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Abstract. Inthe last few years, the microprocessors technologies have bken de
initely moving to multi-core architectures, in order to improve performarae
well as reduce power consumption. This makes the real Symmetric MadeBs-

ing (SMP) finally available even on non-dedicated machines, and paegth

to the development of more scalable softwares. Notably, the recelitatm

of Answer Set Programming (ASP) in different emerging aread) asdknowl-
edge management or information extraction/integration, has been ghtwvan
scalability is a crucial issue also for ASP systems.

Among the tasks performed by ASP systems, the instantiation procegs) wh
consists of generating a variable-free program equivalent to the amguis one

of the most expensive from a computational viewpoint, especially fdrwerld
problems where the input data may be huge.

In this paper we experiment with a brand new strategy, that we implemented
into the ASP system DLV, exploiting parallelism for the instantiation of ASP
programs. The results confirm that the proposed technique significapitpves

the performances of the system, particularly for solving real-worl@lpros.

1 Introduction

Symmetric MultiProcessing (SMP) is a computer architectdnere two or more iden-
tical processors connect to a single shared main memorynesallowing simultane-
ous multithread execution. In the past, only servers andkstations took advantage
of it. However, recently, technology has moved to multiedorulti-processor architec-
tures also for entry-level systems and PCs; this permittedjoy the benefits of parallel
processing on a large scale. These benefits include bettkload balances, enhanced
performances, improved scalability, not only for systehe run many processes si-
multaneously, but also for single (i.e., multithreaded)lepations.

The above mentioned technology might be profitably expdoitethe field of An-
swer Set Programming (ASP). Indeed, the recent applicatibASP in different emerg-
ing areas, such as knowledge management or informatioaatixtn/integration [1-3],
have evidenced the practical need of more performant ataldeaASP systems.

ASP is a declarative approach to programming proposed iarid of honmono-
tonic reasoning and logic programming [4—6]. The main athge of ASP is its high

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni deitagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresemntazith conoscenza:
estensioni e tecniche di ottimizzazione.”



expressiveness; unfortunately, this comes at the price lo§la computational cost,
which has made the implementation of efficient ASP systemiffiault task. Several
efforts have been spent to this end, and, after some piomgeenrk [7, 8], a number of
modern systems are now available. The most widespread oa&i.¥ [9], GnT [10],
and Cmodels-3 [11]; many other support various fragmente@fSP language. The
kernel modules of ASP systems operate on a ground instantiaftthe input program,
i.e. a program that does not contains any variable, but ise#goally equivalent to the
original input [12]. Consequently, any given progrdmfirst undergoes the so called
instantiation process computing frofh an equivalent ground progra® . This pre-
processing phase is computationally very expensive; tiagng a good and scalable
instantiation procedure is, in general, a key feature of Agftems.

Many optimization techniques have been proposed for thipgae [13—15]; nev-
ertheless, performances of instantiators are still nogptable, especially in case of
real-world problems, where the input data may be huge, awlsalalability is crucial.

In this paper we present a brand new strategy for the parafintiation, allow-
ing to improve both performances and scalability of ASP eayst by exploiting the
power of multiprocessor computers. The proposed techrégpioits some structural
properties of the input program in order to detect subpmograf P that can be evalu-
ated in parallel minimizing the usage of concurrency-aamrechanisms in the main
data structures, and thus minimizing the “parallel ovedie®/e implemented it in an
experimental version of the DLV system, and performed sgv@tperiments which
confirmed the effectiveness of our technique especiallénevaluation of real-world
problem instances.

The remainder of the paper is structured as follows: in 8e@iwe introduce syntax
and semantics of ASP; in Section 3 we briefly describe theumisttion procedures of
DLV system; in Section 4 we present our parallel instargiatilgorithm; in Section 5
we report and discuss the results of the experiments caotieith order to evaluate the
proposed technique; in Section 6, eventually, we look ateel works and draw the
conclusions.

2 Answer Set Programming

We next provide a formal definition of syntax and semanticarswer set programs.

2.1 Syntax

A variable or a constant is @rm An atomis a(ty, ..., t,), wherea is apredicateof
arity n andtq, ..., t,, are terms. Aiteral is either apositive literalp or anegative literal
not p, wherep is an atom.

A disjunctive rule(rule, for short)r is a formula

a1 V -V an = b1, by, D0t bpi1, -, Dot by 1)

whereay,---,a,,by, -, b, are atoms anch > 0, m > k > 0. The disjunction
a1 V .-+ V a, is theheadof r, while the conjunctioy, ..., by, not bgy1,..., not by,



is thebodyof r. A rule without head literals (i.e2 = 0) is usually referred to as an
integrity constraint A rule having precisely one head literal (i2e.= 1) is called a
normal rule If the body is empty (i.ek = m = 0), itis called afact

We denote byH (r) the set{a4,...,a,} of the head atoms, and b§(r) the set
{b1, ..., b, not by 1,...,not by, } of the body literalsB*(r) (resp.,B~(r)) denotes
the set of atoms occurring positively (resp., negatively®(r). A Ruler is safeif each
variable appearing in appears also in some positive body literat-of

An ASP programP is a finite set of safe rules. Aot -free (resp.\v-free) program
is calledpositive (resp.,normal). A term, an atom, a literal, a rule, or a program is
groundif no variables appear in it.

Accordingly with the database terminology, a predicateuodag only infactsis
referred to as a&DB predicate, all others dBB predicates.

2.2 Semantics

Let P be a program. Thelerbrand Universeand theHerbrand Basef P are defined
in the standard way and denoted®@y and Bp, respectively.

Given a ruler occurring inP, a ground instanceof r is a rule obtained fromr
by replacing every variabl& in r by ¢(X), whereo is a substitution mapping the
variables occurring im to constants if/». We denote byround(P) the set of all the
ground instances of the rules occurringAin

An interpretationfor P is a set of ground atoms, that is, an interpretation is a $ubse
I of Bp. A ground positive literald istrue (resp.fals@ w.r.t. [ if A € I (resp.,A & I).

A ground negative literatot A istruew.r.t. I if A is false w.r.t.I; otherwisenot A is
false w.r.t.1.

Letr be a ground rule iground(P). The head of istruew.r.t. I if H(r)NI # 0.
The body ofr is true w.r.t. I if all body literals ofr are true w.r.t! (i.e., BT (r) C I
andB~ (r) NI = () and isfalsew.r.t. I otherwise. The rule is satisfied(or true) w.r.t.

1 if its head is true w.r.t/ or its body is false w.r.tl.

A modelfor P is an interpretatiod/ for P such that every rule € ground(P) is
true w.r.t. M. A model M for P is minimalif no model N for P exists such thal is a
proper subset a#/. The set of all minimal models fdP is denoted bMM(P).

Given a progran® and an interpretation, the Gelfond-Lifschitz (GL) transforma-
tion of P w.r.t. I, denotedP’, is the set of positive rules

Pl={a;V---Va,=by, - ,bp|arV---Va,=—=by, -, b,not by, -,n0t by,
is in groundP) andb; ¢ I, forall k < i <m}

Let I be an interpretation for a prografh I is ananswer setor P if I € MM(P?)
(i.e., I is a minimal model for the positive prograf’)[16, 4]. The set of all answer
sets forP is denoted byAN S(P).

3 TheDLV Instantiator

In this section we provide a description of the DLV instatatiaGiven an input program
P, it efficiently generates a ground instantiation that hasshme answer sets as the
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full one, but is much smaller in general [9]. Note that theesiZ the instantiation is a
crucial aspect for the efficiency of ASP systems, since ti&vanset computation takes
an exponential time in the size of the ground program redeageinput (i.e., produced
by the instantiator).

In order to generate a small ground program equivaleft,tthe DLV instantiator
generates ground instances of rules containing only atomcvwean possibly be de-
rived from’P, and thus avoiding the combinatorial explosion which caolitained by
naively considering all the atoms in the Herbrand Base[THis is obtained by taking
into account some structural information of the input pewgr concerning the depen-
dencies among IDB predicates.

We give now the definition th®ependency Graplbf P, which, intuitively, de-
scribes how predicates depend on each other.

Definition 1. Let P be a program. Th®ependency Grapbf P is a directed graph
Gp = (N, E), whereN is a set of nodes anfl is a set of arcsV contains a node for
each IDB predicate dP, andE contains an are = (p, q) if there is a ruler in P such
thatg occurs in the head af andp occurs in a positive literal of the body of

The graphG» naturally induces a partitioning @® into subprograms (also called
module$¥ which allows for a modular evaluation. We say that a nule P definesa
predicatep if p appears in the head ef A moduleof P is the set of rules defining all the
predicates contained in a particular maximal strongly eated component (SCC) of
Gp. Intuitively, a module includes (among others) all ruleBrdeg mutually dependent
predicates.

Example 1.Consider the following prograr®, whereq is an EDB predicate:

p(X,Y)Vs(Y) = q(X),q(Y),not r(X,Y) q(X) = a(X)
p(X,Y) = q(X),r(X,Y) r(X,Y) = p(X,Y),s(Y)

The graphGp is illustrated in Figure 1; moreover, the strongly connda@emponents
of Gp are{s}, {¢} and{p,r}. They correspond to the three following modules:

e {p(X,Y)Vs(Y)—q(X),q(Y),not r(X,Y). }

e {q(X):—a(X).}

o {p(X,)Y):—¢(X),r(X,Y) p(X,Y)Vs(Y):—q(X),q(Y),not r(X,Y).
r(X,Y)—p(X,Y),s(Y). }



ProcedureInstantiate(P: Program;Gp: DependencyGraph;
var IT: GroundProgramyar T: SetOfAtoms);
begin
var I: SetOfAtoms;
var C: SetOfPredicates;
T:= EDB(P); I = EDB(P); IT :=0;
while Gp # 0 do
Remove a SCC from G'» without incoming edges;
InstantiateCompone(®, C, T, I, IT);
end while
end Procedure

Fig. 2. The DLV Instantiation Procedure.

It is possible to single out an ordered sequefi¢e. . ., C,, of SCC components of
Gp (which is not unique, in general) such that the evaluatiothefprogram module
corresponding to compone@t depends only on the evaluation of the componéhts
suchthat < j (1 <i < mn,1 < j < n).Basically, this follows from the definition
of SCC which corresponds to a maximal subset of mutually deget predicates. In-
tuitively, this ordering allows one to evaluate the programe module at time, so that
all data needed for the instantiation of a mod@lehave been already generated by the
instantiation of the modules precedifg.

We sketch now a description of the instantiation processdas this principle,
omitting details on how a single module is grounded and plingia general idea of the
whole process.

The procedurénstantiateshown in Figure 2 takes as input a progré&nto be in-
stantiated and the dependency gr&ph and outputs a set of true atorfisand a set
of ground rules containing only atoms which can possibly bsved from7P, such
that ANS(TU II) = ANS(P). As previously pointed out, the input prografis
partitioned in modules corresponding to the maximal stiypognnected components
of the dependency graphr. Such modules are evaluated one at a time starting from
those that do not depend on other components, according twdlering induced by the
dependency graph.

More in detall, the algorithm initially creates a new set tufras/ that will contain
the subset of the Herbrand Base relevant for the instamtiatnitially, T = EDB(P),

I = EDB(P), andII = (. Then, a strongly connected componéhtwhich has
no incoming edge, is removed fro6y», and the program module corresponding’to
is evaluated by invoking thinstantiateComponerfunction which uses an improved
version of the generalized semi-naive technique [17] ferdtialuation of (recursive)
rules.

Roughly,InstantiateComponertakes as input the componefitto be instantiated,
the setsT and I, and for each atona belonging toC, and for each rule defining
a, computes the ground instancesrofontaining only atoms which can possibly be
derived fromP. At the same time, it updates both the $atith the newly generated



ground atoms already recognized as true, and thé wéh the atoms occurring in the
heads of the rules off. The algorithm runs on until all the components@f have
been evaluated.

It can be shown that, given a progra the ground prograni/ U T generated by
the algorithminstantiateis such tha? andI7 U T have the same answer sets.

4 The Parallel Instantiation Procedure

In this Section we describe the new instantiation algorithat computes a ground
version of a given prograr® by exploiting parallelism. It takes advantage of some
structural properties of the input prografin order to detect the modules that can be
evaluated in parallekithout using “mutexesin the main data structures.

Roughly, the parallel instantiation of the input progréimis based on a pattern
similar to the classical producer-consumers problemm#nagerthread (acting as a
producer) identifies the components of the dependency griphthat can be run in
parallel, and delegates their instantiation to a numbenstantiator threads (acting
as consumers) that exploit the sathestantiateComponent function introduced in
Section 3.

Once the general idea has been given, we introduce somelfdefiration in order
to detail the proposed technique. First of all, we define a giaph, calledComponent
Graph whose nodes correspond to the strongly connected comtsooktihe Depen-
dency GraphGp. Then, we give the definition of a partial ordering among tbdes
of G%. Please note as, with a small abuse of notation, we will fedihtly refer to
components of7p and corresponding nodes of the Component Graph.

Definition 2. Given a progranP, let Gp be the corresponding dependency graph. The
Component Graplof P is a directed labelled grapi, = (N, E,lab), whereN is a

set of nodesF is a set of arcs, antdib : E — {+,-} is a function assigning to each arc
alabel.N contains a node for each (maximal) strongly connected coemp®fGp; E
contains an are = (B, A) if there is a rule~ in P such thay € A occurs in the head of

r andp € B occurs in a positive (resp., negative) literal of the body;dzb(e) ="+"
(resp.lab(e) ="-").

Definition 3. For any pair of nodesl, B of G%, A precedesB (denotedA < B) if
there is apathin G% from A to B; and A strictly precedesB (denotedA < B), if
A=< BandB £ A.

Example 2.Consider the prograr® of Example 1. The component graphBfis il-
lustrated in Figure 1. It easy to see that the nfple'} precedeqd s}, while {q} strictly
precedeqs}.

Basically, this ordering guarantees that a nadstrictly precedes a nodg if the
program module corresponding tbhas to be evaluated before the one corresponding
to BL.

! Note that the presence of negative arc&/ only determines a preference among the admis-
sible orderings induced by the dependency graph, thus it does rot #fé correctness of the
overall instantiation process.



Procedure Manager(P: Program;G%: ComponentGraph;
var T: SetOfAtomsyar IT: GroundProgram);
begin
var U:SetOfComponentsvar D:SetOfComponentsiar R:SetOfComponents;
var I: SetOfAtomsyar C': SetOfPredicates;

D=0; R=0; U=nodes(G%)
T:= EDB(P); I = EDB(P); II := {;
while (U # ()
forall C € U;
if (canBeRu(C,U, G%))
begin
R=RU{C}
Spawiinstantiator,P, C,U, R, D, T, I, II);
end if
end

ProcedureInstantiator(P: Program;C: Componentyar U{: SetOfComponents;
var R: SetOfComponentsjar D: SetOfComponents;
var T: SetOfAtomsyar I: SetOfAtomsyar I7: GroundProgram);

begin
InstantiateCompone(®, C, T, I, II);
D=DU{C};
R=R-{C}
U=U-{C}
end

Fig. 3. The Parallel Instantiation Procedures.

We are now ready to describe the parallel instantiationgmores exploiting this
ordering. As previously pointed out, we make use of someattseamanager and a
number ofinstantiatorsrunning the procedure®! anager and Instantiator reported
in Figure 3, respectively.

The M anager procedure takes as input both a progrRrto be instantiated and its
Component Graplr%; it outputs both a sef’ of true atoms and a set of ground rules
I, such thatANS(TU IT) = ANS(P).

First of all, the setd, I, andII are initialized like in the standard DLV Instantiator.
Moreover, three new sets of components are credte@which stands folundong
represents the components®fthat have still to be processed, (which stands for
Dong those that have already been instantiated, Rn@ivhich stands folRunning
those currently being processed.

Initially, D andR are empty, whilé/ contains all the nodes @f%,. The manager
checks, by means of functiatun Be Run described below, whether componentg4n
can be instantiated. As soon as samis processable, it is added&) and a new instan-
tiator thread is spawned in order to instanti@tby exploiting thelnstantiateComponent
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function defined in Section 3. Once the instantiationCohas been completed; is
moved fromR to D, and deleted frond/. The manager thread goes on until all the
components have been processed (i{e= 0).

The functioncan BeRun, as the name suggests, checks wether a compaéheah
be safelyevaluated (i.e. without requiring “mutexes” in the mainalatructures) by
exploiting the following definition:

Definition 4. Letl be the set of components which still have to be processedaywe s
thatC € U can be runif VA € U at least one of the following conditions holds:

(i) C <4
(i) C = AandA’ € U s.t. exists an are = (A’, C) of G% with lab(e) ="+", and
VK € R, do not exist arcg’, ¢’ of G% such thak’ = (R, C) ande” = (C, R).

Basically, this definition ensures thét) a component is not evaluated before
all the components strictly precedidg(w.r.t. the partial ordering defined above) have
been processed; an@d;) if C appears in a cycle a¥, then it is selected only if it has
no positive incoming edges and does not directly depend oresmurrently running
component. The two conditions of Definition 4 checked by fiomccanBeRurguar-
antee the correctness, since they respect the dependehncigs (as for the standard
instantiation algorithm defined in Section 3).

Moreover,canBeRursingles out components that can be evaluated in parallie wit
out using “mutex” locks in the data structures that impletrtee setsI” and I; this
allows us to save resources and reduce the time spent irctodientions. It is easy to
see that two component$, andC, are “selected” only if any predicageoccurring in
the body of some rule of'; does not appear in the head of some rul€'ef and vice
versa. If the data structures implementing the §etnd I properly store the ground
atoms in different containers (i.e., one for each predicat®e, as in DLV), then no
“mutex” lock is needed to protect them: during the evaluatiba rule, an instantiator
thread may write in the container of an ataronly when a rule defining is processed,;
thus, it will never write in a location being accessed by heotnstantiator.

Interestingly, condition (ii) of Definition 4 allows one tam in parallel even compo-
nents appearing in cycles 6f;, (i.e., components that are, somehow, interdependent).
This can be illustrated by the following example:

Example 3.Consider the Component Graph of Figure 4. All the nodes oftaph are
involved in a cycle; thus, the evaluation of each componesbmehow dependent on
the evaluation of each other. However, condition (ii) of D&ion 4 allows to selectd

to be evaluated first. Whild is running, no other component can be processed, because
both conditions (i) and (ii) are violated for all of them. @nihe instantiation ofl has



ended, componeri? can be run, because it satisfies condition (ii). At the same,tby
virtue of condition (ii), also components and D can be run. Then, componehtcan
be evaluated only when the instantiations of/2JIC’ and D have been completed.

Itis important noting that the actual implementation isgunore involved, but only
because of technical reasons. First of all, the auxiliantrab structures (liké/, D and
‘R) are properly protected by “mutex” locks. Moreover, thepa@tion among threads
is synchronized by exploiting semaphores, in order to apoablems like the busy
waiting. Finally, we also have to deal with additional staues which allow the user to
set the maximum number of instantiator threads. We do n@\eethat these technical
issues may help to get a better insight, but they are rathgthg in description instead;
for this reason, we do not discuss them here.

5 Experiments

In order to consistently evaluate the parallel groundicgtéque described in Section 4,
we have implemented it as an extension of the DLV system, anidined some ex-
periments. We took into account several problems belongirdifferent applications,
ranging from classical ASP benchmarks to “real-word” agations.

We have compared the prototype with the official DLV [18] exlé on which it
is based. In addition, we considered the maximum number fwoent instantiator
threads as a parameter; thus, we deal with the followingwesf DLV:

— dl.release the original DLV system release without parallel grourggin
— dl.thX: the modified DLV system wittX indipendent working threads{( ranges
from 1 to 4).

All the binaries have been built with GCC 3.4 (the same usdulitl the original
DLV release), statically linking the Posix Thread Library.

Experiments have been performed on a machine equippedwatintel Xeon HT
CPUs clocked at 3.60GHz with 16 KB of Level 2 Cache and 3GB ofMRAuUNning
Debian GNU Linux (kernel 2.4.27-2-686-smp). This machmeapable ofimultane-
ouslyrun (i.e., each thread executed on a different processiitgatrmost 4 threads;
with more, the system performs poorly because of the praeenfitread scheduling
overhead. This has ben confirmed by the experiments; thudewided to omit here the
results obtained by allowing more than 4 concurrent inggotthreads.

Time measurements have been performed by means of time command shipped
with the above cited version of Debian GNU Linux. Unfortuglgt we could not con-
sider the total CPU timésbecause, in case of multi-threaded applications, thaytres
as the sum of the time spent by the processaxrhprocessing unit (e.g., when a process
fully exploits simultaneously two processors for 5 minytes total reported CPU time

2 Official DLV release, July 14th 2006.
8 The sum ofuser and systemtime; we refer the reader time manual pages for a detailed
description of these quantities [19].



is 10 minutes). We decided to overcome the problem by corisgléhe so calledeal
time, based on the system wall-clock time. Obviously, théasure is less accurate than
the total CPU time, since it unavoidably includes the timendgby other processes in
the system (even by unrelated operating system routinesyder to obtain more reli-
able information, we have repeated each test three timdsgranide here both average
and standard deviation of the results.

In the following, we describe the benchmark problems, arallfimeport and dis-
cuss the results of the experiments.

5.1 Benchmark Programs

We provide here a brief description of the problems considéor the experiments. In
order to meet the space constraints, we refrain from shothiegncodings (consider
that some are automatically generated, and are very longnaolded). However, they
are available attt p: // ww. mat . unical .it/parallel/rcra.inst.tar.gzip.

3-Colorability. This well-known problem asks for an assignment of three colors to thesof
a graph, in such a way that adjacent nodes always have differens co

Ancestor. Given aparentrelationship over a set of persons, find the genealogy tree of each one
Itis a classical deductive database problem exploiting recursive rules

Knowledge Discovery. Given an ontology and a text document, an ASP program classifies the
document w.r.t. the ontology. Basically, the goal is to associate the doducontents to one

or more concepts in the given ontology: a document is associated toribepts it deals with.
Problems have been provided by the company EXEURA s.r.1. [20].

Player. A data integration problem. Given some tables containing discording dadag fiepair
where some key constraints are satisfied. The problem was originallyedefiithin the EU
project INFOMIX [3].

Hypertree Decomposition. Compute a k-width complete hypertree decomposition [21] of a
given query Q in a given predicate P.

ETL Workflow. In general, ETL stands for Extraction Transformation and Loadinge lttee
goal is to emulate, by means of an ASP program, the execution of a awrkfi which each
step constitutes a transformation to be applied to some data (in order tofquand/or extract
implicit knowledge). We considered the encoding of three differenssapgomatically generated
by a software working on some american insurance data. Problerasbeawn provided by the
company EXEURA s.r.l. [20].

Cristal. A deductive databases application that involves complex knowledge olatigms. The
application was originally developed at CERN [22].

Timetabling. A real timetable problem from the faculty of Science of the University daBda.
We have considered for the evaluation the programs that the facultyitexpfor two different
academic years.

The above-mentioned problems can be roughly divided into two clasgbsespect to their
structure. One contains problems having very “dense” dependaaphg (meaning that there
are only few components), like 3-Colorability or Ancestor. The othetaios problems featur-
ing several rules belonging to independent components of the depgndeph, like ETLs or
Timetablings. Therefore, the parallel instantiation of the first might onlgienately be profitable,
while the latter should be easier grounded in parallel; having both claspestdéms allows one
to get a sharpen picture of the behavior of our prototype.
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5.2 Results

The results of the experimental activities are summarized in Table 1 dhel Zasshowing average
total execution times (in seconds) and average instantiation times (in S@coegpectively. The
first consists of the overall time spent by DLV, from the invocation by tt®t® the end of
the instantiation (including parsing, output printing, étchile the second takes into account
exactly the time spent by the instantiation itself.

We wanted also to outline the amount of parallel computation resourceslpauploited;
to this extent, in Figure 5 we report the average CPU usagdée graph draws the CPU usage
w.r.t. to the number of allowed threads: “1.00” means that the prdtasis’ a single CPU, while
higher values mean an higher rate of parallel execution. It is impoeaatliing also CPU usages
take into account theveralltime spent by DLV.

We start now discussing the results. At a first glance, it is easy to notiepag from few
exceptions, as the number of allowed threads increases, the penfrzsnget better. However,
among all the considered problems, one can observe differentibeha

First of all, 3col and Ancestor do not enjoy any improvement. This waee&ed, since
their dependency graphs are almost composed by a single huge mempinus preventing any
parallelism. Indeed, they settle at the bottom of the graph of Figure 5rtiieless, times are not
affected by noticeable overheads, even w.r.t. the official DLV releas

It's then possible to identify a set of instances (namely: Knowledge désgpETL1, ETL2,
Player, Decomp) that, as soon as the number of allowed threads nmowesfie to two, show
an appreciable gain in instantiation time, all above 20% (e.g.: KnowledgeBisy passes from
2.06s to 1.86s; ETL1 from 64.35s to 53.93s). Then, the advantage mbt grow, in practice,
with the number of allowed threads; as an example, allowing more thanthresels for solving
Knowledge discovery is useless (1.86s, 1.53s and 1.65s with twe, dinibfour threads, respec-
tively). Almost the same observation can be made for ETL1, ETL2 amcbbp, while Player

4 This means, both the parallel instantiation and the other non-parallelphase
5 Computed ag(User + System)/Real); see [19].



still exhibits a little performance gain even with four threads. Indeed, lgpkinthe graph of
Figure 5, all these instances show an almost flat pattern over 2 allowestithr

Unfortunately, we note that something strange happens when we lootahédwterage times:
for Decomp and Knowledge discovery, all thethX executables show a clear degradation in the
performances if compared with the DLV release. We have investigatesttargge phenomenon,
and discovered that it is actually a technological issue, concerning thgestaSTL [23] multi-
threaded memory allocator. In fact, the DLV system heavily relies on S structures; these
exploit a memory allocator function that suffers from a dramatic peréorce degradation when
linked against a multithreaded executable [24]. In our case, this sonsetimeralizes all the
benefits provided by parallelism. Fortunately, in case of ETL1 and Efi2 does not waste all
the gain, which still stands on about 23% also in the total execution times (Edt hstance,
moves from 64.99s to 50.4s). This technological problem can be, fashdicated for instance
in [24]; since the implementation takes quite some time, we left it as a future wo

Finally, a last set of instances (namely: ETL3, Cristal, Timetabling 1, Tintietz2), clearly
exhibits a performance gain growing as the number of allowed thread=ases. Instantiation
times improvements go from about 18% for Cristal (which passes frdms4with one thread
to 3.58s with four) to about 40% for Timetabling 1 (from 10.64s to 6.42s)he graph of Fig-
ure 5 the patterns related to these problems are monotonically increaspagt{@ular, when four
threads are allowed, the exploited cpu usage grows up to a factor di&ebenefits still survive
in the total execution times for all instances, apart from Timetabling 2. Tferehce with this
is due to the same memory allocation drawbacks previously dis¢ussed

Summarizing, best improvements have been observed within the last getblems; it is
worthwhile noting that all of them come from concrete applications, thuéiraong that our
approach can be profitably exploited to improve performances of AR wealing with real
world problems.

For the sake of completeness, it is important noting that the Intel Hype@ing (HT) tech-
nology [25] (implemented by the machine exploited for the experimentsisamy duplicating
certain sections of the processor, but not all the main execution resoBasically, each proces-
sor pretends to be two "logical” processors in front of the host operatistem which, thus, can
schedule four threads or processes simultaneously (two processad#lper CPU); however,
these will compete for some important execution resources (e.g.athex Consequently, there
is only an approximation of the behavior of a true four processor mecfiinis effect cannot be
avoided with the standard linux SMP kernel, since it is not aware of all thpedTliarities. Thus,
with pure multi-processor or multi-core machines, the performancesraechnique should be
even better.

6 Related Work and Conclusions

In this paper, we proposed a new technique for the parallel computdtithe instantiation of
ASP programs. It exploits some structural properties of the inputrano@ in order to detect
modules ofP that can be evaluated in parallel.

As a matter of fact, the exploitation of parallel techniques for computing/@nsets is not
new [26—28]; however, our approach is not comparable with the egistias, since the latter con-
cern the model generation task, instead of the instantiation. Nonethelessf avork has been
done in the fields of logic programming and deductive databases [2392%till, the techniques

8 Intuitively, these drawbacks increase their weight when memory allochtiwtions are more
frequently invoked.



Problem dl.release dl.thl] dl.th2 dl.th3 dl.th4
Cristal 4.04 (0.07) 4.17 (0.08) 4.23(0.08) 4.41(0.12) 4.66(0.36
Ancestor | 51.78 (0.54) 52.15 (0.48) 52.23 (0.48) 52.68 (0.35) 52.16 (0.64
3Col 15.83 (0.35) 15.71 (0.05) 14.90 (0.30) 15.40 (0.69) 15.32 (0.35
Decomp 6.91 (0.00) 8.83(0.01 7.41(0.77) 6.81(0.07) 7.23(0.25
TimeTaby| 7.27 (0.10) 12.14 (0.04) 9.56 (0.56) 8.50 (0.06) 7.93(0.34
TimeTabs| 12.42 (0.46) 12.85(0.42) 10.98 (1.99) 8.59 (0.55) 10.78 (3.43
KnoDisc | 3.41(0.00) 5.29 (0.00 5.09 (0.00) 4.76 (0.00) 4.87(0.15
Player 6.87 (0.02) 7.00 (0.02 5.52 (0.47) 5.56 (0.46) 5.34(0.06
ETL, 64.72 (0.35) 64.99 (0.61) 54.58 (2.77) 49.61 (0.61) 50.40 (0.11,
ETL, 64.25 (0.22) 64.26 (0.42) 49.70 (0.56) 49.89 (0.13) 49.92 (0.53
ETLs 182.38 (0.38)186.72 (0.43)126.82 (10.21118.57 (1.53%120.97 (2.42

Table 1. Average Real Execution Times (standard deviations within parentheses)

Problem dl.release dl.thl] dl.th2 dl.th3 dl.th4
Cristal 3.96 (0.07) 4.03 (0.07 3.31(0.08) 3.33(0.07) 3.44(0.11
Ancestor | 51.75 (0.54) 52.08 (0.48) 52.16 (0.48) 52.61 (0.35) 52.08 (0.64
3Col 15.67 (0.35) 15.40 (0.05) 14.59 (0.30) 15.10 (0.69) 15.01 (0.35
Decomp 6.65 (0.00) 8.33(0.01 6.92 (0.77) 6.32(0.07) 6.73(0.25
TimeTab;| 6.51(0.10) 10.64 (0.04) 8.06 (0.54) 6.99 (0.05) 6.42(0.34
TimeTabs| 11.46 (0.46) 10.97 (0.42) 9.08(1.98) 6.70(0.55) 8.90 (3.44
KnoDisc 1.88 (0.00) 2.06 (0.01 1.86 (0.00) 1.53(0.01) 1.65(0.15
Player 6.76 (0.02) 6.79(0.01 5.31(0.47) 5.36(0.46) 5.13(0.07
ETIL, 64.32 (0.35) 64.35(0.62) 53.93 (2.77) 48.96 (0.61) 49.75 (0.11,
ETLs 64.00 (0.22) 63.88 (0.41) 49.31 (0.56) 49.50 (0.13) 49.48 (0.57
ETL3 180.83 (0.37)184.17 (0.44)124.24 (10.19115.96 (1.61%118.41 (2.42

Table 2. Average Grounding Times (standard deviations within parentheses).

are comparable to a limited extent to the one illustrated here: some of théyrt@ppntactically
restricted classes of programs, and some others requires an resame/ af concurrency-control
mechanisms. The only one comparable to the present is the so-s@éachparallelism, where
all the rules are evaluated simultaneously: basically, the information regfritim the evaluation
of each rule is passed to the ones depending on it, like in a pipeline. Howiagescheme suffers
from heavy communication overheads, while our approach minimizeashge of “mutexes”
in the main data structures, thus reducing the overhead introduced bgrherency-control
constructs.

We have implemented our strategy producing an experimental versithe &LV system,
and performed several experiments on a SMP-based machinebiesn results confirmed, on
the one hand, the effectiveness of our technique, which allows onedaea (wall-clock) time,
especially while evaluating real-world problem instances; on the other, ie@doutlined some
annoying technical issues due to the usage of the standard STL multédresamory allocator,
which is widely considered performance-wise not optimal [24].

We plan to improve the current implementation by solving the problems coingeSTL
memory allocation performances; nonetheless, we want to extendacaitgh grounding tech-
nigue as well, in order to exploit parallelism also during the instantiation of desaggnponent.
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