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Abstract. Enterprise/Corporate ontologies are specifications of information of
business enterprises. Semantic peculiarities of ASP, like the Closed World As-
sumption (CWA) and the Unique Name Assumption (UNA), are more appropriate
than OWL assumptions for enterprise ontologies, also because these ontologies
often are the evolution of relational databases, where both CWA and UNA are
adopted.
In this paper we present OntoDLV, a system based on Answer Set Programming
(ASP) for the specification and reasoning on enterprise ontologies.
OntoDLV implements a powerful ontology representation language, calledOn-
toDLP, extending (disjunctive) ASP with all the main ontology constructs includ-
ing classes, inheritance, relations and axioms. OntoDLP is strongly typed,and
includes also complex type constructors, like lists and sets. Importantly, OntoDLV
supports a powerful interoperability mechanism with OWL, allowing the userto
retrieve information also from OWL Ontologies and to exploit this information in
OntoDLP ontologies and queries. The system is already used in a number of real-
world applications including agent-based systems, information extraction,and text
classification applications.

1 Introduction

In the last few years, the need for knowledge-based technologies is emerging in several
application areas. Industries are now looking forsemanticinstruments for knowledge-
representation and reasoning. In this context,ontologies(i.e. abstract models of a com-
plex domain) have been recognized to be a fundamental tool; and the World Wide Web
Consortium (W3C) has already provided recommendations and standards related to on-
tologies, like, e.g., RDF(s) [1] and OWL [2]. In particular, OWL has been conceived
for the Semantic-Web, with the goal to enrich web pages with machine-understandable
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descriptions of the presented contents (the so-called Web ontologies). OWL is based on
expressive Description Logics (DL)[3]; distinguishing features of its semantics are the
adoption of the Open World Assumption and the non-uniqueness of the names (the same
individual can be denoted by different names).

While the semantic assumptions of OWL make sense for the Web, there are domains
where they are unsuited; in particular, they are very inappropriate for Enterprise ontolo-
gies. Enterprise/Corporate ontologies are specificationsof terms and definitions relevant
to business enterprises; they are used to share/manipulatethe information already present
in a company. Since an enterprise ontology describes the knowledge of specific aspects of
the “closed world” of the enterprise, a Closed World Assumption (CWA) seems more ap-
propriate than the OWA (appropriate for the Web, which is an open environment). More-
over, the presence of naming conventions, often adopted in enterprises, guarantee names
uniqueness making also the Unique Name Assumption (UNA) plausible. It is worth-
while noting that enterprise ontologies often are the evolution of relational databases,
where both CWA and UNA are mandatory. To understand the better suitability for CWA
and UNA for enterprise ontologies, consider the following example.

The enterprise ontology of a food-distribution company stores its pasta suppliers and
their respective production branches in the relation depicted in Table 1 (of the company
database).

Supplier Branch City Branch Street

Barilla Rome Veneto
Barilla Naples Plebiscito
Voiello Naples Cavour

Table 1.The Supplier-Branch table.

Consider the following query: “which are the pasta suppliers of the company hav-
ing a branchonly in Naples?”. The expected answer to this query is clearly “Voiello”.
This answer is obtained whenever the CWA is adopted (if the world is “closed”, then
Voiello cannot have branches other than those specified), and computed also in the query
language SQL. OWL, instead, provides an empty answer; it cannot entail that Voiello
has only a branch in Naples (since, according with the OWA, Voiello could have also a
branch in Rome).

To understand the role of the UNA, consider an axiom stating that each supplier has
a branch only in one city. Then, a language adopting UNA derives that the ontology is
inconsistent; while, OWL, missing the UNA, derives that Rome=Naples (i.e., the names
Rome and Naples denote the same city!).

Similar scenarios are frequent when we deal with enterpriseontologies. In these cases
logic programming languages like ASP, strongly relying on CWA and UNA, are defi-
nitely more appropriate than OWL. Answer Set Programming (ASP) [4], is a powerful
logic programming language, which is very expressive in a precise mathematical sense;
in its general form, allowing for disjunction in rule heads and nonmonotonic negation
in rule bodies, ASP can representeveryproblem in the complexity classΣP

2 andΠP
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(under brave and cautious reasoning, respectively) [5]. However, ASP is, somehow, a
“low-level” formalism for ontologies since in its classical formulation it does not di-
rectly support the most common ontology concepts like classes, inheritance, individuals,



etc. Moreover, ASP systems are far away from comfortably enabling the development
of industry-level applications, mainly because they miss important tools for supporting
users and programmers. In particular, friendly user interfaces are missing, and there is a
lack of advanced Application Programming Interfaces (API)for implementing applica-
tions on top of ASP systems.

This paper describes OntoDLV, an ASP-based system for knowledge modeling and
advanced knowledge-based reasoning, which addresses all the above-mentioned issues.

Indeed, OntoDLV implements a powerful logic-based ontology representation lan-
guage, called OntoDLP, which is an extension of (disjunctive) ASP with all the main
ontology constructs including classes, inheritance, relations, and axioms. OntoDLP is
strongly typed, and includes also complex type constructors, like lists and sets.

Importantly, OntoDLV supports a powerful interoperability mechanism with OWL,
allowing the user to retrieve information also from OWL Ontologies and to exploit this
information in OntoDLP ontologies and queries4

Moreover, OntoDLV allows one for the development of complexapplications in a
user-friendly visual environment; and it seamlessly integrates the DLV system [8] ex-
ploiting the power of a stable and efficient ASP solver.

Using OntoDLV, domain experts can create, modify, navigate, and query ontologies
thanks to a user-friendly visual environment; and, at the same time, application develop-
ers can easily implement knowledge-intensive applications embedding OntoDLP spec-
ifications by exploiting a complete Application Programming Interface (API). Indeed,
OntoDLP is already used for the development of real-world applications including agent-
based systems, information extraction and text classification frameworks.

Remark 1.OntoDLV has its roots in the previous DLP+ system [9]; but, compared to its
predecessor, OntoDLV brings many major new features. Amongthem, we recall Com-
plex types (like Sets and Lists), Objects reclassification support (Collection Classes),
Intensional Relations, OWL interoperability mechanisms, Application Programming In-
terface, more advanced Graphical User Interface, togetherwith many optimization tech-
niques, making OntoDLV well-suited for the development of industrial applications (see
Section 5).

2 The OntoDLP Language

In this section, we describe OntoDLP, a language for ontology specification and rea-
soning. OntoDLP extends the ASP language by adding the most important ontological
constructs, namely classes, attributes, relations, inheritance and axioms.

For a better understanding, we will describe each constructin a separate paragraph
and we will exploit an example (theliving being ontology), which will be built through-
out the whole section, thus illustrating the features of thelanguage.

Hereafter, we assume the reader to be familiar with ASP syntax and semantics, for
further details refer to [4, 8].

4 It is well known that rule-based inference systems are needed by OWLapplications [6, 7].



Classes. A (base)class5 can be thought of as a collection of individuals that belong
together because they share some properties. Classes can bedefined in OntoDLP by
using the the keywordclassfollowed by its name, and class attributes can be specified
by means of pairs(attribute-name : attribute-type), whereattribute-nameis the name of
the property andattribute-typeis the class the attribute belongs to.

Suppose we want to model theliving being domain, and we have identified four
classes of individuals:persons, animals, food, andplaces. We can define the classperson
having the attributes name, age, father, mother, and birthplace, as follows:

class person(name:string, age:integer, father:person, mother:person, birthplace:place).

Note that, this definition is “recursive” (both father and mother are of typeperson).
Moreover, the possibility of specifying user-defined classes as attribute types allows for
the definition of complex objects, i.e., objects made of other objects.6 Moreover, many
properties can be represented by using alphanumeric strings and numbers by exploiting
the built-in classesstring andinteger(respectively representing the class of all alphanu-
meric strings and the class of positive integers).

In the same way, we could specify the other classes mentionedabove in our domain
as follows:

class place(name:string). class food(name:string, origin:place).
class animal(name:string, age:integer, speed:integer).

Objects. Domains contain individuals which are calledobjectsor instances. Each in-
dividual in OntoDLP belongs to a class and is univocally identified by using a constant
calledobject identifier(oid) orsurrogate.

Objects are declared by asserting a special kind of logic facts (asserting that a given
instance belongs to a class). For example, with the following two facts

rome : place(name:“Rome”).
john : person(name:“John”, age:34, father:jack, mother:ann, birthplace:rome).

we declare that“Rome” and“John” are instances of the classplaceandperson, respec-
tively. Note that, when we declare an instance, we immediately give an oid to the instance
(e.g.,rome identifies a place named“Rome”), which may be used to fill an attribute of
another object. In the example above, the attribute birthplace is filled with the oidrome
modeling the fact that “John” was born in Rome; in the same way, “ jack” and “ann” are
suitable oids respectively filling the attributesfather, mother(both of type person).

The language semantics (and our implementation) guarantees the referential integrity
that jack, annandromehave to exist whenjohn is declared.

Sets and Lists. An important feature of OntoDLP is the possibility to directly handle
group of objects. More specifically, a set ofdistinctobjects of a classC is considered as
an individual belonging to a special class named{C} (set of C).

For instance, suppose we defined the classcar as follows:

5 For simplicity, we refer tobase classesby omitting thebaseadjective, since it only distinguishes
this construct from another one calledcollection classthat will be described later in this Section.

6 Attributes model the properties thatmustbe present in all class instances; properties thatmight
be present or not should be modeled by using relations.



class car (brand:string, model:string, year:integer, owner:driver).

Then, the class driver, which is a subclass of person having aspecial attributecars of
typeset of cars, can be defined as follows:

class driver (cars:{car}) isa{person}.

Note that, the name of the classcar has been surrounded with curly brackets to
specify the classset of cars. An instance of the class driver can be declared as follows:

jim: driver(name:“Jim”, age:35, father:jack, cars:{herbie, kitt})

Here,jim is a driver that owns two cars, namelyherbieandkitt, which are the elements
of the set{herbie, kitt}.

In an similar way, OntoDLP allows one to specify lists of objects (of a given class) as
an individual belonging to of a special classlist. In this case, following the well-known
Prolog convention, lists of elements are syntactically given in brackets.

As an example, suppose we want to model the concept of organized trip which has
a set of persons (the travellers) and an ordered sequence of visited places. This can be
done as follows:

class trip (travelers:{person}, tour:[place]).

trip1: trip(travelers:{john, jim}, tour:[rome,naples,rome,pisa,milan,rome])

Note that in a list the order of its elements is meaningful andthe same individual
might occur more than once. In the example, to model the triptrip1, we exploited a list
of places to model the ordered sequence of cities visited byjohn and jim, and, in this
case,romehas been visited for three times.

Sets and lists can be handled in logic rules by following the usual Prolog conventions
(e.g., a list can be split in head and tail), while the language provides a set of built-in
predicates that allows one to access the elements (also random access is supported), to
know the size/length or to manipulate the content (by addingor removing elements).

Remark 2.Special terms, like lists and sets are not supported by conventional ASP sys-
tems, and even richer ASP variants like DLV+ [9] does not provide similar language
features.

Inheritance. OntoDLP allows one to model taxonomies of objects by using the well-
known mechanism of inheritance. Inheritance is supported by OntoDLP by using the
special binary relationisa. For instance, one can exploit inheritance to represent some
special categories of persons, likestudentsandemployees, having some extra attribute,
like a school, a company etc. This can be done in OntoDLP as follows:

class studentisa {person}(
code:string,
school:string,
tutor:person).

class employeeisa {person}(
salary:integer,
skill:string,
company:string,
tutor:employee).



In this case, we have thatpersonis a more generic concept orsuperclassand both
studentandemployeeare a specialization (orsubclass) of person. Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, which are defined lo-
cally, and the attributes: name, age, father, mother, and birthplace, which are defined in
person. We say that the latter are “inherited”7 from the superclassperson. An analogous
consideration can be made for the attributes ofemployeewhich will be name, age, father,
mother, birthplace, salary, skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper instance
of bothemployeeandstudentwill also be automatically considered an instance ofperson
(the opposite does not hold!).

For example, consider the following instance ofstudent:

al:student(name:“Alfred”, age:20, father:jack, mother:betty, birthplace:rome,
code:“100”, school:“Cambridge”, tutor:hanna).

This instance is automatically considered also as an instance of person as follows:

al:person(name:“Alfred”, age:20, father:jack, mother:betty, birthplace:rome).

Note that it is not necessary to assert the latter instance.

In OntoDLP there is no limitation on the number of superclasses (i.e., multiple in-
heritance is allowed).

Moreover, all the set and list classes are part of the OntoDLVinheritance hierarchy.
Basically, the class [A] (resp.{A}) is a subclass of class [B] (resp.{B}) if classA is
a subclass of classB. For example, the class [student] (resp.{student}) is subclass of
[person] (resp.{person}) sincestudentis subclass ofperson.

Finally, in OntoDLP there is a common built-in superclass called object (or ⊤),
which has five different built-in subclasses, namely:individual, integer, string, [object],
and{object}. The first one is the superclass of all the user-defined classes; integeris the
class of positive integers;string is the class of all alphanumeric strings;[object] is the
generic “list of objects” (and superclass of all list classes); and{object} is the generic
“set of objects” (and superclass of all set classes).

Relations. Relationships can be modeled in OntoDLP by means of (base)Relations.
Relations are declared like classes: the keywordrelation (instead ofclass) precedes a
list of attributes, and models relationships among objects.

As an example, the relationfriend, which models the friendship between two persons,
can be declared as follows:

relation friend(pers1:person, pers2:person).

In particular, to assert that two persons, sayjohn andbill are friends (of each other),
we write the following logic facts (that we call tuples):

friend(pers1:john, pers2:bill). friend(pers1:bill, pers2:john).

7 Attribute inheritance in OntoDLP follows the same criteria exploited in in both DLP+ and
COMPLEX, see [9, 10] for a formal description.



Thus, tuples of a relation are specified similarly to class instances, that is, by asserting
a set of facts (but tuples are not equipped with an oid).

We complete the description of relations observing that OntoDLP allows one to or-
ganize also relations in taxonomies. In this case, relationattributes and tuples are inher-
ited following the same criterions defined above for classes. Clearly, the taxonomies of
classes and relations are distinct (classes and relations are different constructs).

Collection Classes and Intensional Relations.The notions of base class and base rela-
tion introduced above correspond, from a database point of view, to the theextensional
part of the OntoDLP language. However, there are many cases in which some prop-
erty or some class of individuals can be “derived” (or inferred) from the information
already stated in an ontology. In the database world, theviewsallow to specify this kind
of knowledge, which is usually called “intensional”. In OntoDLP there are two different
“intensional” constructs:collection classesandintensional relations.

As an example, suppose we want to define the class of persons which are less than
21 years old and have less than two friends (we name this classyoungAndShy). This
class should have a single attribute Note that this information is implicitly present in the
ontology, and the “intensional” classyoungAndShycan be defined as follows:

collection class youngAndShy(friendsNumber: integer){
X : youngAndShy(friendsNumber : N) :− X : person(age : Age),

Age < 21, #count{F : friend(pers1 : X, pers2 : F )} = N,N < 2. }

Evidently, the attribute of the collection class (friendsNumber ) has to be defined by the
rule head. Note that in this case the instances of the classyoungAndShyare “borrowed”
from the (base) class person, and are inferred by using a logic rule. Basically, this class
collectsinstances defined in another class (i.e.,person) and performs a re-classification
based on some information which is already present in the ontology. Thus, in general,
the collection classes neither have proper instances nor proper oids while they “collect”
already defined objects.

In an analogous way we specify “derived relations” by using the key wordsinten-
sional relation.For example, the binary relationrelative(modeling the common ancestry
among persons) can be easily derived from the information already present in the class
personas follows:

intensional relation relative(sub:person, obj:person){
relative(sub : X, obj : Y ) :− X : person(father : Y ).
relative(sub : X, obj : Y ) :− X : person(mother : Y ).
relative(sub : X, obj : Y ) :− relative(sub : X, obj : Z),

relative(sub : Z, obj : Y ). }

Here the first two rules populate the new intensional relation relativewith the infor-
mation about parents (X is relative ofY if X is parent ofY ); while the third rule infers
all the other connections (X is a relative ofY if exists another relative ofX, namelyZ,
andZ is a relative ofY ).

Importantly, the programs defining collection classes and intensional relations must
be normal and stratified (see e.g., [8]). Thus, in general,collection classesandintensional
relationsare both more natural and more expressive than relational database views, in



fact they allow the use of the navigational style of object-oriented programming com-
bined with a more powerful language allowing recursion and negation as failure.

Moreover, both collection classes and intensional relations can be organized in tax-
onomies by using theisa relation. It is worth noting that the inheritance hierarchyof
collection classes (resp. intensional relations) and the one of base classes (resp. rela-
tions) are distinct (i.e., a collection class cannot be superclass or subclass of a base class
and vice versa).

Axioms and Consistency.An axiom is a consistency-control construct modeling sen-
tences that are always true (at least, if everything we specified is correct). They can be
used for several purposes, such as constraining the information contained in the ontology
and verifying its correctness.8

As an example, in our living being ontology, we may enforce that the the father
cannot be younger than the son as follows:

:− X : person(age : A1, father : person(age : A2)), A1 > A2.

If an axiom is violated, then we say that the ontology is inconsistent (that is, it con-
tains information which is, somehow, contradictory or not compliant with the intended
perception of the domain).

Reasoning modules.Given an ontology, it can be very useful to reason about the data
it describes.Reasoning modulesare the language components endowing OntoDLP with
powerful reasoning capabilities. Basically, areasoning moduleis a disjunctive logic pro-
gram conceived to reason about the data described in an ontology. Reasoning modules
in OntoDLP are identified by a name and are defined by a set of (possibly disjunctive)
logic rules and integrity constraints.

Syntactically, the name of the module is preceded by the keyword modulewhile
the logic rules are enclosed in curly brackets (this allows one to collect all the rules
constituting the encoding of a problem in a unique definitionidentified by a name).

We now show an example demonstrating that OntoDLP can be easily exploited for
solving complex real-world problems. Given our living being ontology, we want to com-
pute a project team satisfying the following restrictions (i.e., we want to solve an instance
of team building problem):

– the project team has to be constituted of a fixed number of employees;
– a given number of different skills has to be ensured inside the team;
– the sum of the salaries of the team members cannot exceed a given budget;
– the salary of each employee in the team cannot exceed a certain value.

Suppose that the ontology contains the classprojectwhose instances specify the in-
formation about the project requirements, i.e., the numberof team employees, the num-
ber of different skills required in the project, the available budget, and the maximum
salary of each team employee:

8 Note that the notion of axiom in OntoDLP is very different from the one employed in other
ontology languages, like i.e., OWL [2]. In fact, an axiom in OntoDLP is a consistency control
construct and cannot be used to specify or infer knowledge.



classproject(numEmp : integer ,numSk : integer , budget : integer ,maxSal : integer).

We can solve the above team building problem with the following module:

module(teamBuilding){
(r) inTeam(E,P ) ∨ outTeam(E,P ) :− E : employee(), P : project().
(c1) :− P : project(numEmp : N), not #count{E : inTeam(E,P )} = N.

(c2) :− P : project(numSk : S), not #count{Sk : E : employee(skill : Sk),
inTeam(E,P )} ≥ S.

(c3) :− P : project(budget : B), not #sum{Sa, E : E : employee(salary : Sa),
inTeam(E,P )} ≤ B.

(c4) :− P : project(maxSal : M), not #max{Sa : E : employee(salary : Sa),
inTeam(E,P )} ≤ M. }

Intuitively, the disjunctive ruler guesses whether an employee is included in the
team or not, generating the search space, while the constraintsc1, c2, c3, andc4 model
the project requirements, filtering out those solutions that do not satisfy the constraints.

In practice, reasoning modules isolate a set of logic rules and constraints conceptually
related, and they exploit the expressive power of answer setprogramming to perform
complex reasoning tasks on the information encoded in an ontology (i.e. one can solve
problems which are complete for the second level of the polynomial hierarchy).

Querying. An important feature of the language is the possibility of asking queries in
order to extract knowledge contained in the ontology, but not directly expressed. As in
ASP a query can be expressed by a conjunction of atoms, which,in OntoDLP, can also
contain complex terms.

As an example, we can ask for the list of persons having a father who is born in Rome
as follows:

X:person(father:person(birthplace:place(name: “Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate only the
relevant ones for querying. In general, we can use in a query both the predicates defined
in the ontology and the auxiliary predicates in the reasoning modules.

It is worth noting that, in presence of disjunction or unstratified negation in modules,
we may obtain multiple answer sets; in this case both brave and cautious reasoning [8]
are supported.

3 OWL Interoperability

As discussed above, OntoDLP is more suitable than OWL for Enterprise Ontologies,
while OWL has been conceived for describing and sharing information on the Web (i.e.,
to deal with Web ontologies). However, it may happen that enterprise systems have to
share or to obtain information from the Web; thus, from inside an enterprise ontology,
one may need to access and query an external OWL ontology for specific purposes. At
the same time, it is well known that Semantic-Web applications may need to integrate
rule-based inference systems, to enhance their deductive capabilities. Based on these
observations, our system supports a mechanisms for OWL interoperability. Actually, we



lifted the approach of [11] to the OntoDLP framework. In the following, we describe
how to import OWL knowledge into OntoDLP ontologies and how this information can
be exploited to write reasoning modules (and, thus, logic programs) that allow one to
(somehow) add rules and reason on top of OWL.

To enable the interfacing and import of existing OWL ontologies into the framework
of OntoDLP, the so-calledOWL Atomshave been introduced. OWL Atoms can be used in
rule bodies of OntoDLP’s reasoning components and facilitate the evaluation of specific
queries to an OWL knowledge base. This allows to import ABox data, like concept and
role extensions, but also TBox information, like concept subsumption, ancestors and
descendants. To comfortably handle the translation of names in this interfacing process,
amappingcomponent can be specified.

OWL atoms can be used in OntoDLP constructs wherever ordinaryatoms are al-
lowed. They can contain variables and are as such also subject to the grounding of the
logic program. A ground OWL atom has a truth value, depending on the evaluation of
the respective query. The flow of information between an OntoDLP program is strictly
uni-directional, i.e., data from ontologies is imported tothe OntoDLP program. More-
over, the parameters and hence the evaluation of OWL atoms does not depend on other
rules, thus they can be fully evaluated prior to any model computation procedure.

3.1 OWL Atoms

The types of queries that can be stated by an OWL atom is specified by the the DIG
Description Logic Interface. The DL Implementation Group (DIG) is a self-selecting
assembly of researchers and developers associated with implementations of Description
Logic systems. The DIG interface allows for a number of TBox and ABox queries, re-
turning either a truth value for boolean queries or a set of result tuples of values.

The set of constants that are imported by OWL atoms extends theset of object iden-
tifiers of the OntoDLP program. In other words, OWL Atoms can intuitively be regarded
as functional queries that import new values into the OntoDLP program. Since these
atoms can not occur in any recursion, the entire set of objects stays strictly finite.

An OWL query atom is characterized by the identifier#OWL. It has three obligatory
parameters, the query type, the query itself, and the data source:

#OWL[querytype, query , source]

The query and source strings have to be double-quoted. The possible values forquerytype

are those allowed in the DIG ASK directive, comprising queries such as instances of a
concept, pairs of a role, subsumption of concepts, all children concepts of a concept,
all types of an individual, etc. A specific query type determines the syntax of the actual
query string.

The third parameter,source, specifies the source address of the ontology to be queried.
This can be either a URI, such as“http://www .example.org /data.owl” or a local file,
like “/home/user /data.owl”.

For example, the OWL atom

#OWL[disjoint , “Truck SUV ”, “http://ex .org /vehicle.owl”]



is a purely boolean query, evaluating to true if the conceptsTruck andSUV are disjoint
in the specified OWL KB.

The following rule imports all children classes of the concept Mammal of the spci-
fied OWL-KB:

mammals(X) :− #OWL[children, “?X Mammal”, “http://ex .org /animals.owl”].

These children concept names instantiate the variableX in the respective rule. In order
to be distinguishable from upperase concept or role identifiers, variable symbols within
the query string are prefixed with ‘?’. Variables in such queries act just like variables in
ordinary body atoms, being bound to a specific extension, with the difference that the
extension is not determined within the program itself, but by an external evaluation.

The next rule imports the extension of a class into the OntoDLP program:

projects(P ) :− #OWL[instances , “projects(?X )”, “http://ex .org /dep.owl”].

The following collection class gathers all red parts together with their prices. Note
that the part object and its price stems from OntoDLP itself,while the color information
is derived from an external ontology.

collection class redParts(price: integer){
X : redParts(price : P ) :− X : part(price : P ),

#OWL[relatedIndividuals, “hasColor(?X, red)”, “inventory .owl”]. }

3.2 Name Mappings

Mappings ease the syntactic translation of constant names when they are imported into
the OntoDLP program. A mapping is defined via themapping keyword. It is used like
a module:

mapping family {
‘dad ’ ‘ father ’
‘mom ’ ‘ mother ’

}

If this mapping is specified in a query atom, each occurrence of ‘ father ’ resp. ‘mother ’
in the query answer (i.e., data that comes from an OWL ontology) is translated to the
name ‘dad ’ resp. ‘mom ’ in the OntoDLP program. The mapping specification itself isa
list of pairs of strings. The first string in each pair is the local (i.e., in OntoDLP) name to
be translated, the second string is the ontology name. The mapping-name is used to refer
to a name mapping within a query atom, where one or more mappings can be optionally
specified:

#OWL[relatedIndividuals, “fatherOf (?X, ?Y )”, “family .owl”][family ]

Thus, mappings are always local to a specific query-atom.
Mappings are not functional, hence they can be seen asn : n relations. Consequently,

one name can be mapped to multiple replacement names, which will all be inserted,
and multiple names can be mapped to the same single replacement name. It is in the



responsibility of the author of a mapping to consider the effect of such mappings on the
Unique Name Assumption.

More than one mapping can be specified in a single query atom, such as:

#OWL[instances , “Person(?X )”, “people.owl”][persons, family ]

Since mappings are not functional, simply their union comesinto effect. However, the
user will have the possibility to specify a command line switch which enforces unique
mappings and applies a priority relation in case of conflicting mappings: the one further
left has priority, as shown in the following example. Consider the following mappings:

mapping persons {
‘ciccio’ ‘ http://mat .unical .it /#Ricca ’
‘gb’ ‘ http://mat .unical .it /#Ianni ’

}

mapping family {
‘gibbi ’ ‘ http://mat .unical .it /#Ianni ’

}

and the query atom above. Assume that the user specifically requested functional map-
pings. Considering the namespaces, two conflicting mappings for the external name
‘http://mat .unical .it /#Ianni ’ exist. Since the mappingpersons is specified before
family , the name will be translated into ‘gb’.

4 The OntoDLV System

OntoDLV is a complete framework that allows one to specify, navigate, query and per-
form reasoning on OntoDLP ontologies. We now illustrate theOntoDLV architecture,
and present the main features of the system. We refrain from giving an in-depth descrip-
tion of all the technical details underlying the implementation of OntoDLV in this paper,
rather we will describe the main components of the system.

System Architecture and Implementation. The system architecture of OntoDLV, de-
picted in Figure 1a, can be divided in three abstraction levels. The lowest level, named
OntoDLV corecontains the components implementing the main functionalities of the
system, namely:Persistency Manager, Type Checker, and Rewriter. The Persistency
Manager provides all the methods needed to store and manipulate the ontology com-
ponents. In particular, it exploits theParsersubmodule to analyze and load the content
of several OntoDLP text files, and aDB Managersubmodule to implement data persis-
tency on relational databases through Hibernate/JDBC.

The admissibility of an ontology is ensured by the Type Checker module which im-
plements a number of type checking routines. TheRewritermodule translates OntoDLP
ontologies, axioms, reasoning modules and queries to an equivalent ASP program which
runs on the DLV system [8]9; either the results or possible error messages are redi-
rected to the Persistency Manager. Importantly,ontologiesare translated into an equiv-
alent (stratified) ASP program which is solved by DLV in polynomial time (under data

9 DLV is a state-of-the-art ASP solver that has been shown to perform efficiently on both hard
and “easy” (having polynomial complexity) problems



Fig. 1. The OntoDLV architecture (a) and the OntoDLV GUI (b).

complexity). Moreover, theRewriterfeatures a number of optimization and caching tech-
niques in order to reduce the time spent interacting with DLV.

The OntoDLV system has been implemented in Java and all the features in theOn-
toDLV corecan be employed by both system developers and programmers through a
sophisticated application interface: theOntoDLV API.

In particular, all the operations the user can require (e.g., creation and browsing of
ontology elements, reasoner invocations etc.) are made available through a suitable set
of Java interfaces. It is worth noting that, the OntoDLV API is characterized by a rather
high level of abstraction,10 it is composed of a relatively rich set of interfaces extensively
exploiting standard Java components (e.g., both the interfacesCollection andIterator

play a central role). This feature makes expert Java programmers rapidly familiar with
the OntoDLP API.

The Graphical User Interface. The end user exploits the system through an easy-
to-use and intuitive visual environment calledGUI (Graphical User Interface), which is
built on top of theOntoDLV API. The GUI combines a number of specialized visual
tools for authoring, browsing and querying a OntoDLP ontology. In particular, theGUI
features a graph-based ontology viewer and a graphical query environment.

The OntoDLV GUI was designed to be simple for a novice to understand and use,
and powerful enough to support experienced users. A snapshot of the system running
the ontology described in Section 2 is depicted in Figure 1b.The GUI presents several
panels offering access to several facilities combining thebrowsing environment with the
editing environment.

The class/subclass hierarchy is displayed both in an indented text (on the left in
Figure 1b) and a graph-based form (on the bottom in Figure 1b).

The user can browse the ontology by double-clicking the items in the panels. The
structure of each ontology entity (classes, relations, andinstances) can be displayed in the
middle of the screen by switching between several tabbed panels. For example, in Figure
1b the class person is selected in the class list and the classpanel shows the scheme of
that class. In particular, the name and the type of the class attributes are shown in a table,
while, on the left, both the relations and the axioms involving the class, together with the
list of the instances, are reported in an indented text form.

In the editing phase, the user enters the domain informationby filling in the blanks
of intuitive forms and selecting items from lists (exploiting an simple mechanism based

10 The design principles makes the OntoDLP API similar to the JAXP API from Sun.



on drag-and-drop). An up-to-date list of messages informs the user about the occurrence
of errors (e.g., type checking messages, etc.) in the ontology under development. If the
user clicks on an error message the system promptly shows theentity involved in it.

Reasoning and querying can be done by selecting the appropriate controls. In par-
ticular, the reasoning module panel contains a text editor featuring syntax coloring and
a simple auto-complete feature; while, queries can be created by exploiting a powerful
and intuitive query environment. Indeed, the query panel combines a textual editor with
a graphical “QBE-like” interfacewhich allows one to createqueries without worrying
about the syntax. Moreover, the interface is conceived to smoothly switch between the
text editor and the visual editor (the system exploits a reverse-engineering procedure
which “translates” queries from textual to graphic representation and vice versa).

5 Current Applications and Conclusion

In this paper, we have presented OntoDLP, an extension of disjunctive logic program-
ming with relevant object-oriented constructs, includingclasses, objects, (multiple) in-
heritance, lists, sets, and types. We have described the syntax of OntoDLP and shown its
usage for ontology representation and reasoning by example.

The features of the language, like the closed world assumption and its rich set of tools
for ontology specification and reasoning, combined with an high computational power
(allowing for the direct implementation of complex problem-solving tasks like planning,
team building, etc.) make OntoDLP very suitable for dealingwith Enterprise/Corporate
ontologies. Moreover, OntoDLV supports a powerful interoperability mechanism with
OWL, allowing one to simultaneously deal with both OWL and OntoDLP ontologies.

Importantly, we have provided a concrete implementation ofthe language: the On-
toDLV system. OntoDLV features both an advanced Graphical User Interface (GUI)
and an Application Programming Interface (API). This way, both the novice and expert
user can exploit the system for solving problems and developing real-world applications
based on OntoDLP. The system is built on top of DLV (a state-of-the art ASP system),
and it implements all features of OntoDLP. Moreover, it combines an advanced visual-
interface and a powerful type-checking mechanism for fast ontologies specification and
errors detection.

OntoDLV is based on the DLP+ system [9], but its language supports more advanced
features, like Complex types (like Sets and Lists), Objectsreclassification support (Col-
lection Classes) Intensional Relations, and OWL interoperability mechanisms. More-
over, the OntoDLV system provides a more advanced user interface (w.r.t. he one of
DLP+) and, importantly, OntoDLV includes an API that makes it ready for the develop-
ment of knowledge-based applications. Indeed, even thoughOntoDLP has been released
only very recently, it is already employed, playing a central role in advanced applications
like:

– HiLEx [12], an advanced tool for semantic information-extraction from unstructured
or semi-structured documents. Here, an OntoDLP ontology isused to represent
concepts of the documents domain, while a set of “semantic” regular expressions
(HiLEx expressions) represent ways of writing a concept in adocument. The extrac-
tion is achieved by rewriting such expressions in OntoDLP (by exploiting modules



and collection classes) and computing the answer sets of theobtained OntoDLP
specification.

– OLEX (OntoLog Enterprise Categorizer System) [13], is a system developed by
Exeura s.r.l. (http://www.exeura.it) for text classification (the task of as-
signing to each concept of a given ontology all documents that are recognized to
be relevant for it). Roughly, sets of documents are automatically classified by the
system (w.r.t. a given ontology) by using suitable reasoning modules.

– TheRAP platform, developed by Orangee (http://www.orangee.com) an agent-
based system, implemented by using the JADE Framework, for the governance of
the distribution process of antiblastic medicines in hospitals. Basically, in this appli-
cation, the “agent’s brain” is an OntoDLP program.

Ongoing work concerns the enhancement of OntoDLV by extending its language
with new features such as optional attributes, concrete data-types, and a more powerful
kind of reasoning module.
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