OntoDLV: an ASP-based System
for Enterprise Ontologies*

Tina Dell’Armi!2, Lorenzo Gallucdi3, Nicola Leoné, Francesco Ricdaand
Roman Schindlaués

! Department of Mathematics, University of Calabria, 87036 Rende, (G&H)
{l eone, ricca}@mt.unical.it
2 Institut fur Informationssysteme, Technische Univérsitvien
FavoritenstraBe 9-11, A-1040 Vienna, Austria
roman@r .t uw en. ac. at
3 Exeura S.r.l., c/o University of Calabria, 87036 Rende (CS), Italy
{del l arni, gal | ucci }@xeura.it

Abstract. Enterprise/Corporate ontologies are specifications of information of
business enterprises. Semantic peculiarities of ASP, like the Closed Wefld A
sumption (CWA) and the Unique Name Assumption (UNA), are more gpjaie
than OWL assumptions for enterprise ontologies, also because thesegmso
often are the evolution of relational databases, where both CWA and UBA a
adopted.

In this paper we present OntoDLV, a system based on Answer SetaPtogng
(ASP) for the specification and reasoning on enterprise ontologies.

OntoDLV implements a powerful ontology representation language, céalted
toDLP, extending (disjunctive) ASP with all the main ontology constructs @hclu
ing classes, inheritance, relations and axioms. OntoDLP is strongly tymed,
includes also complex type constructors, like lists and sets. ImportantigPOw
supports a powerful interoperability mechanism with OWL, allowing the tser
retrieve information also from OWL Ontologies and to exploit this information in
OntoDLP ontologies and queries. The system is already used in a nufireei-o
world applications including agent-based systems, information extraatortext
classification applications.

1 Introduction

In the last few years, the need for knowledge-based techmslas emerging in several
application areas. Industries are now looking $emantidnstruments for knowledge-
representation and reasoning. In this contexrtplogies(i.e. abstract models of a com-
plex domain) have been recognized to be a fundamental todltree World Wide Web

Consortium (W3C) has already provided recommendations t@mdiards related to on-
tologies, like, e.g., RDF(s) [1] and OWL [2]. In particularW. has been conceived
for the Semantic-Web, with the goal to enrich web pages witlchime-understandable

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni detiagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazib conoscenza:
estensioni e tecniche di ottimizzazione.”



descriptions of the presented contents (the so-called \Wellagies). OWL is based on
expressive Description Logics (DL)[3]; distinguishingafares of its semantics are the
adoption of the Open World Assumption and the non-uniqueoéthe names (the same
individual can be denoted by different names).

While the semantic assumptions of OWL make sense for the Welg #re domains
where they are unsuited; in particular, they are very inappate for Enterprise ontolo-
gies. Enterprise/Corporate ontologies are specificatbterms and definitions relevant
to business enterprises; they are used to share/manighédatdormation already present
in a company. Since an enterprise ontology describes thelkdge of specific aspects of
the “closed world” of the enterprise, a Closed World Assuomp{CWA) seems more ap-
propriate than the OWA (appropriate for the Web, which is p@roenvironment). More-
over, the presence of naming conventions, often adopteatén@ises, guarantee names
uniqueness making also the Unigue Name Assumption (UNA)gitde. It is worth-
while noting that enterprise ontologies often are the aumhuof relational databases,
where both CWA and UNA are mandatory. To understand thermitebility for CWA
and UNA for enterprise ontologies, consider the followingmple.

The enterprise ontology of a food-distribution companyesats pasta suppliers and
their respective production branches in the relation degdim Table 1 (of the company
database).

[Supplier[Branch City [Branch Street|

Barilla Rome Veneto
Barilla Naples Plebiscito
Voiello Naples Cavour

Table 1. The Supplier-Branch table.

Consider the following query: “which are the pasta supplief the company hav-
ing a branchonly in Naples?”. The expected answer to this query is clearlyieNa'.
This answer is obtained whenever the CWA is adopted (if thddaie “closed”, then
Voiello cannot have branches other than those specified);@amputed also in the query
language SQL. OWL, instead, provides an empty answer; itatagmtail that Voiello
has only a branch in Naples (since, according with the OWAgNocould have also a
branch in Rome).

To understand the role of the UNA, consider an axiom statiag)¢ach supplier has
a branch only in one city. Then, a language adopting UNA dsrihat the ontology is
inconsistent; while, OWL, missing the UNA, derives that RefNaples (i.e., the names
Rome and Naples denote the same city!).

Similar scenarios are frequent when we deal with enterprisglogies. In these cases
logic programming languages like ASP, strongly relying oWACand UNA, are defi-
nitely more appropriate than OWL. Answer Set ProgrammingRAR], is a powerful
logic programming language, which is very expressive inexige mathematical sense;
in its general form, allowing for disjunction in rule headsdanonmonotonic negation
in rule bodies, ASP can represaweryproblem in the complexity clas§! and 17
(under brave and cautious reasoning, respectively) [Sivévder, ASP is, somehow, a
“low-level” formalism for ontologies since in its classidarmulation it does not di-
rectly support the most common ontology concepts like elsgsheritance, individuals,



etc. Moreover, ASP systems are far away from comfortablypkmg the development
of industry-level applications, mainly because they mispartant tools for supporting
users and programmers. In particular, friendly user iatar$ are missing, and there is a
lack of advanced Application Programming Interfaces (ABbimplementing applica-
tions on top of ASP systems.

This paper describes OntoDLV, an ASP-based system for leuy@ modeling and
advanced knowledge-based reasoning, which addresshe albbve-mentioned issues.

Indeed, OntoDLV implements a powerful logic-based ontglogpresentation lan-
guage, called OntoDLP, which is an extension of (disjurgtikSP with all the main
ontology constructs including classes, inheritance timda, and axioms. OntoDLP is
strongly typed, and includes also complex type constrsctike lists and sets.

Importantly, OntoDLV supports a powerful interoperalyilihechanism with OWL,
allowing the user to retrieve information also from OWL Owigies and to exploit this
information in OntoDLP ontologies and queries

Moreover, OntoDLV allows one for the development of compdgplications in a
user-friendly visual environment; and it seamlessly irages the DLV system [8] ex-
ploiting the power of a stable and efficient ASP solver.

Using OntoDLV, domain experts can create, modify, navigaibel query ontologies
thanks to a user-friendly visual environment; and, at theeséme, application develop-
ers can easily implement knowledge-intensive applicatiembedding OntoDLP spec-
ifications by exploiting a complete Application Programmiimterface (API). Indeed,
OntoDLP is already used for the development of real-worldliaptions including agent-
based systems, information extraction and text classificdtameworks.

Remark 1.0ntoDLV has its roots in the previous DLP+ system [9]; buthpared to its
predecessor, OntoDLV brings many major new features. Antbam, we recall Com-
plex types (like Sets and Lists), Objects reclassificatigppsrt (Collection Classes),
Intensional Relations, OWL interoperability mechanismgphcation Programming In-
terface, more advanced Graphical User Interface, togetiieimany optimization tech-
niques, making OntoDLV well-suited for the developmentrafustrial applications (see
Section 5).

2 The OntoDLP Language

In this section, we describe OntoDLP, a language for ontokecification and rea-
soning. OntoDLP extends the ASP language by adding the mmgeiriant ontological
constructs, namely classes, attributes, relations, itaimee and axioms.

For a better understanding, we will describe each constnugtseparate paragraph
and we will exploit an example (tHa/ing being ontology, which will be built through-
out the whole section, thus illustrating the features oflémguage.

Hereafter, we assume the reader to be familiar with ASP syama semantics, for
further details refer to [4, 8].

41t is well known that rule-based inference systems are needed by @plications [6, 7].



Classes. A (base)clas$ can be thought of as a collection of individuals that belong
together because they share some properties. Classes chgfired in OntoDLP by
using the the keywordlassfollowed by its name, and class attributes can be specified
by means of pairgattribute-name : attribute-typeyvhereattribute-names the name of
the property andattribute-typeis the class the attribute belongs to.

Suppose we want to model thiging beingdomain, and we have identified four
classes of individualgpersonsanimals food, andplaces We can define the claggrson
having the attributes name, age, father, mother, and tatbpas follows:

class person(name:string, age:integer, father:person, matenson, birthplace:place).

Note that, this definition is “recursive” (both father andthmr are of typepersor).
Moreover, the possibility of specifying user-defined céessas attribute types allows for
the definition of complex objects, i.e., objects made of ptigects® Moreover, many
properties can be represented by using alphanumeric staimdy numbers by exploiting
the built-in classestring andinteger(respectively representing the class of all alphanu-
meric strings and the class of positive integers).

In the same way, we could specify the other classes mentialpede in our domain
as follows:

class place(name:string class food(name:string, origin:place
class animal(name:string, age:integer, speed:integer).

Objects. Domains contain individuals which are calletjectsor instancesEach in-
dividual in OntoDLP belongs to a class and is univocally tifesd by using a constant
calledobject identifier(oid) or surrogate

Objects are declared by asserting a special kind of logits f@sserting that a given
instance belongs to a class). For example, with the follgwivo facts

rome : place(name:“Rome”).
john : person(name:“John”, age:34, father:jack, mothenrs birthplace:rome).

we declare thdtRome” and“John” are instances of the claplaceandperson respec-
tively. Note that, when we declare an instance, we immelgigtee an oid to the instance
(e.g.,romeidentifies a place naméetome”), which may be used to fill an attribute of
another object. In the example above, the attribute biaitels filled with the oidome
modeling the fact that “John” was born in Rome; in the same Wjagk’ and “anr’ are
suitable oids respectively filling the attributiegher, mother(both of type person).

The language semantics (and our implementation) guastiteeeferential integrity
thatjack annandromehave to exist whejohnis declared.

Sets and Lists. An important feature of OntoDLP is the possibility to didgdbhandle
group of objects. More specifically, a setdistinctobjects of a clas§’ is considered as
an individual belonging to a special class nanjég} (set of C)

For instance, suppose we defined the ctassas follows:

5 For simplicity, we refer tdase classelsy omitting thebaseadjective, since it only distinguishes
this construct from another one calledllection classhat will be described later in this Section.

8 Attributes model the properties thaiustbe present in all class instances; propertiesitright
be present or not should be modeled by using relations.



class car (brand:string, model:string, year:integer, ownerider).

Then, the class driver, which is a subclass of person haviseaial attributecars of
typeset of carscan be defined as follows:

classdriver (cars:{car}) isa{persor}.

Note that, the name of the clasar has been surrounded with curly brackets to
specify the classet of carsAn instance of the class driver can be declared as follows:

jim: driver(name:“Jim”, age:35, father:jack, cargherbie, kit})

Here,jim is a driver that owns two cars, naméigrbieandkitt, which are the elements
of the set{herbie, kitt-.

In an similar way, OntoDLP allows one to specify lists of attge(of a given class) as
an individual belonging to of a special cldss. In this case, following the well-known
Prolog convention, lists of elements are syntacticallygiin brackets.

As an example, suppose we want to model the concept of orgatiip which has
a set of persons (the travellers) and an ordered sequendgsitefiyplaces. This can be
done as follows:

classtrip (travelers:{person, tour:[place]).

trip: trip(travelers:{john, jim}, tour:[rome,naples,rome,pisa,milan,rome])

Note that in a list the order of its elements is meaningful #relsame individual
might occur more than once. In the example, to model thetipd, we exploited a list
of places to model the ordered sequence of cities visitepblny andjim, and, in this
caseyomehas been visited for three times.

Sets and lists can be handled in logic rules by following thealiProlog conventions
(e.g., a list can be split in head and tail), while the langupgpvides a set of built-in
predicates that allows one to access the elements (alsomaadcess is supported), to
know the size/length or to manipulate the content (by addingmoving elements).

Remark 2.Special terms, like lists and sets are not supported by cioveal ASP sys-
tems, and even richer ASP variants like Dt\J9] does not provide similar language
features.

Inheritance. OntoDLP allows one to model taxonomies of objects by usimgviell-
known mechanism of inheritance. Inheritance is supporie@btoDLP by using the
special binary relatiorisa. For instance, one can exploit inheritance to represenesom
special categories of persons, ligeidentandemployeeshaving some extra attribute,
like a school, a company etc. This can be done in OntoDLP &sAfsi

class studentisa {person}( class employeésa {person}(
code:string, salary:integer,
school:string, skill:string,

tutor:person). company:string,

tutor:employeg



In this case, we have thaersonis a more generic concept superclassaand both
studentandemployeere a specialization (@ubclasyof person Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, Wwhace defined lo-
cally, and the attributes: name, age, father, mother, artldpiéce, which are defined in
person We say that the latter are “inheritédfrom the superclagserson An analogous
consideration can be made for the attributesraployeavhich will be name, age, father,
mother, birthplace, salary, skill, company, and tutor.

An important (and useful) consequence of this declaratitimgt each proper instance
of bothemployeandstudentwill also be automatically considered an instancp&fson
(the opposite does not hold!).

For example, consider the following instancestident

al:student(name:“Alfred”, age:20, father:jack, motheetty, birthplace:rome,
code:“100", school:“Cambridge”, tutor:hanna).

This instance is automatically considered also as an instahperson as follows:
al:person(name:“Alfred”, age:20, father:jack, mothegetiy, birthplace:rome).

Note that it is not necessary to assert the latter instance.

In OntoDLP there is no limitation on the number of superaas@.e., multiple in-
heritance is allowed).

Moreover, all the set and list classes are part of the Ontodbéritance hierarchy.
Basically, the classA] (resp.{A}) is a subclass of clas8] (resp.{B}) if classA is
a subclass of clasB. For example, the class [student] (re¢ptudent) is subclass of
[person] (resp{person}) sincestudents subclass operson

Finally, in OntoDLP there is a common built-in superclasiechobject (or T),
which has five different built-in subclasses, naméatgtividual, integer, string, [object],
and{object. The first one is the superclass of all the user-defined dais¢egeris the
class of positive integerstring is the class of all alphanumeric stringebject] is the
generic “list of objects” (and superclass of all list clags@nd{object is the generic
“set of objects” (and superclass of all set classes).

Relations. Relationships can be modeled in OntoDLP by means of (basitions
Relations are declared like classes: the keyweldtion (instead ofclas9 precedes a
list of attributes, and models relationships among objects

As an example, the relatidriend, which models the friendship between two persons,
can be declared as follows:

relation friend(persl:person, pers2:person).

In particular, to assert that two persons, gay andbill are friends (of each other),
we write the following logic facts (that we call tuples):

friend(persl:john, pers2:bill). friend(persl:bill, pg2:john).

7 Attribute inheritance in OntoDLP follows the same criteria exploited in in both Dlad
COMPLEX, see [9, 10] for a formal description.



Thus, tuples of a relation are specified similarly to clastances, that is, by asserting
a set of facts (but tuples are not equipped with an oid).

We complete the description of relations observing thabOhP allows one to or-
ganize also relations in taxonomies. In this case, relattbotbutes and tuples are inher-
ited following the same criterions defined above for clas€dsarly, the taxonomies of
classes and relations are distinct (classes and relatierdifferent constructs).

Collection Classes and Intensional RelationsThe notions of base class and base rela-
tion introduced above correspond, from a database poinieof, ¥o the theextensional
part of the OntoDLP language. However, there are many casedich some prop-
erty or some class of individuals can be “derived” (or inéefy from the information
already stated in an ontology. In the database worldyigesallow to specify this kind
of knowledge, which is usually called “intensional”. In @BLP there are two different
“intensional” constructscollection classeandintensional relations

As an example, suppose we want to define the class of persaok ade less than
21 years old and have less than two friends (we name this gtagsgAndSHy This
class should have a single attribute Note that this infolanas implicitly present in the
ontology, and the “intensional” claggungAndShgan be defined as follows:

collection class youngAndShy(friendsNumber: integér)
X : youngAndShy(friendsNumber : N) :— X : person(age : Age),
Age < 21, #count{F : friend(persl : X,pers2 : F)} = N,N < 2. }

Evidently, the attribute of the collection claggiendsNumber) has to be defined by the
rule head. Note that in this case the instances of the glagsgAndShgre “borrowed”
from the (base) class person, and are inferred by using a tag. Basically, this class
collectsinstances defined in another class (ipersor) and performs a re-classification
based on some information which is already present in thelayy. Thus, in general,
the collection classes neither have proper instances npepoids while they “collect”
already defined objects.

In an analogous way we specify “derived relations” by usimg key wordsnten-
sional relation.For example, the binary relatigalative (modeling the common ancestry
among persons) can be easily derived from the informaticrady present in the class
personas follows:

intensional relation relative(sub:person, obj:persor)
relative(sub : X, 0bj : Y) :— X : person(father : Y).
relative(sub : X, 0bj : Y) :— X : person(mother : V).
relative(sub : X, 0bj : V') :— relative(sub : X, obj : Z),
relative(sub : Z,0bj 1 Y). }

Here the first two rules populate the new intensional retatitative with the infor-
mation about parentsX( is relative ofY if X is parent ofY"); while the third rule infers
all the other connectionsX(is a relative ofY if exists another relative ok, namelyZ,
andZ is a relative ofY").

Importantly, the programs defining collection classes aehisional relations must
be normal and stratified (see e.g., [8]). Thus, in geneddlection classeandintensional
relationsare both more natural and more expressive than relationabase views, in



fact they allow the use of the navigational style of objedéioted programming com-
bined with a more powerful language allowing recursion aggation as failure.

Moreover, both collection classes and intensional refatican be organized in tax-
onomies by using thésa relation. It is worth noting that the inheritance hierarasfy
collection classes (resp. intensional relations) and tie af base classes (resp. rela-
tions) are distinct (i.e., a collection class cannot be stlpss or subclass of a base class
and vice versa).

Axioms and Consistency. An axiomis a consistency-control construct modeling sen-
tences that are always true (at least, if everything we fipdds correct). They can be
used for several purposes, such as constraining the infamzontained in the ontology
and verifying its correctness.

As an example, in our living being ontology, we may enforcat tthe the father
cannot be younger than the son as follows:

:— X : person(age : Al, father : person(age : A2)), A1 > A2.

If an axiom is violated, then we say that the ontology is irgistent (that is, it con-
tains information which is, somehow, contradictory or notpliant with the intended
perception of the domain).

Reasoning modules.Given an ontology, it can be very useful to reason about tite da
it describesReasoning modulesre the language components endowing OntoDLP with
powerful reasoning capabilities. Basicallyremsoning modules a disjunctive logic pro-
gram conceived to reason about the data described in aroggtdRkeasoning modules
in OntoDLP are identified by a name and are defined by a set sbijply disjunctive)
logic rules and integrity constraints.

Syntactically, the name of the module is preceded by the &eywnodulewhile
the logic rules are enclosed in curly brackets (this allows o collect all the rules
constituting the encoding of a problem in a unique definitdemtified by a name).

We now show an example demonstrating that OntoDLP can by eagiloited for
solving complex real-world problems. Given our living bgiontology, we want to com-
pute a project team satisfying the following restrictioins.( we want to solve an instance
of team building problem

— the project team has to be constituted of a fixed number of @epk;

— a given number of different skills has to be ensured insidgdham;

— the sum of the salaries of the team members cannot exceedralgidget;
— the salary of each employee in the team cannot exceed arceaiae.

Suppose that the ontology contains the clasgectwhose instances specify the in-
formation about the project requirements, i.e., the nunobéam employees, the num-
ber of different skills required in the project, the avaitabudget, and the maximum
salary of each team employee:

8 Note that the notion of axiom in OntoDLP is very different from the one eggdoin other
ontology languages, like i.e., OWL [2]. In fact, an axiom in OntoDLP is asistency control
construct and cannot be used to specify or infer knowledge.



classproject(numEmp : integer, numsSk : integer, budget : integer, mazSal : integer).
We can solve the above team building problem with the foll@myinodule:

module(teamBuilding){

(r) inTeam(E, P)V outTeam(E, P) :— E : employee(), P : project().

(c1) :— P : project(numEmp : N), not #count{FE : inTeam(E,P)} = N.

(c2) :— P : project(numSk : S), not #count{Sk : E : employee(skill : Sk),
inTeam(E, P)} > S.

(c3) :— P : project(budget : B),not #sum{Sa, E : E : employee(salary : Sa),
inTeam(E, P)} < B.

(cq) :— P : project(mazSal : M), not #max{Sa : E : employee(salary : Sa),
inTeam(E,P)} < M.}

Intuitively, the disjunctive rule- guesses whether an employee is included in the
team or not, generating the search space, while the camstegj co, c3, andcy, model
the project requirements, filtering out those solutions dlwenot satisfy the constraints.

In practice, reasoning modules isolate a set of logic ruléscanstraints conceptually
related, and they exploit the expressive power of answepregramming to perform
complex reasoning tasks on the information encoded in avlamy (i.e. one can solve
problems which are complete for the second level of the motyial hierarchy).

Querying. An important feature of the language is the possibility diag queries in
order to extract knowledge contained in the ontology, butdi@ctly expressed. As in
ASP a query can be expressed by a conjunction of atoms, wihi€ntoDLP, can also
contain complex terms.

As an example, we can ask for the list of persons having arfathe is born in Rome
as follows:

X:person(father:person(birthplace:place(hame: “Ronig?

Note that we are not obliged to specify all attributes; rathe can indicate only the
relevant ones for querying. In general, we can use in a quatythe predicates defined
in the ontology and the auxiliary predicates in the reagpniodules.

It is worth noting that, in presence of disjunction or unsfied negation in modules,
we may obtain multiple answer sets; in this case both bradecantious reasoning [8]
are supported.

3 OWL Interoperability

As discussed above, OntoDLP is more suitable than OWL forrnge Ontologies,
while OWL has been conceived for describing and sharing imé&ion on the Web (i.e.,
to deal with Web ontologies). However, it may happen thaégmise systems have to
share or to obtain information from the Web; thus, from iesih enterprise ontology,
one may need to access and query an external OWL ontology doif&ppurposes. At
the same time, it is well known that Semantic-Web applicetimay need to integrate
rule-based inference systems, to enhance their deductpabdities. Based on these
observations, our system supports a mechanisms for OWlopeeability. Actually, we



lifted the approach of [11] to the OntoDLP framework. In tlididwing, we describe
how to import OWL knowledge into OntoDLP ontologies and hoig thformation can

be exploited to write reasoning modules (and, thus, logog@ams) that allow one to
(somehow) add rules and reason on top of OWL.

To enable the interfacing and import of existing OWL onto&sginto the framework
of OntoDLP, the so-calle®@WL Atomdave been introduced. OWL Atoms can be used in
rule bodies of OntoDLP’s reasoning components and fatdlif@e evaluation of specific
queries to an OWL knowledge base. This allows to import ABaadiéke concept and
role extensions, but also TBox information, like concepbssumption, ancestors and
descendants. To comfortably handle the translation of samthis interfacing process,
amappingcomponent can be specified.

OWL atoms can be used in OntoDLP constructs wherever ordiatimys are al-
lowed. They can contain variables and are as such also $ubjdte grounding of the
logic program. A ground OWL atom has a truth value, dependimg¢he evaluation of
the respective query. The flow of information between an Oh# program is strictly
uni-directional, i.e., data from ontologies is importediie OntoDLP program. More-
over, the parameters and hence the evaluation of OWL atonssragelepend on other
rules, thus they can be fully evaluated prior to any modelmatation procedure.

3.1 OWL Atoms

The types of queries that can be stated by an OWL atom is spkbifiehe the DIG
Description Logic Interface. The DL Implementation Grolpl@) is a self-selecting
assembly of researchers and developers associated wilinaptations of Description
Logic systems. The DIG interface allows for a number of TBor &ABox queries, re-
turning either a truth value for boolean queries or a setsiltéuples of values.

The set of constants that are imported by OWL atoms extendsethaf object iden-
tifiers of the OntoDLP program. In other words, OWL Atoms canitively be regarded
as functional queries that import new values into the Onteirogram. Since these
atoms can not occur in any recursion, the entire set of abgtays strictly finite.

An OWL query atom is characterized by the identiffe© WL. It has three obligatory
parameters, the query type, the query itself, and the dataeso

# OWL]querytype, query, source]

The query and source strings have to be double-quoted. Bsiyp@values foqguerytype
are those allowed in the DIG ASK directive, comprising geersuch as instances of a
concept, pairs of a role, subsumption of concepts, all ofiicconcepts of a concept,
all types of an individual, etc. A specific query type detares the syntax of the actual
query string.

The third parametespurce, specifies the source address of the ontology to be queried.
This can be either a URI, such aattp:/[www.example.orgl/data.owl” or a local file,
like “/homeluser/data.owl”.

For example, the OWL atom

#OWL[disjoint, “Truck SUV?” | “http:llex.orglvehicle.owl”]



is a purely boolean query, evaluating to true if the concé@ptg:k andSUV are disjoint
in the specified OWL KB.

The following rule imports all children classes of the cqutc® ammal of the spci-
fied OWL-KB:

mammals(X) :— #OWL|[children, “IX Mammal”, “http:llex.orglanimals.owl”].

These children concept names instantiate the varidbile the respective rule. In order
to be distinguishable from upperase concept or role idersifivariable symbols within
the query string are prefixed witht': Variables in such queries act just like variables in
ordinary body atoms, being bound to a specific extensiorh thi¢ difference that the
extension is not determined within the program itself, buaih external evaluation.

The next rule imports the extension of a class into the Onf®Pptogram:

projects(P) :— # OWL[instances, “projects(?X)”, “hitp:llex.orgldep.owl”].

The following collection class gathers all red parts togethith their prices. Note
that the part object and its price stems from OntoDLP itsetije the color information
is derived from an external ontology.

collection class redParts(price: integer)
X : redParts(price : P) :— X : part(price : P),
# OWL[relatedIndividuals, “hasColor(?X, red)”, “inventory.owl”]. }

3.2 Name Mappings

Mappings ease the syntactic translation of constant narheg they are imported into
the OntoDLP program. A mapping is defined via tregopi ng keyword. It is used like
a module:

mapping family {
‘dad’* father’

‘mom’ ' mother’

}

If this mapping is specified in a query atom, each occurrefitgther’ resp. ‘mother’

in the query answer (i.e., data that comes from an OWL ontdlegyranslated to the

name ‘dad’ resp. ‘mom’ in the OntoDLP program. The mapping specification itseH is
list of pairs of strings. The first string in each pair is thedb(i.e., in OntoDLP) name to

be translated, the second string is the ontology name. Tipgimgname is used to refer
to a name mapping within a query atom, where one or more mgpgiain be optionally

specified:

# OWL[relatedIndividuals, “fatherOf (?X,7Y)”, “family.owl”][family]

Thus, mappings are always local to a specific query-atom.

Mappings are not functional, hence they can be seen asrelations. Consequently,
one name can be mapped to multiple replacement names, wiiichllvbe inserted,
and multiple names can be mapped to the same single replatee. It is in the



responsibility of the author of a mapping to consider thecetfbf such mappings on the
Unique Name Assumption.
More than one mapping can be specified in a single query atach, as:

#OWL[instances, “Person(?X)”, “people.owl”|[persons, family]

Since mappings are not functional, simply their union coiné&s effect. However, the

user will have the possibility to specify a command line stitvhich enforces unique
mappings and applies a priority relation in case of configtinappings: the one further
left has priority, as shown in the following example. Comsithe following mappings:

mapping persons {
“ciccio’ * http:llmat.unical .it/# Ricca’
‘gb’ * http:llmat.unical.it!# lanni’

}

mapping family {
“gibbi’ * hitp:lImat.unical .it!# Ianni’

}

and the query atom above. Assume that the user specificgiested functional map-
pings. Considering the namespaces, two conflicting magpfag the external name
“http:lImat.unical.it/# Ianni’ exist. Since the mappingersons is specified before
family, the name will be translated intgd’.

4 The OntoDLV System

OntoDLYV is a complete framework that allows one to specifigate, query and per-
form reasoning on OntoDLP ontologies. We now illustrate @reoDLV architecture,

and present the main features of the system. We refrain fieimggan in-depth descrip-
tion of all the technical details underlying the implemeiata of OntoDLYV in this paper,

rather we will describe the main components of the system.

System Architecture and Implementation. The system architecture of OntoDLV, de-
picted in Figure 1a, can be divided in three abstractionl¢evéhe lowest level, named
OntoDLV corecontains the components implementing the main functitealof the
system, namelyPersistency Manager, Type Checkand Rewriter The Persistency
Manager provides all the methods needed to store and matepilie ontology com-
ponents. In particular, it exploits tHearsersubmodule to analyze and load the content
of several OntoDLP text files, andi@B Managersubmodule to implement data persis-
tency on relational databases through Hibernate/JDBC.

The admissibility of an ontology is ensured by the Type Cleeckodule which im-
plements a number of type checking routines. Resvritermodule translates OntoDLP
ontologies, axioms, reasoning modules and queries to anadept ASP program which
runs on the DLV system [8] either the results or possible error messages are redi-
rected to the Persistency Manager. Importamhtologiesare translated into an equiv-
alent (stratified) ASP program which is solved by DLV in padymial time (under data

9 DLV is a state-of-the-art ASP solver that has been shown to perfdinieetly on both hard
and “easy” (having polynomial complexity) problems



Graphical User Interface
(GUI)

(OntoDLV API)

OntoDLV Core

[ Application Interface ]

Persistency Manager
Type
Rewriter DB
Parser l S Checker
% 73 —%
A4 A4 A4
i
TextFles
)

Fig. 1. The OntoDLV architecture (a) and the OntoDLV GUI (b).

complexity). Moreover, thRewriterfeatures a number of optimization and caching tech-
niques in order to reduce the time spent interacting with DLV

The OntoDLV system has been implemented in Java and all #iars in theOn-
toDLV corecan be employed by both system developers and programnmrergytha
sophisticated application interface: tBatoDLV API

In particular, all the operations the user can require (ergation and browsing of
ontology elements, reasoner invocations etc.) are madkalaleathrough a suitable set
of Java interfaces. It is worth noting that, the OntoDLV ABkharacterized by a rather
high level of abstractio®? it is composed of a relatively rich set of interfaces extesiyi
exploiting standard Java components (e.g., both the adesiCollection and Iterator
play a central role). This feature makes expert Java progeens rapidly familiar with
the OntoDLP API.

The Graphical User Interface. The end user exploits the system through an easy-
to-use and intuitive visual environment call&tl! (Graphical User Interface), which is
built on top of theOntoDLV API The GUI combines a number of specialized visual
tools for authoring, browsing and querying a OntoDLP orggldn particular, theGUI
features a graph-based ontology viewer and a graphicay gmeironment.

The OntoDLV GUI was designed to be simple for a novice to usiderd and use,
and powerful enough to support experienced users. A snapélibe system running
the ontology described in Section 2 is depicted in FigureThe GUI presents several
panels offering access to several facilities combinindattogvsing environment with the
editing environment.

The class/subclass hierarchy is displayed both in an iedetaxt (on the left in
Figure 1b) and a graph-based form (on the bottom in Figure 1b)

The user can browse the ontology by double-clicking the stémthe panels. The
structure of each ontology entity (classes, relationsjmastdnces) can be displayed in the
middle of the screen by switching between several tabbeélpafor example, in Figure
1b the class person is selected in the class list and the udared shows the scheme of
that class. In particular, the name and the type of the clasisides are shown in a table,
while, on the left, both the relations and the axioms invodMhe class, together with the
list of the instances, are reported in an indented text form.

In the editing phase, the user enters the domain informétyofilling in the blanks
of intuitive forms and selecting items from lists (explogian simple mechanism based

9 The design principles makes the OntoDLP API similar to the JAXP API from Su



on drag-and-drop). An up-to-date list of messages infolmasiser about the occurrence
of errors (e.g., type checking messages, etc.) in the antalader development. If the
user clicks on an error message the system promptly shoventhg involved in it.

Reasoning and querying can be done by selecting the apat®montrols. In par-
ticular, the reasoning module panel contains a text ed#atufing syntax coloring and
a simple auto-complete feature; while, queries can be eldag exploiting a powerful
and intuitive query environment. Indeed, the query pansiliaes a textual editor with
a graphical “QBE-like” interfacewhich allows one to creajgeries without worrying
about the syntax. Moreover, the interface is conceived tooshly switch between the
text editor and the visual editor (the system exploits ansmrengineering procedure
which “translates” queries from textual to graphic repreéagon and vice versa).

5 Current Applications and Conclusion

In this paper, we have presented OntoDLP, an extension pindi$ve logic program-
ming with relevant object-oriented constructs, includatgsses, objects, (multiple) in-
heritance, lists, sets, and types. We have described thaxsyhOntoDLP and shown its
usage for ontology representation and reasoning by example

The features of the language, like the closed world assomptid its rich set of tools
for ontology specification and reasoning, combined with @ ltomputational power
(allowing for the direct implementation of complex problawmlving tasks like planning,
team building, etc.) make OntoDLP very suitable for dealinth Enterprise/Corporate
ontologies. Moreover, OntoDLV supports a powerful intergbility mechanism with
OWL, allowing one to simultaneously deal with both OWL and 1it® ontologies.

Importantly, we have provided a concrete implementatiotheflanguage: the On-
toDLV system. OntoDLV features both an advanced GraphicsrUnterface (GUI)
and an Application Programming Interface (API). This wagthbthe novice and expert
user can exploit the system for solving problems and devsdogal-world applications
based on OntoDLP. The system is built on top of DLV (a statéhefart ASP system),
and it implements all features of OntoDLP. Moreover, it camels an advanced visual-
interface and a powerful type-checking mechanism for fastlogies specification and
errors detection.

OntoDLV is based on the DLP+ system [9], but its language sttppnore advanced
features, like Complex types (like Sets and Lists), Objesttassification support (Col-
lection Classes) Intensional Relations, and OWL interdpkty mechanisms. More-
over, the OntoDLV system provides a more advanced userfacter(w.r.t. he one of
DLP™) and, importantly, OntoDLV includes an API that makes itchgfor the develop-
ment of knowledge-based applications. Indeed, even thGQugbDLP has been released
only very recently, it is already employed, playing a celnvke in advanced applications
like:

— HiLEx[12], an advanced tool for semantic information-extratfimm unstructured
or semi-structured documents. Here, an OntoDLP ontologysed to represent
concepts of the documents domain, while a set of “semangiglilar expressions
(HILEx expressions) represent ways of writing a conceptdioeument. The extrac-
tion is achieved by rewriting such expressions in OntoDLyPdkploiting modules



and collection classes) and computing the answer sets abliteéned OntoDLP
specification.

— OLEX (OntoLog Enterprise Categorizer System) [13], is a systeweldped by

Exeura s.r.l.[jt t p: / / www. exeur a. i t) for text classification (the task of as-
signing to each concept of a given ontology all documents dha recognized to

be relevant for it). Roughly, sets of documents are autarallyi classified by the

system (w.r.t. a given ontology) by using suitable reaspniodules.

— TheRAP platformdeveloped by Orangebf(t p: / / www. or angee. con) an agent-

based system, implemented by using the JADE Frameworkhégbvernance of
the distribution process of antiblastic medicines in htzdpi Basically, in this appli-
cation, the “agent’s brain” is an OntoDLP program.

Ongoing work concerns the enhancement of OntoDLV by extends language

with new features such as optional attributes, concrete-gygies, and a more powerful
kind of reasoning module.

References

1.
2.

10.

11.

12.

13.

W3C: The resource description framework. (2006) p: / / www. w3. or g/ RDF/ . /.
Smith, M.K., Welty, C., McGuinness, D.L.. OWL web ontology langeayide. W3C Can-
didate Recommendation (2008) t p: / / www. W3. or g/ TR/ owl - gui de/ .

. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Batkheider, P.F., eds.: The De-

scription Logic Handbook: Theory, Implementation, and ApplicationsPG2D03)

. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs &igjunctive Databases.

NGC?9 (1991) 365-385

. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TORZ3) (1997) 364—418
. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Descriptiogic programs: Combining logic

programs with description logics. In: Proceedings of the Twelfth Intesnal World Wide
Web Conference, WWW2003, Budapest, Hungary. (2003) 48-57

. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.s@rdB., Dean, M.: Swrl: A

semantic web rule language combining owl and ruleml (2004) W3C Mer8bbmission.
http://ww. w3. or g/ Subm ssi on/ SWRL/ .

. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S8arcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM T@B)(2006) 499-562

. Ricca, F., Leone, N.: Disjunctive Logic Programming with types abgais: The DLV

System. Journal of Applied Logi&3) (2007) 545-573

Greco, S., Leone, N., Rullo, P.. COMPLEX: An Object-Orientedit®rogramming System.
IEEE TKDE 4(4) (1992)

Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Comlgmmswer Set Program-
ming with Description Logics for the Semantic Web. In: Principles of KnogéeRepresen-
tation and Reasoning: Proceedings of the Ninth International Confe(&R2004), Whistler,
Canada. (2004) 141-151 Extended Report RR-1843-03-13, Ifétitinformationssysteme,
TU Wien, 2003.

Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto, Axpbiting ASP for Semantic
Information Extraction. In: Proceedings ASPO5 - Answer Set Progriag: Advances in
Theory and Implementation, Bath, UK (2005)

Curia, R., Ettorre, M., liritano, S., Rullo, P.: Textual Documeet-Processing and Feature
Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Ge&2005)



