
An Heuristics for Load Balancing and Granularity
Control in the Parallel Instantiation of

Disjunctive Logic Programs

Simona Perri, Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{perri,ricca,sirianni}@mat.unical.it

Abstract. In this paper we present a dynamic heuristics that allows for improv-
ing the performance of a parallel instantiator algorithm based on the DLV system.
In this system, each rule is rewritten in several “splits” of the same size that are as-
signed to a number of parallel instatiator subprocesses. The new heuristics allows
for dynamically determining an optimal amount of work that has to be assigned to
each parallel instantiator, and, thus, it improves the overall efficiency of the par-
allel evaluation. We implemented our heuristics and performed an experimental
analysis that confirms the efficacy of the proposed method.

1 Introduction

In the last few years, entry-level computer systems have started to implement multi-
core/multi-processor SMP (Symmetric MultiProcessing) architectures. In a modern SMP
computer two or more identical processors can connect to a single shared main memory,
and the operating system supports multithreaded programs for exploiting the available
CPUs [1]. However, most of the available software was devised for single-processor
machines and is unable to exploit the power of SMP architectures. Recently [2, 3], such
technology has been exploited for implementing faster evaluation systems in the field
of Answer Set Programming (ASP). ASP is a declarative approach to programming
proposed in the area of nonmonotonic reasoning and logic programming [5–10] which
features a declarative nature combined with a relatively high expressive power [11, 12].

Traditionally, the kernel modules of ASP systems work on a ground instantiation
of the input program. Therefore, an input program P first undergoes the so-called in-
stantiation process, which produces a program P ′ semantically equivalent to P , but not
containing any variable. This phase is computationally very expensive (see [10, 12]);
thus, having an efficient instantiation procedure is, in general, crucial for the perfor-
mance of the entire ASP systems. Moreover, some recent applications of ASP (see e.
g. , [13–16]), have evidenced the practical need for faster instantiators. It is easy to see
that the exploitation of SMP technology in the grounding process can bring significant
performance improvements. Indeed, an effective technique for the parallel instantiation
of ASP programs was proposed in [2]. However, the efficacy of this method was limited
to programs with many rules, since it roughly allows for instantiating independent rules
in parallel; but, in [3] a rewriting technique has been proposed that modifies the input
program in such a way that the technique of [2] becomes applicable also in case of
programs with few rules. The following example explains the idea behind this rewriting



(the reader is referred to [3] for a detailed description of the technique). Consider the
program encoding of the well-known 3-colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– edge(X,Y ), col(X, C), col(Y, C).

In this case, the technique of [2] is unable to produce a parallel evaluation, since it
proceeds by first instantiating (r) (thus, computing the extension of col), and, then,
only once this is done, by processing the constraint (c).

However, one may rewrite this program in an equivalent one which is more amenable
for parallel evaluation. Basically, since each single rule of the input program is pro-
cessed by one processing unit, one may think of rewriting it into an equivalent program
containing several rules. For instance, the program can be rewritten as follows [3]:

(r1) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node1(X).
(r2) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node2(X).
. . .
(rn) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– noden(X).
(c1) :– edge1(X, Y ), col(X, C), col(Y, C).
. . .
(cn) :– edgen(X, Y ), col(X, C), col(Y, C).

The sets of nodes and edges are split up into subsets by splitting the extension
of predicates node and edge, respectively. The resulting program is equivalent to the
original one modulo renaming, but its instantiation can be done in parallel.

This rewriting was implemented [3] in a parallel ASP instantiator based on DLV [11].
In the first version of the system the number of rule splits was set to a global user-defined
value (the same for each rule in input). However, this naı̈ve strategy is not optimal in
most cases. Indeed, if each instantiator receives a “very small” amount of work, then
the costs added by parallel execution are larger than the benefits (because of the over-
head introduced by thread creation and scheduling); on the other hand, if the amount
of work assigned to threads is “too big” then a resulting bad workload distribution will
reduce the advantages of parallel evaluation. Note also that, the optimal setting may be
different for each rule.

In this paper, we propose a dynamic heuristics that is able to improve the overall
efficiency of the parallel evaluation of [3] by automatically determining, rule by rule,
an optimal amount of work that has to be assigned to each parallel instantiator. More-
over, we implemented our heuristics, and we report here the results of an experimental
analysis that confirms the efficacy of the proposed method.

2 An Heuristics for Load Balancing and Granularity Control

A real implementation of a parallel system has to deal with two important issues that
strongly affect the performance: load balancing and granularity. Indeed, if the workload
is not uniformly distributed to the available processors then the benefits of paralleliza-
tion are not fully obtained; moreover, if the “amount” of work assigned to each paral-
lel processing unit is too small then the (unavoidable) overheads due to creation and
scheduling of parallel tasks might overcome the advantages of parallel evaluation (in a
corner case, adopting a sequential evaluation might be preferable).



The parallel grounder described in [3] implements a naı̈ve strategy: basically each
rule is rewritten in a globally fixed number of “splits” (specified by the user). Here,
a crucial role is played by the number of splits allowed for each rule, which is (usu-
ally) the main source of concurrently running threads, and it directly determines the
“amount” of work (and, thus, the “size of the split”) assigned to instantiators. It is easy
to see that the best possible fixed setting for the number of splits might be not optimal,
since the evaluation of different rules in the same program may require significantly
different execution times. In our setting, (i. e. shared memory processor) developing a
sophisticated granularity-control strategy is not essential (as also observed in [4]) as for
other parallel architectures (like, e. g. , clusters); rather it is sufficient to set the size of
the splits for each rule to an adequate value. The size of the split should be sufficiently
large to avoid thread management overhead; and sufficiently small to exploit the pre-
emptive multitasking scheduler of the operating system for obtaining a good workload
distribution. Clearly, also the number of running threads has to be controlled.

In order to satisfy both requirements, in our implementation: (i) we let the user set
the number of concurrently running thread (an adequate value is given by a multiple
of the number of available CPUs so that preemptive multitasking is exploited for load
balancing); and (ii) we implemented and tuned an heuristics that allows for selecting
an optimal split size for each rule. Note that the second task is not trivial, since the time
needed for evaluating each rule is not known a priori.

More in detail, our method computes an estimation e(r) of the amount of work re-
quired for evaluating each rule r of the program (just before r has to be instantiated)
then, it exploits e(r) for associating to r its split size among three empirically-defined
values: small, large, and no split (i.e. sequential evaluation) 1;. Basically, very easy rules
are evaluated sequentially, since the overhead introduced by threads is higher than their
expected evaluation time (granularity control); whereas, for hard rules a small split
size is employed for obtaining a finer distribution of work; finally, easy rules, whose
computation can still exploit some parallelism, are evaluated using a large split size for
minimizing the overheads. The estimation e(r) is obtained by combining (actually sum-
ming) two factors: the number of comparisons made by our algorithm and the number
of operations needed to compute and print the output (“size of the corresponding join”).
The latter is motivated by the similarities between the rule instantiation process and the
evaluation of a join in a database system. In the following, we describe how the two
factors have been estimated.

Size of the join. The size of the join between two relations R and S with one or more
common variables can be estimated, according to [17], as follows:

T (R 1 S) =
T (R) ·T (S)

∏
X∈var(R)∩var(S) max {V (X, R) , V (X, S)}

where T (R) is the number of tuples in R, and V (X, R) (called selectivity) is the
number of distinct values assumed by the variable X in R. For joins with more relations
one can repeatedly apply this formula to couple of body predicates according to a given
evaluation order.

1 Note that in case of recursive rules, a new distribution is performed each time they are pro-
cessed (according semi-naı̈ve evaluation [2]); thus obtaining a dynamic load balancing.



Problem small medium large Heuristics
3col1 11. 50 (0. 11) 8. 57 (0. 01) 8. 57 (0. 07) 8. 91 (0. 04)
3col2 14. 42 (0. 15) 11. 68 (0. 13) 11. 89 (0. 05) 11. 29 (0. 20)
3col3 23. 01 (0. 23) 19. 68 (1. 06) 19. 57 (0. 04) 18. 46 (0. 19)
reach2 60. 73 (0. 17) 40. 73 (0. 18) 39. 92 (0. 32) 39. 70 (0. 12)
reach3 129. 78 (0. 77) 84. 67 (0. 30) 82. 78 (0. 32) 82. 44 (0. 52)
ramsey1 44. 00 (0. 77) 91. 04 (0. 65) 95. 92 (0. 12) 43. 19 (0. 31)
ramsey2 72. 38 (0. 40) 170. 51 (1. 28) 236. 82 (2. 76) 71. 96 (0. 21)
ramsey3 112. 66 (0. 71) 286. 64 (0. 74) 294. 51 (2. 51) 111. 02 (0. 13)

Table 1. Result for different size of the split - result for heuristics choice.

Number of comparisons. An approximation of the number of comparison done for
instantiating a rule r is: C(r) =

∑
x∈X(r)

∏
l∈L(r,x) V (x, l), where X(r) is the set

of variables that appear in at least two literals in the body of r, L(r, x) is the set of
body literals in which x occurs; and V (x, l) is the selectivity of x in the extension of
l. Roughly, the number of comparisons is approximated by sum of the products of the
number of distinct values assumed by each join variable in the body of r.

3 Experiments

We implemented our heuristics and tested its efficacy in a collection of benchmark pro-
grams already used for assessing ASP instantiators performance ([11, 18, 19]). In par-
ticular, we considered the following well-known problems: 3-colorability, Reachability
and Ramsey Numbers; for space reasons we do not report the encodings (they are avail-
able at http://www.mat.unical.it/ricca/downloads/cilc09.zip),
for a detailed problems description refer to [11, 19, 3]. The machine used for the exper-
iments is a two-processor Intel Xeon “Woodcrcaratteriest” (quad core) 3GHz machine
with 4MB of L2 Cache and 4GB of RAM, running Debian GNU Linux 4. 0. We set
the number of concurrent splits to 32 (the quadruple of available processors). Actually,
an experimental analysis (not reported here for space reasons) confirmed that this fixed
setting is optimal for the available hardware.

We measured the performance of the system in the case of some growing (fixed)
split sizes (small=1 tuple, medium=50 tuples, large=100 tuples)2, and when the new
heuristics is employed. In order to obtain more trustworthy results, each single exper-
iment was repeated three times, and both the average and standard deviation of the
results are reported in Table 1. In particular, the first three columns contain the average
instantiation times (and standard deviation) for the different split sizes, while last col-
umn reports the performance obtained by applying the heuristics. The fixed setting that
obtains the best result is reported in bold face for each instance.

First of all we notice that the performance of the heuristics version is always optimal
and overcomes the better fixed setting in most cases, since it benefits from the selection
of a different split size for each rule of the program.3.

About Ramsey, since the encoding is composed of few “very easy” rules and two
“hard” constraints, the best split size choice for the entire program is the smaller one
(see Table 1). We verified that the version with the heuristics evaluates sequentially the

2 More experiments have been done on different split size; we reported here the most significant.
3 In addition, we observed that performance gains (w.r.t. serial execution) range form about

700% up to 790% in the best setting, which is near to the theoretical limit for eight-processors.



rules and selects a small split size for the constraints, thus resulting the best performer.
Dual considerations hold for 3col, where the best split size for the entire program is
the largest (third column), since the evaluation of rules requiring a medium/large split
sizes dominates the computation time. Still, the version equipped with the heuristics,
overcomes the results of the fixed split size, as it chooses a large split size for the rule,
and a small split size for the constraints. The application of the heuristics to reachability
(the encoding is composed of two “easy” rules, one of which is recursive) results in the
selection of large split size and sequential evaluation respectively for the two input rules,
and this choice results to be still more appropriate.

As far as future work is concerned, we are experimenting for a finer tuning of the
heuristics, and we are considering a larger set of problems. Moreover, we planned to test
the system behavior when more than 8 processors are available (probably by exploiting
a simulation environment).

References

1. Stallings, W.: Operating systems (3rd ed.): internals and design principles. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)

2. Calimeri, F., Perri, S., Ricca, F.:Experimenting with Parallelism for the Instantiation of ASP
Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1–3) (2008) 34–54

3. Vescio, S., Perri, S., Ricca, F.: Efficient Parallel ASP Instantiation via Dynamic Rewriting.
In: ASPOCP 2008, Udine, Italy (2008)

4. Lopez, P., Hermenegildo, M., Debray, S.: A Methodology for Granularity Based Control of
Parallelism in Logic Programs. In: J. Symbolic Computation (1996), 22, 715-734

5. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9 (1991) 365–385

6. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: (ICLP’99) 23–37
7. Marek, V. W. , Truszczyński, M. : Stable Models and an Alternative Logic Programming

Paradigm. In: The Logic Programming Paradigm-A 25-Year Perspective. (1999) 375–398
8. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
9. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog

perspective . Artificial Intelligence 138(1–2) (2002) 3–38
10. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database

Systems 22(3) (September 1997) 364–418
11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562
12. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys 33(3) (2001) 374–425
13. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,

E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

14. Curia, R., Ettorre, M., Gallucci, L., Iiritano, S., Rullo, P.: Textual Document Pre-Processing
and Feature Extraction in OLEX. In: Data Mining VI, WIT Pres, 2005, pp. 163-173

15. Massacci, F.: Computer Aided Security Requirements Engineering with ASP Non-
monotonic Reasoning, ASP and Constraints, Seminar N 05171. Dagstuhl Seminar (2005)



16. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. Proceedings ASP05, Bath, UK (July 2005) 248–262

17. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press
(1989)

18. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
first answer set programming system competition. In: LPNMR 2007,LCNCS 4483,3-17

19. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by backjumping
techniques. Annals of Mathematics and Artificial Intelligence 51(2–4) (2007) 195–228


