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Abstract. The Ontology Web Language (OWL) is a W3C recommen-
dation which has been conceived to enrich Web pages with machine-
understandable descriptions of the semantics of the presented contents
(i.e. Web Ontologies). OWL is based on the Open World Assumption
(OWA), and indeed, it is suitable for describing and sharing Web in-
formation. However, OWL is unpractical in some cases (for example
in applications dealing with Enterprise Ontologies) where different as-
sumptions, like the Closed World Assumption (CWA), are better suited.
Conversely, the OntoDLP language, an extension of Disjunctive Logic
Programming with the most important constructs of ontology specifi-
cation languages, is based on the CWA and can be fruitfully exploited
in such cases. Nevertheless, it may happen that enterprise systems have
to share or obtain information from the Web. This means that suitable
interoperability tools are needed.
In this paper we present a pragmatic approach to the interoperability
between OWL and OntoDLP. Basically, we provide a couple of syntac-
tic transformations that allow one to import an OWL ontology in a
corrispondent one specified in OntoDLP and vice versa. The proposed
technique is based on an intuitive translation and preserves the seman-
tics of the original specification when applied to interesting fragments of
the two languages.

1 Introduction

The OWL (Ontology Web Language) [1] is a recommendation of the World Wide
Web Consortium (W3C) which is playing an important role in the field of Seman-
tic Web. Indeed, OWL has been conceived to enrich Web pages, now presenting
information for humans, with machine-readable content. Thus, it aims at pro-
viding a common way for specifying the semantic content of Web information
(i.e.Web Ontologies). OWL is built on-top of other preexisting Web languages,
such as XML [2] and RDF(S) [3], and, its semantics is based on expressive
Description Logics (DL)[4]. Essentially, the idea behind all the DLs (and, conse-
quently, behind OWL) is the one of representing relationships among concepts

⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresen-
tazione di conoscenza: estensioni e tecniche di ottimizzazione.”
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of a domain. Thus, the basic constructs of DLs allows one to specify restrictions
on relationships, like e.g. ∀R.C denotes the class of all individuals that are in the
relationship R with only individuals belonging to the concept C. The semantics
of DLs are usually given by exploiting a set-theoretic interpretation of concepts,
i.e. a concept is interpreted as a set of individuals and roles (which are binary re-
lationships among individuals) are interpreted as sets of pairs of individuals. The
non-finiteness of the domain of interpretation and the Open World Assumption
(OWA) are distinguishing features of Description Logics with respect to other
modeling languages which have been developed in the study of non-monotonic
reasoning, logic programming, and databases. These characteristics makes DLs,
and thus OWL, particularly well suited for defining and sharing data in the Web,
i.e. for defining Web Ontologies. However, there are many other application do-
mains in which the data belongs to more conventional and structured sources
(such as relational databases), and in which the specification of the knowledge
must be considered complete. For example, this happens very often when en-
terprises share data for business purpose; a typical scenario is the one of banks
or insurance companies sharing information about behavior and/or reliability
of customers. In this scenario, Enterprise Ontologies (i.e ontologies containing
specifications of terms and definitions relevant to business enterprises), are often
used for sharing information stored in relational databases. It is straightforward
to see that, in this settings, (i) the nature of the domain makes the CWA an
essential tool; and, (ii) rule-based formalisms (permitting sophisticated forms
of reasoning and querying) can be fruitfully applied. Thus, OWL may be un-
practical to use and, conversely, OntoDLP [5] a novel ontology representation
language based on Answer Set Programming (ASP) [6, 7], which presents both
the above-mentioneed features, can be fruitfully applied. Indeed, OntoDLP adds
to an expressive logic programming language the most common ontology spec-
ification constructs (e.g. classes, relations, inheritance, axioms etc.); and more
generally, OntoDLV can be suitably used when one has to deal with domains
requiring the CWA, and/or the the reasoning capabilities of an expressive rule-
based language.

It is worth noting that, even if the world of enterprise ontologies and the
Web have very different requirements (e.g. open vs closed world assumption) it
may happen that the enterprise applications need to exploit information made
available in a Web site and vice versa. In this scenario, it is important to provide
interoperability tools which make the systems able to simultaneously deal with
both OWL and OntoDLP ontologies, or, at least, they must be able to share
and/or exchange the information expressed in one of the two formalism with the
other and vice versa.

In this paper, we propose a pragmatic approach to the problem of interop-
erability between a OntoDLP and OWL. In particular, we designed a general
strategy (i) for “importing” an OWL ontology in OntoDLP; and (ii) for “export-
ing” an OntoDLP specification in an OWL one. We obtained an import and an
export transformations which tries to “translate” each construct of the original
language in an intuitively equivalent one on the destination language (for some
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constructs the obtained behavior is only intuitively approximated). Moreover,
we studied the theoretical properties of the above-mentioned transformations
and we identified some fragments of the languages for which the semantic equiv-
alence between the original OWL (resp. OntoDLP) ontology and the obtained
OntoDLP (resp. OWL) ontology is guaranteed (i.e. the consequences entailed by
the original specification under the source language semantics are the same of
the ones entailed by the obtained specification under the destination language
semantics).

The rest of the paper is organized as follows: Section 2 briefly describes the
OntoDLP language; Section 3 presents the import and export transformations;
Finally, in Section 5 we draw our conclusions.

2 The OntoDLP Language

In this section we informally describe the OntoDLP language, a knowledge rep-
resentation and reasoning language which allows one to define and to reason
on ontologies. For a better understanding, we will describe each construct in a
separate paragraph and we will exploit an example (the living being ontology),
which will be built throughout the whole section, thus illustrating the features
of the language.

OntoDLP is actually an extension of (disjunctive) Answer Set Programming
under the stable model semantics, and hereafter we assume the reader to be
familiar with ASP syntax and semantics (for further details refer to [7]).

Classes. A (base) class1 can be thought of as a collection of individuals that
belong together because they share some properties.

Classes can be defined in OntoDLP by using the the keyword class followed
by its name, and class attributes can be specified by means of pairs (attribute-
name : attribute-type), where attribute-name is the name of the property and
attribute-type is the class the attribute belongs to.

Suppose we want to model the living being domain, and we have identified
four classes of individuals: persons, animals, food, and places.

For instance, we can define the class person having the attributes name, age,
father, mother, and birthplace, as follows:

class person( name:string, age:integer, father:person, mother:person,
birthplace:place).

Note that, this definition is “recursive” (both father and mother are of type
person). Moreover, the possibility of specifying user-defined classes as attribute
types allows for the definition of complex objects, i.e. objects made of other ob-
jectsMoreover, many properties can be represented by using alphanumeric strings

1 For simplicity, we often refer to base classes by omitting the base adjective, which
has the sole purpose of distinguishing this construct of the language from another
one called collection class that will be described later in this section.
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and numbers by exploiting the built-in classes string and integer (respectively
representing the class of all alphanumeric strings and the class of non-negative
numbers).

In the same way, we could specify the other above mentioned classes in our
domain as follows:

class place(name:string).
class food(name:string, origin:place).
class animal(name:string, age:integer, speed:integer).

Objects. Domains contain individuals which are called objects or instances.
Each individual in OntoDLP belongs to a class and is univocally identified

by using a constant called object identifier (oid) or surrogate.
Objects are declared by asserting a special kind of logic facts (asserting that

a given instance belongs to a class). For example, with the following two facts

rome : place(name:”Rome”).
john:person(name:”John”, age:34, father:jack, mother:ann, birthplace:rome).

we declare that “Rome” and “John” are instances of the class place and person,
respectively. Note that, when we declare an instance, we immediately give an
oid to the instance (e.g. rome identifies a place named “Rome”), which may be
used to fill an attribute of another object. In the example above, the attribute
birthplace is filled with the oid rome modeling the fact that “John” was born in
Rome; in the same way, “jack” and “ann” are suitable oids respectively filling
the attributes father, mother (both of type person).

The language semantics (and our implementation) guarantees the referential
integrity, both jack, ann and rome have to exist when john is declared.

Relations. Relations are declared like classes: the keyword relation (instead of
class) precedes a list of attributes, and model relationships among objects. As an
example, the relation friend, which models the friendship between two persons,
can be declared as follows:

relation friend(pers1:person, pers2:person).

In particular, to assert that two persons, say “john” and “bill” are friends (of
each other), we write the following logic facts (that we call tuples):

friend(pers1:john, pers2:bill). friend(pers1:bill, pers2:john).

Thus, tuples of a relation are specified similarly to class instances, that is, by
asserting a set of facts (but tuples are not equipped with an oid).

Inheritance. OntoDLP allows one to model taxonomies of objects by using the
well-known mechanism of inheritance.

Inheritance is supported by OntoDLP by using the special binary relation
isa. For instance, one can exploit inheritance to represent some special cate-
gories of persons, like students and employees, having some extra attribute, like
a school, a company etc. This can be done in OntoDLP as follows:
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class student isa {person}(
code:string,
school:string,
tutor:person).

class employee isa {person}(
salary:integer,
skill:string,
company:string,
tutor:employee).

In this case, we have that person is a more generic concept or superclass and
both student and employee are a specialization (or subclass) of person. Moreover,
an instance of student will have both the attributes: code, school, and tutor,
which are defined locally, and the attributes: name, age, father, mother, and
birthplace, which are defined in person. We say that the latter are “inherited”
from the superclass person. An analogous consideration can be made for the
attributes of employee which will be name, age, father, mother, birthplace, salary,
skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper
instance of both employee and student will also be automatically considered an
instance of person (the opposite does not hold!).

For example, consider the following instance of student:

al:student(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome,
code:”100”, school:”Cambridge”, tutor:hanna).

It is automatically considered also instance of person as follows:

al:person(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome).

Note that it is not necessary to assert the above instance.
In OntoDLP there is no limitation on the number of superclasses (i.e. multi-

ple inheritance is allowed). Moreover, there are two more built-in classes in On-
toDLP. The first one, called individual, is the superclass of all the user-defined
classes; and the second one, called object (or ⊤), is the only (direct) superclass of
individual, string, and integer (thus, objectis the most general OntoDLP type).2

We complete the description of inheritance recalling that OntoDLP allows
one to organize also relations in taxonomies. In this case, relation attributes
and tuples are inherited following the same criteria defined above for classes.
Clearly, the taxonomies of classes and relations are distinct (class and relations
are different constructs).
Collection Classes and Intensional Relations. The notions of base class and base
relation introduced above correspond, from a database point of view, to the the
extensional part of the OntoDLP language. However, there are many cases in
which some property or some class of individuals can be “derived” (or inferred)
from the information already stated in an ontology. In the database world, the
views allows to specify this kind of knowledge, which is usually called “inten-
sional”. In OntoDLP there are two different “intensional” constructs: collection
classes and intensional relations.

As an example, suppose we want to define the class of peoples which are less
than 21 years old and have less than two friends (we name this class youngAnd-
Shy). Note that, this information is implicitly present in the ontology, and the
“intensional” class youngAndShy can be defined as follows:

2 For a formal description of inheritance we refer the reader to [5].



VI

collection class youngAndShy(friendsNumber: integer) {
X : youngAndShy(friendsNumber : N) :− X : person(age : Age),

Age < 21, #count{F : friend(pers1 : X, pers2 : F )} < 2. }

Note that in this case the instances of the class youngAndShy are “borrowed”
from the (base) class person, and are inferred by using a logic rule. Basically,
this class collects instances defined in another class (i.e. person) and performs
a re-classification based on some information which is already present in the
ontology. Thus, in general, the collection classes neither have proper instances
nor proper oid’s while they “collect” already defined objects.

In an analogous way we specify “intensional relations” by using the key
words intensional relation followed by a logic program defining its tuples. It
is worth noting that the programs which define collection classes and intensional
relations must be normal and stratified ([7]).

Thus, in general, collection classes and intensional relations are both more
natural and more expressive than relational database views, because they exploit
a powerful language that allows recursion and negation as failure.

It is important to say that both collection classes and intensional relations
can be organized in taxonomies by using the isa relation. Importantly, the in-
heritance hierarchy of collection classes (resp. intensional relations) and the one
of base classes (resp. relations) are distinct (i.e a collection class cannot be su-
perclass or subclass of a base class and vice versa).

Axioms and Consistency. An axiom is a consistency-control construct modeling
sentences that are always true (at least, if everything we specified is correct).
Axioms can be used for several purposes, such as constraining the information
contained in the ontology and verifying its correctness. As an example suppose
we declared the relation colleague, which associates persons working together in
a company, as follows:

relation colleague (emp1:employee, emp2:employee).

It is clear that the information about the company of an employee (recall that
there is an attribute company in the scheme of the class employee) must be
consistent with the information contained in the tuples of the relation colleague.
To enforce this property we assert the following axioms:

(1) :− colleague(emp1 : X1, emp2 : X2), not colleague(emp1 : X2, emp2 : X1)
(2) :− colleague(emp1 : X1, emp2 : X2),

X1 : employee(company : C), not X2 : employee(company : C).

The above axioms states that, (1) the relation colleague is symmetric, and (2) if
two persons are colleagues and the first one works for a company, then also the
second one works for the same company.

If an axiom is violated, then we say that the ontology is inconsistent (that is,
it contains information which is, somehow, contradictory or not compliant with
the intended perception of the domain)3.

3 Note that, OntoDLP axioms are consistency control constructs (intended for con-

straining the ontology to the intended specification) and, thus they are radically
different from OWL axioms.
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Reasoning modules. Given an ontology, it can be very useful to reason about
the data it describes. Reasoning modules are the language components endowing
OntoDLP with powerful reasoning capabilities. Basically, a reasoning module is
an ASP program conceived to reason about the data described in an ontology.
Reasoning modules in OntoDLP are identified by a name and are defined by a
set of (possibly disjunctive) logic rules and integrity constraints.

Syntactically, the name of the module is preceded by the keyword module
while the logic rules are enclosed in curly brackets (this allows one to collect all
the rules constituting the encoding of a problem).

As an example, suppose that the living being ontology contains a base relation
that models the roads connecting neighbor places. The following module can be
used to know wethere exists a route connecting two places.

module(connections){
route(X,Y ) :− road(start : X, end : Y ).
route(X,Y ) :− road(start : X, end : Z), route(Z, Y ). }

The above rules basically computes the transitive closure of the relation road;
moreover, the “ouptut” relation route has been used in this reasoning module,
without the need of defining its scheme. We did not declare the (auxiliary)
predicate route in the ontology, because it is related only to this computation
(we simply used it) Note that, the information about routes is implicitly present
in the ontology and the reasoning module just allows to make it explicit.

It is worth noting that, since reasoning modules have the full power of (dis-
junctive) Answer Set Programming, they can be also used to perform complex
reasoning tasks on the information contained in an ontology. In practice, they
allow one to solve problems which are complete for the second level of the poly-
nomial hierarchy.

Querying. An important feature of the language is the possibility of asking
queries in order to extract knowledge contained in the ontology, but not directly
expressed. As in DLP a query can be expressed by a conjunction of atoms, which,
in OntoDLP, can also contain complex terms.

As an example, we can ask for the list of persons having a father who is born
in Rome as follows:

X:person(father:person(birthplace:place(name: “Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate
only the relevant ones for querying. In general, we can use in a query both the
predicates defined in the ontology and the auxiliary predicates in the reasoning
modules. For instance, consider the reasoning module connections defined in the
previous section, the query route(rome,milan)? asks whether there is a route
connecting Rome and Milan.

It is worth noting that in presence of disjunction or unstratified negation in
modules, we might obtain multiple answer sets; in this case the system supports
both brave and cautious reasoning (see [5]).
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3 Interoperability between OWL and OntoDLP

In this section we describe a pragmatic strategy that allows one to import an
OWL-DL [1]4 ontology in OntoDLP, and to export an OntoDLP ontology in
OWL. Hereafter, we assume the reader to be familiar with with both syntax and
semantics of OWL[1] and Description Logics[4].

3.1 Importing OWL in OntoDLP

In the following we provide a description of the import strategy by exploiting
some examples. Each group of OWL constructs is described in a separate para-
graph.

OWL Thing (⊤) and OWL Nothing (⊥). The OWL universal class Thing cor-
responds to the OntoDLP class individual (because both are the set of all indi-
viduals). Conversely, in OntoDLP we cannot directly express the empty class ⊥,
but we approximate it as follows:

class Nothing. ::− X:Nothing().

Note the axiom imposes that the extension of Nothing is empty.

Atomic classes and class axioms (C, C ⊑ D). Atomic classes are straightfor-
wardly imported in OntoDLP. For example, we write: class Person()to import
the specification of the atomic class Person.

Inclusion axioms directly correspond to the isa operator in OntoDLP. Thus,
the statement Student ⊑ Person (asseting that student is a subclass of person)
is imported by writing: class Student isaPerson.

In OWL one can assert that two or more atomic classes are equivalent (i.e.
they have the same extension) by using an equivalent class axiom (≡). OntoDLP
does not have a similar construct, but we can obtain the same behavior by
using collection classes and writing suitable rules to enforce the equivalence.
For example, USPresident ≡ PrincipalResidentOfWhiteHouse is imported
as follows:

collection class USPresident {
X:USPresident() :− X: PrincipalResidentOfWhiteHouse(). }

collection class PrincipalResidentOfWhiteHouse {
X:PrincipalResidentOfWhiteHouse() :− X:USPresident(). }

Another class axiom provided by OWL, called disjointWith, asserts that two
classes are disjoint. We approximate this behavior by using an axiom in On-
toDLP. For example:

Man ⊓ Woman ⊑ ⊥

4 OWL-DL is the largest decidable fragment of OWL which directly corresponds to a
powerful Description Logics.
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in represented in OntoDLP using the axiom:

::− X:Man(), X:Woman().

which asserts that an individual cannot belong to both class Man and class
Woman.

Enumeration classes {a1, ..., an}. A class can be defined in OWL by exhaustively
enumerating its instances (no individuals exist outside the enumeration).

For example, if we model the RGB color model as follows:

RGB ≡ red, green, blue

we will import it in OntoDLP by using a collection class in this way:

collection class RGB { green : RGB(). red : RGB().
green : RGB(). blue : RGB(). }

and we also add to the resulting ontology, the axiom ::− #count{ X: X:RGB()
} > 3. in order to correctly fix the number of admissible instances of the class.

Properties and Restrictions (∀, ∃, ⋚ nR). One of the main features of OWL
(and, originally of Description Logics) is the possibility to express restriction
on relationships. Mainly, relationships are represented in OWL by means of
properties (which are binary relations among individuals) and, three kinds of
restrictions are supported: ∃R.C (called some values from), ∀R.C (called all
values from) and restrictions on cardinality ⋚ nR. While properties are naturally
“imported” in OntoDLP by exploiting relations, the restrictions on properties
are simulated by exploiting logic rules.

We start considering ∃R.C, and for example, we define the class Parent as
follows: Parent ⊇ ∃hasChild.Person, which means that parent contains the
class of all individuals which are child of some instance of person. Importing this
fragment of OWL in OntoDLP we obtain:

collection class Parent {
X:Parent() :− hasChild(X,Y), Y:Person(). }

The rule allows one to infer all individuals having at least one child.
Also for the ∀R.C property restriction we use a simple example, in which we

define the concept HappyFather as follows:

HappyFather ⊑ ∀hasChild.RichPerson

In practice, an individual is an happy father if all its children are rich. The above
statement can be imported in OntoDLP in the following way:

collection class RichPerson {
Y:RichPerson() :− hasChild(X,Y), X:HappyFather(). }

Similarly, we import the property restriction ∃R.{o}. For example we can
describe the class of persons which are born in Africa as follows:
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African ≡ ∃ bornIn.africa

where africa is a specific individual representing the mentioned continent. To
import it in OntoDLP, we write:

collection class Afrincan {
X:Afrincan() :− bornIn(X,africa). }

intensional relation bornIn (domain:object, range:object).{
bornIn(X, africa) :− X : Afrincan(). }

Note that, in this case the import strategy is more precise than the one
used of ∃R.C; in fact, we could also “fill” the bornIn (intensional) relation with
exactly all the individuals belonging to class African.

We now consider the cardinality constraints that allow one to specify for a
certain property either an exact number of fillers (= nR.C), or at least n / at
most n different fillers (respectively ≥ nR.C and ≤ nR.C). In order to describe
the way how ≤ nR.C is imported, we define the class ShyPerson as a Person
having at most five friends:

ShyPerson ≡≤ 5hasFriend

To import it in OntoDLP we write:

collection class ShyPerson {
X:ShyPerson() :− hasFriend(X, ),

#count{Y:hasFriend(X,Y)}<= 5. }

Note that, the aggregate function #count(see [5]) allows one to infer all the
individuals having less than (or exactly) five friends.

The remaining cardinality constraints can be imported by only modifying
the operator working on the result of the aggregate function (with >= and =
for ≥ nR.C and = nR.C, respectively).

OWL also allows to specify domain and range of a property. As an example,
consider the property hasChild which has domain Parent and range Person.

⊤ ⊑ ∀hasChild−.Parent ⊤ ⊑ ∀hasChild.Person

when we import this in OntoDLP we obtain:

relation hasChild (domain:Parent, range:Person ).

It is worth noting that consistently with rdfs:domain and rdfs:range semantic,
we can state that an individual that occurs as subject (resp. object) of the rela-
tion hasChild, also belongs to the Parent (resp. Person) class. To simulate this
behavior, the definition of the collection classes Parent and Person is modified
by introducing the following rules (the first for Parent, the second for Person):

X:Parent() :− hasChild (X, ).
Y:Person() :− hasChild ( ,Y).
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Moreover, in OWL properties can be organized in hierarchies, can be defined
equivalent (by using the owl:equivalentProperty construct), functional, transitive
and symmetric. Property inheritance is easily imported by exploiting the corre-
sponding OntoDLP relation inheritance, while the remaining characteristics of
a property (like being inverse of another) are expressed in OntoDLP by using
intensional relations with suitable rules. For example if the relation hasChild is
declared inverse of hasParent, when we import it in OntoDLP we have:

intensional relation hasChild (domain: Parent, range: Person) {
hasChild(X,Y ) :− hasParent(Y,X). }

intensional relation hasParent (domain: Person, range: Parent) {
hasParent(X,Y ) :− hasChild(Y,X). }

Similarly, the transitive property ancestor, is imported in OntoDLP as:

intensional relation ancestor (domain: Person,range: Person) {
ancestor(X,Z) :− ancestor(X,Y ), ancestor(Y,Z). }

A classic example of symmetric property is the property marriedWith. We can
import such a property into OntoDLP as:

intensional relation marriedWith (domain:Person, range:Person) {
marriedWith(X,Y ) :− marriedWith(Y,X). }

Moreover, OWL functional and inverse functional properties are encoded by
using suitable OntoDLP axioms. For example, consider the functional property
hasFather and its inverse functional property childOf ; they are importd in On-
toDLP as:

::− hasFather(X, ), #count{Y:hasFather(X,Y)}> 1.
::− childOf ( ,Y), #count{X:childOf(X,Y)}> 1.

Intersection, Union and Complement (⊓, ⊔, ¬). In OWL we can define a class
having exactly the instances which are common to two other classes. Consider,
for example the class Woman which is equivalent to the intersection of the classes
Person and Female; in OWL we write:

Woman ≡ Person ⊓ Female

This expression is imported in OntoDLP as:

collection class Woman isa { Person, Female}() {
X:Woman() :− X:Female(), X:Person(). }

Note that we use inheritance in OntoDLP in order to state that each instance
of class Woman is both instance of Person and Female; and, conversely, the
logic rule allows one to assert that each individual that is common to Person
and Female is an instance of class Woman.

In a similar way we deal with the class union construct. For instance, if we
want to model the Parent class as the union of Mother and Father, then in OWL
we write:
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Parent ≡ Mother ⊔ Father

and the following is the result of the import of this axiom in OntoDLP:

collection class Parent {
X:Parent() :− X:Mother().
X:Parent() :− X:Father(). }

Another interesting construct of OWL is called complement-of, and is anal-
ogous to logical negation. An example is the class InedibleFood defined as com-
plement of the class EdibleFood, as follows:

InedibleFood ≡ ¬EdibleFood

and, we import it in OntoDLP by using negation as failure as follows:

collection class InedibleFood {
X:InedibleFood() :− X:individual(), not X:EdibleFood(). }

Individuals and datatypes. The import of the ABox of a OWL ontology is
straightforward; and actually, the A-Box assertions are directly imported in On-
toDLP facts. For example, consider the following

Person(mike) hasFather(mark,mike)

which are, thus imported in OntoDLP as:

mike:Person(). hasFather(mark,mike).

OWL makes use of the RDF(S) datatypes which exploit the XMLSchema
data-type specifications[8].

OntoDLP does not natively support datatypes other than integer and string.
To import the others OWL datatypes we encode each datatype property filler
in an OntoDLP string that univocally represents its value.

3.2 Exporting OntoDLP in OWL

In this section, we informally describe how an OntoDLP ontology is exported in
OWL by using some example.

Classes. Exporting (base) classes (with no attribute), and inheritance it is quite
easy since they can be directly encoded in OWL . For instance:

class Student isa Person. becomes simply: Student ⊑ Person

However, OntoDLP class attributes do not have a direct counterpart in OWL,
and we represent them introducing suitable properties and restrictions. Suppose
that the class Student has an attribute advisor of type Professor. To export it in
OWL, we first create a the functional property advisor, with Student as domain
and Professor as range; and, then we export the class Student as Student ⊑
∀advisor.Professor.5

5 If a class C has more than one attribute, we create a suitable property restrictions
for each attribute of C and we impose that C is the the intersection of all the defined
property restrictions.
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Relations. We can easily export binary (base) relations and inheritance hierar-
chies in OWL, since the destination language natively supports them. In par-
ticular, isa statements are translated in inclusion axioms, and domain and
range description allowed us to simulate the attributes. For relations having ar-
ity greater than two, we adopt the accepted techniques described in the W3C
Working Group Note on n-ary Relations [9].6

Instances. As we have seen for the import phase, also instances exporting is
straightforward. For instance, if we have:

john:Person(father : mike). friends(mark,john).

then we can export it in OWL as:

Person(john) person father(john,mike) friends(mark, john)

Note the person father property, created as explained above for class attributes.

Collection classes and intensional relations. These constructs, representing the
”intensional” part of the OntoDLP language, do not have corresponding lan-
guage feature in OWL. Moreover, collection classes and intensional relations are
exploited in the import strategy to “simulate” the semantics of several OWL
constructs. Since we want to preserve their meaning as much as possible in our
translation, we implemented a sort of “rule pattern matching” technique that
recognizes wether a set of rules in a collection class or in an intensional relation
corresponds to (the “import” of) an OWL construct. For example, when we
detect the following rule (within a intensional relation):

ancestor(X,Z) :− ancestor(X,Y ), ancestor(Y,Z).

we can assert that the relation ancestor is a transitive property. This can be
done for all the supported OWL feature, because the correspondence induced
by the import strategy between OWL constructs and corresponding collection
classes is direct and not ambiguous.

In case of rules that do not “correspond” to OWL features, we export them as
strings (using an auxiliary property). In this way, we are able to totally rebuild a
collection class (intensional relation) when (re)importing a previously exported
OWL ontology.

Axioms and Reasoning Modules. OWL does not support rules, thus we decided to
export axioms and reasoning modules only for storage and completeness reasons.
To this end, we defined two OWL classes, namely: OntoDLPAxiom and OntoDL-
PReasoningModule. Then, for each reasoning module (resp. axiom) we create an
instance of the OntoDLPReasoningModule (resp. OntoDLPAxiom) class repre-
senting it; and we link the textual encoding of the rules (resp. axioms) to the
corresponding instances of the OntoDLPReasoningModule (resp. OntoDLPAx-
iom) class.

6 Basically, to represent an n-ary relation we create a new auxiliary class having n
new functional properties.
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4 Theoretical Properties

In this section we show some important properties of out import/output strate-
gies. In particular, we single out fragments of OWL DL and OntoDLP where
equivalence between the input and the output of our interoperability strategies
is guaranteed.

Syntactic Equivalence. Let import(Oowl) and export(Odlp) denote, respectively,
the result of the application of our import and export strategies to OWL ontology
Oowl and OntoDLP ontology Odlp.

Theorem 1. Given a OWL DL ontology Oowl, and an OntoDLP ontology Odlp

without class attributes and n-ary relations, we have that:
(i) export(import(Oowl)) = Oowl, and
(ii) import(export(Odlp)) = Odlp.

This means that if we import (resp. export) an ontology, we are able to syntacti-
cally reconstruct it by successively applying the export (resp. import) strategy.
Intuitively, the property holds because we defined a bidirectional mapping be-
tween the primitives of the two languages (actually, there is no ambiguity since
we use a syntactically different kind of rule for each construct).

Semantic Equivalence. We now single out a restricted fragment of OWL DL in
which the import strategy preserves the semantics of the original ontology (i.e.
the two specifications have equivalent semantics).

Theorem 2. Let Γ , ΓR and ΓL be the following sets of class descriptors: Γ =
{A,B ⊓ C,∃R.o}, ΓR = Γ∪ {∀R.C }, ΓL = Γ ∪ {∃R.C, ⊔}, and, let Oowl be
an ontology containing only:

– class axioms A ≡ B where A,B ∈ Γ ;

– class axioms C ⊑ D where C ∈ ΓL and D ∈ ΓR;

– property axioms: domain, range, inverse-of, symmetry and transitivity;

– ABox assertions

then import(Oowl) under the OntoDLP semantic entails precisely the same con-
sequences as Oowl.

Intuitively, the equivalence property holds because7 the the First Order The-
ories equivalent to the admitted fragment of OWL only contains Horn equality-
free formulae whose semantics corresponds to the one of the produced logic
program.

7 According to the approach of Borgida [10], also used in [11].
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5 Conclusion and Related Work

In this paper, we proposed a pragmatic approach to the problem of interoperabil-
ity between OntoDLP and OWL. In particular, we designed and implemented
in the OntoDLV system two transformations which are able to import an OWL
ontology in OntoDLP, and export an OntoDLP specification in an OWL one.

Moreover, we studied the theoretical properties of the above-mentioned trans-
formations and we obtained some interesting results. The first one regards a
syntactic property of the two transformations. Basically, it is guaranteed that
applying the import (resp. export) transformation to an OWL (resp. OntoDLP)
ontology O, we can rebuild O by applying the “inverse” export (resp. import)
transformation. Furthermore, we identified some fragments of OWL for which
the semantic equivalence between the original OWL ontology and the obtained
OntoDLP ontology is guaranteed.

Our approach is, somehow, connected with the effort of combining OWL
with rules for the Semantic Web (see [12] for an excellent survey). Indeed, one
might think to import an OWL ontology in OntoDLP in order to exploit the
latter to perform reasoning on top of the original specification. This simple idea
has the drawback (from the Semantic Web viewpoint) of relaxing important
assumptions like both open-world and unique name assumption. Conversely,
one of the major problems existing in the interaction of rules and description
logics with strict semantic integration is retaining decidability (which is, instead,
ensured in our framework) without loosing easy of use and expressivity. For
instance, the SWRL[13] approach is undecidable; while, in the so-called DL-safe
rules [14] a very strict safety condition is imposed to retain decidability. Notably,
this safety condition has been recently weakened in some works [15, 16] thus
obtaining a more flexible environment. However, the goal of the above-mentioned
approaches is different from the one achieved in this paper; where we introduced
some interoperability mechanisms to combine OWL and OntoDLP ontologies.
Conversely, the techniques exploited to obtain our import transformation are
similar to (even if more pragmatic and less general than) the ones used for
reducing description logics to logic programming (see [17, 18, 11, 19, 20]).
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