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Abstract. DLV is the state-of-the-art system for evaluating disjireanswer set
programs. As in most Answer Set Programming (ASP) systesispplementation
is divided in a grounding part and a propositional modelifigcpart. In this paper,
we focus on the latter, which relies on an algorithm usingbacking search.
Recently, DLV has been enhanced with “backjumping” techegj which also in-
volve a reason calculus, recording causes for the truthlsityfaof atoms during
the search. This reason calculus allows for looking backénsearch process for
identifying areas in the search space in which no answer iidderfound. We can
also define heuristics which make use of the information ateasons, preferring
literals that were the reasons of more inconsistent branchthe search tree. This
heuristics thus use information gathered earlier in themdation, and are there-
fore referred to as look-back heuristics.

In this paper, we focus on the experimental evaluation ofeheok-back tech-
nigues that we have implemented in DLV. We have conductedde experimen-
tal analysis considering both randomly-generated andtstred instances of the
2QBF problem (the canonical problem for the complexity stas and I77).
We have also evaluated the same benchmark using “native” €gBfers, which
were among the best solvers in recent QBF Evaluations. Thgaadson shows
that DLV endowed with look-back techniques is competitivighwihe best avail-
able QBF solvers.

1 Introduction

Answer Set Programming (ASP) [1, 2] is a purely declaratikx@gpamming paradigm
based on nonmonotonic reasoning and logic programmingidéseof answer set pro-
gramming is to represent a given computational problem g Iprogram whose an-
swer sets correspond to solutions, and then use an ansvgehgatto find such solutions
[3]. The language of ASP is based on rules, allowing for bagfudction in the head of
the rules and nonmonotonic negation in the body. ASP is vepyessive, allowing for
representing every property in the second level of the pmtyial hierarchy. Therefore,
ASP is strictly more expressive than using encodings baseshtisfiability of proposi-
tional formulas (unles® = N P).

* Supported by M.I.U.R. within projects “Potenziamento e Agazioni della Programmazione
Logica Disgiuntiva” and “Sistemi basati sulla logica perréppresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”



DLV is the state-of-the-adisjunctiveASP system, and it is based on an algorithm re-
lying on backtracking search, like most other competiti&PAsystems. Recently, DLV
has been enhanced with “look-back” techniques, like baukjng procedures [4] and
look-back heuristics [5]. By backjumping [6] we refer to aptimized recovery upon
inconsistency during the search where, instead of regtdhia state of the search up to
the previous choice and then “flipping” its value, we try tarfjp over” choices that are
not relevant for the inconsistency we met. This is done bynmaed a reason calculus,
which records information about the literals (“reasonshjose truth has caused the truth
of other derived literals. Look-back heuristics [7] funtlsérengthen the potential of back-
jumping by using the information made explicit by the reasdrhe idea of this family
of heuristics is to preferably choose atoms which freqyerglised inconsistencies, thus
focusing on “critical” atoms. This significantly differsdm classical ASP heuristics that
use information arising from tentatively applying the slifigation part (“look-head”) of
the algorithm and analyzing the result. Look-back optimitatechniques and heuristics
have been shown, in various research areas, to be veryieffect “big” benchmarks
coming from applications, like planning and formal verifica.

In this paper, we report on the experimental evaluation @¢Hook-back techniques
that have been implemented in DLV, yielding the system BPVSince hard problems
for disjunctive logic programs are hard for the clas§ or 111, we have used instances
for the canonical problem for these classes, 2QBF, thatuiantified boolean formulas
with two alternating quantifiers. In the literature of SAT ialtbtomy has been reported,
according to which random problem instances generally daggaim much from look-
back techniques, while structured problem instances dohave considered both types
of problems in our experiments in order to assess whethem#éasibehavior can be
observed for ASP.

DLV ® provides several options regarding the initializationtaf heuristics and the
truth value to be assigned to an atom chosen by the heuristi¢S]. In our experimental
analysis, we provide a comprehensive comparison of the dingfathese options, and
demonstrate how the new components of B#f/enhances the efficiency of DLV. We
also provide a comparison to the other competitive disjuacASP systems GnT and
Cmodels. Moreover, since we consider QBF as a benchmarkawediso compared the
performance of native QBF solvers. In particular, we haveseln those solvers which
were the best in recent QBF Evaluations over the variougiodts and which are freely
available. As a result, we observe that D¥¥ clearly outperforms its direct competitors
GnT and Cmodels, and that DIA? is also on par with the best available QBF solvers.
Considering its knowledge representation merits and ilspzdational competitiveness,
we conjecture that DLYZ is currently the system of choice for representing and aglvi
problems which are on the second level of the polynomiakEnay.

2 Answer Set Programming Language

A (disjunctive) ruler is a formula
a; V -V ap = by, -, bg, not bgy1,---, not by,.

whereay, -+, ay,,b1,- -, by, are function-free atoms and > 0, m > k£ > 0. The
disjunctiona; V- - - V a,, is theheadof r, while by, - - - , by, not bgy1,---,not b, isthe



body, of whichby, - - -, by, is thepositive bodyandnot byy1,---,not b, isthenegative
bodyof r.

An (ASP) programP is a finite set of rules. An object (atom, rule, etc.) is called
groundor propositiona] if it contains no variables. Given a progrdm let theHerbrand
UniverseUp be the set of all constants appearingirand theHerbrand BaseBr be
the set of all possible ground atoms which can be constridicietthe predicate symbols
appearing irfP with the constants df’p.

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsr from the variables in to elements ot/». Similarly, given a prograr®,
theground instantiatiorGround(P) of P is the set J, ., Ground(r).

For every prograrf®, its answer sets are defined using its ground instantiétiemnd(P)
in two steps: First answer sets of positive programs are elifitmen a reduction of gen-
eral programs to positive ones is given, which is used to defimswer sets of general
programs. A sel. of ground literals is said to beonsistentf, for every atom? € L, its
complementary literatot ¢ is not contained ir.. An interpretatiorn/ for P is a consis-
tent set of ground literals over atomsity .3 A ground literall is truew.r.t. Iif £ € I; ¢
is falsew.r.t. I if its complementary literal is if; £ is undefinedv.r.t. I if it is neither true
nor false w.r.t.1. Interpretatiory is total if, for each atomA in Bp, eitherA ornot A is
in I (i.e., no atom inBp is undefined w.r.t). A total interpretationV/ is amodelfor P
if, for everyr € Ground(P), at least one literal in the head is true w.if.whenever all
literals in the body are true w.rd/. X is ananswer sefor a positive progran® if it is
minimal w.r.t. set inclusion among the modelsf

The reductor Gelfond-Lifschitz transfornof a general ground prograf w.r.t. an
interpretationX is the positive ground prograf*, obtained fronP by (i) deleting all
rulesr € P the negative body of which is false w.r.t. X and (ii) deletthg negative body
from the remaining rules. An answer set of a general progpama modelX of P such
that X is an answer set d&round(P)~.

3 Answer Set Computation Algorithms

In this section, we briefly describe the main steps of the adatfpnal process performed
by ASP systems. We will refer particularly to the computasibengine of the DLV sys-
tem, which will be used for the experiments, but also othelP Agstems employ a similar
procedure. In general, an answer set progPacontains variables. The first step of a com-
putation of an ASP system eliminates these variables, géngra ground instantiation
ground(P) of P.% The subsequent computations, which constitute the nceraétistic
core of the system, are then performedgenund(P) by the so called Model Generator
procedure.

In the following paragraphs, we briefly illustrate the onigi model generation algo-
rithm of DLV and an enhancement of it by means of a backjumfgobnique. Finally, we
report a description of all the heuristics, that will laterdompared in the experiments.

3 We represent interpretations as set of literals, since we t@mdeal with partial interpretations
in the next sections.

* Note thatground(P) is usually not the fullGround(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sefB {§].



bool ModelGeneratorBJ (Interpretation& |, Reason& IR,
int& bj_level ) {

bj_level ++;
int curr_level = bj level;

| = DetConsBJ (1, IR );
if (1== L) return false;
if (“no atom is undefined in I")
if IsAnswerSetBJ( I, IR )return true ;

bool ModelGenerator ( Interpretation& ) else

!f: ?ficzns is 1); bjlevel = MAX (IR );
if (1==L)then return false;
return false; .
if (“no atom is undefined in I”) Reason posiR, negiR;
return IsAnswerSet(l); Select an undefined ator using a heuristic;
Select an undefined ator using a heuristic; R(A)={ currlevel };
if (ModelGenerator { U {A})) if (ModelGeneratorBJ{ U { A}, posIR, bjlevel )
return true ; return true ;
else if (bj_level < currlevel)
return ModelGenerator { U {not A}); IR = posIR;return false;

bj_level = curtlevel;

R(not A) ={ currlevel };

if (ModelGeneratorBJ [ U {not A}, negIR, bjlevel )
return true ;

if (bj-level < curr_level )
IR = negIR;return false;

IR = trim( curr_level, Union ( posIR, negIR ) );
bj_level = MAX (IR );
return false; };

Fig. 1. Computation of Answer Sets without (left) and with (righgdkjumping.

The Model Generator Algorithms. Note that the algorithms presented here are ab-
stractions of actual implementations, which have to detil séveral additional technical
details and optimizations. For more details we refer to @®]the basic technique and to
[4] for the enhancement by backjumping. Moreover, the atljors presented here com-
pute one answer set for simplicity, however they can be nmextlio compute all on
answer sets in a straightforward way.

The basic method is the Model Generator Algorithm sketchdeigure 1 (left). This
function is initially called with parameter set to the empty interpretation.

If the programP has an answer set, then the function returns True, seftioghe
computed answer set; otherwise it returns False. The Modakftor is similar to the
DPLL procedure employed by SAT solvers. It first calls a fimttDetCons, which re-
turns the extension af with the literals that can be deterministically inferred {loe set
of all literals £ upon inconsistency). This function is similar to a unit prgption proce-
dure employed by SAT solvers, but exploits the peculisggitEASP for making further
inferences (e.g., it exploits the knowledge that every amset is a minimal model). If
DetCons does not detect any inconsistency, an atasselected according to a heuristic
criterion and ModelGenerator is called énu {A} and onI U {not A}. The atomA
plays the role of a branching variable of a SAT solver. Anckied, like for SAT solvers,
the selection of a “good” atord is crucial for the performance of an ASP system. In

5 Observe that the interpretations built during the compuniaare 3-valued, that is, a literal can
be True, False or Undefined w.tt.



the following, we will describe some heuristic criteria the selection of such branching
atoms.

If no atom is left for branching, the Model Generator has picsdl a “candidate” an-
swer set, the stability of which is subsequently verifiedsAnswerSet(l)This function
checks whether the given “candidatels a minimal model of the progratdround(P)!
and if so, outputg. IsAnswerSet(l)eturns True if the computation should be stopped and
False otherwise. Note that, if during the execution of thelM@Generator function a con-
tradiction arises, or the stable model candidate is not amalrmodel, ModelGenerator
backtracks and modifies the last choice. This kind of backira is called chronological
backtracking.

To give an intuition on how backjumping is supposed to wodnsider the following
simple example.

Consider the program of Figure 2(a) and suppose that thetstrae is as depicted in
Figure 2(b).

ryoavbo o rgr oevdo o ryr eV f.

ra: ogi-a,e. Tsioi—g,ae.

Fig. 2. Backtracking vs Backjumping.

Here we first assume to be true, deriving to be false (from-, to ensure the mini-
mality of answer sets). Then we assuat® be true, derivingl to be false (fromr, for
minimality). Third, we assume to be true and deriv¢ to be false (fromrs for mini-
mality) andg to be true (fromr, by forward inference). This truth assignment violates
constraintrs (whereg must be false), yielding an inconsistency. We continue dagch
by inverting the last choice, that is, we assue® be false and we derivg to be true
(again fromrs to preserve minimality) ang to be true (fromrg by forward inference),
but obtain another inconsistency (because constrairg violated, hergy must also be
false).

At this point, ModelGenerator goes back to the previous ahioint, in this case
inverting the truth value of (cf. the arc labelled BK in Fig. 2(b)).

Now it is important to note that the inconsistencies obtdiare independent of the
choice of¢, and only the truth value of ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth valueisf if a is true then any truth
assignment foe will lead to an inconsistency. Looking at Fig. 2(b), this medhat in
the whole subtree below the arc labelledo stable model can be found. It is therefore
obvious that the chronological backtracking search exgsléranches of the search tree
that cannot contain a stable model, performing a lot of sseleork. A better policy
would be to go back directly to the point at which we assuméd be true (see the arc



labelled BJ in Fig. 2(b)). In other words, if we know the “reas” of an inconsistency,
we can backjump directly to the closest choice that causethttonsistent subtree.

In practice, once a literal has been assigned a truth valtiegithe computation, we
can associate a reason for that fact with the literal. Faaimse, given arule :—b, ¢, not d.,
if b andc are true and is false in the current partial interpretation, themwill be de-
rived as true (by Forward Propagation). In this case, we agritsata is true “because”
b andc are true andl is false. A special case aohoseniiterals, as their only reason is
the fact that they have been chosen. The chosen literalsheasfore be seen as being
their own reason, and we may refer to them as elementarynsasdl other reasons
are consequences of elementary reasons, and hence aggregéelementary reasons.
Each literall derived during the propagation (i.e., DetCons) will haveaasociated set
of positive integersz(l) representing the reason fwhich are essentially the recursion
levels of the chosen literals which entaill herefore, for any chosen literal|R(c)| = 1
holds.

The process of defining reasons for derived (non-chosearpl# is calledreason
calculus Here, for lack of space, we do not report details of thisudate, and refer to [4]
for a detailed definition.

When an inconsistency is determined, we use reason infamiat order to under-
stand which chosen literals have to be undone in order talahei found inconsistency.
Implicitly this also means that all choices which are nothe teason do not have any
influence on the inconsistency. We can isolate two main tgpesonsistencieqi) De-
riving conflicting literals, andi:) failing stability checks. Of these two, the second one
is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, thattDens determines that an
atoma and its negatiomot a should both hold. In this case, the reason of the incon-
sistency is — rather straightforward — the combination eftbasons fot. andnot a:
R(a) U R(not a).

Inconsistencies from failing stability checks are a pemitly of disjunctive ASP, as
non-disjunctive ASP systems usually do not employ a stglghieck. This situation oc-
curs if the function IsAnswerSet(l) of ModelGenerator resifalse, hence if the checked
interpretation (which is guaranteed to be a model) is ndilstarhe reason for such
an inconsistency is always based on an unfounded set, wagchden determined inside
IsAnswerSet(l) as a side-effect. Using this unfoundedbket;eason for the inconsistency
is composed of the reasons of literals which satisfy rulegaining unfounded atoms in
their head (the cancelling assignments of these rules)iffbemation on reasons for in-
consistencies can be exploited for backjumping by going bathe closest choice which
is a reason for the inconsistency, rather than always tortheeidiately preceding choice.

The function ModelGeneratorBJ (shown right in Fig. 1) is adifioation of the Mod-
elGenerator function, which implements backjumping. Tie #nd, two new parameters
IR andbj_level are introduced, which hold the reason of the inconsistencpentered
in the subtrees whose current recursion level is the rookttk recursion level to back-
track or backjump to. When going forward in recursiéfjevel is also used to hold the
current level. The variablesurr_level, posI R, andnegl R are local to ModelGenera-
torBJ and used for holding the current recursion level, &edreasons for the positive
and negative recursive branch, respectively.



Instead of DetCons, here DetConsBJ is used, which in addifipcomputes the rea-
sons of the inferred literals and if it encounters an incstesicy it will return the reason
of this inconsistency in its second parameté&. Instead of IsAnswerSet, ModelGenera-
torBJ uses IsAnswerSetBJ, which additionally computegtb@nsistency reason in case
of a failure of the stability check, returning it in its sechparameter.

Whenever there is the possibility to backjump, wetgetevel to the maximal level
of the inconsistency reason (or O if it is the empty set) beefeturning from this instance
of ModelGeneratorBJ, the idea being that the maximum levélR corresponds to the
nearest (chronologically) choice causing the failure.

The information provided by reasons can be further expaite backjumping-based
solver. In particular, in the following paragraph we delserfiow reasons for inconsisten-
cies can be exploited for defining look-back heuristics.

Heuristics. In this paragraph we will first describe the two main hewssfior DLV
(based on look-ahead), and subsequently define severalawevstics based on reasons
(or based on look-back), which are computed as side-eftddise backjumping tech-
nigue. We assume that a ground ASP progfaand an interpretatioh have been fixed.
We first recall the “standard” DLV heuristig; [10], which has recently been refined to
yield the heuristicips [11], which is more “specialized” for hard disjunctive prams
(like 2QBF). These are look-ahead heuristics, that is, #riktic value of a litera)
depends on the result of takirg true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the applioatof DetCons on
ITu{Q®};w.l.o.g., we assume that:¢(Q) is consistent, otherwis@ is automatically set
to false and the heuristic is not evaluatedi@at all.

Standard Heuristic of DLV (hy7). This heuristic, which is still the default in the DLV
distribution, has been proposed in [10], where it was shanoetvery effective on many
relevant problems. It exploits a peculiar property of AS#yelysupportednessor each
true atomA of an answer sef, there exists a rule of the program such that the body of
r is true w.r.t.] and A is the only true atom in the head af Since an ASP system must
eventually converge to a supported interpretatiqny is geared towards choosing those
literals which minimize the number ddnsupportedTrue (UTatoms, i.e., atoms which
are true in the current interpretation but still miss a supipg rule. The heuristi&yr is
“balanced”, that is, the heuristic values of an atQrdepends on both the effect of taking
Q@ andnot @, the decision betweefd andnot ( is based on the UT atoms criteria.

Enhanced Heuristic of DLV (hpg). The heuristichpg [12] is based orhyr, and is
different fromhyr only for pairs of literals which are not ordered by . The idea of the
additional criterion is that interpretations having a ‘tég degree of supportedness” are
preferred, where the degree of supportedness is the aveuageer of supporting rules
for the true atoms. Intuitively, if all true atoms have mampgorting rules in a model
M, then the elimination of a true atom from the interpretatiauld violate many rules,
and it becomes less likely finding a subset\éfwhich is a model ofP™ (which would
disprove that\/ is an answer set). Interpretations with a higher degreemf@tiedness
are therefore more likely to be answer sets. Justiike, hps is “balanced”.

The Look-back Heuristics (h; z). We next describe a family of new look-back heuris-
tics b 5. Different tohyr andhpgs, which provide a partial order on potential choices,
h; g assigns a numbel/{(L)) to each literall (thereby inducing an implicit order). This



number is periodically updated using the inconsistentiasdccurred after the most re-
cent update. Whenever a literal is to be selected, thellitéth the largest/ (L) will be
chosen. If several literals have the saimél), then negative literals are preferred over
positive ones, but among negative and positive literalsrigethe samé/ (L), the order-
ing will be random. In more detail, for each literd| two values are stored/(L), the
current heuristic value, anf{ L), the number of inconsistenciéshas been a reason for
since the most recent heuristic value update. After haviragenk literals, V(L) is up-
dated for eaclL as follows:V (L) := V(L)/2 + I(L). The motivation for the division
(which is assumed to be defined on integers by rounding thétyesto give more impact
to more recent values. Note thitL) # 0 can hold only for literals that have been chosen
earlier during the computation.

A crucial point left unspecified by the definition so far are thitial values ofi’(L).
Given that, initially, no information about inconsisteegiis available, it is not obvious
how to define this initialization. On the other hand, inidalg these values seems to
be crucial, as making poor choices in the beginning of thepmdation can be fatal for
efficiency. Here, we present two alternative initializasoThe first, denoted by},", is
done by initializingV (L) to the number of occurrences 6&fin the program rules. The
other, denoted by 2%, involves ordering the atoms with respectitgs, and initializing
V(L) by the rank in this ordering. The motivation fag4l" is that it is fast to compute
and stays with the “no look-ahead” paradigm/qf,. The motivation forh 24 is to try
to use a lot of information initially, as the first choices aiféen critical for the size of
the subsequent computation tree. We introduce yet anojfiendor i, 5, motivated by
the fact that answer sets for disjunctive programs must Ioénmail with respect to atoms
interpreted as true, and the fact that the checks for miritiyrezde costly: If we preferably
choose false literals, then the computed answer set cardiday have a better chance
to be already minimal. Thus if the literal, which is optimakarding to the heuristics,
is positive, we will choose the corresponding negativeditéirst, even if it has a lower
V(L). If we employ this option in the heuristics, we denote it byliag AF' to the

superscript, arriving dtﬁf AF andhfg’AF respectively.

4 Experiments

We have implemented the above-mentioned look-back teaksignd heuristics in DLV;
in this section, we report on their experimental evaluation

Compared Methods. For our experiments, we have compared several versions ¥f DL
[13], which differ on the employed heuristics and the useaifijumping. For having a
broader picture, we have also compared our implementat@tiee competing systems
GnT and CModels3, and with the QBF solvers Ssolve and sKikke.considered sys-
tems are:

e dlv: In several versions, namebjlv.ut, the standard DLV system employirig;r
(based on look-aheadjlv.ds, DLV with hpg, the look-ahead based heuristic special-
ized for XL'/11 hard disjunctive programsflv.ds.bj, DLV with hps and backjump-
ing; div.mf, DLV with #}F 8; div.mf.af: DLV with 72547, divIf, DLV with hZE;

5 Note that all systems with; 5 heuristics exploit backjumping.



div.If.af, DLV with hEEAT
e gnt [14]: The solver GnT, based on the Smodels system, can déatligjunctive ASP.
One instance of Smodels generates candidate models, witthex instance tests if a
candidate model is stable.
e cm3 [15]: CModels3, a solver based on the definition of comptefior disjunctive
programs and the extension of loop formulas to the disjuacase. CModels3 uses two
SAT solvers in an interleaved way, the first for finding ansee&tr candidates using the
completion of the input program and loop formulas obtainedrd) the computation, the
second for verifying if the candidate model is indeed an anset. In the experiments,
we used zChaff (ver. 2004) as underlying SAT solver: it is deéault and faster SAT
solver among the ones available in CModels3.
e ssolve[16]: is a search based native QBF solver that won the QBFU&taln in 2004
on random (or probabilistic) benchmarks (performing veplhalso on non-random, or
fixed, benchmarks), and performed globally (i.e., both oadiand probabilistic bench-
marks) well in the last two editions.
e sKizzo [17]: is a reasoning engine for QBF featuring several teghes, including
search, resolution and skolemization, that won the last @&#uation 2007 (which was
run only on fixed benchmarks).

For h; 5 heuristics we fixed:=100. Note that we have not taken into account other
solvers like Smodels [18] or Clasp [19] because our focus is on disjunctive ASP.

Benchmark Programs and Data. The proposed heuristic aims at improving the per-
formance of DLV on disjunctive ASP programs. Therefore weufon hard programs
in this class, which is known to be able to express each quetlyeocomplexity class
XP /L. Al of the instances that we have considered in our benckmaaalysis have
been derived from instances for 2QBF, the canonical proliterthe second level of the
polynomial hierarchy. This choice is motivated by the fdtttmany real-world, struc-
tured (i.e., fixed) instances in this complexity class alale for 2QBF on QBFLIB
[20], and moreover, studies on the location of hard instarioe randomly generated
2QBFs have been reported in [21-23].

The problem 2QBF is to decide whether a quantified Booleamtita (QBF)® =
VX 3Y ¢, whereX andY are disjoint sets of propositional variables ahe D; A ... A
D, is a CNF formula oveX U Y, is valid.

The transformation from 2QBF to disjunctive logic programgnis a slightly altered
form of a reduction used in [24]. The propositional disjuvetogic programP, pro-
duced by the transformation requirs (|X| + |Y'|) + 1 propositional predicates (with
one dedicated predicate), and consists of the following rules:V . for each variable
veEXUY,y«— w g« w.foreachy € Y, w « v1,...,0m,Vm+1,---, 0. fOr each
disjunctionvy V ... V vy, V 2011 V... V 2o, I0 ¢, and finally«— not w. The 2QBF
formula® is valid iff Py has no answer set [24].

We have selected both random and structured QBF instanbesrahdom 2QBF
instances have been generated following recent phasatiman®gsults for QBFs [21—
23]. In particular, the generation method described in 283 been employed and the
generation parameters have been chosen according to tbaregptal results reported
in the same paper. First, we have generated 10 differenbsetstances, each of which
is labelled with an indication of the employed generatiorapzeters. In particular, the
label “A-E-C-p” indicates the class of instances in which each clausethasiversally-



guantified variables anf' existentially-quantified variables randomly chosen froseta
containingC' variables, such that the ratio between universal and estiatevariables is
p. For example, the instances in the class “3-3-70-0.8" atdB€@rmulas (each clause
having exactly 3 universally-quantified variables and 3itially-quantified variables)
whose variables are randomly chosen from a set of 70 contaBil universal and 39
existential variables, respectively. In order to compheegerformance of the systems in
the vicinity of the phase transition, each set of generataddlas has an increasing ratio
of clauses over existential variables (from 1 to ma¥ollowing the results presented
in [23], max- has been set to 21 for each of the classes 3-3-70-*, and 12¢braf 2-3-
80-*. We have generated 10 instances for each ratio, thasrofg, in total, 210 and 120
instances, respectively. Then, because these instanaes goovide information about
the scalability of the systems w.r.t. the total number ofalges, we generated yet more
sets. We took the “2-3-80-1.0" and “3-3-70-1.2" classesdithe ratio of clauses over
existential variables to the “harder” value for the DLV vierss and vary the number of
variablesC' (from 5 to maxC, step 5), where max is 80 and 70, respectively. We have
generated 10 instances for each point, thus obtainingtdh tt60 and 140 instances per
set, respectively.

Concerning the structured instances, we have analyzed:

— Narizzano-Robot- These are real-word instances encoding the robot nawigati
problems presented in [25], as used in the QBF Evaluatiod 20@ 2005.

— Ayari-MutexP - These QBFs encode instances to problems related to theafform
equivalence checking of partial implementations of citgas presented in [26].

— Letz-Tree - These instances consist of simple variable-independéyiregrams
generated according to the pattevmy xs...x,,—13x224...25(c1 A ... A cp—2) Where
C;, = Xy \Y Ti+2 V Ti+3, Ci+1 = T4 V Li+42 \Y Li43, 1= 1, 3, e, — 3.

The benchmark instances belonging to Letz-tree, NarizRolwot, Ayari-MutexP have

been obtained from QBFLIB [20], including the 32 (resp. 4@Yixzano-Robot instances
used in the QBF Evaluation 2004 (resp. 2005), and alMhénstances from Letz-tree
and Ayari-MutexP.

Results. All the experiments were performed on a 3GHz PentiumlV epedpwith 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time asirements have
been done using thei me command shipped with the system, counting total CPU time
for the respective process.

We start with the results of the experiments with random 2@Bmulas. For every
instance, we have allowed a maximum running time of 20 miute Table 1 we re-
port, for each system, the number of instances solved in setciithin the time limit.
Looking at the table, it is clear that the new look-back h&ticicombined with the “mf”
initialization (corresponding to the system dlv.mf) penfied very well on these domains,
being the version which was able to solve most instances 8t s&itings among the ASP
systems, particularly on the 3-3-70-* sets. Also dlv.Ifparticular when combined with
the “af” option, performed quite well, while the other varia do no seem to be very ef-
fective. Considering the look-ahead versions of DLV, diyp@rformed reasonably well.
Considering GnT and CModels3, we note that they solve geiteifistances, while it is
clear that Ssolve is very efficient, being able to solving@dtrall instances. In contrast,
sKizzo did not perform well here, which is in line with the udts of the QBF Evaluations



| [[div.ut/dlv.dg div.ds.bj|dIv.mf[dlv.mf.af[dIv.If[dIv.If.af[[gncm3]ssolvgsKizzd

2-3-80-0.4) 119| 120 | 120 120 | 120 |120| 120 || 3|57 120| 38
2-3-80-0.¢/ 91 | 102 | 99 103 83 101| 96 4162 120 | 25
2-3-80-0.8 88 | 99 99 99 79 97 | 92 573|120 | 21
2-3-80-1.9) 81 | 95 96 106 80 95| 95 |/10/81| 120 | 21
2-3-80-1.2) 84 | 99 101 109 85 101| 102 93| 120 | 22

6
3-3-70-0.¢| 159 | 174 | 168 172 | 157 |164| 166 || 4| 76| 210| 49
3-3-70-0.8 128 | 138 | 135 150 | 123 |132| 140 || 2|82| 210| 37
7
9

3-3-70-1.9 114 | 128 | 127 149 | 112 |128| 125 96 || 205| 34
3-3-70-1.2) 123 | 131 | 133 156 | 115 |129| 140 117 209 | 34
3-3-70-1.4 124 | 139 | 142 161 | 117 |142| 141 || 9 |131| 210| 34

[ #Total [[1111]1225] 1220 || 1325] 1071 [1209 1217 [[59]868] 1644] 315 |

Table 1. Number of solved instances within timeout for Random 2QBF.

which showed that Ssolve is very efficient on probabilistie.  fixed) benchmarks, while
sKizzo is not efficient on this domain.

Figures 3 (resp. 4) show the results for the “2-3-80-1.05pre'3-3-70-1.2") set,
regarding scalability. For sake of readability, only thetamces with a high number of
variables are presented: GnT, Cmodels3, Ssolve, sKizzalhtite DLV versions solve
all instances not reported. The left (resp. right) plot affreBigure contains the cumulative
number of solved instances about all the DLV versions (r&spl, CModels3, Ssolve,
sKizzo and the best version of DLV). Overall, on these paliicsets, we can see that
all the “look-back” versions of DLV scaled much better thanTcand CModels3, with
div.mfbeing able to solve some of the bigger instances Heeddoy other DLV versions,
GnT and Cmodels3. Ssolve managed to solve all instancesileuin Fig. 4 left), and in
less time (not reported), while sKizzo showed poor perforces.

In Tables 2, 3 and 4, we report the results, in terms of exegutme for finding
one answer set, and/or number of instances solved withini@0tes, about the groups:
Narizzano-Robot, Ayari-MutexP and Letz-Tree, respetfivehe last columns (AS?) in-
dicate whether the instance has an answer set (Y), or nob(),in Table 2 it indicates
how many instances have answer sets. A “—" in these tablésaited a timeout.
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Fig. 3. Left: Number of solved instances by all DLV versions. Rigitimber of solved instances
by dlv.mf, GnT, CModels3, Ssolve and sKizzo.
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Fig. 4. Left: Number of solved instances by all DLV versions. Rightimber of solved instances
by div.If.af, GnT, CModels3, Ssolve and sKizzo.

In Table 2 we report only the instances from the QBF Evaluma#604 and 2005,
respectively, which were solved within the time limit by aakt one of the compared
methods. In Table 2, dlv.mf was, among the ASP and QBF sql#eessystem which
solved the highest number of instances among the 67 rep@defbr QBF Evaluation
2004 and 40 for QBF Evaluation 2005) instances, followed sgh& (60), CModels3
and sKizzo (58), and div.If (50). Moreover, dlv.mf solved @perset of the instances
solved by Ssolve, while the timeouts of dlv.mf showed up dfetgnt instances w.r.t.
the timeouts of sKizzo. Further, dlv.mf was always the fststéSP system on each in-
stance (sometimes drastically, even if for lack of space eveat report CPU time) if we
consider the instances on which it took more than 1 secorttipfien faster than Ssolve
and Skizzo, especially on the QBF Evaluation 2004 instansk®f the QBF Evalua-
tion 2005 instances were solved by dlv.mf, Cmodels3 andvBsulith mean execution
times of 228.07s, 189.74s and 76.91s, respectively. Thditional” DLV versions could
solve 10 instances, while dlv.ds.bj solved 21 instancedt@ok less execution time. This
indicates the advantages of using a backjumping techniguleese robot instances.

In Table 3, we then report the results for Ayari-MutexP. lattdomain all the ver-
sions of DLV and the QBF solvers were able to solve all 7 instan outperforming
both CModels3 and GnT which solved only one instance. Comgé#ne execution times
required by all the variants of DLV we note that, also in thise, dlv.mf is the best-
performing version, while QBF solvers scaled up much better

About the Letz-Tree domain reported in Table 4, the DLV \amsi equipped with
look-back heuristics solved a higher number of instancdsaquired less CPU time (up
to two orders of magnitude less) than all ASP competitorgdrticular, the look-ahead
based versions of DLV, GnT and CModels3 could solve only 8imses, while dlv.mf

| [|div.ut/dlv.dgdiv.ds.b]|dIv.mf[dlv.mf.af{ dIv.If[dIv.If.af][gnfcm3|ssolvgsKizzd]AS 7

QBF Eval. 2004 10 | 10 11 24 15 18| 13 5(18]| 20 22 5
QBF Eval. 200§ 0 0 10 40 34 32| 22 0]40| 40 36 0

[ #Total [ 10] 10] 21 [ 64 ] 49 [50] 35 [[5]58] 60 | 58 ] 5 |

Table 2. Number of solved instances on Narizzano-Robot instanceslaested in the QBF Evalu-
ation 2004 and 2005. The last column indicates how manynosthave answer sets.



| [|div.ut{dlv.dgdiv.ds.b]|dIv.mf[dlv.mf.afl dIv.If [dIv.If.af]| gnt[cm3]ssolvdsKizzd[AS?

mutex-2-s ][ 0.01] 0.01] 0.01 [ 0.01] 0.01 [0.01] 0.01 [|1.890.65] 0.03] 0.01] N
mutex-4-s || 0.05 0.05| 0.05 | 0.06] 0.05 |0.06] 0.05 | — | — || 0.04] 0.01| N
mutex-8-s [ 0.21] 0.2 | 023 || 0.21] 0.21 |0.23] 021 | — | — [[0.07] 0.0L| N
mutex-16-s|| 0.89] 0.89] 0.98 || 0.89] 0.89 |1.01] 0.9 | — | — [[0.13] 0.01| N
mutex-32-s|| 3.67| 3.72| 4.06 | 3.63| 3.64 |4.16] 3.79 | — | — || 0.3 | 0.03| N
mutex-64-5|[15.3616.08 17.64 | 14.97] 15.04 [18.04 1697 — | — [[0.81] 0.07 | N
mutex-128-§69.0779.39 90.92 |[62.97] 62.97 [92.92 93.05] — | — |[2.83] 0.3 | N
psoved [[ 7 [ 7] 7 [[7 [ 7 [7] 7 [1Ja[[7 [ 7 [ |

Table 3. Execution time (seconds) and number of solved instancesan-MutexP instances.

and div.If solved 4 and 5 instances, respectively. Intarght, here the “If” variant is very
effective, in particular when combined with the “af” optidike in the random instances
for testing scalability. It could solve the same number stamces as Ssolve and sKizzo,
which, however, scale better.

Strategic companies. We also run native disjunctive ASP benchmarks for$teategic
Companiegproblem, as defined in [27]. The goal here is to understantsdf the new
look-back based DLV versions have an edge over QBF solvenative disjunctive ASP
benchmarks, as showed in [11] for traditional versions.
Here, we generated tests as in [13] with 20 instances eaglicsiz. companiesq <

m < 100), 3m products, 10 uniform randomly chosemntr_by relations per company
(up to four controlling companies), and uniform randomlpsénprod_by relations (up
to four producers per product), for a total 660 instances. The problem is deciding
whether two fixed companie$ &nd2, without loss of generality) are strategic.

/

For the QBF solvers we have produced the following formida; . . ., ¢,, : Ve, ..., ¢}, :
(INNE) — (RAR')Ac1 Acg) wherel stands folc) — c1)A...A(c,, = ¢n), NE
for =((c} < c1)A...A(c, < ¢n)), Rfor /\;il((/\cjeoi ¢j) = ) ANy (\/gi,ecj ;)
(O; contains the controlling companies@f while C; contains the companies producing
goodj. R’ is defined analogous t8 on the primed variables.

Unfortunately this formula is not in CNF, as required by tHaimacs format. In
order to avoid a substantial blowup of the formula by a ttiviarmalization, we have
used the toofistof thetraquastosuite [28], which transforms a formula into gDimacs by
introducing additional “label variables” to avoid expotiahformula growth. However,
these additional variables are existentially quantifiethatinner level and thus would
turn the formula above into a 3QBF. To avoid this, we consitier negated formula

| | div.ut] div.ds]dlv.ds.bj[dlv.mf[dlv.mf.aff dIv.If [dIv.If.af]| gnt | cm3][ssolvdsKizzd[AS?
exalO-1¢| 0.18 | 0.17| 0.17 || 0.04 0.1 0.06 | 0.06 || 0.12|0.03| 0.01| 0.01 | N

exal0-1§ 7.49| 7.09| 7.31 || 0.34| 0.71 | 0.48| 0.38 || 6.46 0.73] 0.01] 0.01| N
exal0-2()278.01264.53 2751 || 12.31| 17.24 | 5.43 | 2.86 ||325.2667.58 0.02| 0.01 | N
exal02§ - | — | - ||303.67 432.32|4413| 1915 — | — |[0.02] 0.02] N
exalo3] - | — | - || - | - |1669312954] — | — |[[0.05] 0.02] N
[#Soved| 3 [ 3 | 3 [[4] 4 [ 5[5 [3[3[5[5T] |

Table 4. Execution time (seconds) and number of solved instancestm Tree instances.



| [|div.ut{dlv.dgdlv.ds.b]|dIv.mf[dlv.mf.af{dIv.If dIV.If.af] gntjcm3ssolvesKizzd]
[#Solved 400] 400] 400 || 400 | 400 |400] 400 [|400400] 195] 91 |

Table 5. Number of solved instances on Strategic Companies.

Ve, oo en 2 3,0 e - 2(IANE) — (RAR') Ac1 A cg), which stays on the
second level after the transformation.

In Table 5 we report the total number of solved instances. &vesee that all DLV
versions, GnT and Cmodels3 are able to solve all the genkirsgtances, while Ssolve
and sKizzo can just solve a very limited portion, i.e., thelest instances in the set.

Summarizing, dlv.ds.bj showed (especially on same seth@fandom programs,
and on the Narizzano-Robot instances) improvements thet!traditional” DLV ver-
sions. Moreover, if equipped with look-back heuristics,\D&howed very positive per-
formance, further strengthening the potential of lookktechniques. In all of the test
cases presented, both random and structured, DLV equipjibdomk-back heuristics
obtained good results both in terms of number of solved imt&ta and execution time
compared to traditionals DLV, GnT and CModels3. Variantmily the “classic” look-
back heuristic, performed best in most cases, but goodpeaiace was obtained also by
div.If. The results of div.If.af on the some random and L&tee instances show that this
option can be fruitfully exploited in some particular dom&i The QBF solvers Ssolve
and sKizzo in general performed very well, but on some domé&itably Narizzano-
Robot) they were outperformed by dlv.mf, both in terms of hemof instances solved
and CPU execution time. Moreover, ASP systems did muchrbise QBF solvers in
the Strategic Companies benchmarks. Overall we can ob&t/lok-back based ASP
systems, in particular dlv.mf, are competitive with QBFw&us. It should be also noted
that the vast majority of the structured instances presatdanot have answer sets, while
the bigger advantages of dlv.mf over Ssolve on the Nariz&wioot instances are ob-
tained on the instances with answer sets.

Finally, we would like to mention some further experimemiattwe have performed,
without going in details for lack of space. In particular, experimented with different
values fork for div.mf, and extensions df-%; where more atoms are taken into account.
k=100 proved to be the overall best setting, while the exterssofrl% did not show
overall significant differences in performance w.r.t. tieesions presented in the paper.
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