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Abstract. Aggregates are among the most significant enhancements of Answer
Set Programming (ASP) in recent time, and a lot of theoretical and practical work
has been done on aggregates up to now. In spite of these advances, atthe moment
aggregates are treated in ASP systems in a more or less naı̈ve way. In this note,
we build on work on look-back optimization techniques for DLV. We extend the
reason calculus for backjumping to include reasons for aggregate literals. Fur-
thermore, we use those aggregate reasons to tune look-back heuristics.

1 Introduction

Answer Set Programming (ASP) [1] has become a popular logic programming frame-
work during the last decade, the reason being mostly its intuitive declarative reading,
a mathematically precise expressivity, and last but not least the availability of efficient
systems. One of the most relevant improvements to the language of ASP has been the
addition of aggregates. Aggregates significantly enhance the language of ASP, allow-
ing for natural and concise modelling of many problems. A lotof work has been done
both theoretically (mostly for determining the semantics of aggregates that occur in
recursion) [2–4] and practically, for endowing systems with a selection of aggregate
functions [5–7].

However, efforts for improving system performance with respect to aggregates are
sparse, and current implementations use more or less ad-hoctechniques. In this work,
we enhance a backjumping technique developed in the settingof the solver DLV in [8]
in order to deal with aggregates.

The first contribution is an extension of thereason calculusdefined in [8] for iden-
tifying the reasons for several types of aggregates supported in DLV. This information
can then be exploited directly for backjumping as describedin [8]. Reasons for aggre-
gates are also used directly to enhance the look-back heuristic presented in [9]. Here,
a key issue—the initialization of heuristic values—needs further attention, and to this
end we propose a solution based on aggregate-free programs which are equivalent when
the aggregate occurs in a stratified way. Being a heuristic, even if equivalence does not
hold in general in the unstratified setting, it can still serve as an appropriate approxima-
tion. We have implemented the proposed techniques and performed a set of preliminary
benchmarks which indicate performance benefits of the enhanced system.



2 Answer Set Programming with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard logic programming; we refer to the
respective constructs asstandard atoms, standard literals, standard rules, andstandard
programs. Two literals are said to be complementary if they are of the formp andnot p
for some atomp. Given a literalL, ¬.L denotes its complementary literal. Accordingly,
given a setA of literals,¬.A denotes the set{¬.L | L ∈ A}. For further background,
see [10, 1].

Set Terms.A DLPA set termis either a symbolic set or a ground set. Asymbolic set
is a pair{Vars : conj}, whereVars is a list of variables andconj is a conjunction of
standard atoms.3 A ground setis a set of pairs of the form〈t :conj 〉, wheret is a list of
constants andconj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions.An aggregate functionis of the formf(S), whereS is a set term,
andf is anaggregate function symbol. Intuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets of constants to a constant.

Example 1. In the examples, we adopt the syntax ofDLV to denote aggregates.Aggre-
gate functions currently supported by the DLV system are:#count (number of terms),
#sum (sum of non-negative integers),#min (minimum term),#max (maximum term)4.

Aggregate Literals.An aggregate atomis f(S) ≺ T , wheref(S) is an aggregate
function,≺∈ {=, <, ≤, >,≥} is a predefined comparison operator, andT is a term
(variable or constant) referred to as guard.

Example 2.The following aggregate atoms are in DLV notation, where thelatter con-
tains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V )} > Y #max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atomis either a standard atom or an aggregate atom. Aliteral L is an atomA or an
atomA preceded by the default negation symbolnot; if A is an aggregate atom,L is
anaggregate literal.

DLPA Programs. A DLPA rule r is a construct

a1 v · · · v an :- b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, · · · , an are standard atoms,b1, · · · , bm are atoms, andn ≥ 1, m ≥ k ≥ 0.
The disjunctiona1 v · · · v an is referred to as theheadof r while the conjunc-
tion b1, ..., bk, not bk+1, ...,not bm is thebodyof r. We denote the set of head atoms

3 Intuitively, a symbolic set{X : a(X, Y ), p(Y )} stands for the set ofX-values making
a(X, Y ), p(Y ) true, i.e.,{X |∃Y s.t . a(X, Y ), p(Y ) is true}.

4 The first two aggregates roughly correspond, respectively, to the cardinality and weight con-
straint literals of Smodels.#min and#max are undefined for empty set.



by H(r), and the set{b1, ..., bk, not bk+1, ...,not bm} of the body literals byB(r).
B+(r) andB−(r) denote, respectively, the set of positive and negative literals inB(r).
Note that this syntax does not explicitly allow integrity constraints (rules without head
atoms). They can, however, be simulated in the usual way by using a new symbol and
negation.

A DLPA programis a set of DLPA rules. In the sequel, we will often drop DLPA,
when it is clear from the context. Aglobal variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variables arelocal variables.

Safety. A rule r is safe if the following conditions hold: (i) each global variable of
r appears in a positive standard literal in the body ofr; (ii) each local variable ofr
appearing in a symbolic set{Vars : conj} appears in an atom ofconj ; (iii) each guard
of an aggregate atom ofr is a constant or a global variable. A programP is safe if all
r ∈ P are safe. In the following we assume that DLPA programs are safe.

Stratification. A DLPA programP is aggregate-stratifiedif there exists a function|| ||,
called level mapping, from the set of (standard) predicates ofP to ordinals, such that
for each paira andb of standard predicates, occurring in the head and body of a rule
r ∈ P, respectively: (i) ifb appears in an aggregate atom, then||b|| < ||a||, and (ii) if b
occurs in a standard atom, then||b|| ≤ ||a||.

Example 3.Consider the program consisting of a set of facts for predicatesa andb,
plus the following two rules:

q(X) :- p(X), #count{Y : a(Y, X), b(X)} ≤ 2.

p(X) :- q(X), b(X).

The program is aggregate-stratified, as the level mapping||a|| = ||b|| = 1, ||p|| =
||q|| = 2 satisfies the required conditions. If we add the ruleb(X):- p(X), then no
such level-mapping exists and the program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursionthrough aggregates. While the
semantics of aggregate-stratified programs is more or less agreed upon, different and
disagreeing semantics for aggregate-unstratified programs have been defined in the
past, cf. [2–4]. In this work, we will consider only aggregate-stratified programs, but
all considerations should apply also to aggregate-unstratified programs under any of the
proposed semantics.

2.2 Answer Set Semantics

Universe and Base.Given a DLPA programP, let UP denote the set of constants
appearing inP, andBP be the set of standard atoms constructible from the (stan-
dard) predicates ofP with constants inUP . Given a setX, let 2

X
denote the set of all

multisets over elements fromX. Without loss of generality, we assume that aggregate
functions map toI (the set of integers).
Example 4.#count is defined over2

UP, #sum over2
N
, #min and#max are defined

over2
N
− {∅}.



Instantiation. A substitutionis a mapping from a set of variables toUP . A substitu-
tion from the set of global variables of a ruler (to UP ) is aglobal substitution for r; a
substitution from the set of local variables of a symbolic set S (to UP ) is a local sub-
stitution forS. Given a symbolic set without global variablesS = {Vars : conj}, the
instantiation ofS is the following ground set of pairsinst(S):
{〈γ(Vars) : γ(conj )〉 | γ is a local substitution forS}.5

A ground instanceof a ruler is obtained in two steps: (1) a global substitutionσ for
r is first applied overr; (2) every symbolic setS in σ(r) is replaced by its instantia-
tion inst(S). The instantiationGround(P) of a programP is the set of all possible
instances of the rules ofP.

Interpretations.An interpretationfor a DLPA programP is a consistent set of standard
ground literals, that isI ⊆ (BP ∪ ¬.BP) such thatI ∩ ¬.I = ∅. A standard ground
literal L is true (resp. false) w.r.tI if L ∈ I (resp.L ∈ ¬.I). If a standard ground
literal is neither true nor false w.r.tI then it is undefined w.r.tI. We denote byI+ (resp.
I−) the set of all atoms occurring in standard positive (resp. negative) literals inI. We
denote bȳI the set of undefined atoms w.r.t.I (i.e.BP \ I+ ∪ I−). An interpretationI
is total if Ī is empty (i.e.,I+ ∪ ¬.I− = BP ), otherwiseI is partial.

An interpretation also provides a meaning for aggregate literals. Their truth value is
first defined for total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction istrue (resp. false)
w.r.t I if all its literals are true (resp. false). The meaning of a set, an aggregate function,
and an aggregate atom under an interpretation, is a multiset, a value, and a truth-value,
respectively. Letf(S) be a an aggregate function. The valuationI(S) of S w.r.t. I is
the multiset of the first constant of the elements inS whose conjunction is true w.r.t.I.
More precisely, letI(S) denote the multiset[t1 | 〈t1, ..., tn : conj 〉 ∈ S∧ conj is true
w.r.t. I ]. The valuationI(f(S)) of an aggregate functionf(S) w.r.t. I is the result of the
application off on I(S). If the multisetI(S) is not in the domain off , I(f(S)) = ⊥
(where⊥ is a fixed symbol not occurring inP).

An instantiated aggregate atomA of the form f(S) ≺ k is true w.r.t. I if: (i)
I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k holds; otherwise,A is false. An instantiated
aggregate literalnotA = notf(S) ≺ k is true w.r.t. I if (i) I(f(S)) 6= ⊥, and, (ii)
I(f(S)) ≺ k does not hold; otherwise,A is false.

If I is apartial interpretation, an aggregate literalA is true (resp. false) w.r.t.I if it
is true (resp. false) w.r.t.each totalinterpretationJ extendingI (i.e.,∀ J s.t.I ⊆ J ,
A is true (resp. false) w.r.t.J); otherwise it is undefined.

Example 5.Consider the atomA = #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉} > 1. Let S be the
ground set inA. For the interpretationI = {p(2, 2)}, each extending total interpretation
contains eitherp(2, 1) or notp(2, 1). Therefore, eitherI(S) = [2] or I(S) = [1, 2] and
the application of#sum yields either2 > 1 or 3 > 1, henceA is true w.r.t.I.

Remark 1. Our definitions of interpretation and truth valuespreserve “knowledge mono-
tonicity”. If an interpretationJ extendsI (i.e., I ⊆ J), then each literal which is true
w.r.t. I is true w.r.t.J , and each literal which is false w.r.t.I is false w.r.t.J as well.

5 Given a substitutionσ and a DLPA objectObj (rule, set, etc.), we denote byσ(Obj) the
object obtained by replacing each variableX in Obj by σ(X).



Minimal Models. Given an interpretationI, a ruler is satisfied w.r.t.I if some head
atom is true w.r.t.I whenever all body literals are true w.r.t.I. A total interpretation
M is amodelof a DLPA programP if all r ∈ Ground(P) are satisfied w.r.t.M . A
modelM for P is (subset) minimal if no modelN for P exists such thatN+ ⊂ M+.
Note that, under these definitions, the wordinterpretationrefers to a possibly partial
interpretation, while amodelis always a total interpretation.

Answer Sets.We now recall the generalization of the Gelfond-Lifschitz transformation
and answer sets for DLPA programs from [4]: Given a ground DLPA programP and
a total interpretationI, let PI denote the transformed program obtained fromP by
deleting all rules in which a body literal is false w.r.t.I. I is an answer set of a program
P if it is a minimal model ofGround(P)I .

Example 6.Consider interpretationI1 = {p(a)}, I2 = {notp(a)} and two programs
P1 = {p(a):-#count{X : p(X)} > 0.} andP2 = {p(a):-#count{X : p(X)} < 1.}.

Ground(P1) = {p(a):-#count{〈a : p(a)〉} > 0.} andGround(P1)
I1 = Ground(P1),

Ground(P1)
I2 = ∅. Furthermore,Ground(P2) = {p(a):-#count{〈a : p(a)〉} < 1.}, and

Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold.
I2 is the only answer set ofP1 (sinceI1 is not a minimal model ofGround(P1)

I1 ),
while P2 admits no answer set (I1 is not a minimal model ofGround(P2)

I1 , andI2 is
not a model ofGround(P2) = Ground(P2)

I2 ).

Note that any answer setA of P is also a model ofP becauseGround(P)A ⊆
Ground(P), and rules inGround(P) − Ground(P)A are satisfied w.r.t.A.

3 Backjumping and Reason Calculus in DLV

DLV is the state-of-the-artdisjunctiveASP system. DLV relies on backtracking search
similar to the DPLL procedure for SAT solving (most other competitive ASP systems
exploit similar techniques). Basically, starting from theempty (partial) interpretation,
the solver repeatedly assumes truth-values for atoms (chosen according to an heuristic),
subsequently computing their deterministic consequences(propagation). This is done
until either an answer set is found or an inconsistency is detected. In the latter case,
(chronological) backtracking occurs. Since the last choice does not necessarily influ-
ence the inconsistency, the procedure may perform a lot of useless computations. In
[8], DLV has been enhanced by backjumping [11, 12], which allows for going back
to a choice which is relevant for the found inconsistency.6 A crucial point is how rel-
evance for an inconsistency can be determined. In [8], the necessary information for
deciding relevance is recorded by means of a reason calculus, which collects informa-
tion about the choices (“reasons”) whose truth-values havecaused truth-values of other
deterministically derived atoms.

In practice, once an atom has been assigned a truth-value during the computation,
we can associate a reason to it. For instance, given a rulea:- b, c,not d., if b andc are
true andd is false in the current partial interpretation, thena will be derived as true. In

6 For more details, see [13] for the basic DLV algorithm and [8] for backjumping.



this case,a is true becauseb andc are true andd is false. Therefore, the reasons fora
will consist of the reasons forb, c, andd. Chosenliterals are seen as their own reason.
So each literall derived during the propagation has an associated set of positive integers
R(l) representing the reasons forl, which contains essentially the recursion levels of
the choices which entaill. In the following, we will describe the inference rules needed
for correctly implementing aggregates [5, 6], and we present the associated extension
of the reason calculus which allows for dealing with aggregates.

4 Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supported by DLV. Hereafter, a
partial interpretation (represented as a set of literals)I is assumed to be given.

Consider a pair〈t : conj〉 wherev is a term andconj a conjunction of literals. We
denote byCconj (resp.Sconj) the reason forconj to be false (resp. true) w.r.t.I. In par-
ticular,Cconj is the reason of a false literal inconj7, whileSconj =

⋃

l∈conj R(l), i.e. all
reasons for the literals inconj. Moreover, letA = {〈t1 : conj1〉, . . . , 〈tn : conjn〉} be a
set term, defineCA =

⋃

〈t:conj〉∈A∧conj /∈I Cconj andSA =
⋃

〈t:conj〉∈A∧conj∈I Sconj ,
where a true (resp. false) conjunction w.r.t. interpretation I is denoted byconj ∈ I
(resp.conj /∈ I). Intuitively, CA represents the reasons for false conjunctions inA,
while SA represents the reason for true conjunctions inA.

In the following, each propagation rule and the corresponding reason calculus are
detailed. Without loss of generality, we focus on rulesh : −f(A)Θk, Θ ∈ {<,>},
since the calculus can easily be extended to the general case. More in detail, we consider
two different scenarios depending on whether the propagation proceeds from literals in
A to aggregate literalsf(A)Θk (forward inference) or the other-way round (backward
inference). Basically, in the first case we derive the truth/falsity of the aggregate literal
f(A)Θk from the truth/falsity of some conjunction occurring inA; whereas, in the
second case, given a rule containing an aggregate atom whichis already known to be
true or false w.r.t. the current interpretation,8 we infer some literals occurring in the
conjunctions inA to be true/false;

4.1 Forward Inference

This kind of propagation rules apply when it is possible to derive an aggregate literal
f(A)Θk to be true or false because some conjunction inA is true or false w.r.t.I. As
an example consider the program:

a(1). a(2). h : −#count{〈1 : a(1)〉, 〈1 : a(2)〉} < 1.

Since botha(1) anda(2) are facts, they are first assumed to be true; then, since the
actual count for the aggregate is 2, the aggregate literal isinferred to be false by forward
inference.

7 Since a satisfied conjunction can have several “satisfying literals”, the literal should be chosen
as the reason that allows for the “longest jump,” as argued in [8].

8 This can happen in our setting as a consequence of the application of eithercontraposition for
true heador contraposition for false headpropagation rules, see [8].



In the following, we report in a separate paragraph both propagation rules and cor-
responding reason calculus for the aggregates supported byDLV; #max{A}Θk is sym-
metric to#min{A}Θk and is not reported.

#count{A} < k (resp.#count{A} > k). Suppose that there exists9 a setA′ ⊆ A
s.t. for each〈t : conj〉 ∈ A′,10 conj is true (resp. false) inI and |A′| ≥ k (resp.
|A′| ≥ |A| − k), then#count{A} < k (resp.#count{A} > k) is inferred to be false
and its reasons are set toSA′ (resp.CA′). Conversely, suppose that there exists a set
A′ ⊆ A s.t. for each〈t : conj〉 ∈ A′, conj is false (resp. true) inI and|A′| > |A| − k
(resp.|A′| > k), then we infer that#count{A} < k (resp.#count{A} > k) is true
and we set its reason toCA′ (resp.SA′ ).

#min{A} < k (resp.#min{A} > k). Let A′ be the set of all pairs〈v, t : conj〉 ∈ A
s.t. v < k (resp.v ≤ k). If for each 〈v, t : conj〉 ∈ A′, conj is false inI, then
#min{A} < k is derived to be false (resp.#min{A} > k derived to be true) and we
set its reasons toSconjm

. Conversely, suppose that there exists a pair〈v, t : conj〉 ∈ A
s.t.conj is true inI andv < k (resp.v ≤ k), then we infer that#min{A} < k is true
(resp.#min{A} > k is false) and we set its reason toSconj .

#sum{A} < k (resp.#sum{A} > k). Suppose that there exists a setA′ ⊆ A s.t.
for each〈v, t : conj〉 ∈ A′, conj is true (resp. false) inI andΣ{v|〈v,t:conj〉∈A′}v ≥
k (resp.Σ{v|〈v,t:conj〉∈A}v − Σ{v|〈v,t:conj〉∈A′}v ≤ k), then#sum{A} < k (resp.
#sum{A} > k) is false and we set its reason toSA′ (resp.CA′). Conversely, suppose
that there exists a setA′ ⊆ A s.t. for each〈v, t : conj〉 ∈ A′, conj is false (resp. true)
in I andΣ{v|〈v,t:conj〉∈A}v − Σ{v|〈v,t:conj〉∈A′}v < k (resp.Σ{v|〈v,t:conj〉∈A′}v > k),
then#sum{A} < k (resp.#sum{A} > k) is true and its reason isCA′ (resp.SA′ ).

4.2 Backward Inference

This kind of propagation rules apply when an aggregate literal f(A)Θk, Θ ∈ {<,>}
has been derived true (or false), and there isa unique way11 to satisfy it by inferring that
some literals belonging to the conjunctions inA is true or false. For example, suppose
thatI is empty and consider the program:

:- not h. h : −#count{〈1 : a〉, 〈1 : b〉} > 1.

During propagation we first inferh to be true for satisfying the constraint, and then,
in order to satisfy the rule, also the aggregate literal is inferred to be true (independently
by its aggregate set). At this point, backward propagation can happen, since the unique
way to satisfy the aggregate literal is to infer botha andb to be true.

9 As far as the implementation is concerned, in case there are several different sets with this
property, a safe choice is to consider their union. Another, less expensive, solution is to build
A′ by iterating over the elements ofA until the condition is met.

10 Hereafter,〈v, t : conj〉 is a syntactic shorthand for〈v, t1, · · · , tn〉, wherev is a constant and
t is the list of constantst1, · · · , tn, n ≥ 0.

11 Since the propagation process must bedeterministic.



Thus, backward propagation happens when an aggregate literal f(A)Θk has been
derived true (or false) in the current interpretation, and there isonly one wayto satisfy
it by deterministicallysetting someconji (s.t.〈ti : conji〉 ∈ A) true (or false) w.r.tI.
For doing so, an implementation detail of DLV is exploited, which internally replaces
conjunctions in aggregates by freshly introduced auxiliary atoms, along with a rule
defining the auxiliary atom by means of the conjunction. So inside DLV, conji will
always be an atom, which can simply be set to true or false, andits defining rule will
then act as a constraint eventually enforcing truth or falsity of the conjunctionconji.
As far as the reason calculus is concerned, literals are inferred to be true or false by
this operation because both the aggregate literal is true/false and some conjunctions in
A (being either true or false) made the process deterministic; thus, the reason for each
literal li inferred by backward inference is set toR(li) = R(f(A)Θk) ∪ CA ∪ SA.

The following paragraphs report sufficient conditions for applying backward infer-
ence in the case of the aggregates supported by DLV. Since conditions forf(A) > k
to be true (resp. false) basically coincides with the ones off(A) < k + 1 to be false
(resp. true), only one of the two cases is reported for each aggregate. Moreover, from
now on, we assume that, whenever backward inference requires to derive something,
this action can be done deterministically (if this is not possible then backward inference
is not performed).

#count{A} < k. Let TA be the setTA = {〈ti : conji〉 ∈ A s.t. conji is true w.r.t.
I}, andFA be the setFA = {〈ti : conji〉 ∈ A s.t.conji is false w.r.t.I}, and suppose
that#count{A} < k is true w.r.t.I and|TA| = k − 1, then all undefined conjunctions
in A are made false. Conversely, suppose that#count{A} < k is false w.r.t.I and
|A| − |FA| = k, then all undefined conjunctions inA are made true.

#min{A} < k. Suppose that,#min{A} < k is true w.r.t.I, and there is only one
〈v, t : conj〉 ∈ A such thatv < k andconj is neither true or false w.r.t.I; suppose
also that, all the remaining〈vi, ti : conji〉 ∈ A s.t.vi < k are such thatconji is false
w.r.t. I, thenconj is made true. Conversely, suppose that#min{A} < k is false w.r.t.I
and, there is no〈v, t : conj〉 ∈ A such thatv < k andconj is true w.r.t.I. In addition,
suppose that either(i) there exist〈v′, t′ : conj′〉 ∈ A s.t.v′ > k andconj′ is true w.r.t.
I or (ii) there is only one〈v′′, t′′ : conj′′〉 ∈ A s.t.v′′ > k with conj′′ undefined w.r.t.
I. Then all theconji such that〈vi, ti : conji〉 ∈ A andvi < k are made to be false,
and, if case (ii) holds, alsoconj′′ is made true w.r.t.I.

#max{A} < k. Suppose that,#max{A} < k is false w.r.t.I, and there is only one
〈v, t : conj〉 ∈ A such thatv > k andconj is neither true or false w.r.t.I; suppose
also that, all the remaining〈vi, ti : conji〉 ∈ A s.t.vi > k are such thatconji is false
w.r.t. I, thenconj is made true. Conversely, suppose that#max{A} < k is true w.r.t.I
and, there is no〈v, t : conj〉 ∈ A such thatv > k andconj is true w.r.t.I. In addition,
suppose that either(i) there exist〈v′, t′ : conj′〉 ∈ A s.t.v′ < k andconj′ is true w.r.t.
I or (ii) there is only one〈v′′, t′′ : conj′′〉 ∈ A s.t.v′′ < k with conj′′ undefined w.r.t.
I. Then all theconji such that〈vi, ti : conji〉 ∈ A andvi < k are made to be false,
and, in if case (ii) holds, alsoconj′′ is made true w.r.t.I.



#sum{A} < k. Let us denote byS(X) the sumS(X) =
∑

〈vi,ti:conji〉∈X vi, and
suppose that#sum{A} < k is true w.r.t.I andS(TA) = k − 1, then all undefined
atoms inA are made false. Conversely, suppose that#sum{A} < k is false inI and
S(A) − S(FA) = k, then all undefined atoms inA are made true.

5 Guiding Look-back Heuristics in the Presence of Aggregates

Look-back heuristics are exploited in conjunction with backjumping. The effectiveness
of this combination, which was originally implemented in SAT solvers like Chaff [14]
(where the heuristic is called VSIDS), has also been demonstrated for DLV in [9].

A key factor of this type of heuristic is the initialization of the weights of the liter-
als [9], to be updated with the reasons calculus during the search. A common practice is
to initialize those values with the number of occurrences inthe input (ground) programs.
But, if there are aggregates in the program, we would like to take them into account in
order to guide the search. The idea is thus to implicitly consider the equivalent12 stan-
dard program for an aggregate and count also these occurrences for the heuristic. It is
worth noting that this equivalent program does not have to be“materialized” in mem-
ory. As before, we consider only rules of the formh : −f(A)Θk for simplicity. We
denote byli1, . . . , lim the literals belonging to eachconji ∈ A, (m > 0). Table 1 sum-
marizes the formulas employed for computing literal occurrences. Note that equivalent
programs in the case of#sum are quite involved, rendering the computation of the
exact values fairly inefficient (many binomial coefficients). Therefore we decided to
approximate the corresponding heuristic value, replacing#sum{A} by #count{A∗}
whereA∗ containsvi different elements, one for each〈vi, ti : conji〉 ∈ A.

As an example, consider a rule of the formh : −#min{A} < k. The equivalent
standard program contains a rule of the typeh : −conji, for eachvi, 1 ≤ i ≤ n
s.t. vi < k. In this way,h becomes true if one of theconji havingvi < k becomes
true, i.e. if the minimum computed by the aggregate is less than k in current answer
set. Thus, the number of occurrences ofh in the corresponding standard program are
occ(h) = |{vi : 〈vi, ti : conji〉 ∈ A, vi < k}|, while for each literalliz, i.e. thez-th
literal of conji, occ(liz) = 1 if vi < k, otherwiseocc(liz) = 0.

6 Experimental analysis

We have performed a preliminary experimental analysis on benchmarks with aggre-
gates. In particular, we have considered some domains of thelast ASP Competition13

belonging to the MGS class, together with other benchmarks reported in [6].
All the experiments were performed on a 3GHz PentiumIV equipped with 1GB of

RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using thetime command shipped with the system, counting total CPU time
for the respective process. We report the results in terms ofexecution time for finding

12 Equivalence in general holds only in a stratified setting, which however can serve as an ap-
proximation also in non-recursive settings.

13 http://asparagus.cs.uni-potsdam.de/contest/.



#count{A} < k #min{A} < k #max{A} < k #sum{A} < k

occ(h)

{

∑
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i=0

(

|A|
i

)

k ≤ |A|
1 else

|{vi | 〈vi, ti : conji〉 ∈ A, vi < k}| 1

{

∑

k−1

i=0

(

|A∗|
i

)

k ≤ |A∗|
1 else

occ(lik) 0

{

1 vi < k

0 else
0 0

occ(not lik)
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∑
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1 else

0

{
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0 else
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)

k ≤ |A∗|
1 else

#count{A} > k #min{A} > k #max{A} > k #sum{A} > k

occ(h)

{

∑

k−1

i=0

(

|A|
i

)

k < |A|
1 else

1 |{vi | 〈vi, ti : conji〉 ∈ A, vi > k}|

{

∑

k−1

i=0

(

|A∗|
i

)

k < |A∗|
1 else

occ(lik)

{

∑

k−1

i=0

(

|A|
i

)

k < |A|
1 else

0

{

1 vi > k

0 else

{

∑

k−1

i=0

(

|A∗|
i

)

k < |A∗|
1 else

occ(not lik) 0

{

1 vi ≤ k

0 else
0 0

Table 1. Occurrence formulas for literals involved in aggregates.



one answer set, if any, within20 minutes. Results are summarized in Table 2, where the
first column reports the domain name, the second column the total number of instances
considered (in the given domain), the third and fourth columns report the results for the
standard version of DLV ver. of 2007-10-11 in the standard settings and the new sys-
tem DLVBJA featuring both backjumping and look-back heuristics, and the remaining
columns report the results forCLASPver. 1.0.4,CMODELSver. 3.75,SMODELSver. 2.31
andSMODELS-CC ver 1.08,14 which useLPARSE15 for grounding. The results for the
systems are presented as the mean CPU time of solved instances, along with the num-
ber of instances solved within the time limit (in parentheses). RegardingSMODELS-CC,
two results are missing because it can not deal with weight constraint rules.

Domain #I DLV DLV BJA CLASP CMODELS SMODELS SMODELS-CC

BoundedSpanningTree8 0.13 (8) 0.04 (8) 6.01 (8) 5.69 (8)101.47 (5) 343.35 (8)
TowerOfHanoi 8 1.16 (8) 1.1 (8)32.84 (8)117.32 (7)259.82 (8) 154.74 (7)
WeightedSpanningTree8 0.04 (8) 0.02 (8) 2.16 (8) 2.31 (8) 28.51 (6) no enc.
WeightedLatinSquares8 542.23 (6)140.83 (7) 0.03 (8) 0.34 (8) 326.2 (8) no enc.
TimeTabling 9 4.49 (9) 0.34 (9) 1.15(9) 0.84 (9) 5.12 (3) 96.39 (9)

Table 2. Experimental results: Average execution times (s) (and number of solved instances).

We can see that the first three domains presented are easily solved by both DLV and
DLV BJA, slightly better by the enhanced system, while the remaining solvers show
higher mean CPU time and/or solve less instances. The last two domains further show
the potential of the enhanced system w.r.t. DLV, given it is able to solve more instances
(WeightedLatinSquaresdomain) in considerably shorter time (DLVBJA is on average
15 times faster onTimeTabling, where the systems solve the same instances, and sig-
nificantly faster onWeightedLatinSquares, solving also more instances): interestingly,
if compared to the remaining systems, this gain leads DLVBJA to be the best perform-
ing solver in 4 domains out of 5 and it performs well in particular in theTimeTabling
domain, while in theWeightedLatinSquaresdomain its advantage over DLV is just a
step toward the goal of solving all the instances in the domain, asCLASP, CMODELS

andSMODELS.
We are currently working both on improving the performance of the enhanced sys-

tem (by developing further optimizations both by enhancingthe implementation of the
reason calculus and by considering different “equivalent programs”, and, thus, different
VSIDS initializations) and by including new benchmarks. Regarding this last point, we
want to mention one more result on the comparison between DLVBJA and DLV (other
solvers are running): on theSeatingbenchmarks from [6], DLVBJA solves one more
instance (820 instead of819 out of910), with mean CPU time1.24 and31.46 seconds
for DLV BJA and DLV, respectively.

14 http://www.cs.uni-potsdam.de/clasp, http://www.cs.utexas.edu/users/tag/cmodels.html,
http://www.tcs.hut.fi/Software/smodels and http://www.nku.edu/ wardj1/Research/smodelscc.html,
respectively.

15 http://www.tcs.hut.fi/Software/lparse.



7 Conclusion

In this paper we have described look-back techniques for theevaluation of aggregates,
which represent one of the most relevant improvements both ASP language and sys-
tems. In particular the main contributions are:(i) an extension of thereason calculus
defined in [8]; and,(ii) an enhanced version of the heuristic presented in [9] that ex-
plicitly takes into account the presence of aggregates. Moreover, we have implemented
the proposed techniques in a prototypical version of the DLVsystem and performed
a set of preliminary benchmarks which indicate performancebenefits of the enhanced
system.
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