques, a technology that might be profitably exploited in the
field of Answer Set Programming (ASP) is Symmetric MultiProcessing (SMP). SMP
is a computer architecture where two or more identical processors connect to a sin-
gle shared main memory resource allowing simultaneous multithread execution. In the
past, only servers and workstations took advantage of it. However, recently, technology
has moved to multi-core/multi-processor architectures also for entry-level systems and
PCs; this permitted to enjoy the benefits of parallel processing on a large scale. These
benefits include better workload balances, enhanced performances, improved scalabil-
ity, not only for systems that run many processes simultaneously, but also for single
(i.e., multithreaded) applications.

In this paper we present a brand new strategy for the parallel instantiation, allowing
to improve both performances and scalability of ASP systems by exploiting the power
of multiprocessor computers. The proposed technique exploits some structural proper-
ties of the input program in order to detect subprograms of P that can be evaluated in
parallel minimizing the usage of concurrency-control mechanisms, and thus minimiz-
ing the “parallel overhead”. We implemented it in an experimental version of the DLV
system, and performed several experiments which confirmed the effectiveness of our
technique especially in the evaluation of real-world problem instances.

The remainder of the paper is structured as follows: in Section 2 we introduce syntax
and semantics of ASP; in Section 3 we briefly describe the instantiation procedures of
DLV system; in Section 4 we present our parallel instantiation algorithm; in Section 5
we report and discuss the results of the experiments carried out in order to evaluate the
proposed technique; in Section 6, eventually, we look at related works and draw the
conclusions.

2 Answer Set Programming

We next provide a formal definition of syntax and semantics of answer set programs.

2.1 Syntax

A variable or a constant is a term. An atom is a(t1, ..., tn), where a is a predicate of
arity n and t1, ..., tn are terms. A literal is either a positive literal p or a negative literal
not p, where p is an atom.

A disjunctive rule (rule, for short) r is a formula

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm. (1)



where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunction
a1 ∨ · · · ∨ an is the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm

is the body of r. A rule without head literals (i.e. n = 0) is usually referred to as an
integrity constraint. A rule having precisely one head literal (i.e. n = 1) is called a
normal rule. If the body is empty (i.e. k = m = 0), it is called a fact.

We denote by H(r) the set {a1, ..., an} of the head atoms, and by B(r) the set
{b1, ..., bk, not bk+1, . . . , not bm} of the body literals. B+(r) (resp., B−(r)) denotes
the set of atoms occurring positively (resp., negatively) in B(r). A Rule r is safe if each
variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not -free (resp., ∨-free) program
is called positive (resp., normal). A term, an atom, a literal, a rule, or a program is
ground if no variables appear in it.

Accordingly with the database terminology, a predicate occurring only in facts is
referred to as an EDB predicate, all others as IDB predicates.

2.2 Semantics

Let P be a program. The Herbrand Universe and the Herbrand Base of P are defined
in the standard way and denoted by UP and BP , respectively.

Given a rule r occurring in P , a ground instance of r is a rule obtained from r
by replacing every variable X in r by σ(X), where σ is a substitution mapping the
variables occurring in r to constants in UP . We denote by ground(P) the set of all the
ground instances of the rules occurring in P .

An interpretation for P is a set of ground atoms, that is, an interpretation is a subset
I of BP . A ground positive literal A is true (resp., false) w.r.t. I if A ∈ I (resp., A 6∈ I).
A ground negative literal not A is true w.r.t. I if A is false w.r.t. I; otherwise not A is
false w.r.t. I .

Let r be a ground rule in ground(P). The head of r is true w.r.t. I if H(r)∩ I 6= ∅.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e., B+(r) ⊆ I
and B−(r)∩ I = ∅) and is false w.r.t. I otherwise. The rule r is satisfied (or true) w.r.t.
I if its head is true w.r.t. I or its body is false w.r.t. I .

A model for P is an interpretation M for P such that every rule r ∈ ground(P) is
true w.r.t. M . A model M for P is minimal if no model N for P exists such that N is a
proper subset of M . The set of all minimal models for P is denoted by MM(P).

Given a program P and an interpretation I , the Gelfond-Lifschitz (GL) transforma-
tion of P w.r.t. I , denoted PI , is the set of positive rules
PI = { a1 ∨ · · · ∨ an :– b1, · · · , bk | a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm

is in ground(P) and bi /∈ I, for all k < i ≤ m}
Let I be an interpretation for a program P . I is an answer set for P if I ∈ MM(PI)

(i.e., I is a minimal model for the positive program PI )[16, 1]. The set of all answer
sets for P is denoted by ANS(P).

3 The DLV Instantiator

In this section we provide a description of the DLV instantiator. Given an input program
P , it efficiently generates a ground instantiation that has the same answer sets as the
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Fig. 1. Dependency and Component Graphs.

full one, but is much smaller in general [6]. Note that the size of the instantiation is a
crucial aspect for the efficiency of ASP systems, since the answer set computation takes
an exponential time in the size of the ground program received as input (i.e., produced
by the instantiator).

In order to generate a small ground program equivalent to P , the DLV instantiator
generates ground instances of rules containing only atoms which can possibly be de-
rived from P , and thus avoiding the combinatorial explosion which can be obtained by
naively considering all the atoms in the Herbrand Base[11]. This is obtained by taking
into account some structural information of the input program, concerning the depen-
dencies among IDB predicates.

We give now the definition the Dependency Graph of P , which, intuitively, de-
scribes how predicates depend on each other.

Definition 1. Let P be a program. The Dependency Graph of P is a directed graph
GP = 〈N, E〉, where N is a set of nodes and E is a set of arcs. N contains a node for
each IDB predicate of P , and E contains an arc e = (p, q) if there is a rule r in P such
that q occurs in the head of r and p occurs in a positive literal of the body of r.

The graph GP naturally induces a partitioning of P into subprograms (also called
modules) which allows for a modular evaluation. We say that a rule r ∈ P defines a
predicate p if p appears in the head of r. A module ofP is the set of rules defining all the
predicates contained in a particular maximal strongly connected component (SCC) of
GP . Intuitively, a module includes (among others) all rules defining mutually dependent
predicates.

Example 1. Consider the following program P , where a is an EDB predicate:

p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not r(X, Y ) q(X) :– a(X)
p(X, Y ) :– q(X), r(X,Y ) r(X,Y ) :– p(X, Y ), s(Y )

The graph GP is illustrated in Figure 1; moreover, the strongly connected components
of GP are {s}, {q} and {p, r}. They correspond to the three following modules:

• { p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not r(X, Y ). }
• { q(X) :– a(X). }
• { p(X,Y ) :– q(X), r(X, Y ). p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not r(X, Y ).

r(X,Y ) :– p(X, Y ), s(Y ). }

It is possible to single out an ordered sequence C1, . . . , Cn of SCC components of
GP (which is not unique, in general) such that the evaluation of the program module



Procedure Instantiate (P : Program; GP : DependencyGraph;
var Π: GroundProgram; var T: SetOfAtoms);

begin
var I: SetOfAtoms;
var C: SetOfPredicates;
T := EDB(P); I = EDB(P); Π := ∅;
while GP 6= ∅ do

Remove a SCC C from GP without incoming edges;
InstantiateComponent(P, C, T, I, Π);

end while
end Procedure;

Fig. 2. The DLV Instantiation Procedure.

corresponding to component Ci depends only on the evaluation of the components Cj

such that i < j (1 ≤ i < n, 1 < j ≤ n). Basically, this follows from the definition
of SCC which corresponds to a maximal subset of mutually dependent predicates. In-
tuitively, this ordering allows one to evaluate the program one module at time, so that
all data needed for the instantiation of a module Ci have been already generated by the
instantiation of the modules preceding Ci.

We sketch now a description of the instantiation process based on this principle,
omitting details on how a single module is grounded and providing a general idea of the
whole process.

The procedure Instantiate shown in Figure 2 takes as input a program P to be in-
stantiated and the dependency graph GP and outputs a set of true atoms T and a set
of ground rules containing only atoms which can possibly be derived from P , such
that ANS(T ∪ Π) = ANS(P). As previously pointed out, the input program P is
partitioned in modules corresponding to the maximal strongly connected components
of the dependency graph GP . Such modules are evaluated one at a time starting from
those that do not depend on other components, according to the ordering induced by the
dependency graph.

More in detail, the algorithm initially creates a new set of atoms I that will contain
the subset of the Herbrand Base relevant for the instantiation. Initially, T = EDB(P),
I = EDB(P), and Π = ∅. Then, a strongly connected component C, which has no
incoming edge, is removed from GP , and the program module corresponding to C is
evaluated by invoking InstantiateComponent which uses an improved version of the
generalized semi-naive technique [17] for the evaluation of (recursive) rules.

Roughly, InstantiateComponent takes as input the component C to be instantiated,
the sets T and I , and for each atom a belonging to C, and for each rule r defining
a, computes the ground instances of r containing only atoms which can possibly be
derived from P . At the same time, it updates both the set T with the newly generated
ground atoms already recognized as true, and the set I with the atoms occurring in the
heads of the rules of Π . The algorithm runs on until all the components of GP have
been evaluated.

It can be shown that, given a program P , the ground program Π ∪ T generated by
the algorithm Instantiate is such that P and Π ∪ T have the same answer sets.



4 The Parallel Instantiation Procedure

In this Section we describe the new instantiation algorithm that computes a ground
version of a given program P by exploiting parallelism. It takes advantage of some
structural properties of the input program P in order to detect the modules that can be
evaluated in parallel without using “mutexes” in the main data structures.

Roughly, the parallel instantiation of the input program P is based on a pattern
similar to the classical producer-consumers problem. A manager thread (acting as a
producer) identifies the components of the dependency graph of P that can be run in
parallel, and delegates their instantiation to a number of instantiator threads (acting
as consumers) that exploit the same InstantiateComponent function introduced in
Section 3.

Once the general idea has been given, we introduce some formal definition in order
to detail the proposed technique. First of all, we define a new graph, called Component
Graph, whose nodes correspond to the strongly connected components of the Depen-
dency Graph GP . Then, we give the definition of a partial ordering among the nodes
of Gc

P . Please note as, with a small abuse of notation, we will indifferently refer to
components of GP and corresponding nodes of the Component Graph.

Definition 2. Given a program P , let GP be the corresponding dependency graph. The
Component Graph of P is a directed labelled graph Gc

P = 〈N,E, lab〉, where N is a
set of nodes, E is a set of arcs, and lab : E → {+,-} is a function assigning to each arc
a label. N contains a node for each (maximal) strongly connected component of GP ; E
contains an arc e = (B,A) if there is a rule r in P such that q ∈ A occurs in the head of
r and p ∈ B occurs in a positive (resp., negative) literal of the body of r; lab(e) =“+”
(resp., lab(e) =“-”).

Definition 3. For any pair of nodes A, B of Gc
P , A precedes B (denoted A ¹ B) if

there is a path in Gc
P from A to B; and A strictly precedes B (denoted A ≺ B), if

A ¹ B and B � A.

Example 2. Consider the program P of Example 1. The component graph of P is il-
lustrated in Figure 1. It easy to see that the node {p, r} precedes {s}, while {q} strictly
precedes {s}.

Basically, this ordering guarantees that a node A strictly precedes a node B if the
program module corresponding to A has to be evaluated before the one corresponding
to B.1

We are now ready to describe the parallel instantiation procedures exploiting this
ordering. As previously pointed out, we make use of some threads: a manager, and a
number of instantiators running the procedures Manager and Instantiator reported
in Figure 3, respectively.

1 Note that the presence of negative arcs in Gc
P only determines a preference among the admis-

sible orderings induced by the dependency graph, thus it does not affect the correctness of the
overall instantiation process.



Procedure Manager (P : Program; Gc
P : ComponentGraph;

var T: SetOfAtoms; var Π: GroundProgram);
begin

var U :SetOfComponents ; var D:SetOfComponents; var R:SetOfComponents;
var I: SetOfAtoms; var C: SetOfPredicates;

D = ∅; R = ∅; U = nodes(Gc
P)

T := EDB(P); I = EDB(P); Π := ∅;
while ( U 6= ∅ )

for all C ∈ U ;
if (canBeRun(C,U , R, Gc

P ))
begin

R = R∪ {C};
Spawn(Instantiator, P, C,U ,R,D, T, I, Π);

end if
end

Procedure Instantiator (P : Program; C: Component; var U : SetOfComponents;
var R: SetOfComponents; var D: SetOfComponents;
var T: SetOfAtoms; var I: SetOfAtoms; var Π: GroundProgram);

begin
InstantiateComponent(P, C, T, I, Π);
D = D ∪ {C};
R = R− {C};
U = U − {C};

end

Fig. 3. The Parallel Instantiation Procedures.

The Manager procedure takes as input both a program P to be instantiated and its
Component Graph Gc

P ; it outputs both a set T of true atoms and a set of ground rules
Π , such that ANS(T ∪Π) = ANS(P).

First of all, the sets T, I , and Π are initialized like in the standard DLV Instantiator.
Moreover, three new sets of components are created: U (which stands for Undone)
represents the components of P that have still to be processed, D (which stands for
Done) those that have already been instantiated, and R (which stands for Running)
those currently being processed.

Initially, D and R are empty, while U contains all the nodes of Gc
P . The manager

checks, by means of function canBeRun described below, whether components in U
can be instantiated. As soon as some C is processable, it is added to R, and a new in-
stantiator thread is spawned in order to instantiate C by exploiting the InstantiateCom-
ponent function defined in Section 3. Once the instantiation of C has been completed,
C is moved from R to D, and deleted from U . The manager thread goes on until all the
components have been processed (i.e., U = ∅).

The function canBeRun, as the name suggests, checks wether a component C can
be safely evaluated (i.e. without requiring “mutexes” in the main data structures) by
exploiting the following definition:
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Definition 4. Let U be the set of components which still have to be processed. We say
that C ∈ U can be run if ∀A ∈ U at least one of the following conditions holds:

(i) C ≺ A;
(ii) C ¹ A and @A′ ∈ U s.t. exists an arc e = (A′, C) of Gc

P with lab(e) =“+”, and
∀K ∈ R, do not exist arcs e′, e′′ of Gc

P such that e′ = (R, C) and e′′ = (C,R).

Basically, this definition ensures that (i) a component C is not evaluated before
all the components strictly preceding C (w.r.t. the partial ordering defined above) have
been processed; and, (ii) if C appears in a cycle of Gc

P then it is selected only if it has
no positive incoming edges and does not directly depend on some currently running
component. The two conditions of Definition 4 checked by function canBeRun guar-
antee the correctness, since they respect the dependencies of GP (as for the standard
instantiation algorithm defined in Section 3).

Moreover, canBeRun singles out components that can be evaluated in parallel with-
out using “mutex” locks in the data structures that implement the sets T and I; this
allows us to save resources and reduce the time spent in lock-contentions. It is easy to
see that two components C1 and C2 are “selected” only if any predicate p occurring in
the body of some rule of C1 does not appear in the head of some rule of C2, and vice
versa. If the data structures implementing the sets T and I properly store the ground
atoms in different containers (i.e., one for each predicate name, as in DLV), then no
“mutex” lock is needed to protect them: during the evaluation of a rule, an instantiator
thread may write in the container of an atom a only when a rule defining a is processed;
thus, it will never write in a location being accessed by another instantiator.

Interestingly, condition (ii) of Definition 4 allows one to run in parallel even compo-
nents appearing in cycles of Gc

P (i.e., components that are, somehow, interdependent).
This can be illustrated by the following example:

Example 3. Consider the Component Graph of Figure 4. All the nodes of the graph are
involved in a cycle; thus, the evaluation of each component is somehow dependent on
the evaluation of each other. However, condition (ii) of Definition 4 allows to select A
to be evaluated first. While A is running, no other component can be processed, because
both conditions (i) and (ii) are violated for all of them. Once the instantiation of A has
ended, component B can be run, because it satisfies condition (ii). At the same time, by
virtue of condition (ii), also components C and D can be run. Then, component E can
be evaluated only when the instantiations of all B, C and D have been completed.

It is important noting that the actual implementation is more involved, but only
because of technical reasons. First of all, the auxiliary control structures (like U , D and
R) are properly protected by “mutex” locks, and the busy waiting is properly avoided.



Finally, we also have to deal with additional structures which allow the user to set the
maximum number of instantiator threads. We do not believe that these technical issues
may help to get a better insight, but they are rather lengthy in description; for this reason,
we refrain from discussing them here.

5 Experiments

In order to consistently evaluate the parallel grounding technique described in Section 4,
we have implemented it as an extension of the DLV system, and performed some ex-
periments. We took into account several problems belonging to different applications,
ranging from classical ASP benchmarks to “real-word” applications.

We have compared the prototype with the official DLV [18] release2 on which it
is based. In addition, we considered the maximum number of concurrent instantiator
threads as a parameter; thus, we deal with the following versions of DLV:

– dl.release: the original DLV system release without parallel grounding;
– dl.thX: the modified DLV system with X indipendent working threads (X ranges

from 1 to 4).

All the binaries have been built with GCC 3.4 (the same used to build the original
DLV release), statically linking the Posix Thread Library.

Experiments have been performed on a machine equipped with two Intel Xeon HT
(single core) CPUs clocked at 3.60GHz with 1 MB of Level 2 Cache and 3GB of RAM,
running Debian GNU Linux (kernel 2.4.27-2-686-smp). This machine is capable of
simultaneously run (i.e., each thread executed on a different processing unit) at most
4 threads; with more, the system performs poorly because of the preemptive thread
scheduling overhead. This has ben confirmed by the experiments; thus, we decided to
omit here the results obtained by allowing more than 4 concurrent instantiator threads.
Limiting to 4 concurrent instantiator threads does not eliminate the effects of preemp-
tion, but, reasonably, they become negligible; indeed, we ran the tests on an “unloaded”
machine, and the operating system always tries to schedule active threads on free CPUs.

Time measurements have been performed by means of the time command shipped
with the above cited version of Debian GNU Linux. Unfortunately, we could not con-
sider the total CPU times3, because, in case of multi-threaded applications, they result
as the sum of the time spent by the process on each processing unit (e.g., when a process
fully exploits simultaneously two processors for 5 minutes, the total reported CPU time
is 10 minutes). We decided to overcome the problem by considering the so called real
time, based on the system wall-clock time. Obviously, this measure is less accurate than
the total CPU time, since it unavoidably includes the time spent by other processes in
the system (even by unrelated operating system routines). In order to obtain more reli-
able information, we have repeated each test three times, and provide here both average
and standard deviation of the results.

2 Official DLV release, July 14th 2006.
3 The sum of user and system time; we refer the reader to time manual pages for a detailed

description of these quantities [19].



In the following, we describe the benchmark problems, and finally report and dis-
cuss the results of the experiments.

5.1 Benchmark Programs

We provide here a brief description of the problems considered for the experiments. In
order to meet the space constraints, we refrain from showing the encodings (consider
that some are automatically generated, and are very long and involved). However, they
are available at http://www.mat.unical.it/parallel/cilc inst.tar.gz.

3-Colorability. This well-known problem asks for an assignment of three colors to the
nodes of a graph, in such a way that adjacent nodes always have different colors.

Ancestor. Given a parent relationship over a set of persons, find the genealogy tree of
each one. It is a classical deductive database problem exploiting recursive rules.

Knowledge Discovery. Given an ontology and a text document, an ASP program clas-
sifies the document w.r.t. the ontology. Basically, the goal is to associate the document
contents to one or more concepts in the given ontology: a document is associated to
the concepts it deals with. Problems have been provided by the company EXEURA
s.r.l. [20].

Player. A data integration problem. Given some tables containing discording data, find
a repair where some key constraints are satisfied. The problem was originally defined
within the EU project INFOMIX [15].

Hypertree Decomposition. Compute a k-width complete hypertree decomposition [21]
of a given query Q in a given predicate P.

ETL Workflow. In general, ETL stands for Extraction Transformation and Loading.
Here the goal is to emulate, by means of an ASP program, the execution of a work-
flow, in which each step constitutes a transformation to be applied to some data (in
order to query for and/or extract implicit knowledge). We considered the encoding of
three different steps, automatically generated by a software working on some american
insurance data. Problems have been provided by the company EXEURA s.r.l. [20].

Cristal. A deductive databases application that involves complex knowledge manipu-
lations. The application was originally developed at CERN [22].

Timetabling. A real timetable problem from the faculty of Science of the University of
Calabria. We have considered for the evaluation the programs that the faculty exploited
for two different academic years.

The above-mentioned problems can be roughly divided into two classes, with re-
spect to their structure. One contains problems having very “dense” dependency graphs
(meaning that there are only few components), like 3-Colorability or Ancestor. The
other contains problems featuring several rules belonging to independent components
of the dependency graph, like ETLs or Timetablings. Therefore, the parallel instantia-
tion of the first might only moderately be profitable, while the latter should be easier
grounded in parallel; having both classes of problems allows one to get a sharpen pic-
ture of the behavior of our prototype.



Fig. 5. Average CPU usage.

5.2 Results

The results of the experimental activities are summarized in Table 1 and Table 2, show-
ing average total execution times and average instantiation times, respectively, both in
seconds. The first consists of the overall time spent by DLV, from the invocation by the
OS to the end of the instantiation (including parsing, output printing, etc.)4, while the
second takes into account exactly the time spent by the instantiation itself.

We wanted also to outline the amount of parallel computation resources actually ex-
ploited; to this extent, in Figure 5 we report the average CPU usages5. The graph draws
the CPU usage w.r.t. to the number of allowed threads: “1.00” means that the process
“took” a single CPU, while higher values mean an higher rate of parallel execution. It is
important recalling also CPU usages take into account the overall time spent by DLV.

We discuss now the results. At a first glance, it is easy to notice as, apart from few
exceptions, as the number of allowed threads increases, the performances get better.
However, among all the considered problems, one can observe different behaviors.

First of all, 3col and Ancestor do not enjoy any improvement. This was expected,
since their dependency graphs are almost composed by a single huge component, thus
preventing the possibility of taking advantage from our parallel techniques. Indeed,
they settle at the bottom of the graph of Figure 5. Nevertheless, times are not affected
by noticeable overheads, even w.r.t. the official DLV release.

4 This means, both the parallel instantiation and the other non-parallel phases. It is worthwhile
stating that the the component graph is computed by the old DLV version as well as the new
one; in addition, we verified that the time spent in the computation is actually negligible.

5 Computed as ((User + System)/Real); see [19]. Please note that this does not rate paral-
lelism, but the exploitation of the CPUs, thus giving us an idea about how much the execution
has actually been parallelized, even if it is machine-dependent.



It’s then possible to identify a set of instances (namely: Knowledge discovery,
ETL1, ETL2, Player, Decomp) that, as soon as the number of allowed threads moves
from one to two, show an appreciable gain in instantiation time, all above 20% (e.g.:
Knowledge Discovery passes from 2.06s to 1.86s; ETL1 from 64.35s to 53.93s). Then,
the advantage does not grow, in practice, with the number of allowed threads; as an
example, allowing more than three threads for solving Knowledge discovery is useless
(1.86s, 1.53s and 1.65s with two, three and four threads, respectively). Almost the same
observation can be made for ETL1, ETL2 and Decomp, while Player still exhibits a
little performance gain even with four threads. Indeed, looking at the graph of Figure 5,
all these instances show an almost flat pattern over 2 allowed threads.

Unfortunately, we note that something strange happens when we look ad total av-
erage times: for Decomp and Knowledge discovery, all the dl.thX executables show a
clear degradation in the performances if compared with the DLV release. We have in-
vestigated this strange phenomenon, and discovered that it is actually a technological
issue, concerning the standard STL [23] multithreaded memory allocator. In fact, the
DLV system heavily relies on STL data structures; these exploit a memory allocator
function that suffers from a dramatic performance degradation when linked against a
multithreaded executable [24]. In our case, this sometimes neutralizes all the benefits
provided by parallelism. Fortunately, in case of ETL1 and ETL2, this does not waste
all the gain, which still stands on about 23% also in the total execution times (ETL1,
for instance, moves from 64.99s to 50.4s). This technological problem can be fixed, as
indicated for instance in [24]; since the implementation takes quite some time, we left
it as a future work.

Finally, a last set of instances (namely: ETL3, Cristal, Timetabling 1, Timetabling
2), clearly exhibits a performance gain growing as the number of allowed threads in-
creases. Instantiation times improvements go from about 18% for Cristal (which passes
from 4.17s with one thread to 3.58s with four) to about 40% for Timetabling 1 (from
10.64s to 6.42s). In the graph of Figure 5 the patterns related to these problems are
monotonically increasing (in particular, when four threads are allowed, the exploited
cpu usage grows up to a factor of 2). These benefits still survive in the total execution
times for all instances, apart from Timetabling 2. The difference with this is due to the
same memory allocation drawbacks previously discussed6.

Summarizing, best improvements have been observed within the last set of prob-
lems; it is worthwhile noting that all of them come from concrete applications, thus
confirming that our approach can be profitably exploited to improve performances of
ASP while dealing with real world problems.

For the sake of completeness, it is important noting that the Intel Hyper Thread-
ing (HT) technology [25] (implemented by the machine exploited for the experiments)
works by duplicating certain sections of the processor, but not all the main execution
resources. Basically, each processor pretends to be two ”logical” processors in front of
the host operating system which, thus, can schedule four threads or processes simulta-
neously (two processes/threads per CPU); however, these will compete for some impor-
tant execution resources (e.g., the cache). Consequently, there is only an approximation

6 Intuitively, these drawbacks increase their weight when memory allocation functions are more
frequently invoked.



Problem dl.release dl.th1 dl.th2 dl.th3 dl.th4
Cristal 4.04 (0.07) 4.17 (0.08) 4.23 (0.08) 4.41 (0.12) 4.66 (0.36)
Ancestor 51.78 (0.54) 52.15 (0.48) 52.23 (0.48) 52.68 (0.35) 52.16 (0.64)
3Col 15.83 (0.35) 15.71 (0.05) 14.90 (0.30) 15.40 (0.69) 15.32 (0.35)
Decomp 6.91 (0.00) 8.83 (0.01) 7.41 (0.77) 6.81 (0.07) 7.23 (0.25)
TimeTab1 7.27 (0.10) 12.14 (0.04) 9.56 (0.56) 8.50 (0.06) 7.93 (0.34)
TimeTab2 12.42 (0.46) 12.85 (0.42) 10.98 (1.99) 8.59 (0.55) 10.78 (3.43)
KnoDisc 3.41 (0.00) 5.29 (0.00) 5.09 (0.00) 4.76 (0.00) 4.87 (0.15)
Player 6.87 (0.02) 7.00 (0.02) 5.52 (0.47) 5.56 (0.46) 5.34 (0.06)
ETL1 64.72 (0.35) 64.99 (0.61) 54.58 (2.77) 49.61 (0.61) 50.40 (0.11)
ETL2 64.25 (0.22) 64.26 (0.42) 49.70 (0.56) 49.89 (0.13) 49.92 (0.53)
ETL3 182.38 (0.38) 186.72 (0.43) 126.82 (10.21) 118.57 (1.53) 120.97 (2.42)

Table 1. Average Real Execution Times (standard deviations within parentheses).
Problem dl.release dl.th1 dl.th2 dl.th3 dl.th4
Cristal 3.96 (0.07) 4.03 (0.07) 3.31 (0.08) 3.33 (0.07) 3.44 (0.11)
Ancestor 51.75 (0.54) 52.08 (0.48) 52.16 (0.48) 52.61 (0.35) 52.08 (0.64)
3Col 15.67 (0.35) 15.40 (0.05) 14.59 (0.30) 15.10 (0.69) 15.01 (0.35)
Decomp 6.65 (0.00) 8.33 (0.01) 6.92 (0.77) 6.32 (0.07) 6.73 (0.25)
TimeTab1 6.51 (0.10) 10.64 (0.04) 8.06 (0.54) 6.99 (0.05) 6.42 (0.34)
TimeTab2 11.46 (0.46) 10.97 (0.42) 9.08 (1.98) 6.70 (0.55) 8.90 (3.44)
KnoDisc 1.88 (0.00) 2.06 (0.01) 1.86 (0.00) 1.53 (0.01) 1.65 (0.15)
Player 6.76 (0.02) 6.79 (0.01) 5.31 (0.47) 5.36 (0.46) 5.13 (0.07)
ETL1 64.32 (0.35) 64.35 (0.62) 53.93 (2.77) 48.96 (0.61) 49.75 (0.11)
ETL2 64.00 (0.22) 63.88 (0.41) 49.31 (0.56) 49.50 (0.13) 49.48 (0.57)
ETL3 180.83 (0.37) 184.17 (0.44) 124.24 (10.19) 115.96 (1.61) 118.41 (2.42)

Table 2. Average Grounding Times (standard deviations within parentheses).

of the behavior of a true four processor machine. This effect cannot be avoided with the
standard linux SMP kernel, since it is not aware of all the HT peculiarities. Thus, with
pure multi-processor or multi-core machines, the performances of our technique should
be even better.

6 Related Work and Conclusions

In this paper, we proposed a new technique for the parallel computation of the instanti-
ation of ASP programs. It exploits some structural properties of the input program P in
order to detect modules of P that can be evaluated in parallel.

As a matter of fact, the exploitation of parallel techniques for computing answer
sets is not new [26–28]; however, our approach is not comparable with the existing
ones, since the latter concern the model generation task, instead of the instantiation.
Nonetheless, a lot of work has been done in the fields of logic programming and de-
ductive databases [17, 29–39]; still, the techniques are comparable to a limited extent
to the one illustrated here: some of them apply to syntactically restricted classes of pro-
grams, and some others requires an heavy usage of concurrency-control mechanisms.
The only one comparable to the present is the so-called stream parallelism, where all the



rules are evaluated simultaneously: basically, the information resulting from the eval-
uation of each rule is passed to the ones depending on it, like in a pipeline. However,
this scheme suffers from heavy communication overheads, while our approach mini-
mizes the usage of “mutexes” in the main data structures, thus reducing the overhead
introduced by the concurrency-control constructs.

We have implemented our strategy producing an experimental version of the DLV
system, and performed several experiments on a SMP-based machine. The obtained
results confirmed, on the one hand, the effectiveness of our technique, which allows
one to save real (wall-clock) time, especially while evaluating real-world problem in-
stances; on the other hand, they outlined some annoying technical issues due to the
usage of the standard STL multithreaded memory allocator, which is widely considered
performance-wise not optimal [24].

We plan to improve the current implementation by solving the problems concern-
ing STL memory allocation performances; nonetheless, we want to extend our parallel
grounding technique as well, in order to exploit parallelism also during the instantiation
of a single component.
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