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Abstract. Aggregates are among the most significant enhancements of Answer
Set Programming (ASP) in recent time, and a lot of theoretical andigaba/ork

has been done on aggregates up to now. In spite of these advaribesnament
aggregates are treated in ASP systems in a more or |@égsway. In this note,

we build on work on look-back optimization techniques for DLV. We exterad th
reason calculus for backjumping to include reasons for aggregatddit&a-
thermore, we use those aggregate reasons to tune look-back heuristics

1 Introduction

Answer Set Programming (ASP) [1] has become a popular lagigramming frame-

work during the last decade, the reason being mostly itstiveudeclarative reading,

a mathematically precise expressivity, and last but naitldee availability of efficient

systems. One of the most relevant improvements to the lg@yoBASP has been the
addition of aggregates. Aggregates significantly enhanedanguage of ASP, allow-
ing for natural and concise modelling of many problems. Adbivork has been done
both theoretically (mostly for determining the semanti€saggregates that occur in
recursion) [2-4] and practically, for endowing systemshvatselection of aggregate
functions [5-7].

However, efforts for improving system performance withpexst to aggregates are
sparse, and current implementations use more or less atktiogiques. In this work,
we enhance a backjumping technique developed in the settithg solver DLV in [8]
in order to deal with aggregates.

The first contribution is an extension of treason calculuslefined in [8] for iden-
tifying the reasons for several types of aggregates suggantDLV. This information
can then be exploited directly for backjumping as describg8]. Reasons for aggre-
gates are also used directly to enhance the look-back tieysigsented in [9]. Here,
a key issue—the initialization of heuristic values—needshier attention, and to this
end we propose a solution based on aggregate-free prograicis ave equivalent when
the aggregate occurs in a stratified way. Being a heuristar) & equivalence does not
hold in general in the unstratified setting, it can still ®eag an appropriate approxima-
tion. We have implemented the proposed techniques andrpertba set of preliminary
benchmarks which indicate performance benefits of the exdtasystem.



2 Answer Set Programming with Aggregates

21 Syntax

We assume that the reader is familiar with standard logignamming; we refer to the
respective constructs atandard atoms, standard literals, standard rylasdstandard
programs Two literals are said to be complementary if they are of trenfp andnot p
for some atomp. Given a literallL, —.L denotes its complementary literal. Accordingly,
given a set4 of literals,—. A denotes the set-.L | L € A}. For further background,
see [10, 1].

Set Terms.A DLP# set termis either a symbolic set or a ground setspmbolic set
is a pair{ Vars : conj }, where Vars is a list of variables andon; is a conjunction of
standard atom$A ground seis a set of pairs of the forn¥: conj), wheret is a list of
constants andonj is a ground (variable free) conjunction of standard atoms.

Aggregate FunctionsAn aggregate functiors of the formf(.S), whereS is a set term,
andf is anaggregate function symhdhtuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets ofstants to a constant.

Example 1. In the examples, we adopt the syntdXLof to denote aggregatedggre-
gate functions currently supported by the DLV system #gesunt (number of terms),
#sum (sum of non-negative integergymin (minimum term) #max (maximum terntj.

Aggregate Literals. An aggregate atoms f(S) < T, where f(.S) is an aggregate
function, <€ {=, <, <,>,>} is a predefined comparison operator, &nés a term
(variable or constant) referred to as guard.

Example 2.The following aggregate atoms are in DLV notation, whereldtier con-
tains a ground set and could be a ground instance of the former

#max{Z : r(Z),a(Z,V)} > Y #max{(2:7(2),a(2,k)),(2:7(2),a(2,¢))} > 1

An atomis either a standard atom or an aggregate atoftitefal L is an atomA or an
atom A preceded by the default negation symhet; if A is an aggregate atond, is
anaggregate literal

DLPA Programs. A DLP rule r is a construct

ai v -+ Vay - bi,..., bk, not byy1,..., not by,.
wherea, - - - ,a, are standard atomé,,--- ,b,, are atoms, and > 1, m > k > 0.
The disjunctiona; v --- v a, is referred to as th&eadof » while the conjunc-

tion by, ..., b, not bg1, ..., not by, is thebodyof . We denote the set of head atoms

3 Intuitively, a symbolic set{ X : a(X,Y),p(Y)} stands for the set ofl-values making
a(X,Y),p(Y) true,i.e. {X |3V s.t. a(X,Y),p(Y) is true}.

4 The first two aggregates roughly correspond, respectively, to tfanedity and weight con-
straint literals of Smodels#min and#max are undefined for empty set.



by H(r), and the se{by, ..., by, not by1,...,not by, } of the body literals byB(r).
BT (r)and B~ (r) denote, respectively, the set of positive and negativealgen B(r).
Note that this syntax does not explicitly allow integritynstraints (rules without head
atoms). They can, however, be simulated in the usual way img @snew symbol and
negation.

A DLP“ programis a set of DLP* rules. In the sequel, we will often drop DEP
when it is clear from the context. global variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variableslacal variables.

Safety. A rule r is safeif the following conditions hold: (i) each global variablé o
r appears in a positive standard literal in the body-ofii) each local variable of
appearing in a symbolic s¢f/ars : conj} appears in an atom ebnj; (iii) each guard
of an aggregate atom ofis a constant or a global variable. A progrémis safe if all
r € P are safe. In the following we assume that D programs are safe.

Stratification. A DLP programp is aggregate-stratifiedf there exists a functiof ||,
calledlevel mappingfrom the set of (standard) predicates/fo ordinals, such that
for each paire andb of standard predicates, occurring in the head and body ofea ru
r € P, respectively: (i) ifb appears in an aggregate atom, thiéh < ||al||, and (ii) if b
occurs in a standard atom, thgbl| < ||al|.

Example 3.Consider the program consisting of a set of facts for pree#aandb,
plus the following two rules:

q(X) :- p(X), #count{Y : a(Y,X),b(X)} < 2.
p(X) 1= g(X), b(X).

The program is aggregate-stratified, as the level mappijhd| = ||b|| = 1, |p|| =
[lg]| = 2 satisfies the required conditions. If we add the (&) :- p(X), then no
such level-mapping exists and the program becomes aggragatratified.

Intuitively, aggregate-stratification forbids recursitinough aggregates. While the
semantics of aggregate-stratified programs is more or pEed upon, different and
disagreeing semantics for aggregate-unstratified progiaawe been defined in the
past, cf. [2-4]. In this work, we will consider only aggregatratified programs, but
all considerations should apply also to aggregate-uifgichprograms under any of the
proposed semantics.

2.2 Answer Set Semantics

Universe and BaseGiven a DLP* program?P, let Up denote the set of constants
appearing inP, and Br be the set of standard atoms constructible from the (stan-
dard) predicates dP with constants irU». Given a setX, let2™ denote the set of all
multisets over elements frodd. Without loss of generality, we assume that aggregate
functions map td (the set of integers).

Example 4.#count is defined oved"” #sum over?, #min and#max are defined
over2 — {0}.



Instantiation. A substitutionis a mapping from a set of variables t& . A substitu-
tion from the set of global variables of a rut€to Up) is aglobal substitution for ra
substitution from the set of local variables of a symbolit $€to Up) is alocal sub-
stitution for S. Given a symbolic set without global variabl§s= {Vars : conj}, the
instantiation ofS is the following ground set of pairg.st(S):

{{y(Vars) : y(conj)) | v is a local substitution for5}.5

A ground instancef a ruler is obtained in two steps: (1) a global substitutiorior

r is first applied over; (2) every symbolic set in o(r) is replaced by its instantia-
tion inst(S). The instantiatiorGround(P) of a programpP is the set of all possible
instances of the rules @.

Interpretations.An interpretationfor a DLPA programpP is a consistent set of standard
ground literals, that i C (Bp U —.Bp) such thatl N —.I = {). A standard ground
literal L is true (resp. false) w.ri if L € I (resp.L € —.I). If a standard ground
literal is neither true nor false w.dtthen it is undefined w.rf. We denote by + (resp.
17) the set of all atoms occurring in standard positive (reggative) literals in/. We
denote byl the set of undefined atoms w.it(i.e. Bp \ I™ U I~). An interpretation/

is total if I is empty (i.e.]T U—-.I- = Bp), otherwisel is partial.

An interpretation also provides a meaning for aggregatedis. Their truth value is
first defined for total interpretations, and then generdltoepartial ones.

Let I be a total interpretation. A standard ground conjunctiotnus (resp. false)
w.r.t I if all its literals are true (resp. false). The meaning oftaae aggregate function,
and an aggregate atom under an interpretation, is a mykiseiue, and a truth-value,
respectively. Letf(S) be a an aggregate function. The valuatig®) of S w.r.t. I is
the multiset of the first constant of the element$iwhose conjunction is true w.r.f.
More precisely, leff (S) denote the multiselty | (t1,...,t, : conj) € SA conj is true
w.r.t. I]. The valuation/ (f(.S)) of an aggregate functiof(S) w.r.t. I is the result of the
application off on I(.S). If the multiset/(S) is not in the domain of, I(f(S)) = L
(where_L is a fixed symbol not occurring iR).

An instantiated aggregate atorh of the form f(S) < k is true w.rt. I if: (i)
I(f(S)) # L, and, (i) I(f(S)) < k holds; otherwiseA is false. An instantiated
aggregate literahotA = notf(S) < kistrue w.rt. I if (i) I(f(S)) # L, and, (ii)
I(f(S)) < k does not hold; otherwisel is false.

If Iis apartial interpretation, an aggregate literdlis true (resp. false) w.r.t. if it
is true (resp. false) w.r.each totalinterpretation/ extending/ (i.e.,V J s.t.I C J,
Ais true (resp. false) w.r.t); otherwise it is undefined.

Example 5.Consider the atoml = #sum{(1:p(2,1)), (2:p(2,2))} > 1. Let S be the
ground setim. For the interpretatiol = {p(2, 2)}, each extending total interpretation
contains eithep(2, 1) or notp(2, 1). Therefore, eithef (S) = [2] or I(S) = [1,2] and
the application offtsum yields either2 > 1 or3 > 1, henceA is true w.r.t.[.

Remark 1. Our definitions of interpretation and truth valpesserve “knowledge mono-

tonicity”. If an interpretationJ extendd (i.e., I C J), then each literal which is true
w.r.t. I is true w.r.t..J, and each literal which is false w.r1L.is false w.r.t.J as well.

® Given a substitutionr and a DLP* objectObj (rule, set, etc.), we denote by(Obj) the
object obtained by replacing each variadlen Obj by o(X).



Minimal Models. Given an interpretatiod, a ruler is satisfied w.r.t.J if some head
atom is true w.r.t/ whenever all body literals are true w.rit. A total interpretation
M is amodelof a DLP# program? if all » € Ground(P) are satisfied w.r.tM. A
model M for P is (subset) minimal if no modeV for P exists such thal ™ c M.
Note that, under these definitions, the wanterpretationrefers to a possibly partial
interpretation, while anodelis always a total interpretation.

Answer SetsWe now recall the generalization of the Gelfond-Lifschiemisformation
and answer sets for DI“Pprograms from [4]: Given a ground DI“PprogramP and

a total interpretation, let P! denote the transformed program obtained frénby
deleting all rules in which a body literal is false w.lt.] is an answer set of a program
P ifit is a minimal model ofGround(P)’.

Example 6.Consider interpretatiol, = {p(a)}, I = {notp(a)} and two programs
P ={p(a):- #count{X : p(X)} > 0.} and P, = {p(a):- #count{X : p(X)} < 1.}.

Ground(P1) = {p(a):- #count{(a : p(a))} > 0.} andGround(P:)"* = Ground(P:),
Ground(P1)™ = (). FurthermoreGround(P:) = {p(a):- #count{(a : p(a))} < 1.}, and
Ground(P:)™* = 0, Ground(P:)"™ = Ground(P2) hold.

I is the only answer set d?; (sincel; is not a minimal model ofsround(P;)!),
while P, admits no answer sef(is not a minimal model ofxround(P;)!t, andI; is
not a model olGround(P,) = Ground(P,)'?).

Note that any answer set of P is also a model of> because&round(P)* C
Ground(P), and rules inGround(P) — Ground(P)* are satisfied w.r.tA.

3 Backjumping and Reason Calculusin DLV

DLV is the state-of-the-aisjunctiveASP system. DLV relies on backtracking search
similar to the DPLL procedure for SAT solving (most other quatitive ASP systems
exploit similar techniques). Basically, starting from thmpty (partial) interpretation,
the solver repeatedly assumes truth-values for atomsé€ohaxscording to an heuristic),
subsequently computing their deterministic conseque(mepagation). This is done
until either an answer set is found or an inconsistency isaetl. In the latter case,
(chronological) backtracking occurs. Since the last ah@ioes not necessarily influ-
ence the inconsistency, the procedure may perform a lot @iess computations. In
[8], DLV has been enhanced by backjumping [11, 12], whicloved for going back
to a choice which is relevant for the found inconsisteéhéycrucial point is how rel-
evance for an inconsistency can be determined. In [8], tleegsary information for
deciding relevance is recorded by means of a reason calaulhish collects informa-
tion about the choices (“reasons”) whose truth-values baused truth-values of other
deterministically derived atoms.

In practice, once an atom has been assigned a truth-valugydbhe computation,
we can associate a reason to it. For instance, given atulé, ¢, not d., if b andc are
true andd is false in the current partial interpretation, thewill be derived as true. In

5 For more details, see [13] for the basic DLV algorithm and [8] for batiging.



this caseq is true becausé andc are true and! is false. Therefore, the reasons tor
will consist of the reasons fdr, ¢, andd. Chosenrliterals are seen as their own reason.
So each literal derived during the propagation has an associated set divedsitegers
R(l) representing the reasons forwhich contains essentially the recursion levels of
the choices which entall In the following, we will describe the inference rules neéd
for correctly implementing aggregates [5, 6], and we pretiem associated extension
of the reason calculus which allows for dealing with aggtega

4 Reason Calculusfor Aggregates

We next report the reason calculus for each aggregate sedday DLV. Hereafter, a
partial interpretation (represented as a set of literals)assumed to be given.

Consider a pair(t : conj) wherev is a term andon;j a conjunction of literals. We
denote byC..,; (resp.Scon;) the reason foconj to be false (resp. true) w.ri. In par-
ticular,C..y; is the reason of a false literal ionj’, while Sconj = Ulewnj R(l),i.e.all
reasons for the literals itonj. Moreover, letA = {(¢; : conj1), ..., (t, : conj,)} bea
set term, dEﬁné’,A = U(f;conj)EA/\conngICCO”j andSA - U(Z:conj)EA/\coanI SCU"J"
where a true (resp. false) conjunction w.r.t. interpretati is denoted byonj € I
(resp.conj ¢ I). Intuitively, C4 represents the reasons for false conjunctionsl,in
while S4 represents the reason for true conjunctiond in

In the following, each propagation rule and the correspagdeason calculus are
detailed. Without loss of generality, we focus on rules —f(A)Ok, © € {<,>},
since the calculus can easily be extended to the generalMasein detail, we consider
two different scenarios depending on whether the propaigatioceeds from literals in
A to aggregate literalg(A)Ok (forward inference) or the other-way round (backward
inference). Basically, in the first case we derive the tfatbity of the aggregate literal
f(A)OFk from the truth/falsity of some conjunction occurring #1 whereas, in the
second case, given a rule containing an aggregate atom wghidteady known to be
true or false w.r.t. the current interpretatibmve infer some literals occurring in the
conjunctions inA to be true/false;

4.1 Forward Inference

This kind of propagation rules apply when it is possible tawdean aggregate literal
f(A)OE to be true or false because some conjunctiod iis true or false w.r.t/. As
an example consider the program:

a(l). a(2). h:—#count{(l:a(1)),(1:a(2))} <1

Since bothu(1) anda(2) are facts, they are first assumed to be true; then, since the
actual count for the aggregate is 2, the aggregate litenaflésred to be false by forward
inference.

7 Since a satisfied conjunction can have several “satisfying literals”, thallgkould be chosen
as the reason that allows for the “longest jump,” as argued in [8].

8 This can happen in our setting as a consequence of the application ofceitttexposition for
true heador contraposition for false heagropagation rules, see [8].



In the following, we report in a separate paragraph both ggafion rules and cor-
responding reason calculus for the aggregates supportet\gy#max{ A} Ok is sym-
metric to#min{ A}©k and is not reported.

#count{A} < k (resp.#count{A} > k). Suppose that there exidta setd’ C A

s.t. for each( : conj) € A0 conj is true (resp. false) id and|A’| > k (resp.
|A’| > |A| — k), then#count{A} < k (resp.#count{A} > k) is inferred to be false
and its reasons are set & (resp.Ca/). Conversely, suppose that there exists a set
A" C As.t foreacht : conj) € A, conj is false (resp. true) i and|A’| > |4| — k
(resp.|A’| > k), then we infer tha#tcount{A} < k (resp.#count{A} > k) is true
and we set its reason &y (resp.Sa/).

#min{A} < k (resp.#min{A} > k). Let A’ be the set of all pairév,t : conj) € A
stv < k (resp.v < k). If for each(v,t : conj) € A’, conj is false inI, then
#min{A} < k is derived to be false (resgtmin{ A} > k derived to be true) and we
set its reasons t8,,,,, . Conversely, suppose that there exists a fait : conj) € A
S.t.conjis true inl andv < k (resp.v < k), then we infer that#min{A} < k is true
(resp.#min{A} > k is false) and we set its reasond@,, ;.

#sum{A} < k (resp.#sum{A} > k). Suppose that there exists a sEtC A s.t.
for each(v, : conj) € A’, conj is true (resp. false) i and X, 7.conjyeayV =
k (resp'E{v\<v,f:conj>EA}U - E{U\(v,f:conj)EA’}v < k)! then#sum{A} < k (resp'
#sum{A} > k) is false and we set its reason&qa. (resp.C4/). Conversely, suppose
that there exists a set’ C A s.t. for each(v, : conj) € A’, conj is false (resp. true)
in 1 andE{M(vi:conj)EA}v - Z{’U\(U,Z:COWJ}EA’}U <k (resp'E{v\(1),?:conj>€A’}v > k)'
then#sum{A} < k (resp.#sum{A} > k) is true and its reason &4 (resp.Sa-).

4.2 Backward Inference

This kind of propagation rules apply when an aggregatealitéf4)O0k, © € {<,>}
has been derived true (or false), and thereusmique way* to satisfy it by inferring that
some literals belonging to the conjunctionsAris true or false. For example, suppose
that/ is empty and consider the program:

:- not h. h:—#count{(l:a),(1:b)} > 1.

During propagation we first infer to be true for satisfying the constraint, and then,
in order to satisfy the rule, also the aggregate literalfisred to be true (independently
by its aggregate set). At this point, backward propagatamtappen, since the unique
way to satisfy the aggregate literal is to infer batandb to be true.

9 As far as the implementation is concerned, in case there are seveesknifsets with this
property, a safe choice is to consider their union. Another, less expesslution is to build
A’ by iterating over the elements df until the condition is met.

10 Hereafter, (v, : conj) is a syntactic shorthand f@p, 1, - - - ,t,,), wherev is a constant and
tis the list of constants;, - - - ,t,, n > 0.

11 Since the propagation process mustlegerministic



Thus, backward propagation happens when an aggrega# Jitet)©k has been
derived true (or false) in the current interpretation, émeré¢ isonly one wayto satisfy
it by deterministicallysetting someonj; (s.t. (¢; : conj;) € A) true (or false) w.r.f.
For doing so, an implementation detail of DLV is exploitedyigh internally replaces
conjunctions in aggregates by freshly introduced auyiliaoms, along with a rule
defining the auxiliary atom by means of the conjunction. Sad@ DLV, conj; will
always be an atom, which can simply be set to true or falsejtartfining rule will
then act as a constraint eventually enforcing truth ortfalsi the conjunctiorcony;.
As far as the reason calculus is concerned, literals arer@df@o be true or false by
this operation because both the aggregate literal is #ise/ind some conjunctions in
A (being either true or false) made the process determintsitis, the reason for each
literal /; inferred by backward inference is setigl;,) = R(f(A)Ok) UCa U Sa4.

The following paragraphs report sufficient conditions fpplying backward infer-
ence in the case of the aggregates supported by DLV. Sinadtioos for f(A4) > k
to be true (resp. false) basically coincides with the oneg(ef) < & + 1 to be false
(resp. true), only one of the two cases is reported for eagheggte. Moreover, from
now on, we assume that, whenever backward inference raquiréerive something,
this action can be done deterministically (if this is notgibke then backward inference
is not performed).

#count{A} < k. LetT, be the sefl’s = {(t; : conj;) € A s.t.conj; is true w.r.t.
I}, andF4 be the sett’y = {(t; : conj;) € A s.t.conj; is false w.r.t.I}, and suppose
that#count{A} < kis true w.r.t.l and|7T4| = k — 1, then all undefined conjunctions
in A are made false. Conversely, suppose thabunt{A} < k is false w.r.t.] and
|A| — |Fa| = k, then all undefined conjunctions #are made true.

#min{A} < k. Suppose that#min{A} < kis true w.r.t.I, and there is only one
(v, : conj) € A suchthat < k andconj is neither true or false w.r.f.; suppose
also that, all the remainin@;,t; : conj;) € A s.t.v; < k are such thatonj; is false
w.r.t. T, thenconj is made true. Conversely, suppose #tatin{ A} < k is false w.r.t.J
and, there is n@u, ¢ : conj) € A such thaty < k andconj is true w.r.t.I. In addition,
suppose that eithé¥) there existv’, ¢’ : conj’) € A s.t.v’ > k andconj’ is true w.r.t.
I or (ii) there is only onév”, #” : conj”) € A s.t.v” > k with conj” undefined w.r.t.
I. Then all theconj; such that(v;,¢; : conj;) € A andv; < k are made to be false,
and, if case (ii) holds, alsa@n;” is made true w.r.tl.

#max{A} < k. Suppose that#max{A} < k is false w.r.t.I, and there is only one
(v, : conj) € A suchthat > k andconj is neither true or false w.r.f;; suppose
also that, all the remaining;, ¢; : conj;) € A s.t.v; > k are such thatonj; is false
w.r.t. I, thenconj is made true. Conversely, suppose thahx{A} < k is true w.r.t.7
and, there is ndv, t : conj) € A such thaw > k andconj is true w.r.t.I. In addition,
suppose that eithéi) there existv’, ¢’ : conj’) € A s.t.v’ < k andconj’ is true w.r.t.
I or (i) there is only onév” ¢ : conj”) € A s.t.v” < k with conj” undefined w.r.t.
I. Then all theconj; such that(v;, ¢; : conj;) € A andv; < k are made to be false,
and, in if case (ii) holds, alse@nj" is made true w.r.tl.



#sun{A} < k. Letus denote by5(X) the sumS(X) = >, 7. .onj;yex vi» and
suppose thagtsum{A} < kis true w.r.t.] andS(T4) = k — 1, then all undefined
atoms inA are made false. Conversely, suppose thatm{A} < k is false inI and
S(A) — S(Fa) = k, then all undefined atoms i are made true.

5 Guiding Look-back Heuristicsin the Presence of Aggregates

Look-back heuristics are exploited in conjunction with kjamping. The effectiveness
of this combination, which was originally implemented inTSgolvers like Chaff [14]
(where the heuristic is called VSIDS), has also been dematasitfor DLV in [9].

A key factor of this type of heuristic is the initializatiori the weights of the liter-
als [9], to be updated with the reasons calculus during taecke A common practice is
to initialize those values with the number of occurrencebéinput (ground) programs.
But, if there are aggregates in the program, we would likeke them into account in
order to guide the search. The idea is thus to implicitly mbersthe equivaledt stan-
dard program for an aggregate and count also these occaséoicthe heuristic. It is
worth noting that this equivalent program does not have tthiserialized” in mem-
ory. As before, we consider only rules of the form: — f(A)©k for simplicity. We
denote byi;1, ..., l;, the literals belonging to eaclonj; € A, (m > 0). Table 1 sum-
marizes the formulas employed for computing literal ocences. Note that equivalent
programs in the case &t sum are quite involved, rendering the computation of the
exact values fairly inefficient (many binomial coefficient$herefore we decided to
approximate the corresponding heuristic value, replagingm{ A} by #count{A*}
where A* containsy; different elements, one for ea¢h;, ¢; : conj;) € A.

As an example, consider a rule of the form —#min{A} < k. The equivalent
standard program contains a rule of the type —conj;, for eachv;, 1 < i < n
s.t.v; < k. In this way,h becomes true if one of theonj; havingv; < k becomes
true, i.e. if the minimum computed by the aggregate is leas khin current answer
set. Thus, the number of occurrenceshah the corresponding standard program are
occ(h) = [{v; : {(vi, t; : conj;) € A,v; < k}|, while for each literal;, i.e. thez-th
literal of conj;, occ(l;,) = 1if v; < k, otherwisencc(l;,) = 0.

6 Experimental analysis

We have performed a preliminary experimental analysis orclwaarks with aggre-
gates. In particular, we have considered some domains dashéSP Competition®
belonging to the MGS class, together with other benchmaasrted in [6].

All the experiments were performed on a 3GHz PentiumlV egedpwith 1GB of
RAM, 2MB of level 2 cache running Debian GNU/Linux. Time maessments have
been done using the me command shipped with the system, counting total CPU time
for the respective process. We report the results in ternes@dution time for finding

12 Equivalence in general holds only in a stratified setting, which howevesseave as an ap-
proximation also in non-recursive settings.
13 http://asparagus.cs.uni-potsdam.de/contest/.



| [ #count{A} <k | #min{A} < k [#max{A} < k| #sum{A} <k ]
oce(h) { o (F) ’Zl; A fon | on, % < congi) € A,vr < kY| 1 {12 S () /efl;\A*\
(i ; ;

oce(not 1) {12 '?' )l A 0 {ég;; k {12 (k<14

| | #count{A} >k [#min{A} > k] #max{A} >k \ #sum{A} >k |
occ(h) {125 ) ‘AI ]Zl; |Al 1 {v; | (v, & : conji) € A, v > kY| {121 0 (lA ‘) Z;‘Aﬂ
oce(liy) {12 ("M Z; A 0 {3;};; k {12 HEEEy

oce(not L) {ézli K 0 0

Table 1. Occurrence formulas for literals involved in aggregates.



one answer set, if any, with20 minutes. Results are summarized in Table 2, where the
first column reports the domain name, the second column taertomber of instances
considered (in the given domain), the third and fourth calameport the results for the
standard version of DLV ver. of 2007-10-11 in the standattregs and the new sys-
tem DLVE74 featuring both backjumping and look-back heuristics, dreremaining
columns report the results farLAspver. 1.0.4cMODELSVer. 3.75SMODELSver. 2.31

and sMODELS-cc ver 1.08 which useLPARSE for grounding. The results for the
systems are presented as the mean CPU time of solved instahoeg with the num-
ber of instances solved within the time limit (in parentlgsRegardingMODELS-CC,

two results are missing because it can not deal with weighstcaint rules.

[Domain [#]] DLV[DLV”74[  CLASP|CMODELS|SMODELS/SMODELS-CC|
BoundedSpanningTred|| 0.13 (8) 0.04(8) 6.01(8) 5.69(8)101.47 (5) 343.35(8
TowerOfHanoi 8] 1.16(8) 1.1(8)32.84(8)117.32(7)259.82 (8) 154.74 (7
WeightedSpanningTre8|| 0.04 (8) 0.02(8) 2.16 (8] 2.31(8) 28.51 (6 no enc
WeightedLatinSquares8 [|542.23 (6)140.83 (7) 0.03 (8) 0.34 (8) 326.2 (8 no enc
TimeTabling 9| 4.49(9) 0.34(9) 1.15(9) 0.84(9) 5.12(3 96.39 (9

Table 2. Experimental results: Average execution times (s) (and number cfdahstances).

We can see that the first three domains presented are edséyg &y both DLV and
DLV B74  slightly better by the enhanced system, while the remgisimivers show
higher mean CPU time and/or solve less instances. The lastitnains further show
the potential of the enhanced system w.r.t. DLV, given itikedo solve more instances
(WeightedLatinSquaredomain) in considerably shorter time (DE/4 is on average
15 times faster ormimeTabling where the systems solve the same instances, and sig-
nificantly faster oreightedLatinSquaresolving also more instances): interestingly,
if compared to the remaining systems, this gain leads B{¥to be the best perform-
ing solver in 4 domains out of 5 and it performs well in parkiun the TimeTabling
domain, while in théWeightedLatinSquaredomain its advantage over DLV is just a
step toward the goal of solving all the instances in the dap@sCLASP, CMODELS
andsSMODELS

We are currently working both on improving the performantthe enhanced sys-
tem (by developing further optimizations both by enhand¢heyimplementation of the
reason calculus and by considering different “equivaleajams”, and, thus, different
VSIDS initializations) and by including new benchmarksgRling this last point, we
want to mention one more result on the comparison betweenty¥\and DLV (other
solvers are running): on thgeatingbenchmarks from [6], DLV’4 solves one more
instance §20 instead o819 out 0f910), with mean CPU timé .24 and31.46 seconds
for DLV 274 and DLV, respectively.

14 http://www.cs.uni-potsdam.de/clasp, http://www.cs.utexas.edu/usécsfagels.html,
http://www.tcs.hut.fi/Software/smodels and http://www.nku.edu/ wardjE&es/smodelsc.html,
respectively.

15 http:/iwww.tcs. hut.fi/Software/Iparse.



7 Conclusion

In this paper we have described look-back techniques foevhkiation of aggregates,
which represent one of the most relevant improvements b&R nguage and sys-
tems. In particular the main contributions afé: an extension of theeason calculus
defined in [8]; and(i:) an enhanced version of the heuristic presented in [9] that ex
plicitly takes into account the presence of aggregatesebar, we have implemented
the proposed techniques in a prototypical version of the Blstem and performed

a set of preliminary benchmarks which indicate performarmeefits of the enhanced
system.
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