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Abstract. An information integration system combines data residing at different
sources, providing the user with a unified view of them, called global schema.
When some constraints are imposed on the quality of the global data, the inte-
gration process becomes difficult and, in some cases, it may be unable to pro-
vide consistent results to user queries. The database community has spent many
efforts in this area, relevant research results have been obtained to clarify se-
mantics, decidability, and complexity of data-integration under constraints (often
called consistent query answering - CQA). However, while efficient systems are
already available for simple data integration scenarios, scalable solutions have not
been implemented yet for advanced data-integration under constraints. This pa-
per provides a contribution in this setting: it starts from state of the art techniques
to carry out consistent query answering and proposes optimized solutions; these
have been implemented in a efficient system based on Answer Set Programming
(a purely declarative logic programming formalism). Experimental activities con-
ducted in a real world scenario and reported in the paper confirm the effectiveness
of the approach.

1 Introduction

The task of an information integration system is to combine data residing at different
sources, providing the user with a unified view of them, called global schema. Users can
formulate queries in a transparent and declarative way over the global schema, they do
not need to know any information about the sources. The information integration system
automatically retrieves the relevant data from the sources, and suitably combines them
to provide answers to user queries.

Recent developments in IT, such as the expansion of the Internet, have made avail-
able to users a huge number of information sources, generally autonomous, heteroge-
neous and widely distributed. As a consequence, information integration has emerged
as a crucial issue in several application domains, e.g., distributed databases, cooperative
information systems, data warehousing, or on-demand computing.

In many cases the application domain requires to impose some constraints on the
integrated data. For instance, it may be at least desirable to impose some keys on global
relations (i.e., on the relations of the global scheme).
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As an example, suppose one needs to merge the lists of students from two different
universities, the set of their IDs may overlap since they have been assigned indepen-
dently by the two universities. This may cause ID duplications in the global database
after that the merging process has been carried out. If the student ID must be a key
in the global database, then some corrective actions must be carried out in order to
avoid the generation of an inconsistent global database (i.e., in the database over the
global scheme, resulting from the integration). Such corrective actions are usually called
database repairs in the literature [1-4]. An information integration system should be
able to return all and only the consistent answers, that is the answers which are true
in every repair of the database (this is called Consistent Query Answering - CQA) [1].
The bad news is that, in most cases, several repairs are possible for each violation of a
constraint, making information integration a computationally difficult task: consistent
query answering is co-NP-hard even in very simple settings, like the example above,
where only a single key constraint is present on the global scheme. Moreover, it has
been shown that mixing different kinds of constraints (e.g. denial constraints, inclusion
and exclusion dependencies) on the same global database may easily make the query
answering process undecidable [5].

The database community has spent many efforts in this area, relevant research re-
sults have been obtained to clarify semantics, decidability, and complexity of data-
integration under constraints.

However, while efficient systems are already available for simple data integration
scenarios, scalable solutions have not been implemented yet for advanced data-integration
under constraints, mainly due to the fact that handling inconsistencies arising from con-
straints violations is inherently hard.

This paper provides a contribution in this setting. Specifically, it starts from practi-
cal applications of state-of-the-art approaches to provide well-tuned optimizations tech-
niques aiming at “localizing” and limiting the inefficient computation, due to the han-
dling of inconsistencies, to a very small fragment of the input, yet allowing interesting
classes of constraints.

The presented work takes advantage from the experience we gained in the IN-
FOMIX [6] project, and overcomes some limitations we experienced in real-world sce-
narios. In fact, our main goal is to provide a purely declarative, logic-based solution to
the problem of data integration under constraint, which is efficient and can be profitably
used also in real-world applications.

The main characteristics of the proposed approach are the following:

— It supports a powerful and comprehensive information integration model, which
is based on a formal and purely declarative semantics. The knowledge about the
integration domain can be easily specified. In particular, it allows: (i) the possibility
of defining expressive integrity constraints (ICs) over the global schema, (ii) the
precise characterization of the relationship between global schema and the local
data sources, (iii) the formal definition of the underlying semantics, (iv) as well as
the use of a powerful query language.

— Itis based on Answer Set Programming (ASP) and exploits datalog-based methods
for answering user queries, which are sound and complete with respect to the se-
mantic of query answering. The problem of consistent query answering is reduced



to cautious reasoning on disjunctive datalog programs; this allows to effectively
compute the query results precisely, by using a state-of-the-art disjunctive datalog
system. The formal query semantics is captured also in presence of inconsistent
data.

— It allows to obtain fast query-answering, even in such a powerful data-integration
framework, thanks to the novel combination of a number of optimization techniques
that tend to minimize the inefficient computation.

— In order to handle large amounts of data, usually involved in real-world integration
scenarios, it adopts as internal query evaluation engine the disjunctive datalog sys-
tem DLVPZ [7,8] which allows for mass-memory evaluations and distributed data
management features.

In order to asses the effectiveness of the proposed optimizations, we carried out a
thorough experimental activity on a real world scenario. Obtained results, reported in
the paper, are encouraging and confirm our intuitions.

The plan of the paper is as follows. Section 2 formally introduce the data integra-
tion model and the consistent query answering problem considered in the paper. Sec-
tion 3 first introduces a standard approach to handle CQA with ASP and then presents
some optimizations. Section 4 outlines some of the features of the system we developed
on the proposed approach whereas Section 5 introduces the benchmark framework we
adopted in the tests and presents obtained results. Finally, in Section 6 we draw some
conclusions.

2 TheData Integration Context

2.1 The Data Integration Model

In our setting, a data integration system [1] Z is a triple (G, S, M), where G is the global
schema, which provides a uniform view of the information sources to be integrated, S is
the source schema, which comprises the schemas of all the sources to be integrated, and
M is the mapping establishing a relationship between G and S. G may contain integrity
constraints (ICs). M is a Global-As-View (GAV) mapping [1], i.e., M is a set of logi-
cal implications Vaq - - - Vo, @s(x1, .. ., &n) D gnlz1, ..., Tn), Where g, is a relation
from G, n is the arity of g,,, s is a conjunction of atoms on S and z4, ..., z, are the
free variables of @s. Each global relation is thus associated with a union of conjunctive
queries (UCQs). Both G and S are assumed to be represented in the relational model,
whereas M is represented as a set of datalog rules.

As an example consider a bank association that desires to unify the databases of
two branches. The first database models managers by using a table man(code, name)
and employees by a table emp(code, name), where code is a primary key for both ta-
bles. The second database stores the same data in table employees(code, name, role).
Suppose that the data has to be integrated in a global schema with two tables: m(code),
and e(code, name), having both code and name as keys and the inclusion dependency



m[code] C e[code], indicating that manager codes must be employee codes. GAV map-
pings are defined as follows:!

e(C,N) :—emp(C,N). e(C,N):— employee(C, N, _).
m(C) :— man(C, ). m(C) :— employee(C, _, ‘manager’).

If emp stores (el, john), (e2,mary), (e3,willy), man stores (el, john), and
employees stores (el,ann,man), (e2,mary,man), (e3,rose,emp), it is easy to
verify that, while the source databases are consistent w.r.t. local constraints, the global
database obtained by evaluating the mappings violates the key constraint on e (e.g. both
john and ann have the same code el in table €). Basically, when data are combined in
a unified schema with its own integrity constraints the resulting global database might
be inconsistent; any query posed on an inconsistent database would then produce an
empty result.

In this context, user queries must be re-modelled according to the mappings and vi-
olated constraints, in order to compute consistent answers, i.e. answers which consider
as much as possible of correct input data.

2.2 Consistent Query Answering

In the field of data-integration several notions of consistent query answering have been
proposed (see [3] for a survey), depending on whether the information in the database
is assumed to be correct or complete. Basically, the incompleteness assumption coin-
cides with the open world assumption, where facts missing from the database are not
assumed to be false. In our approach, we assume that sources are complete; as argued
in [4], this choice strengthens the notion of minimal distance from the original informa-
tion.2 Moreover, there are two important consequences of this choice: database repairs
can be obtained by only deleting tuples and, thus, computing CQA for conjunctive
queries remains decidable even for arbitrary sets of denial constraints and inclusion
dependencies [4] which are the most common schema constraints.

More formally, given a global schema G and a set C' of integrity constraints, let DB
and DB" be two global database instances. DB" is a repair [4] of DB w.r.t. C, if DB"
satisfies all the constraints in C' and the instances in DB" are a maximal subset of the
instances in DJ5. Basically, given a conjunctive query (), consistent answers are those
query results that are not affected by constraint violations and are true in any possible
repair [4]. Thus, given a database instance DB and a set of constraints C, a conjunctive
query @ is consistently true in DB w.rt. C if Q is true in every repair of DB w.r.t.
C. Moreover, if  is non-ground, the consistent answers to @ are all the tuples £ such
that the ground query Q|[t] obtained by replacing the variables of @ by constants in # is
consistently true in DB w.r.t. C.

Following the example introduced in the previous Section, the global database has
the following four repairs:

1 In the examples we denote mappings by datalog rules. For instance e(C, N) :— emp(C, N).
stands for VCVNe(C, N) D emp(C, N).

2 It is worth noting that, in relevant cases like denial constraints, query results coincide for both
correct and complete information assumptions.



DB} = {e(e2,mary), e
DB; = {e(e2,mary), e
DB5 = {e(e2,mary), e
DB, = {e(e2,mary),e

el, john), e(e3, willly), m(el), m(e2)}
el, john), e(e3,rose), m(el), m(e2)}
el,ann), e(e3, willly), m(el),m(e2)}
el,ann), e(e3,rose), m(el), m(e2)}
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Moreover, the query @ = m(X)?, asking for the list of manager codes, has both e1 and
€2 as consistent answers.

In the next section, we show how Answer Set Programming (ASP) can be exploited
for efficiently computing consistent answers to user queries. We assume that the reader
is familiar with ASP.

3 Consistent Query Answering via ASP

Answer Set Programming [9, 10] is a powerful logic programming paradigm allowing
(in its general form) for disjunction in rule heads [11] and nhonmonotonic negation in
rule bodies. ASP is a purely declarative language that can represent every problem in the
complexity class X4 and 174 (under brave and cautious reasoning, respectively [12]).

The suitability of ASP for implementing CQA has been already recognized in the
literature [3, 6]. The idea is to produce an ASP program 1.4, having an answer set for
each repair, so that the problem of computing CQA corresponds to cautious reasoning
on I1.4,. Formally, given a global database D3, a set of integrity constraints C' and a
conjunctive query Q,% we produce an ASP program 1., and a query Q,q, such that:
@ is consistently true in DB w.r.t. C iff Q¢4 is true in every answer set of 11,4, in
symbols: II.qq e Qcqa- In Other words, @ is consistently true iff .4, is a cautious
consequence of I7.,.

In our setting, the most common schema constraints can be expressed in ASP as
follows:

(1) —ar(ty), -y an(tn),o(ts, ... tn).
(c2) = ai(t), not auxe,)(t).  auxq,q(t) i— ax(t,t).
where ¢; is a tuple and o(t4,...,¢,) is @ conjunction of comparison literals of the

form X0Y with 6 € {<,>,=,#}, and aux,, () is a fresh new auxiliary predicate
defining a projection on a-. Constraints of type ¢, are called denial constraints; whereas
constraints of type co model inclusion dependencies under the assumption of complete
sources. In particular, we allow only acyclic* inclusion dependencies, which are the
most common ones, to limit the complexity of CQA to co-NP, see [4]. Moreover, note
that key constraints are special cases of denial ones.

For instance, in the example of Section 2, we considered the following three global
constraints:

8As usual, a conjunctive query of arity n is a closed formula the form

q(x1,...,xn) i—conj(x1,...,Tn,y1,-..,Y%). Where conj is a conjunction of
atoms involving variables x1,...,xn,y1,...,y%; Sometimes if & = 0 we write only
conj(x1,...,2n)?

* Informally, a set of inclusion dependencies is acyclic if no attribute of a relation R transitively
depends (w.r.t. inclusion dependencies) on an attribute of the same R.



—e(X,Y),e(X,2),Y#Z —e(X,Y),e(Z,Y),X # Z.
:— m(X), not code(X). code(X) :—e(X,Y).

respectively requiring that both code and name are keys for e and that m[c] C ec]; code
is an auxiliary predicate computing the projection of e on its first attribute.

In the following we introduce two algorithms that take as input a data integration
system and a query and produce an ASP program that can be exploited for computing
CQA. First we describe a standard algorithm producing a general encoding of a CQA
problem in ASP; then we propose a new “optimized” method that is able to produce
programs complexity-wise optimal according to the complexity classification of con-
straints and queries of [4].

Standard Solution. Given a global schema having a set of constraints C and a query @,
a general algorithm for building the program 114, and the query Q.4 iS composed by
the following steps:

1- for each constraint of the form ¢; in C, insert the following rule into 1.4,
a1(t1) V- Vap(tn) i—a1(t1), - an(tn), o1, .. tn).

2- for each atom a(¢) occurring in some constraint of C, insert into 1.4, a rule:
a*(t) :— a(t), not a(t).

3- for all constraints of the form c; in C, insert the following rules in I1.4,:
ai(t) = aj(t), not auzy, \(t). auzy, ., (t):— aj(t,t').

4- for each a(t) occurring in some constraint of C' insert into I1..,, the following rule:
a”(t) =— a*(t), not a(t), not a(t).

5- build Q4. form @ by replacing each a(t) by a”(t) whenever a(t) occurs in some
constraint in C.

Intuitively, the disjunctive rules (step 1) guess the tuples to be deleted (step 2) for sat-
isfying denial constraints. Rules generated by step 3, remove tuples violating also ref-
erential integrity constraints; eventually, step 4 builds repaired relations. Note that the
minimality of answer sets guarantees that deletions are minimized.

In our ongoing example, the program obtained by applying the algorithm above is:

X, Y)VE(X,Z) — e(X,Y),e(X,2),Y # Z.
AX,Y)VE(Z,Y) — e(X,Y),e(Z,Y), X # Z.

e*(t) :— e(t), not e(t). m*(X):—m(X),not m(X).
code” (X) :—e" (X,Y).

m(X) :— m*(X), not code”(X). ~

e"(X,Y) :—e(X,Y),not e(X,Y), not e(X,Y).
m"(X) :— m(X), not m(X),not m(X).

m"(X)?

When this program is evaluated on the database facts we obtain four answer sets. It
can be verified that, all the answer sets contain m”(el) and m”(e2), (i.e., they are
cautious consequences of II.,,) and, thus, m(el) and m(e2) are consistent answers to
the original query.

It can be shown that this algorithm always finds a repair for the database (and thus
is able to compute query answer) which can possibly be, in the worst case, empty.



Optimized Solution. The algorithm reported above is a general solution for solving the
CQA problem, but, in several cases, more efficient ASP programs can be produced.
First of all note that the general algorithm blindly considers all the constraints on the
global schema, including those that have no effect on the specific query. Consequently,
redundant logic rules might be produced which slow down program evaluation. Note
also that, there are a number of cases in which, according to [4], the complexity of CQA
stays in P; but disjunctive programs, for which cautious reasoning is an hard task [12],
are generated in presence of denial constraints. This means that, the evaluation of the
produced logic programs might be much more expensive than required in those “easy”
cases. In more detail, depending on the types of both schema constraints and queries,
CQA is tractable in the following cases:

— Quantifier-free queries and either:
o denial constraints only, or
e at most one key per relation;
— Simple Conjunctive queries and either:
e at most one functional dependency per relation, or
e at most one key per relation
— Conjunctive queries and:
e inclusion dependencies only

where quantifier free queries are those that do not contain projections operations, sim-
ple conjunctive queries are those without repeated relation symbols and with limited
variable sharing (joins are not admitted).

In the following we provide an optimized version of the standard algorithm that is
capable of identifying tractable (sub-)cases for a generic input query and that produces
ASP programs for CQA which are non-redundant and complexity-wise optimal.

Given a global schema G, a set of constraints C' on G and a query @, the optimized
algorithm analyzes both C' and @ and: (¢) singles out only the constraints affecting
query results, and (i7) employs positive non-disjunctive rules for dealing with denial
constraints in known tractable cases.

Specifically, a directed labelled graph G. = (N, E), called constraint graph, is first
built. G contains a node n € N for each relation in G, and an arc e = (p, ¢, c¢) for
each pair of relations (p, ¢) involved in a global constraint ¢ € C. In more detail, G.. is
built from G and C as follows: for each ¢ € C: if ¢ is a denial constraint of the form

—pi(t1), -, pe(te),o(t1,. .., tg) anarc (p;, p;, c) isadded to E foreach i, j € [1, k]
with ¢ = j; whereas, if ¢ is an inclusion dependency of the form :— p(t), not ¢(t) then
an arc (p, ¢, c) is added to F.

After analyzing and classifying the query (to recognize whether it is either quantifier-
free, or simple conjunctive, or conjunctive), the constraint graph G, is visited several
times starting from each relation in the query. The visited nodes of GG, correspond to
the relations involved in the query process, whereas the arcs traversed during the visits
correspond to the constraints that might influence the query results. Thus, the corre-
sponding relations and constraints are marked to be considered for further process-
ing; unmarked constraints will be discarded. At the same time, the algorithm tags each
marked constraint to be either easy or hard, depending on whether the above-reported



conditions on the complexity of CQA are satisfied or not. In particular, the tag associ-
ated to a given constraint is set (or updated) during each visit depending on query kind,
number and type of encountered constraints. The tag of each constraint ¢ corresponding
to a traversed arc e is set to “easy” if both (i) ¢ was not previously tagged as “hard”,
and (i7) at least one of the following conditions holds (otherwise ¢ is tagged as “hard”):

1.

2.

3.

if the query is quantifier-free, and either
a. all the arcs belonging to the connected component of GG.. containing e are la-
beled by denial constraints, or
b. all the nodes belonging to the connected component of GG . containing e have at
most one outgoing arc labelled by a key constraint
if the query is simple-conjunctive, and either
a. all the nodes belonging to the connected component of G containing e have at
most one outgoing arc labelled by a functional dependency constraint, or
b. all the nodes belonging to the connected component of GG containing e have at
most one outgoing arc labelled by a key constraint
if the query is conjunctive, and:
a. all the arcs belonging to the connected component of GG.. containing e are la-
beled by inclusion dependencies

At this point, the ASP program I, is generated as follows:

1-

for each denial constraint of the form ¢; which is marked as “hard”, insert the
following rule into I7.4,:

El(tl) AV \/En(tn) — al(tl), cee ,Cln(tn), O'(tl, ceey tn).

for each denial constraint of the form ¢; which is marked “easy”, insert the follow-
ing n rules into I7.qq:

a1(t1) —a1(tr), -, an(tn), o(ts, ..., tn),

Eg(tg) — al(tl), cee ,Cln(tn), O'(tl, ceey tn),

Un(tn) i—a1(tr), -, an(tn),o(t1, ..., tn).

for each atom a(¢) occurring in some marked denial constraint, insert into I7.,, a
rule: a*(t) :— a(t), not a(t).

for all marked constraints of the form c, in C', insert the following rules in I1.4,:
ai(t) = aj(t), not auxy, (1) auzy, ,(t):— a5(t,t').

for each a(t) occurring in some marked constraint insert into I1.,, the following
rules: a”(t) =— a*(t), not a(t), not a(t).

build Q4. from Q by replacing each a(t) by a” (¢) whenever a(t) occurs in some
marked constraint.

First of all, note that the new algorithm produces only non-redundant rules (i.e. the

rules encoding constraints that influence the query answering process). Moreover, it is
worth noticing that the rules produced by step 2, corresponding to “easy” constraints are
non-disjunctive,® while, those produced by step 1, corresponding to “hard” constraints

5 In the “easy” cases the original database can be repaired by simply removing all the conflicting
tuples. This can be done because each repair can be obtained from the original database by
removing a single tuple among the ones that violate the same constraint. When rules of this
kind are employed the answer sets do not correspond to repairs, but CQA still corresponds to
cautious reasoning.



are disjunctive. This is a pay-as-you-go technique where the usage of complex evalu-
ation algorithms is limited to either intractable cases or to cases in which tractability
results are not known. Moreover, note that the same query may involve both easy and
hard constraints, but disjunctive rules are used only for the hard ones.

For example, suppose that we add to the global schema of our ongoing example a
new binary relation c(code,name) representing the list of customers, and that code is a
key for c. Moreover, suppose that we ask for the query Q = ¢(X,Y), e(X,Y)? retrieving
the customers that are also employees of the bank. In this case, the query is quantifier
free, and only denial constraints are marked visiting the constraint graph. Indeed, it is
easy to see that there is no way to reach m in the constraint graph starting from the query
atoms since the arc generated for the inclusion dependency between m and e goes from
m to e. This means that condition 1.a is verified, all marked constraints are “easy”, and
the produced program is:

X, Y) — e(X,Y),e(X,2),Y # Z

e(X,Z) — e(X,Y),e(X,2),Y # Z

X, Y) — e(X,Y),e(Z,Y), X % Z

eZ,Y) — e(X,Y),e(Z2,Y),X £ 2

WX, Y) = o(X,Y),e(X,2),Y £ Z

X, 2) — e(X,Y),e(X, 2),Y # Z.

e*(t) :— e(t), not e(t).

c*(t) :— ¢(t), not ¢(t). B
e"(X,)Y) :—e(X,Y),not e(X,Y),not e(X,Y)
(X,Y) —ce(X,Y),not ¢(X,Y),not ¢(X,Y)
(X, Y),e"(X,Y)?

Note that the obtained program is non-disjunctive and stratified and it can be evalu-
ated in polynomial time. In this case, the only answer set of the program contains the
consistent answers to the original query.

4 Thelntegration System

The general architecture of the system incorporating the proposed approach is shown in
Figure 1. It is intended to simplify both the integration system design and the querying
activities by exploiting a user-friendly GUI. Specifically, at design time, the user can:

e Graphically design the global schema and the mappings (which we recall are ex-
pressed by UCQs) between global relations and source schemas.

e Specify data transformation rules on source data; these can be implemented by suit-
able functions defined in the working database as stored functions.

e Specify global constraints, in order to define quality parameters that global inte-
grated data must satisfy.

At query time, the user can exploit a QBE-like interface to express queries over the
global schema; these are internally expressed in datalog as UCQs. The “plain” query
is then elaborated by the CQA Rewriter which takes into account both mappings and
global constraints to express the query over the sources and to handle inconsistencies
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Fig. 1. System Architecture.

possibly involving the query answers; the output of the CQA Rewriter is then a (possibly
disjunctive) datalog program which is fed to the Optimizer for further elaboration. The
Optimizer applies rewriting strategies which aim at pushing down selections directly
onto the sources and at “localizing” over conflicting data as much as possible of the
needed reasoning. Finally, the optimized program is fed to the Query Evaluator which
executes the grounding phase totally on the DBMS and loads in main-memory only
data strictly necessary to resolve conflicts. The output of this evaluation is then the
query answer, which is proposed graphically back to the user. More in detail, the Query
Evaluator engine of our integration system is DLV? [7]. It is a DLP evaluator born as
a database oriented extension of the well known DLV system [13]. It has been recently
extended [8] for dealing with unstratified negation, disjunction and external function
calls. The main peculiarities of DLV related to the data integration system are: (i) it
allows the handling of (possibly distributed) large amounts of data stored in autonomous
databases; (ii) GAV mappings defining the integration system can be directly evaluated
on the database where data resides, without further elaboration; (iii) it embodies some
query-oriented optimization strategies, like magic-sets.

5 Experiments

In this section we present some of the experiments we carried out to asses the effective-
ness of our approach to consistent query answering.

5.1 Data Set

We exploited the real-world data integration framework developed in the INFOMIX
project (IST-2001-33570) [6] which integrates data from a real university context. In
particular, considered data sources were available at the University of Rome “La Sapienza”.
These comprise information on students, professors, curricula and exams in various



faculties of the university. This data is dispersed over several databases in various (au-
tonomous) administration offices.

There are about 35 data sources in the application scenario, which are mapped into
14 global schema relations with about 20 GAV mappings and 29 integrity constraints.
We call this data set Infomix in the following.

Besides the original source database instance (which takes about 16Mb on DBMS),
we obtained bigger instances artificially. Specifically, we generated a number of copies
of the original database; each copy is disjoint from the other ones but maintains the same
data correlations between instances as the original database. This has been carried out
by mapping each original attribute value to a new value having a copy-specific prefix.

Then, we considered two further datasets, namely Infomix-x-10 and Infomix-x-50
storing 10 copies (for a total amount of 160Mb of data) and 50 copies (800Mb) of the
original database, respectively; clearly, in both cases one of the copies is the original
database itself.

5.2 Tested Queries

As previously pointed out, standard rewriting for CQA makes the time complexity of
query evaluation to be in co-NP in most cases; however, our optimization allows in
many relevant cases to simplify the rewriting in such a way that the complexity of the
evaluation of the corresponding program can be in P.

In order to carry out a comprehensive performance analysis, we designed a set of
queries spanning over the following perspectives:

— As for the computational complexity perspective we designed queries whose:
e evaluation complexity with standard rewriting stays in co-NP and evaluation
complexity with optimized rewriting stays in P;
e evaluation complexity with standard rewriting stays in co-NP and evaluation
complexity with optimized rewriting remains in co-NP;
— As for the constraints perspective we designed queries involving:
o Arbitrary Denial constraints only (D in the following)
e Key constraints only (K in the following)
o Inclusion dependencies only (I in the following)
e Arbitrary Denial and Inclusion dependencies (D+I in the following)
e Key constraints and Inclusion dependencies (K+I in the following)
— As for the query class perspective we designed:
e Unrestricted Conjunctive queries (UC in the following)
o Quantifier-free queries (QF in the following)
e Simple Conjunctive queries (SC in the following)
— As for the query design perspective we considered:
e queries with different arities (i.e. different number columns in the result)®
e (ueries with and without constants

We designed and ran several queries. Table 1 summarizes the characteristics of a repre-
sentative set of them. Here Number of source tuples indicates the number of tuples of
all source relations involved by the query.

5 An arity equal to 0 indicates that the query asks only if some assertion is true or false in the
database.



Q1 Q2 Qs Q4 Qs Qs
Optimized Query co-NP | co-NP P P P P
Evaluation
Query Class QF SC SC QF SC SC
Involved Constraints K D D D K K
Query arity 7 1 0 0 1 2
N. of source tuples
infomix 45575 | 37546 | 20575 | 67272 | 204 | 61723
infomix-x-10 455750 | 375460 | 205750 | 672720 | 2040 | 617230
infomix-x-50 2278750{1877300{1028750|3363600|10200|3086150
Q7 Qs Q9 Qo | Quu | Qun
Optimized Query P co-NP P co-NP P P
Evaluation
Query Class SC SC SC ucC QF SC
Involved Constraints K K+l K K+l | D+l
Query arity 2 3 6 2 3 0
N. of source tuples
infomix 104818 | 17266 | 16148 | 3749 |17725| 37831
infomix-x-10 1048180| 172660 {161480| 37490 |177250( 378310
infomix-x-50 5240900| 863300 [807400|1873950(886250|1891550

Table 1. Summary of tested queries.

5.3 Compared Methods

In order to asses the characteristics of the proposed optimizations, we measured the exe-
cution time of each query with both the standard and our optimized rewriting. Moreover,
since the magic sets technique has been recently extended to support also disjunctive
programs [15], we considered interesting to evaluate execution times of both rewritings
with the addition of magic sets on them; query rewriting for CQA and magic sets have
been applied in cascade.

Note, however, that the magic sets technique can be applied only on queries involv-
ing constants; indeed, the aim of the technique is to “push down” constants in the query
onto source relations, thus allowing to reduce the amount of data to reason about. More-
over, the magic sets method may add several rules (and possibly unstratified negation)
to the original program, thus introducing some overhead in the computation.

Our intuition is that magic sets optimization and our optimizations are complemen-
tary and, consequently, their benefits may be summed up if the query involves some
constant. It is also interesting to evaluate the impact of the overhead introduced by the
approaches on the overall response time.

Summarizing, we tested four methods: (i) Standard Rewriting, (ii) Optimized Rewrit-
ing, (iii) Standard Rewriting with Magic Sets, (iv) Optimized Rewriting with Magic
Sets.”

" Magic sets have been tested only on queries Q1, Q2, Q3, and Q4, since the other queries are
constant-free.



5.4 Results and discussion

All tests have been carried out on an Intel Core 2 Duo T7300, 2.0 GHz, with 2 Gb Ram,
running Windows 7 Operating System. We set a time limit of 30 minutes after which
query execution has been killed. Results obtained for tested queries (showing times in
seconds) are illustrated in Figure 2. The bar for a method is absent in the graphs if query
answering time was higher than the limit®.

From the analysis of the figures and the characteristics of the queries reported in
Table 1, we may draw the following observations: The optimized rewriting almost al-
ways provides important improvements in query performance. The only exception is
for query Q11 for which no optimization was possible and, consequently, standard and
optimized rewritings coincide. Performance improvements of the optimized rewriting
w.r.t. the standard one have been registered up to 86%° with a quantifier free query over
denial constraints. Note also that the best times are always registered when the proposed
optimization is active.

Our intuition about the “additivity” of the magic sets over our optimization has
been confirmed by experimental results. In fact, the application of magic sets always
improves its performance, at least on big data sets. As for the smallest data set, the
overhead introduced by magic sets is sensible and the (initially small) response time
increases in some cases. It is interesting to observe that the application of our opti-
mization and the magic sets allowed performance improvements up to 95% w.r.t. the
standard rewriting.

Finally, it is worth pointing out that the scaling of the optimized algorithm over the
three data sets is generally better than the standard one.

6 Conclusion and Ongoing Work

In this paper we presented an approach that allows to efficiently handle consistent query
answering under a wide variety of integrity constraints. The effectiveness of the ap-
proach is obtained by the assumption of complete sources and an optimized algorithm
which is capable to identify both tractable queries and portions of the queries that may
be treated efficiently. The approach is part of a complete system for data integration
based on ASP whose query evaluator engine allows to carry out querying directly on
the databases where data reside even in an ASP context. Results of our experimental
activity demonstrate the effectiveness of the approach. As far as ongoing work, we are
investigating for further optimizations that can be included in the algorithm to further
improve query answering performances.
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