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Abstract. Competitive native solvers for Answer Set Programming (ASP) per-
form a backtracking search by assuming the truth of literals. The choice of literals
(the heuristic) is fundamental for the performance of these systems.

Most of the efficient ASP systems employ a heuristic based on look-ahead,
that is, a literal is tentatively assumed and its heuristic value is based on its deter-
ministic consequences. However, looking ahead is a costly operation, and indeed
look-ahead often accounts for the majority of time taken by ASP solvers. For Sat-
isfiability (SAT), a radically different approach, called look-back heuristic, proved
to be quite successful: Instead of looking ahead, one uses information gathered
during the computation performed so far, thus looking back. In this approach,
atoms which have been frequently involved in inconsistencies are preferred.

In this paper, we carry over this approach to the framework of disjunctive ASP.
We design a number of look-back heuristics exploiting peculiarities of ASP and
implement them in the ASP system DLV. We compare their performance on a
collection of hard ASP programs both structured and randomly generated. These
experiments indicate that a very basic approach works well, outperforming all of
the prominent disjunctive ASP systems — DLV (with its traditional heuristic),
GnT, and CModels3 — on many of the instances considered.

1 Introduction

Answer set programming (ASP) is a comparatively novel programming paradigm,
which has been proposed in the area of nonmonotonic reasoning and logic program-
ming. The idea of answer set programming is to represent a given computational prob-
lem by a logic program whose answer sets correspond to solutions, and then use an
answer set solver to find such solutions [1]]. The knowledge representation language of
ASP is very expressive in a precise mathematical sense; in its general form, allowing for
disjunction in rule heads and nonmonotonic negation in rule bodies, ASP can represent
every problem in the complexity class X4 and IT1” (under brave and cautious reasoning,
respectively) [2]. Thus, ASP is strictly more powerful than SAT-based programming, as
it allows for solving problems which cannot be translated to SAT in polynomial time
(unless P = N P). For instance, several problems in diagnosis and planning under in-
complete knowledge are complete for the complexity class X4 or I7F [314]], and can
be naturally encoded in ASP [56].
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Since the model generators of native ASP systems are similar to the DPLL procedure,
employed in many SAT solvers, the heuristic (branching rule) for the selection of the
branching literal (i.e., the criterion determining the literal to be assumed true at a given
stage of the computation) is fundamentally important for the efficiency of an ASP sys-
tem. Many of the efficient ASP systems, and especially the disjunctive ASP systems,
employ a heuristic based on look-ahead. This means that the available choices are hy-
pothetically assumed, their deterministically entailed consequences are computed, and
a heuristic function is evaluated on the result. The look-ahead approach has been shown
to be effective and it bears the additional benefit of detecting choices that determin-
istically cause an inconsistency. However, the sheer number of potential choices and the
costly computations done for each of these makes the look-ahead a rather costly opera-
tion. Indeed, look-ahead often accounts for the majority of time taken by ASP solvers.

In SAT, a radically different approach, called look-back heuristics, proved to be quite
successful [9]: Instead of making tentative assumptions and thus trying to look into the
future of the computation, one uses information already collected during the computa-
tion so far, thus looking back; atoms which have been most frequently involved in in-
consistencies are heuristically preferred (following the intuition that “most constrained”
atoms are to be decided first).

In this paper, we take this approach from SAT to the framework of disjunctive ASP,
trying to maximally exploit peculiarities of ASP, and experiment with alternative ways
of addressing the key issues arising in this framework. The main contributions of the
paper are as follows.

e We define a framework for look-back heuristics in disjunctive ASP. We build upon
the work in [10]], which describes a calculus identifying reasons for encountered in-
consistencies in order to allow backjumping (i.e., avoiding backtracking to choices
which do not contribute to an encountered inconsistency). For obtaining a “most
constrained choices first” strategy, we prefer those choices that were the reasons
for earlier inconsistencies. Our framework exploits the peculiarities of disjunctive
ASP, a relevant feature concerns the full exploitation of “hidden” inconsistencies
which are due to the failure of stable-model checks.

e We design a number of look-back heuristics for disjunctive ASP. In particular, we
study different ways of making choices when information on inconsistencies is
poor (e.g., at the beginning of the computation, when there is still nothing to look
back to).

We consider also different ways of choosing the “polarity” (positive or negative) of
the atoms to be taken (intuitively negative choices keep the interpretation closer to
minimality, which is mandatory in ASP).

e We implement all proposed heuristics in the ASP system DLV [11]].

e We carry out an experimental evaluation of all proposed heuristics on programs
encoding random and structured 2QBF formulas, the prototypical problem for 174
(the class characterizing hard disjunctive ASP programs).

The results are very encouraging, the new heuristics perform very well compared to
the traditional disjunctive ASP systems DLV, GnT [[12]] and CModels3 [13]]. In particu-
lar, a very basic heuristic outperforms all other systems on a large part of the considered
instances.
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To our knowledge, while look-back heuristics have been widely studied for SAT (see,
e.g., [9] [14], [13])), so far only few works have studied look-back heuristics for \V-free
ASP [T6l17], and this is the first paper on look-back heuristics for disjunctive ASP[l]

2 Answer Set Programming Language

A (disjunctive) rule r is a formula

a; V -+ V a, = by, -+, bk, not bgy1,- -+, not by,.
where a1, -+, an, by, -, by, are function-free atoms and n > 0, m > k > 0. The
disjunction a; V - - - V a,, is the head of r, while by, - - -, by, not bgi1,---,n0t by, is
the body, of which by, - - -, by is the positive body, and not bgi1,--+,not b, is the

negative body of r.

An (ASP) program P is a finite set of rules. An object (atom, rule, etc.) is called
ground or propositional, if it contains no variables. Given a program P, let the Herbrand
Universe Up be the set of all constants appearing in P and the Herbrand Base Bp be the
set of all possible ground atoms which can be constructed from the predicate symbols
appearing in P with the constants of Up.

Given a rule r, Ground(r) denotes the set of rules obtained by applying all possible
substitutions o from the variables in r to elements of Up. Similarly, given a program
P, the ground instantiation Ground(P) of P is the set | J,.., Ground(r).

For every program P, its answer sets are defined using its ground instantiation
Ground(P) in two steps: First answer sets of positive programs are defined, then a
reduction of general programs to positive ones is given, which is used to define answer
sets of general programs.

A set L of ground literals is said to be consistent if, for every atom ¢ € L, its com-
plementary literal not ¢ is not contained in L. An interpretation / for P is a consistent
set of ground literals over atoms in BPH A ground literal ¢ is true w.rt. I if £ € I; £
is false w.r.t. I if its complementary literal is in I; ¢ is undefined w.r.t. I if it is neither
true nor false w.r.t. I. Interpretation [ is total if, for each atom A in Bp, either A or
not A isin [ (i.e., no atom in Bp is undefined w.r.t. I). A total interpretation M is a
model for P if, for every r € Ground(P), at least one literal in the head is true w.r.t.
M whenever all literals in the body are true w.r.t. M. X is an answer set for a positive
program P if it is minimal w.r.t. set inclusion among the models of P.

Example 1. For the positive program P; = {a VbV c., :—a.}, {b,not a,not ¢} and
{¢,not a,not b} are the only answer sets.

For the positive program P, = {a VbV c., —a., bi—c., c:=b.}, {b,c,not a} is
the only answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program P w.r.t. an in-
terpretation X is the positive ground program P, obtained from P by (i) deleting all

! The disjunctive ASP system CModels3 “indirectly” uses look-back heuristics, since it
works on top SAT solvers which may employ this technique.

2 We represent interpretations as set of literals, since we have to deal with partial interpretations
in the next sections.
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rules r € P the negative body of which is false w.r.t. X and (ii) deleting the negative
body from the remaining rules. An answer set of a general program P is a model X of
P such that X is an answer set of Ground(P)X.

Example 2. Given the (general) program P3 = {a V b:—c., b:—not a,notc., a V
c:—not b.} and I = {b,not a,not c}, the reduct P: is {a Vb:~c.,b.}. Itis easy to see
that I is an answer set of Pé , and for this reason it is also an answer set of Ps.

3 Answer Set Computation

In this section, we describe the main steps of the computational process performed by
ASP systems. We will refer particularly to the computational engine of the DLV system,
which will be used for the experiments, but also other ASP systems, employ a similar
procedure.

An answer set program P in general contains variables. The first step of a compu-
tation of an ASP system eliminates these variables, generating a ground instantiation
ground(P) of PH The subsequent computations are then performed on ground(P).

Function ModelGenerator(I: Interpretation): Boolean;

var inconsistency: Boolean;

begin
I := DetCons(I);
if I = £ then return False; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(I);
Select an undefined ground atom A according to a heuristic;
if ModelGenerator(/ U { A}) then return True;
else return ModelGenerator(/ U {not A});

end;

Fig. 1. Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is sketched
in Figure[Il The ModelGenerator function is initially called with parameter I set to the
empty interpretationﬂ If the program P has an answer set, then the function returns
True, setting I to the computed answer set; otherwise it returns False. The Model Gen-
erator is similar to the DPLL procedure employed by SAT solvers. It first calls a function
DetCons(), which returns the extension of I with the literals that can be deterministi-
cally inferred (or the set of all literals £ upon inconsistency). This function is similar
to a unit propagation procedure employed by SAT solvers, but exploits the peculiarities
of ASP for making further inferences (e.g., it exploits the knowledge that every answer
set is a minimal model). If DetCons does not detect any inconsistency, an atom A is

? Note that ground(P) is usually not the full Ground(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sets as P.

* Observe that the interpretations built during the computation are 3-valued, that is, a literal can
be True, False or Undefined w.r.t. I.
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selected according to a heuristic criterion and ModelGenerator is called on 7 U {A} and
on I U {not A}. The atom A plays the role of a branching variable of a SAT solver.
And indeed, like for SAT solvers, the selection of a “good” atom A is crucial for the
performance of an ASP system. In the next section, we describe some heuristic criteria
for the selection of such branching atoms.

If no atom is left for branching, the Model Generator has produced a “candidate” an-
swer set, the stability of which is subsequently verified by IsAnswerSet(I). This function
checks whether the given “candidate” I is a minimal model of the program Ground(P)!
obtained by applying the GL-transformation w.r.t. I, and outputs the model, if so. IsAn-
swerSet(I) returns True if the computation should be stopped and False otherwise.

4 Reasons for Literals

Once a literal has been assigned a truth value during the computation, we can associate
a reason for that fact with the literal. For instance, given a rule a:—b, ¢,not d., if b
and c are true and d is false in the current partial interpretation, then a will be derived
as true (by Forward Propagation). In this case, we can say that a is true “because” b
and c are true and d is false. A special case are chosen literals, as their only reason is
the fact that they have been chosen. The chosen literals can therefore be seen as being
their own reason, and we may refer to them as elementary reasons. All other reasons are
consequences of elementary reasons, and hence aggregations of elementary reasons.

Each literal [ derived during the propagation (i.e., DetCons) will have an associated
set of positive integers R(l) representing the reason of [, which are essentially the re-
cursion levels of the chosen literals which entail [. Therefore, for any chosen literal c,
|R(c)| = 1 holds. For instance, if R(l) = {1, 3,4}, then the literals chosen at recursion
levels 1, 3 and 4 entail [. If R(l) = (), then [ is true in all answer sets.

The process of defining reasons for derived (non-chosen) literals is called reason
calculus. The reason calculus we employ defines the auxiliary concepts of satisfying
literals and orderings among satisfying literals for a given rule. It also has special defi-
nitions for literals derived by the well-founded operator. Here, for lack of space, we do
not report details of this calculus, and refer to [10] for a detailed definition.

When an inconsistency is determined, we use reason information in order to under-
stand which chosen literals have to be undone in order to avoid the found inconsistency.
Implicitly this also means that all choices which are not in the reason do not have any
influence on the inconsistency. We can isolate two main types of inconsistencies: (4)
Deriving conflicting literals, and (i%) failing stability checks. Of these two, the second
one is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, that DetCons determines that an
atom a and its negation not a should both hold. In this case, the reason of the incon-
sistency is — rather straightforward — the combination of the reasons for @ and not a:
R(a) U R(not .a).

Inconsistencies from failing stability checks are different and a peculiarity of dis-
junctive ASP, as non-disjunctive ASP systems usually do not employ a stability check.
This situation occurs if the function IsAnswerSet(I) of Section 3| returns false, hence if
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the checked interpretation (which is guaranteed to be a model) is not stable. The rea-
son for such an inconsistency is always based on an unfounded set, which has been
determined inside IsAnswerSet(]) as a side-effect. Using this unfounded set, the reason
for the inconsistency is composed of the reasons of literals which satisfy rules which
contain unfounded atoms in their head (the cancelling assignments of these rules). Note
that unsatisfied rules with unfounded atoms in their heads are not relevant for stability
and hence do not contribute to the reason. The information on reasons for inconsis-
tencies can be exploited for backjumping, as described in [10], by going back to the
closest choice which is a reason for the inconsistency, rather than always to the imme-
diately preceding choice. In the remainder of this paper, we will describe extensions of
a backjumping-based solver by further exploiting the information provided by reasons.
In particular, in the following section we describe how reasons for inconsistencies can
be exploited for defining a look-back heuristic.

5 Heuristics

In this section we will first describe the two main heuristics for DLV (based on look-
ahead), and subsequently define several new heuristics based on reasons, which are
computed as side-effects of the backjumping technique. Throughout this section, we
assume that a ground ASP program P and an interpretation / have been fixed. We
first recall the “standard” DLV heuristic hyr [[7], which has recently been refined to
yield the heuristic hpg [18]], which is more “specialized” for hard disjunctive programs
(like 2QBF). These are look-ahead heuristics, that is, the heuristic value of a literal Q
depends on the result of taking @ true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the application of DetCons on
TU{Q}; w.l.o.g., we assume that ext(Q) is consistent, otherwise @Q is automatically
set to false and the heuristic is not evaluated on () at all.

Standard Heuristic of DLV (hyr). This heuristic, which is the default in the DLV
distribution, has been proposed in [[7], where it was shown to be very effective on many
relevant problems. It exploits a peculiar property of ASP, namely supportedness: For
each true atom A of an answer set [, there exists a rule r of the program such that the
body of r is true w.r.t. I and A is the only true atom in the head of r. Since an ASP
system must eventually converge to a supported interpretation, hpg is geared towards
choosing those literals which minimize the number of UnsupportedTrue (UT) atoms,
i.e., atoms which are true in the current interpretation but still miss a supporting rule.
The heuristic hy is “balanced”, that is, the heuristic values of an atom () depends on
both the effect of taking ) and not @, the decision between ) and not () is based on
the same criteria involving UT atoms.

Enhanced Heuristic of DLV (hpg). The heuristic hpg, proposed in [19] is based on
hyr, and is different from hyp only for pairs of literals which are not ordered by hy .
The idea of the additional criterion is that interpretations having a “higher degree of
supportedness” are preferred, where the degree of supportedness is the average number
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of supporting rules for the true atoms. Intuitively, if all true atoms have many supporting
rules in a model M, then the elimination of a true atom from the interpretation would
violate many rules, and it becomes less likely finding a subset of M which is a model
of PM (which would disprove that M is an answer set). Interpretations with a higher
degree of supportedness are therefore more likely to be answer sets. Just like hyr, hps
is “balanced”.

The Look-back Heuristics (% ;). We next describe a family of new look-back heuris-
tics h; ;. Different to hyr and hpg, which provide a partial order on potential choices,
h; p assigns a number (V' (L)) to each literal L (thereby inducing an implicit order).
This number is periodically updated using the inconsistencies that occurred after the
most recent update. Whenever a literal is to be selected, the literal with the largest
V(L) will be chosen. If several literals have the same V' (L), then negative literals are
preferred over positive ones, but among negative and positive literals having the same
V' (L), the ordering will be random.

In more detail, for each literal L, two values are stored: V' (L), the current heuristic
value, and I(L), the number of inconsistencies L has been a reason for (as discussed in
Section [)) since the most recent heuristic value update. After having chosen k literals,
V(L) is updated for each L as follows: V(L) := V(L)/2 + I(L). The motivation for
the division (which is assumed to be defined on integers by rounding the result) is to
give more impact to more recent values. Note that (L) # 0 can hold only for literals
that have been chosen earlier during the computation.

A crucial point left unspecified by the definition so far are the initial values of V/(L).
Given that initially no information about inconsistencies is available, it is not obvious
how to define this initialization. On the other hand, initializing these values seems to
be crucial, as making poor choices in the beginning of the computation can be fatal for
efficiency. Here, we present two alternative initializations: The first, denoted by h4L" is
done by initializing V(L) by the number of occurrences of L in the program rules. The
other, denoted by hE £ involves ordering the atoms with respect to hpg, and initializing
V(L) by the rank in this ordering. The motivation for K4 is that it is fast to compute
and stays with the “no look-ahead” paradigm of h 5. The motivation for h2% is to try
to use a lot of information initially, as the first choices are often critical for the size of
the subsequent computation tree.

We introduce yet another option for i 5, motivated by the fact that answer sets
for disjunctive programs must be minimal with respect to atoms interpreted as true,
and the fact that the checks for minimality are costly: If we preferably choose false
literals, then the computed answer set candidates may have a better chance to be already
minimal. Thus even if the literal, which is optimal according to the heuristic, is positive,
we will choose the corresponding negative literal first. If we employ this option in the
heuristic, we denote it by adding A F’ to the superscript, arriving at h%f’AF and hfg’AF
respectively.

Note also that the complexity of look-ahead heuristics is in general quadratic (in
the number of atoms), and becomes linear is a bound on the number of atoms to be
analyzed is a-priori known. On the other hand, i, ; heuristics are constant time, but
need the values V(L) to be re-ordered after having chosen £ literals.
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6 Experiments

We have implemented all the proposed heuristics in DLV} in this section, we report on
their experimental evaluation.

6.1 Compared Methods

For our experiments, we have compared several versions of DLV [[11]], which differ on
the employed heuristics and the use of backjumping. For having a broader picture, we
have also compared our implementations to the competing systems GnT and CModels3.
The considered systems are:
e dlv.ut: the standard DLV system employing hyr (based on look-ahead).
e dlv.ds: DLV with hpg, the look-ahead based heuristic specialized for X¥'/IT1 hard
disjunctive programs.
e dlv.ds.bj: DLV with hpg and backjumping.
o dlv.mf: DLV with hFH
e dlv.mf.af: DLV with h%:f’AF.
e dlv.If: DLV with h£E.
o dlv.Ifaf: DLV with A} 57,
e gnt [12]: The solver GnT, based on the Smodels system, can deal with disjunctive
ASP. One instance of Smodels generates candidate models, while another instance tests
if a candidate model is stable.
e cm3 [13]]: CModels3, a solver based on the definition of completion for disjunctive
programs and the extension of loop formulas to the disjunctive case. CModels3 uses two
SAT solvers in an interleaved way, the first for finding answer set candidates using the
completion of the input program and loop formulas obtained during the computation,
the second for verifying if the candidate model is indeed an answer set.

Note that we have not taken into account other solvers like Smodels,.. [16] or Clasp
because our focus is on disjunctive ASP.

6.2 Benchmark Programs and Data

The proposed heuristic aims at improving the performance of DLV on disjunctive ASP
programs. Therefore we focus on hard programs in this class, which is known to be able
to express each problem of the complexity class 24", All of the instances that we have
considered in our benchmark analysis have been derived from instances for 2QBF, the
canonical X1’ -complete problem. This choice is motivated by the fact that many real-
world, structured instances for problems in X4 are available for 2QBF on QBFLIB
[20], and moreover, studies on the location of hard instances for randomly generated
2QBFs have been reported in [21122123].

The problem 2QBF is to decide whether a quantified Boolean formula (QBF) @ =
VX3Y ¢, where X and Y are disjoint sets of propositional variablesand ¢ = Dy A... A
Dy, is a CNF formula over X U'Y, is valid.

3 Note that all systems with h, 5 heuristics exploit backjumping.
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The transformation from 2QBF to disjunctive logic programming is a slightly altered
form of a reduction used in [24]]. The propositional disjunctive logic program P, pro-
duced by the transformation requires 2 * (| X'| + |Y|) + 1 propositional predicates (with
one dedicated predicate w), and consists of the following rules. Rules of the form vV ©.
for each variablev € X UY.

Rules of the form y < w. y <« w. for each y € Y. Rules of the form w «
Uly -y Umy Umt1, - - -, Up. for each disjunction v1 V ... V v V 2041 V .o V 20y,
in ¢. The rule < not w. The 2QBF formula @ is valid iff Pg has no answer set [24]].

We have selected both random and structured QBF instances. The random 2QBF in-
stances have been generated following recent phase transition results for QBFs
[21122123]). In particular, the generation method described in has been employed
and the generation parameters have been chosen according to the experimental results
reported in the same paper. We have generated 13 different sets of instances, each of
which is labelled with an indication of the employed generation parameters. In partic-
ular, the label “A-FE-C-p” indicates the set of instances in which each clause has A
universally-quantified variables and E existentially-quantified variables randomly cho-
sen from a set containing C' variables, such that the ratio between universal and existen-
tial variables is p. For example, the instances in the set “3-3-50-0.8 are 6CNF formu-
las (each clause having exactly 3 universally-quantified variables and 3 existentially-
quantified variables) whose variables are randomly chosen from a set of 50 containing
22 universal and 28 existential variables, respectively. In order to compare the per-
formance of the systems in the vicinity of the phase transition, each set of generated
formulas has an increasing ratio of clauses over existential variables (from 1 to maxr).
Following the results presented in [23]], maxr has been set to 21 for each of the sets 3-
3-50-* and 3-3-70-*, and 12 for each of the 2-3-80-*. We have generated 10 instances
for each ratio, thus obtaining, in total, 210 and 120 instances per set, respectively.

The structured instances we have analyzed are:

— Narizzano-Robot - These are real-word instances encoding the robot navigation
problems presented in [23]].

— Ayari-MutexP - These QBFs encode instances to problems related to the formal
equivalence checking of partial implementations of circuits, as presented in [26]).

— Letz-Tree - These instances consist of simple variable-independent subprograms
generated according to the pattern: Va1 z3...2,—1 3T2x4...0, (C1 A. . .ACp_2) Where
Ci =T; VTijya V Tit3, Cir1 = ;i V Lipa V i3, t=1,3,...,n— 3.

The benchmark instances belonging to Letz-tree, Narizzano-robot, Ayari-MutexP have
been obtained from QBFLIB [20], including the 32 Narizzano-robot instances used in
the QBF Evaluation 2004, and all the V3 instances from Letz-tree and Ayari-MutexP.

6.3 Results

All the experiments were performed on a 3GHz PentiumIV equipped with 1GB of
RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using the t ime command shipped with the system, counting total CPU time
for the respective process.
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Table 1. Number of solved instances within timeout for Random 2QBF

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.If dlv.If.af gnt cm3

2-3-80-04 106 114 114 107 100 109 103 3 47
2-3-80-0.6 83 88 89 92 71 90 83 58
2-3-80-08 78 92 95 93 70 89 8 3 65
2-3-80-1.0 78 90 91 98 66 88 8 8 77
2-3-80-12 72 8 94 105 74 93 95 4 87
3-3-50-0.8 210 210 210 210 210 210 210 21 166
3-3-50-1.0 191 205 202 201 199 203 202 30 163
3-3-50-12 196 207 206 208 203 207 206 41 191
3-3-70-0.6 126 136 135 140 127 131 131 1 6l
337008 112 115 115 128 103 113 119 0 68
3-3-70-1.0 91 108 109 137 94 110 108 3 82
3-3-70-1.2 104 121 122 139 90 117 121 5 108
3-3-70-1.4 106 123 124 151 98 131 126 3 118

#Total 1552 1698 1706 1809 1505 1691 1675 126 1291

~

We start with the results of the experiments with random 2QBF formulas. For every
instance, we have allowed a maximum running time of 6 minutes. In Table [T] we re-
port, for each system, the number of instances solved in each set within the time limit.
Looking at the table, it is clear that the new look-back heuristic combined with the
“mf” initialization (corresponding to the system dlv.mf) performed very well on these
domains, being the version which was able to solve most instances in most settings,
particularly on the 3-3-70-* sets. Also dlv.If performed quite well, while the other vari-
ants do no seem to be very effective. Considering the look-ahead versions of DLV,
dlv.ds performed reasonably well. Considering GnT and CModels3, we can note that
they could solve comparatively few instances.

Comparing between the 3-3-50-* and 3-3-70-* settings, we can see that dlv.mf is the
system that scales best: It is on the average when considering 50 variables, while it is
considerably better when considering 70 variables.

We do not report details on the execution times due to lack of space, as aggregated
results such as average or median are problematic because of the many timeouts. How-
ever, for 3-3-50-0.8 all DLV-based systems terminated, and here the average times
do not differ dramatically, the best being dlv.ds (23.62s), dlv.mf (25.26s) and dlv.ds.bj
(26.02s). In other settings, such as 2-3-80-0.6, we observe that dlv.mf is the best on
average time over the solved instances (18.31s), while all others solve fewer instances
with a higher average time. Similar considerations hold for 3-3-70-1.2 where dlv.mf
solves 17 instances more than the second best, dlv.ds.bj, yet its average time is about
30% lower (22.93s vs. 34.89s).

In Tables 2] [ and [ we report the results, in terms of execution time for finding
one answer set, and number of instances solved within 11 minutes, about the groups:
Letz-Tree, Narizzano-Robot, and Ayari-MutexP, respectively. The last columns (AS?)
indicate if the instance has an answer set (Y), or not (N). A “~” in these tables indi-
cates a timeout. For h; 5 heuristics, we experimented a few different values for “k”,
and we obtained the best results for k=100. However, it would be interesting to analyze
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Table 2. Execution time (seconds) and number of solved instances on Narizzano-Robot instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.If dlvifaf gnt cm3 AS?

2-38.1 031 031 031 036 039 037 033 444 131 N
2-64.1 030 030 032 036 039 037 033 4377 1.3 N
2-93.1 031 030 032 036 039 037 033 4435 1.3 N
2-69.4 - - - 536.97 - - - - 263.05 N
2-3.5 - - - 1439 35294 387.11 364.89 - 43155 N
2-61.6 - - - 629.35 - - - - - Y
2-72.7 - - - 14.21 - - - - 390.62 N
3-17.2 1426 745 5.67 459 585 822 731 - 8.1 N
3-62.4 - - - 362.57 - - - - 211.68 N
3-80.4 - - - 404.93 - - - - 23996 N
4-78.1 030 030 0.31 043  0.51 037 033 373 131 N
4-21.2 1340 6.84 527 3.60 425 568 731 - 814 N
4-732 1336 6.80 4.07 249 318 472  6.65 - 668 N
4-91.4 - - - 236.41 - - - - 21276 N
4-85.5 - - 50461 359 156.60 109.04 372.78 - 103.04 N
4-87.8 - - - 244.47 - 600.36 - - - Y
5-29.1 030 030 0.31 043 051 036 032 371 13 N
5-5.2 1339 6.83 4.09 250  3.18 473  6.68 - 666 N
5-75.3 655.78 188.80 71.56 14.70 31.44 62.93 47.85 - 3474 N
5-18.5 - - - 357.04 - - - - - Y
5-59.5 - - - 357.15 - - - - - Y
5-55.6 - - - 5.51 - 23323 - - 21939 N
5-4.9 - - - 89.16 - - - - - Y

#Solved 10 10 11 23 12 15 12 5 18

more thoroughly the effect of the factor k. In Table 2] we report only the instances which
were solved within the time limit by at least one of the compared methods. On these in-
stances, dlv.mf was able to solve all the shown 23 instances, followed by CModels3 (18)
and dlv.If (15). Moreover, dlv.mf was also always the fastest system on each instance
(sometimes dramatically), if we consider the instances on which it took more than 1 sec.

In Table 3l we then report the results for Ayari-MutexP. In that domain all the ver-
sions of DLV were able to solve all 7 instances, outperforming both CModels3 and
GnT which solved only one instance. Comparing the execution times required by all
the variants of dlv we note that, also in this case, dlv.mf is the best-performing version.

About the Letz-Tree domain, the DLV versions equipped with look-back heuristics
solved a higher number of instances and required less CPU time (up to two orders of
magnitude less) than all competitors. In particular, the look-ahead based versions of
DLV, GnT and CModels3 could solve only 3 instances, while dlv.mf and dlv.If solved
4 and 5 instances, respectively. Interestingly, here the ”If” variant is very effective in
particular when combined with the “af” option.

Summarizing, DLV equipped with look-back heuristics showed very positive per-
formance in all of the test cases presented, both random and structured, obtaining good
results both in terms of number of solved instances and execution time compared to
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Table 3. Execution time (seconds) and number of solved instances on Ayari-MutexP instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dIv.If dlvif.af gnt cm3 AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.890.65
mutex-4-s 0.05 0.05 0.05 006 0.05 0.06 0.05 - -
mutex-8-s 021 02 023 021 021 023 021 - -
mutex-16-s  0.89 089 098 089 089 1.01 09 - -
mutex-32-s  3.67 3.72 4.06 3.63 3.64 416 3.79 - -
mutex-64-s  15.38 16.08 17.64 1497 15.04 18.08 1697 - —
mutex-128-s 69.07 79.39 90.92 6297 6297 9292 93.05 - —

#Solved 7 7 7 7 7 7 7 11

zzzzzZZ

Table 4. Execution time (seconds) and number of solved instances on Letz-Tree instances

dlvut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.f dlvif.af gnt cm3 AS?
exal0-10 0.18 0.17  0.17 0.04 0.1 006 006 0.12 003 N

exalO-15 749 7.09 7.31 034 071 048 038 646 073 N
exal0-20 278.01 264.53 275.1 1231 1724 543 286 32526 67.56 N
exal0-25 - - - 303.67 432.32 44.13 19.15 - - N
exal0-30 - - - - - 166.93 129.54  — - N
#Solved 3 3 3 4 4 5 5 3 3

traditionals DLV, GnT and CModels3. dlv.mf, the “classic” look-back heuristic, per-
formed best in most cases, but good performance was obtained also by dlv.1f. The results
of dlv.If.af on the Letz-Tree instances show that this option can be fruitfully exploited
in some particular domains.

7 Conclusions

We have defined a general framework for employing look-back heuristics in disjunctive
ASP, exploiting the peculiar features of this setting. We have designed a number of look-
back based heuristics, addressing some key issues arising in this framework. We have
implemented all proposed heuristics in the DLV system, and carried out experiments on
hard instances encoding 2QBFs, comprising randomly generated instances, generated
according to the method proposed in [23], and structured instances from the QBFLIB
archive (Letz-Tree, Narizzano-Robot, Ayari-MutexP). It turned out that the proposed
heuristics outperform the traditional (disjunctive) ASP systems DLV, GnT and CMod-
els3 in most cases, and a rather simple approach (“dlv.mf”’) works particularly well.
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