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Abstract. In the last few years, the microprocessors technologies have been def-
initely moving to multi-core architectures, in order to improve performances as
well as reduce power consumption. This makes the real Symmetric MultiProcess-
ing (SMP) finally available even on non-dedicated machines, and paves the way
to the development of more scalable softwares. Notably, the recent application
of Answer Set Programming (ASP) in different emerging areas, such as knowl-
edge management or information extraction/integration, has been showing that
scalability is a crucial issue also for ASP systems.
Among the tasks performed by ASP systems, the instantiation process, which
consists of generating a variable-free program equivalent to the inputone, is one
of the most expensive from a computational viewpoint, especially for real-world
problems where the input data may be huge.
In this paper we experiment with a brand new strategy, that we implemented
into the ASP system DLV, exploiting parallelism for the instantiation of ASP
programs. The results confirm that the proposed technique significantlyimproves
the performances of the system, particularly for solving real-world problems.

1 Introduction

Symmetric MultiProcessing (SMP) is a computer architecture where two or more iden-
tical processors connect to a single shared main memory resource allowing simultane-
ous multithread execution. In the past, only servers and workstations took advantage
of it. However, recently, technology has moved to multi-core/multi-processor architec-
tures also for entry-level systems and PCs; this permitted to enjoy the benefits of parallel
processing on a large scale. These benefits include better workload balances, enhanced
performances, improved scalability, not only for systems that run many processes si-
multaneously, but also for single (i.e., multithreaded) applications.

The above mentioned technology might be profitably exploited in the field of An-
swer Set Programming (ASP). Indeed, the recent applications of ASP in different emerg-
ing areas, such as knowledge management or information extraction/integration [1–3],
have evidenced the practical need of more performant and scalable ASP systems.

ASP is a declarative approach to programming proposed in thearea of nonmono-
tonic reasoning and logic programming [4–6]. The main advantage of ASP is its high
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expressiveness; unfortunately, this comes at the price of ahigh computational cost,
which has made the implementation of efficient ASP systems a difficult task. Several
efforts have been spent to this end, and, after some pioneering work [7, 8], a number of
modern systems are now available. The most widespread ones are DLV [9], GnT [10],
and Cmodels-3 [11]; many other support various fragments ofthe ASP language. The
kernel modules of ASP systems operate on a ground instantiation of the input program,
i.e. a program that does not contains any variable, but is semantically equivalent to the
original input [12]. Consequently, any given programP first undergoes the so called
instantiation process computing fromP an equivalent ground programP ′. This pre-
processing phase is computationally very expensive; thus,having a good and scalable
instantiation procedure is, in general, a key feature of ASPsystems.

Many optimization techniques have been proposed for this purpose [13–15]; nev-
ertheless, performances of instantiators are still not acceptable, especially in case of
real-world problems, where the input data may be huge, and also scalability is crucial.

In this paper we present a brand new strategy for the parallelinstantiation, allow-
ing to improve both performances and scalability of ASP systems by exploiting the
power of multiprocessor computers. The proposed techniqueexploits some structural
properties of the input program in order to detect subprograms ofP that can be evalu-
ated in parallel minimizing the usage of concurrency-control mechanisms in the main
data structures, and thus minimizing the “parallel overhead”. We implemented it in an
experimental version of the DLV system, and performed several experiments which
confirmed the effectiveness of our technique especially in the evaluation of real-world
problem instances.

The remainder of the paper is structured as follows: in Section 2 we introduce syntax
and semantics of ASP; in Section 3 we briefly describe the instantiation procedures of
DLV system; in Section 4 we present our parallel instantiation algorithm; in Section 5
we report and discuss the results of the experiments carriedout in order to evaluate the
proposed technique; in Section 6, eventually, we look at related works and draw the
conclusions.

2 Answer Set Programming

We next provide a formal definition of syntax and semantics ofanswer set programs.

2.1 Syntax

A variable or a constant is aterm. An atom is a(t1, ..., tn), wherea is a predicateof
arity n andt1, ..., tn are terms. Aliteral is either apositive literalp or anegative literal
not p, wherep is an atom.

A disjunctive rule(rule, for short)r is a formula

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm. (1)

wherea1, · · · , an, b1, · · · , bm are atoms andn ≥ 0, m ≥ k ≥ 0. The disjunction
a1 ∨ · · · ∨ an is theheadof r, while the conjunctionb1, ..., bk, not bk+1, ..., not bm



is thebodyof r. A rule without head literals (i.e.n = 0) is usually referred to as an
integrity constraint. A rule having precisely one head literal (i.e.n = 1) is called a
normal rule. If the body is empty (i.e.k = m = 0), it is called afact.

We denote byH(r) the set{a1, ..., an} of the head atoms, and byB(r) the set
{b1, ..., bk, not bk+1, . . . , not bm} of the body literals.B+(r) (resp.,B−(r)) denotes
the set of atoms occurring positively (resp., negatively) in B(r). A Ruler is safeif each
variable appearing inr appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. Anot -free (resp.,∨-free) program
is calledpositive(resp.,normal). A term, an atom, a literal, a rule, or a program is
groundif no variables appear in it.

Accordingly with the database terminology, a predicate occurring only in facts is
referred to as anEDBpredicate, all others asIDB predicates.

2.2 Semantics

Let P be a program. TheHerbrand Universeand theHerbrand Baseof P are defined
in the standard way and denoted byUP andBP , respectively.

Given a ruler occurring inP, a ground instanceof r is a rule obtained fromr
by replacing every variableX in r by σ(X), whereσ is a substitution mapping the
variables occurring inr to constants inUP . We denote byground(P) the set of all the
ground instances of the rules occurring inP.

An interpretationfor P is a set of ground atoms, that is, an interpretation is a subset
I of BP . A ground positive literalA is true (resp.,false) w.r.t. I if A ∈ I (resp.,A 6∈ I).
A ground negative literalnot A is true w.r.t. I if A is false w.r.t.I; otherwisenot A is
false w.r.t.I.

Let r be a ground rule inground(P). The head ofr is truew.r.t. I if H(r)∩ I 6= ∅.
The body ofr is true w.r.t. I if all body literals ofr are true w.r.t.I (i.e., B+(r) ⊆ I
andB−(r)∩ I = ∅) and isfalsew.r.t. I otherwise. The ruler is satisfied(or true) w.r.t.
I if its head is true w.r.t.I or its body is false w.r.t.I.

A modelfor P is an interpretationM for P such that every ruler ∈ ground(P) is
true w.r.t.M . A modelM for P is minimal if no modelN for P exists such thatN is a
proper subset ofM . The set of all minimal models forP is denoted byMM(P).

Given a programP and an interpretationI, theGelfond-Lifschitz (GL) transforma-
tion of P w.r.t. I, denotedPI , is the set of positive rules

PI = { a1 ∨ · · · ∨ an :–b1, · · · , bk | a1 ∨ · · · ∨ an :–b1, · · · , bk, not bk+1, · · · , not bm

is in ground(P) andbi /∈ I, for all k < i ≤ m}

Let I be an interpretation for a programP. I is ananswer setfor P if I ∈ MM(PI)
(i.e., I is a minimal model for the positive programPI )[16, 4]. The set of all answer
sets forP is denoted byANS(P).

3 The DLV Instantiator

In this section we provide a description of the DLV instantiator. Given an input program
P, it efficiently generates a ground instantiation that has the same answer sets as the
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full one, but is much smaller in general [9]. Note that the size of the instantiation is a
crucial aspect for the efficiency of ASP systems, since the answer set computation takes
an exponential time in the size of the ground program received as input (i.e., produced
by the instantiator).

In order to generate a small ground program equivalent toP, the DLV instantiator
generates ground instances of rules containing only atoms which can possibly be de-
rived fromP, and thus avoiding the combinatorial explosion which can beobtained by
naively considering all the atoms in the Herbrand Base[14].This is obtained by taking
into account some structural information of the input program, concerning the depen-
dencies among IDB predicates.

We give now the definition theDependency Graphof P, which, intuitively, de-
scribes how predicates depend on each other.

Definition 1. Let P be a program. TheDependency Graphof P is a directed graph
GP = 〈N,E〉, whereN is a set of nodes andE is a set of arcs.N contains a node for
each IDB predicate ofP, andE contains an arce = (p, q) if there is a ruler in P such
thatq occurs in the head ofr andp occurs in a positive literal of the body ofr.

The graphGP naturally induces a partitioning ofP into subprograms (also called
modules) which allows for a modular evaluation. We say that a ruler ∈ P definesa
predicatep if p appears in the head ofr. A moduleof P is the set of rules defining all the
predicates contained in a particular maximal strongly connected component (SCC) of
GP . Intuitively, a module includes (among others) all rules defining mutually dependent
predicates.

Example 1.Consider the following programP, wherea is an EDB predicate:

p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not r(X,Y ) q(X) :– a(X)
p(X,Y ) :– q(X), r(X,Y ) r(X,Y ) :– p(X,Y ), s(Y )

The graphGP is illustrated in Figure 1; moreover, the strongly connected components
of GP are{s}, {q} and{p, r}. They correspond to the three following modules:

• { p(X,Y ) ∨ s(Y ) :–q(X), q(Y ), not r(X,Y ). }
• { q(X) :–a(X). }
• { p(X,Y ) :–q(X), r(X,Y ). p(X,Y ) ∨ s(Y ) :–q(X), q(Y ), not r(X,Y ).

r(X,Y ) :–p(X,Y ), s(Y ). }



ProcedureInstantiate(P: Program;GP : DependencyGraph;
var Π: GroundProgram;var T: SetOfAtoms);

begin
var I: SetOfAtoms;
var C: SetOfPredicates;
T := EDB(P); I = EDB(P); Π := ∅;
while GP 6= ∅ do

Remove a SCCC from GP without incoming edges;
InstantiateComponent(P, C, T, I, Π);

end while
end Procedure;

Fig. 2.The DLV Instantiation Procedure.

It is possible to single out an ordered sequenceC1, . . . , Cn of SCC components of
GP (which is not unique, in general) such that the evaluation ofthe program module
corresponding to componentCi depends only on the evaluation of the componentsCj

such thati < j (1 ≤ i < n, 1 < j ≤ n). Basically, this follows from the definition
of SCC which corresponds to a maximal subset of mutually dependent predicates. In-
tuitively, this ordering allows one to evaluate the programone module at time, so that
all data needed for the instantiation of a moduleCi have been already generated by the
instantiation of the modules precedingCi.

We sketch now a description of the instantiation process based on this principle,
omitting details on how a single module is grounded and providing a general idea of the
whole process.

The procedureInstantiateshown in Figure 2 takes as input a programP to be in-
stantiated and the dependency graphGP and outputs a set of true atomsT and a set
of ground rules containing only atoms which can possibly be derived fromP, such
that ANS(T ∪ Π) = ANS(P). As previously pointed out, the input programP is
partitioned in modules corresponding to the maximal strongly connected components
of the dependency graphGP . Such modules are evaluated one at a time starting from
those that do not depend on other components, according to the ordering induced by the
dependency graph.

More in detail, the algorithm initially creates a new set of atomsI that will contain
the subset of the Herbrand Base relevant for the instantiation. Initially, T = EDB(P),
I = EDB(P), andΠ = ∅. Then, a strongly connected componentC, which has
no incoming edge, is removed fromGP , and the program module corresponding toC
is evaluated by invoking theInstantiateComponentfunction which uses an improved
version of the generalized semi-naive technique [17] for the evaluation of (recursive)
rules.

Roughly,InstantiateComponenttakes as input the componentC to be instantiated,
the setsT and I, and for each atoma belonging toC, and for each ruler defining
a, computes the ground instances ofr containing only atoms which can possibly be
derived fromP. At the same time, it updates both the setT with the newly generated



ground atoms already recognized as true, and the setI with the atoms occurring in the
heads of the rules ofΠ. The algorithm runs on until all the components ofGP have
been evaluated.

It can be shown that, given a programP, the ground programΠ ∪ T generated by
the algorithmInstantiateis such thatP andΠ ∪ T have the same answer sets.

4 The Parallel Instantiation Procedure

In this Section we describe the new instantiation algorithmthat computes a ground
version of a given programP by exploiting parallelism. It takes advantage of some
structural properties of the input programP in order to detect the modules that can be
evaluated in parallelwithout using “mutexes”in the main data structures.

Roughly, the parallel instantiation of the input programP is based on a pattern
similar to the classical producer-consumers problem. Amanagerthread (acting as a
producer) identifies the components of the dependency graphof P that can be run in
parallel, and delegates their instantiation to a number ofinstantiator threads (acting
as consumers) that exploit the sameInstantiateComponent function introduced in
Section 3.

Once the general idea has been given, we introduce some formal definition in order
to detail the proposed technique. First of all, we define a newgraph, calledComponent
Graph, whose nodes correspond to the strongly connected components of the Depen-
dency GraphGP . Then, we give the definition of a partial ordering among the nodes
of Gc

P
. Please note as, with a small abuse of notation, we will indifferently refer to

components ofGP and corresponding nodes of the Component Graph.

Definition 2. Given a programP, letGP be the corresponding dependency graph. The
Component Graphof P is a directed labelled graphGc

P
= 〈N,E, lab〉, whereN is a

set of nodes,E is a set of arcs, andlab : E → {+,-} is a function assigning to each arc
a label.N contains a node for each (maximal) strongly connected component ofGP ; E
contains an arce = (B,A) if there is a ruler in P such thatq ∈ A occurs in the head of
r andp ∈ B occurs in a positive (resp., negative) literal of the body ofr; lab(e) =“+”
(resp.,lab(e) =“-”).

Definition 3. For any pair of nodesA,B of Gc
P

, A precedesB (denotedA � B) if
there is apath in Gc

P
from A to B; andA strictly precedesB (denotedA ≺ B), if

A � B andB � A.

Example 2.Consider the programP of Example 1. The component graph ofP is il-
lustrated in Figure 1. It easy to see that the node{p, r} precedes{s}, while {q} strictly
precedes{s}.

Basically, this ordering guarantees that a nodeA strictly precedes a nodeB if the
program module corresponding toA has to be evaluated before the one corresponding
to B1.

1 Note that the presence of negative arcs inGc

P only determines a preference among the admis-
sible orderings induced by the dependency graph, thus it does not affect the correctness of the
overall instantiation process.



ProcedureManager(P: Program;Gc

P : ComponentGraph;
var T: SetOfAtoms;var Π: GroundProgram);

begin
var U :SetOfComponents ;var D:SetOfComponents;var R:SetOfComponents;
var I: SetOfAtoms;var C: SetOfPredicates;

D = ∅; R = ∅; U = nodes(Gc

P)
T := EDB(P); I = EDB(P); Π := ∅;
while ( U 6= ∅ )

for all C ∈ U ;
if (canBeRun(C,U , Gc

P ))
begin

R = R∪ {C};
Spawn(Instantiator,P, C,U ,R,D, T, I, Π);

end if
end

ProcedureInstantiator(P: Program;C: Component;var U : SetOfComponents;
var R: SetOfComponents;var D: SetOfComponents;
var T: SetOfAtoms;var I: SetOfAtoms;var Π: GroundProgram);

begin
InstantiateComponent(P, C, T, I, Π);
D = D ∪ {C};
R = R− {C};
U = U − {C};

end

Fig. 3. The Parallel Instantiation Procedures.

We are now ready to describe the parallel instantiation procedures exploiting this
ordering. As previously pointed out, we make use of some threads: amanager, and a
number ofinstantiatorsrunning the proceduresManager andInstantiator reported
in Figure 3, respectively.

TheManager procedure takes as input both a programP to be instantiated and its
Component GraphGc

P
; it outputs both a setT of true atoms and a set of ground rules

Π, such thatANS(T∪ Π) = ANS(P).

First of all, the setsT, I, andΠ are initialized like in the standard DLV Instantiator.
Moreover, three new sets of components are created:U (which stands forUndone)
represents the components ofP that have still to be processed,D (which stands for
Done) those that have already been instantiated, andR (which stands forRunning)
those currently being processed.

Initially, D andR are empty, whileU contains all the nodes ofGc
P

. The manager
checks, by means of functioncanBeRun described below, whether components inU
can be instantiated. As soon as someC is processable, it is added toR, and a new instan-
tiator thread is spawned in order to instantiateC by exploiting theInstantiateComponent
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function defined in Section 3. Once the instantiation ofC has been completed,C is
moved fromR to D, and deleted fromU . The manager thread goes on until all the
components have been processed (i.e.,U = ∅).

The functioncanBeRun, as the name suggests, checks wether a componentC can
be safelyevaluated (i.e. without requiring “mutexes” in the main data structures) by
exploiting the following definition:

Definition 4. Let U be the set of components which still have to be processed. We say
thatC ∈ U can be runif ∀A ∈ U at least one of the following conditions holds:

(i) C ≺ A;
(ii) C � A and∄A′ ∈ U s.t. exists an arce = (A′, C) of Gc

P
with lab(e) =“+”, and

∀K ∈ R, do not exist arcse′, e′′ of Gc
P

such thate′ = (R,C) ande′′ = (C,R).

Basically, this definition ensures that(i) a componentC is not evaluated before
all the components strictly precedingC (w.r.t. the partial ordering defined above) have
been processed; and,(ii) if C appears in a cycle ofGc

P
then it is selected only if it has

no positive incoming edges and does not directly depend on some currently running
component. The two conditions of Definition 4 checked by function canBeRunguar-
antee the correctness, since they respect the dependenciesof GP (as for the standard
instantiation algorithm defined in Section 3).

Moreover,canBeRunsingles out components that can be evaluated in parallel with-
out using “mutex” locks in the data structures that implement the setsT andI; this
allows us to save resources and reduce the time spent in lock-contentions. It is easy to
see that two componentsC1 andC2 are “selected” only if any predicatep occurring in
the body of some rule ofC1 does not appear in the head of some rule ofC2, and vice
versa. If the data structures implementing the setsT andI properly store the ground
atoms in different containers (i.e., one for each predicatename, as in DLV), then no
“mutex” lock is needed to protect them: during the evaluation of a rule, an instantiator
thread may write in the container of an atoma only when a rule defininga is processed;
thus, it will never write in a location being accessed by another instantiator.

Interestingly, condition (ii) of Definition 4 allows one to run in parallel even compo-
nents appearing in cycles ofGc

P
(i.e., components that are, somehow, interdependent).

This can be illustrated by the following example:

Example 3.Consider the Component Graph of Figure 4. All the nodes of thegraph are
involved in a cycle; thus, the evaluation of each component is somehow dependent on
the evaluation of each other. However, condition (ii) of Definition 4 allows to selectA
to be evaluated first. WhileA is running, no other component can be processed, because
both conditions (i) and (ii) are violated for all of them. Once the instantiation ofA has



ended, componentB can be run, because it satisfies condition (ii). At the same time, by
virtue of condition (ii), also componentsC andD can be run. Then, componentE can
be evaluated only when the instantiations of allB, C andD have been completed.

It is important noting that the actual implementation is quite more involved, but only
because of technical reasons. First of all, the auxiliary control structures (likeU , D and
R) are properly protected by “mutex” locks. Moreover, the cooperation among threads
is synchronized by exploiting semaphores, in order to avoidproblems like the busy
waiting. Finally, we also have to deal with additional structures which allow the user to
set the maximum number of instantiator threads. We do not believe that these technical
issues may help to get a better insight, but they are rather lengthy in description instead;
for this reason, we do not discuss them here.

5 Experiments

In order to consistently evaluate the parallel grounding technique described in Section 4,
we have implemented it as an extension of the DLV system, and performed some ex-
periments. We took into account several problems belongingto different applications,
ranging from classical ASP benchmarks to “real-word” applications.

We have compared the prototype with the official DLV [18] release2 on which it
is based. In addition, we considered the maximum number of concurrent instantiator
threads as a parameter; thus, we deal with the following versions of DLV:

– dl.release: the original DLV system release without parallel grounding;
– dl.thX: the modified DLV system withX indipendent working threads (X ranges

from 1 to 4).

All the binaries have been built with GCC 3.4 (the same used tobuild the original
DLV release), statically linking the Posix Thread Library.

Experiments have been performed on a machine equipped with two Intel Xeon HT
CPUs clocked at 3.60GHz with 16 KB of Level 2 Cache and 3GB of RAM, running
Debian GNU Linux (kernel 2.4.27-2-686-smp). This machine is capable ofsimultane-
ouslyrun (i.e., each thread executed on a different processing unit) at most 4 threads;
with more, the system performs poorly because of the preemptive thread scheduling
overhead. This has ben confirmed by the experiments; thus, wedecided to omit here the
results obtained by allowing more than 4 concurrent instantiator threads.

Time measurements have been performed by means of thetime command shipped
with the above cited version of Debian GNU Linux. Unfortunately, we could not con-
sider the total CPU times3, because, in case of multi-threaded applications, they result
as the sum of the time spent by the process oneachprocessing unit (e.g., when a process
fully exploits simultaneously two processors for 5 minutes, the total reported CPU time

2 Official DLV release, July 14th 2006.
3 The sum ofuser and systemtime; we refer the reader totime manual pages for a detailed

description of these quantities [19].



is 10 minutes). We decided to overcome the problem by considering the so calledreal
time, based on the system wall-clock time. Obviously, this measure is less accurate than
the total CPU time, since it unavoidably includes the time spent by other processes in
the system (even by unrelated operating system routines). In order to obtain more reli-
able information, we have repeated each test three times, and provide here both average
and standard deviation of the results.

In the following, we describe the benchmark problems, and finally report and dis-
cuss the results of the experiments.

5.1 Benchmark Programs

We provide here a brief description of the problems considered for the experiments. In
order to meet the space constraints, we refrain from showingthe encodings (consider
that some are automatically generated, and are very long andinvolved). However, they
are available athttp://www.mat.unical.it/parallel/rcra inst.tar.gzip.

3-Colorability. This well-known problem asks for an assignment of three colors to the nodes of
a graph, in such a way that adjacent nodes always have different colors.

Ancestor. Given aparentrelationship over a set of persons, find the genealogy tree of each one.
It is a classical deductive database problem exploiting recursive rules.

Knowledge Discovery. Given an ontology and a text document, an ASP program classifies the
document w.r.t. the ontology. Basically, the goal is to associate the document contents to one
or more concepts in the given ontology: a document is associated to the concepts it deals with.
Problems have been provided by the company EXEURA s.r.l. [20].

Player. A data integration problem. Given some tables containing discording data, find a repair
where some key constraints are satisfied. The problem was originally defined within the EU
project INFOMIX [3].

Hypertree Decomposition. Compute a k-width complete hypertree decomposition [21] of a
given query Q in a given predicate P.

ETL Workflow. In general, ETL stands for Extraction Transformation and Loading. Here the
goal is to emulate, by means of an ASP program, the execution of a workflow, in which each
step constitutes a transformation to be applied to some data (in order to queryfor and/or extract
implicit knowledge). We considered the encoding of three different steps, automatically generated
by a software working on some american insurance data. Problems have been provided by the
company EXEURA s.r.l. [20].

Cristal. A deductive databases application that involves complex knowledge manipulations. The
application was originally developed at CERN [22].

Timetabling. A real timetable problem from the faculty of Science of the University of Calabria.
We have considered for the evaluation the programs that the faculty exploited for two different
academic years.

The above-mentioned problems can be roughly divided into two classes,with respect to their
structure. One contains problems having very “dense” dependency graphs (meaning that there
are only few components), like 3-Colorability or Ancestor. The other contains problems featur-
ing several rules belonging to independent components of the dependency graph, like ETLs or
Timetablings. Therefore, the parallel instantiation of the first might only moderately be profitable,
while the latter should be easier grounded in parallel; having both classes ofproblems allows one
to get a sharpen picture of the behavior of our prototype.



Fig. 5.Average CPU usage.

5.2 Results

The results of the experimental activities are summarized in Table 1 and Table 2, showing average
total execution times (in seconds) and average instantiation times (in seconds), respectively. The
first consists of the overall time spent by DLV, from the invocation by the OS to the end of
the instantiation (including parsing, output printing, etc.)4, while the second takes into account
exactly the time spent by the instantiation itself.

We wanted also to outline the amount of parallel computation resources actually exploited;
to this extent, in Figure 5 we report the average CPU usages5. The graph draws the CPU usage
w.r.t. to the number of allowed threads: “1.00” means that the process“took” a single CPU, while
higher values mean an higher rate of parallel execution. It is important recalling also CPU usages
take into account theoverall time spent by DLV.

We start now discussing the results. At a first glance, it is easy to notice as, apart from few
exceptions, as the number of allowed threads increases, the performances get better. However,
among all the considered problems, one can observe different behaviors.

First of all, 3col and Ancestor do not enjoy any improvement. This was expected, since
their dependency graphs are almost composed by a single huge component, thus preventing any
parallelism. Indeed, they settle at the bottom of the graph of Figure 5. Nevertheless, times are not
affected by noticeable overheads, even w.r.t. the official DLV release.

It’s then possible to identify a set of instances (namely: Knowledge discovery, ETL1, ETL2,
Player, Decomp) that, as soon as the number of allowed threads moves from one to two, show
an appreciable gain in instantiation time, all above 20% (e.g.: Knowledge Discovery passes from
2.06s to 1.86s; ETL1 from 64.35s to 53.93s). Then, the advantage does not grow, in practice,
with the number of allowed threads; as an example, allowing more than threethreads for solving
Knowledge discovery is useless (1.86s, 1.53s and 1.65s with two, three and four threads, respec-
tively). Almost the same observation can be made for ETL1, ETL2 and Decomp, while Player

4 This means, both the parallel instantiation and the other non-parallel phases.
5 Computed as((User + System)/Real); see [19].



still exhibits a little performance gain even with four threads. Indeed, looking at the graph of
Figure 5, all these instances show an almost flat pattern over 2 allowed threads.

Unfortunately, we note that something strange happens when we look ad total average times:
for Decomp and Knowledge discovery, all thedl.thXexecutables show a clear degradation in the
performances if compared with the DLV release. We have investigated thisstrange phenomenon,
and discovered that it is actually a technological issue, concerning the standard STL [23] multi-
threaded memory allocator. In fact, the DLV system heavily relies on STL data structures; these
exploit a memory allocator function that suffers from a dramatic performance degradation when
linked against a multithreaded executable [24]. In our case, this sometimes neutralizes all the
benefits provided by parallelism. Fortunately, in case of ETL1 and ETL2,this does not waste all
the gain, which still stands on about 23% also in the total execution times (ETL1, for instance,
moves from 64.99s to 50.4s). This technological problem can be fixed, as indicated for instance
in [24]; since the implementation takes quite some time, we left it as a future work.

Finally, a last set of instances (namely: ETL3, Cristal, Timetabling 1, Timetabling 2), clearly
exhibits a performance gain growing as the number of allowed threads increases. Instantiation
times improvements go from about 18% for Cristal (which passes from 4.17s with one thread
to 3.58s with four) to about 40% for Timetabling 1 (from 10.64s to 6.42s). In the graph of Fig-
ure 5 the patterns related to these problems are monotonically increasing (inparticular, when four
threads are allowed, the exploited cpu usage grows up to a factor of 2). These benefits still survive
in the total execution times for all instances, apart from Timetabling 2. The difference with this
is due to the same memory allocation drawbacks previously discussed6.

Summarizing, best improvements have been observed within the last setof problems; it is
worthwhile noting that all of them come from concrete applications, thus confirming that our
approach can be profitably exploited to improve performances of ASP while dealing with real
world problems.

For the sake of completeness, it is important noting that the Intel Hyper Threading (HT) tech-
nology [25] (implemented by the machine exploited for the experiments) works by duplicating
certain sections of the processor, but not all the main execution resources. Basically, each proces-
sor pretends to be two ”logical” processors in front of the host operating system which, thus, can
schedule four threads or processes simultaneously (two processes/threads per CPU); however,
these will compete for some important execution resources (e.g., the cache). Consequently, there
is only an approximation of the behavior of a true four processor machine. This effect cannot be
avoided with the standard linux SMP kernel, since it is not aware of all the HTpeculiarities. Thus,
with pure multi-processor or multi-core machines, the performances ofour technique should be
even better.

6 Related Work and Conclusions

In this paper, we proposed a new technique for the parallel computation of the instantiation of
ASP programs. It exploits some structural properties of the input programP in order to detect
modules ofP that can be evaluated in parallel.

As a matter of fact, the exploitation of parallel techniques for computing answer sets is not
new [26–28]; however, our approach is not comparable with the existing ones, since the latter con-
cern the model generation task, instead of the instantiation. Nonetheless, alot of work has been
done in the fields of logic programming and deductive databases [17, 29–39]; still, the techniques

6 Intuitively, these drawbacks increase their weight when memory allocation functions are more
frequently invoked.



Problem dl.release dl.th1 dl.th2 dl.th3 dl.th4
Cristal 4.04 (0.07) 4.17 (0.08) 4.23 (0.08) 4.41 (0.12) 4.66 (0.36)
Ancestor 51.78 (0.54) 52.15 (0.48) 52.23 (0.48) 52.68 (0.35) 52.16 (0.64)
3Col 15.83 (0.35) 15.71 (0.05) 14.90 (0.30) 15.40 (0.69) 15.32 (0.35)
Decomp 6.91 (0.00) 8.83 (0.01) 7.41 (0.77) 6.81 (0.07) 7.23 (0.25)
TimeTab1 7.27 (0.10) 12.14 (0.04) 9.56 (0.56) 8.50 (0.06) 7.93 (0.34)
TimeTab2 12.42 (0.46) 12.85 (0.42) 10.98 (1.99) 8.59 (0.55) 10.78 (3.43)
KnoDisc 3.41 (0.00) 5.29 (0.00) 5.09 (0.00) 4.76 (0.00) 4.87 (0.15)
Player 6.87 (0.02) 7.00 (0.02) 5.52 (0.47) 5.56 (0.46) 5.34 (0.06)
ETL1 64.72 (0.35) 64.99 (0.61) 54.58 (2.77) 49.61 (0.61) 50.40 (0.11)
ETL2 64.25 (0.22) 64.26 (0.42) 49.70 (0.56) 49.89 (0.13) 49.92 (0.53)
ETL3 182.38 (0.38)186.72 (0.43)126.82 (10.21)118.57 (1.53)120.97 (2.42)

Table 1.Average Real Execution Times (standard deviations within parentheses).

Problem dl.release dl.th1 dl.th2 dl.th3 dl.th4
Cristal 3.96 (0.07) 4.03 (0.07) 3.31 (0.08) 3.33 (0.07) 3.44 (0.11)
Ancestor 51.75 (0.54) 52.08 (0.48) 52.16 (0.48) 52.61 (0.35) 52.08 (0.64)
3Col 15.67 (0.35) 15.40 (0.05) 14.59 (0.30) 15.10 (0.69) 15.01 (0.35)
Decomp 6.65 (0.00) 8.33 (0.01) 6.92 (0.77) 6.32 (0.07) 6.73 (0.25)
TimeTab1 6.51 (0.10) 10.64 (0.04) 8.06 (0.54) 6.99 (0.05) 6.42 (0.34)
TimeTab2 11.46 (0.46) 10.97 (0.42) 9.08 (1.98) 6.70 (0.55) 8.90 (3.44)
KnoDisc 1.88 (0.00) 2.06 (0.01) 1.86 (0.00) 1.53 (0.01) 1.65 (0.15)
Player 6.76 (0.02) 6.79 (0.01) 5.31 (0.47) 5.36 (0.46) 5.13 (0.07)
ETL1 64.32 (0.35) 64.35 (0.62) 53.93 (2.77) 48.96 (0.61) 49.75 (0.11)
ETL2 64.00 (0.22) 63.88 (0.41) 49.31 (0.56) 49.50 (0.13) 49.48 (0.57)
ETL3 180.83 (0.37)184.17 (0.44)124.24 (10.19)115.96 (1.61)118.41 (2.42)

Table 2.Average Grounding Times (standard deviations within parentheses).

are comparable to a limited extent to the one illustrated here: some of them apply to syntactically
restricted classes of programs, and some others requires an heavy usage of concurrency-control
mechanisms. The only one comparable to the present is the so-calledstreamparallelism, where
all the rules are evaluated simultaneously: basically, the information resulting from the evaluation
of each rule is passed to the ones depending on it, like in a pipeline. However, this scheme suffers
from heavy communication overheads, while our approach minimizes theusage of “mutexes”
in the main data structures, thus reducing the overhead introduced by the concurrency-control
constructs.

We have implemented our strategy producing an experimental version ofthe DLV system,
and performed several experiments on a SMP-based machine. The obtained results confirmed, on
the one hand, the effectiveness of our technique, which allows one to save real (wall-clock) time,
especially while evaluating real-world problem instances; on the other hand, they outlined some
annoying technical issues due to the usage of the standard STL multithreaded memory allocator,
which is widely considered performance-wise not optimal [24].

We plan to improve the current implementation by solving the problems concerning STL
memory allocation performances; nonetheless, we want to extend our parallel grounding tech-
nique as well, in order to exploit parallelism also during the instantiation of a single component.
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