A Parallel ASP Instantiator Based on DLV

Simona Perri

Francesco Ricca

Marco Sirianni

Dipartimento di Matematica, Universita della Calabria, 87030 Rende, Italy
perri,ricca,sirianni@mat.unical.it

Abstract

Answer Set Programming (ASP) is a purely-declarative logic pro-
gramming language allowing for disjunction and nonmonotonic
negation. The evaluation of ASP programs is traditionally carried
out in two steps. In the first step an input program P undergoes
the so-called instantiation (or grounding) process, which produces
a program P’ semantically equivalent to P, but not containing any
variable; in turn, P’ is evaluated by using a backtracking search
algorithm in the second step. It is well-known that instantiation is
important for the efficiency of the whole evaluation, might becomes
a bottleneck in common situations, and is particularly crucial when
huge input data has to be dealt with. In the last few years, sev-
eral instantiators have been proposed but none of them is able to
take advantage from the latest hardware offering SMP (Symmetric
MultiProcessing) also for entry-level systems and PCs. This paper
presents a new parallel version of the instantiator of DLV which is
able to exploit the processing power offered by multi-core/multi-
processor SMP machines. In particular, the employed paralleliza-
tion methods, load-balancing and granularity control heuristics, tai-
lored for parallel ASP instantiation process are described. The re-
sults of an experimental analysis are also presented, which confirm
that multi-core/multi-processor technology can be efficiently ex-
ploited for ASP instantiation.

Categories and Subject Descriptors D.1.6 [Programming tech-
niques]: Logic Programming

General Terms Algorithms, Experimentation

Keywords Answer Set Programming, Instantiation, Grounding,
Parallelism

1. Introduction

Answer Set Programming (ASP) [5, 11, 13, 22, 23,33,35] is a
purely declarative programming paradigm based on nonmonotonic
reasoning and logic programming.' The language of ASP is based

I'The term “Answer Set Programming” was introduced by Vladimir Lifs-
chitz in his invited talk at ICLP’99 to denote a declarative programming
methodology. Concerning terminology, ASP is sometimes used in a some-
what broader sense, referring to any declarative formalism, which repre-
sents solutions as sets. However, the more frequent understanding is the one
adopted in this article, which dates back to [23]. For introductory material
on ASP, we refer to [5, 22, 33, 35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAMP’10, January 19,2010, Madrid, Spain.

Copyright © 2010 ACM 978-1-60558-859-9/10/01...$10.00

on rules, allowing (in general) for both disjunction in rule heads
and nonmonotonic negation in the body. The idea of answer set
programming is to represent a given computational problem by a
logic program the answer sets of which correspond to solutions, and
then, use an answer set solver to find such solutions [33]. The main
advantage of ASP is its high declarative nature combined with a
relatively high expressive power [9, 30]; but this comes at the price
of a high computational cost, which makes the implementation of
efficient ASP systems a difficult task. Some effort has been made
to this end, and, after some pioneering work [6, 44], there are
nowadays a number of systems that support ASP and its variants
[2,3,19,25,26,30-32, 34, 37, 42].

Traditionally, the kernel modules of such systems operate on a
ground instantiation of the input program, i.e. a program that does
not contain any variable, but is semantically equivalent to the orig-
inal input [12]. Therefore, an input program P first undergoes the
so-called instantiation process, which produces a program P’ se-
mantically equivalent to 7P, but not containing any variable. This
phase is computationally expensive (see [9, 11]); and, nowadays,
it is widely recognized that having an efficient instantiation pro-
cedure is crucial for the performance of the entire ASP system.
Many optimization techniques have been proposed for this purpose
[15, 28, 29]; nevertheless, the performance of instantiators is still
not acceptable in many cases, especially when the input data are
significantly large (real-world instances, for example, may count
hundreds of thousands of tuples).

In this scenario, significant performance improvements can be
obtained by exploiting modern multi-core/multi-processor SMP
[43, 45] machines, featuring several CPU in the same case. In the
past only expensive servers and workstations supported this tech-
nology; whereas, at the time of this writing, most of the personal
computers systems and even laptops, are equipped with (at least
one) dual-core processor. This means that the benefits of true paral-
lel processing are enjoyable also in entry-level systems and PCs.
However, traditional ASP instantiators were not developed with
multi-processor/multi-core hardware in mind, and are unable to
fully exploit the computational power offered by modern machines.

This paper presents a system for the parallel instantiation of
ASP programs, which is able to exploit the computational power
offered by multi-core/multi-processor machines for obtaining a
faster instantiation. The system is based on the state-of-the-art
ASP instantiator of the DLV system [30]; moreover it extends the
recently-proposed [7] techniques for parallel ASP instantiation by
introducing a number of relevant improvements: (¢) parallelism is
exploited in three different stages of the computation® (component
level, rule level, single rule level); and (4¢) dynamic load balancing
and granularity control strategies based on computationally-cheap
heuristics are supported. In this way, the efficacy of the system
is no-more limited to programs with many rules (as in [7]), and

2 Preliminary results have been presented in [38].

also the particularly (common and) difficult-to-parallelize class of
programs with few rules is handled in an effective way.

An experimental activity is also reported, that was carried out
on a variety of publicly-available benchmarks already exploited
for evaluating the performance of instantiation systems. The results
are very promising: superlinear speedups are observed in the case
of easy-to-parallelize problem instances; and, nearly optimal effi-
ciencies are measured in the case of hard-to-parallelize problem
instances.

The remainder of the paper is structured as follows: Section 2
outlines some basic notions of Answer Set Programming; Section 3
describes the employed parallel instantiation strategies; Section 4
gives an overview of the system implementation; Section 5 dis-
cusses the results of the experiments carried out in order to evalu-
ate the performance of the system; finally, Section 6 is devoted to
related works, and Section 7 draws some conclusions.

2. Answer Set Programming

In this section, we briefly recall syntax and semantics of Answer
Set Programming.

Syntax. A variable or a constant is a term. An atom is a(t1, ...,
tn), where a is a predicate of arity n and t1,...,t, are terms. A
literal is either a positive literal p or a negative literal not p, where
p is an atom. A disjunctive rule (rule, for short) r is a formula
a1 V -+ V an = by, - ,bg, not byy1,---, not by,. where
ai, -+ ,Qn,b1, -+ by are atoms and n > 0, m > k > 0.
The disjunction a; V V an is the head of r, while the
conjunction by, ..., bg, not bgy1,..., not by, is the body of r.
A rule without head literals (i.e. n = 0) is usually referred to as
an integrity constraint. If the body is empty (i.e. k = m = 0),
it is called a fact. H(r) denotes the set {a1,...,an} of the head
atoms, and by B(r) the set {b1, ..., b, not bg11,...,not by, } of
the body literals. BT (r) (resp., B~ (r)) denotes the set of atoms
occurring positively (resp., negatively) in B(r). A rule r is safe if
each variable appearing in r appears also in some positive body
literal of r.

An ASP program P is a finite set of safe rules. An atom, a
literal, a rule, or a program is ground if no variables appear in it.
Accordingly with the database terminology, a predicate occurring
only in facts is referred to as an EDB predicate, all others as IDB
predicates; the set of facts of P is denoted by EDB(P).

Semantics. Let P be a program. The Herbrand Universe and the
Herbrand Base of P are defined in the standard way and denoted
by Up and Bp, respectively.

Given a rule occurring in P, a ground instance of r is a rule
obtained from r by replacing every variable X inr by o (X), where
o is a substitution mapping the variables occurring in r to constants
in Up; ground(P) denotes the set of all the ground instances of the
rules occurring in P.

An interpretation for P is a set of ground atoms, that is, an
interpretation is a subset I of Bp. A ground positive literal A is
true (resp.,false)y wrt. I if A € I (resp., A & I). A ground negative
literal not A is true w.r.t. I if A is false w.r.t. I; otherwise not A is
false w.r.t. I. Let r be a ground rule in ground(P). The head of r is
truew.rt. I if H(r)NI # (. The body of 7 is true w.r.t. I if all body
literals of r are true w.rt. I (ie., BY(r) C I and B~ (r) NI = ()
and is false w.r.t. I otherwise. The rule r is satisfied (or true) w.r.t.
I if its head is true w.r.t. [or its body is false w.r.t. . A model for P
is an interpretation M for P such that every rule r € ground(P)
is true w.r.t. M. A model M for P is minimal if no model N for P
exists such that N is a proper subset of M. The set of all minimal
models for P is denoted by MM(P).

Given a ground program P and an interpretation I, the reduct
of P w.rt. I is the subset P! of P, which is obtained from P by

deleting rules in which a body literal is false w.r.t. I. Note that the
above definition of reduct, proposed in [16], simplifies the original
definition of Gelfond-Lifschitz (GL) transform [23], but is fully
equivalent to the GL transform for the definition of answer sets
[16].

Let I be an interpretation for a program P. I is an answer set
(or stable model) for P if I € MM(PI) (i.e., I is a minimal model
for the program Py [23, 40]. The set of all answer sets for P is
denoted by ANS(P).

3. Parallel Instantiation of ASP Programs

In this Section we briefly describe the employed techniques for the
parallel instantiation of ASP Programs first; and then, we describe
the dynamic load balancing and granularity control strategy em-
ployed in the system.

In particular, we show that according to such techniques, three
levels of parallelism can be exploited during the instantiation pro-
cess, namely, components, rules and single rule level. The first level
allows for instantiating in parallel subprograms of the program in
input and it is especially useful when handling programs contain-
ing parts which are, somehow, independent. The second one, the
rules level, allows for the parallel evaluation of rules within a given
subprogram and it is thus useful when the number of rules in the
subprograms is high. The third one, the single rule level, allows
for the parallel evaluation of a single rule and it is thus crucial for
the parallelization of programs with few rules, where the first two
levels are almost not applicable.

The first two levels were first employed in [7] while the third
one was preliminarily presented in [38]. A detailed description of
these techniques is out of the scope of this paper. For further details,
we refer the reader to [7, 38].

3.1 Parallel Instantiation Techniques

Components Level. The first level of parallelism, called Compo-
nents Level essentially consists on dividing the input program P
into subprograms, according to the dependencies among the IDB
predicates of P, and by identifying which of them can be eval-
uated in parallel. More in detail, each program P is associated
with a graph, called the Dependency Graph of P, which, intu-
itively, describes how IDB predicates of P depend on each other.
For a program P, the Dependency Graph of P is a directed graph
Gp = (N, E), where N is a set of nodes and E is a set of arcs. N
contains a node for each IDB predicate of P, and E contains an arc
e = (p, q) if there is a rule r in P such that g occurs in the head of
r and p occurs in a positive literal of the body of .

The graph G induces a subdivision of P into subprograms
(also called modules) allowing for a modular evaluation. We say
that a rule r € P defines a predicate p if p appears in the head of 7.
For each strongly connected component (SCC) *C' of G'p, the set
of rules defining all the predicates in C is called module of C'. A
rule occurring in a module of a component C (i.e., defining some
predicate € C) is said to be recursive if there is a predicate p € C'
occurring in the positive body of r; otherwise, r is said to be an exit
rule. Moreover, a partial ordering among the SCCs is induced by
G'p, defined as follows: for any pair of SCCs A, B of Gp, we say
that B directly depends on A if there is an arc from a predicate of
A to a predicate of B; and, B depends on A if there is a path in Gp
from Ato B.

According to such definitions, the instantiation of the input
program P can be carried out by separately evaluating its modules;
if the evaluation order of the modules respects the above mentioned
partial ordering then a small ground program is produced. Indeed,

3 A strongly connected component of a directed graph is a maximal subset
of the vertices, such that every vertex is reachable from every other vertex.

this gives the possibility to compute ground instances of rules
containing only atoms which can possibly be derived from P (thus,
avoiding the combinatorial explosion which can be obtained by
naively considering all the atoms in the Herbrand Base).

Intuitively, this partial ordering guarantees that a component A
precedes a component B if the program module corresponding to
A has to be evaluated before the one of B (because the evalua-
tion of A produces data which are needed for the instantiation of
B). Moreover, the partial ordering allows for determining which
modules can be evaluated in parallel. Indeed, if two components A
and B, do not depend on each other, then the instantiation of the
corresponding program modules can be performed simultaneously,
because the instantiation of A does not require the data produced
by the instantiation of B and vice versa. The dependency among
components is thus the principle underlying the first level of paral-
lelism. At this level subprograms can be evaluated in parallel, but
still the evaluation of each subprogram is sequential *

Rules Level. The second level of parallelism, called the Rules
Level, allows for concurrently evaluating the rules within each
module. According to this technique, rules are evaluated following
a semi-naive schema [47] and the parallelism is exploited for the
evaluation of both exit and recursive rules. More in detail, for the
instantiation of a module M, first all exit rules are processed in
parallel by exploiting the data (ground atoms) computed during
the instantiation of the modules which M depends on (according
to the partial ordering induced by the dependency graph). Only
afterward, recursive rules are processed in parallel several times
by applying a semi-naive evaluation technique. At each iteration n,
the instantiation of all the recursive rules is performed concurrently
and by exploiting only the significant information derived during
iteration n — 1. This is done by partitioning significant atoms into
three sets: AS, S and NS. NS is filled with atoms computed
during current iteration (say n); AS contains atoms computed
during previous iteration (say n — 1); and, S contains the ones
previously computed (up to iteration n — 2).

Initially, AS and NS are empty; while .S contains all the infor-
mation previously derived in the instantiation process. At the be-
ginning of each new iteration, N.S is assigned to AS, i.e. the new
information derived during iteration n is considered as significant
information for iteration n + 1. Then, the recursive rules are pro-
cessed simultaneously and each of them uses the information con-
tained in the set AS; at the end of the iteration, when the evaluation
of all rules is terminated, the set AS is added to the set S (since it
has already been exploited). The evaluation stops whenever no new
information has been derived (i.e. NS = 0).

Single Rule Level. The techniques described above, concerning
the first two levels of parallelism, were firstly employed in [7] and
are very effective when handling with long programs. However,
when the input program consists of few rules, their efficacy is
drastically reduced, and there are cases where components and
rules parallelism is not exploitable at all.

Consider for instance the following program P encoding the
well-known 3-colorability problem:

(r) col(X,red) V col(X,yellow) V col(X, green) :— node(X).
(¢) = edge(X,Y),col(X,C), col(Y,C).

The two levels of parallelism described above have no effects on
the evaluation of P. Indeed, this encoding consists of only two

4Note that, for the sake of clarity, a simplified version of the technique
presented in [7] has been described. The original one is quite more involved
and takes into account also negative dependencies among predicates. Many
details have been omitted since they do not give additional insight for the
comprehension of the idea underlying the technique.

rules which have to be evaluated sequentially, since, intuitively, the
instantiation of (r) produces the ground atoms with predicate col
which are necessary for the evaluation of (c).

For the instantiation of this kind of programs a third level is
necessary for the parallel evaluation of each single rule, which
is therefore called Single Rule Level. To this aim, a strategy has
been presented in [38] which allows for parallelizing the evaluation
of a rule on the base of a dynamic rewriting of the program.
Oversimplifying, the basic idea of single rule level parallelism
consists in rewriting the program rules into a number of new rules
whose evaluation can be performed simultaneously by applying the
techniques described above.

For instance, rule (c) in the previous example can be rewritten
as follows:

(c1) = edge1(X,Y),col(X,C), col(Y,C).
(c2) = edge2(X,Y),col(X,C), col(Y,C).

(cn) = edgen(X,Y), col(X,C), col(Y,C).

by splitting the set of ground atoms with predicate edge (also
called the extension of edge), into a number of subsets. The ob-
tained rules can be evaluated in parallel and the instantiation pro-
duced is equivalent (modulo renaming) to the original one. How-
ever, in general, many ways for rewriting a program may exist (for
instance, in the case of (c), col can be split up instead of edge) and
the choice of the literal to split has to be carefully made, since it
may strongly affect the cost of the instantiation of rules. Indeed, a
“bad” split might reduce or neutralize the benefits of parallelism,
thus making the overall time consumed by the parallel evaluation
not optimal (and, in some corner case, even worse than the time re-
quired to instantiate the original encoding). Moreover, if the predi-
cate to split is an IDB predicate (as in the case col) a static rewriting
would lead to quite complex encodings possibly requiring a slower
instantiation; in this case a rewriting performed at running time is
more suitable, since it can be applied when the extension of the
IDB predicate has already been computed.

In our system, rules are rewritten at execution time, thus dy-
namically distributing the workload among processing units, and a
heuristics is used for determining the literal to split. More in detail,
the strategy works as follows: a rule r is rewritten at execution time
by splitting the extension of one single body (either EDB or IDB)
predicate p of r (chosen according to a heuristics) in several parts.
Each part is associated with a different temporary predicate; and,
for each of those predicates, say p;, a new rule called split rule,
obtained by replacing p with p;, is produced. The so-created rules
will be instantiated in parallel in place of r (temporary predicate
names are recognized when output is produced and replaced with
original names in order to obtain the same output of the standard
algorithm). Hereafter, we refer to the number of split rules as split
number (or, equivalently, number of splits), and to the size of the
extensions of each split predicate as split size.

Concerning the selection of the literal to split, the choice has
to be carefully made, since it may strongly affect the cost of the
instantiation of rules; a good heuristics should minimize it. It is
well-known that this cost strictly depends on the order of evalua-
tion of body literals, since computing all the possible instantiations
of arule is equivalent to computing all the answers of a conjunctive
query joining the extensions of literals of the rule body. A prag-
matic choice is to select an optimal ordering and split the first lit-
eral in this order. Note that, since the instantiation of a body rule
basically follows a nested-tuple strategy proceeding from left to
right, splitting on the first literal minimizes the number of repeated
match operations (see [38] for further insights). Since the order-
ing problem has already been investigated and an effective strategy
[28] has already been successfully implemented in DLV, it was
decided to adopt it. This choice has also another important conse-

quence: since all the factors the heuristics is based on are always
already computed during the computation, its implementation does
not introduce any overhead.

3.2 Load Balancing and Granularity Control

An advanced implementation of a parallel system has to deal with
two important issues that strongly affect the performance: load
balancing and granularity control. Indeed, if the workload is not
uniformly distributed to the available processors then the benefits
of parallelization are not fully obtained; moreover, if the amount of
work assigned to each parallel processing unit is too small then the
(unavoidable) overheads due to creation and scheduling of parallel
tasks might overcome the advantages of parallel evaluation (in a
corner case, adopting a sequential evaluation might be preferable).

In this respect, the number of splits allowed for each rule di-
rectly determines the split size and, thus the “amount of work™ as-
signed to different threads. As an example, consider the case in
which we are running on a two processor machine the instantiation
of a rule r and that, by applying dynamic rewriting, r is rewrit-
ten into two split rules. Assume also that the extension of the split
predicate of r is divided into two subsets with, approximatively,
the same size. Then, each split rule will be processed by a thread;
and the two threads will possibly run separately on the two avail-
able processors. For limiting the inactivity time of the processors,
it would be desirable that the threads terminate their execution al-
most at the same time. Unfortunately, this is not always the case,
because subdividing the extension of the split predicate in equal
parts does not ensure that the workload is equally spread between
threads. However, if we consider a larger number of split, a further
subdivision of the workload will be implied, and, the inactivity time
would be more likely limited.

Clearly, it is crucial to guarantee that the parallel instantiation
of a rule is not more time-consuming than its serial instantiation;
and that an unbalanced workload distribution does not introduce
significant delays and limits the overall performance. Nevertheless,
it is necessary to control the number of threads, in order to save
system resources. In order to satisfy all these requirements, ()
we imposed a limit to the number of concurrently running threads
which is user-defined (an adequate setting is a multiple of the
number of available CPUs); and, (i) we devised and tuned a
heuristics that selects dynamically the size of the split depending
on the rule at hand (and different rules in the same programs may
be assigned to different split sizes).

In detail, our method computes a heuristic value WW(r) that acts
as a litmus paper indicating the amount of work required for evalu-
ating each rule r of the program, and so, its “hardness”, just before
its instantiation; then, it uses YW (r) to decide an appropriate split
size. In particular, the size of the split should be sufficiently large to
avoid thread management overhead (granularity control); and suf-
ficiently small to exploit the preemptive multitasking scheduler of
the operating system for obtaining a good workload distribution
(load balancing).

Granularity Control is obtained by comparing, before instantiat-
ing each rule r, YV(r) to an empirically-determined threshold wseq;
if W(r) > wseq then the rule is scheduled for parallel instantia-
tion, otherwise a sequential instantiation is performed. The idea is
that: it is more convenient to perform a sequential instantiation of
“very easy” rules since the overhead introduced by threads might
be larger than their expected evaluation time.

Load Balancing is obtained by splitting rules in equally-sized
splits. In particular, each rule is split by dividing the extension of
the first predicate by a number which is multiple of the number of
processors. This strategy resulted to be sufficient in most cases,
but required a refinement in the case of “very hard” rules. In

particular, when a rule is assessed to be “hard” by comparing
the estimated work with another empirically-determined threshold
OWV(r) > weq), a finer work distribution (exploiting an unary split
size) is performed for the last s — n,, splits, where s is the number
of split and n,, is the number of processors. The intuition here is
that, if a rule is hard to instantiate then it is more likely that its
splits are also hard, and thus an uneven distribution of the splits
to the available processors in the last part of the computation might
cause a sensible loss of efficiency. Thus, further subdividing the last
“hard” splits, may help to distribute in a finer way the workload in
the last part of the computation.

Computation of heuristic values. VV(r) is obtained by combin-
ing two estimations: 7 (r) and C(r). First, note that computing all
the possible instantiations of a rule is equivalent to calculate all the
answers of a conjunctive query. Thus, we considered J(r) that is
an estimation of the size of the join corresponding to the evaluation
of the body of r. Moreover, since in the instantiation of rules with
several join variables the running time is mostly due to variable
matching, we considered C(r) that is an estimation of the num-
ber of comparisons made by the instantiation algorithm (roughly,
we considered C(r) because even producing a small output might
require a considerable amount of time due to many matching fail-
ures). The two components of W(r) are estimated as follows:

e Size of the join: the size of the join between two relations R
and S with one or more common variables can be estimated,
according to [48] as follows:

T(R)-T(S)

HXEvaT(R)ﬁvar(S) max {V (X7 R) vV (Xr S)}

where T (R) is the number of tuples in R, and V (X, R)
(called selectivity) is the number of distinct values assumed
by the variable X in R. For joins with more relations one
can repeatedly apply this formula to pair of body predicates
according to a given evaluation order for computing 7 (7). The
interested reader can find a more detailed discussion on this
estimation in [48].

T(RXS) =

e Number of comparisons: an approximation of the number of
comparisons done for instantiating a rule r is:

ciry= > I vx.n

XeX(r) LeL(r,X)

where X' () is the set of variables that appear in at least two

literals in the body of =, L(R, X) is the set of body literals
in which X occurs; and V (X, L) is the selectivity of X in
the extension of L. Roughly, the number of comparisons is
approximated by the sum of the product of the number of
distinct values assumed by each join variable in 7.

4. System Architecture and Implementation

The parallelization techniques described in the previous Section
were implemented in the instantiation module of DLV [30]. The
original instantiation algorithm of DLV was developed in the C++
language, and its parallel version has been implemented by exploit-
ing the Linux POSIX Thread API, shipped with the GCC 4.3.3
compiler. An overview of the system architecture is depicted in
Figure 1. An input program P first undergoes the parsing proce-
dure, which maps P into the internal data structures of DLV. More-
over, the dependency graph associated to the program is created,
and the corresponding program modules identified. Then, a num-
ber of threads are spawned: n. threads working at the components
level, n, threads working at the rules level, and ns threads work-
ing at the single rule level. Afterwards the master thread, which
is responsible for managing the whole evaluation process, starts
the instantiation process. Basically, it exploits the information on

Component graph evaluation '/ ! < Syncronization
Component Thread AN

ONE
A A
V/psh\l /pup\ls

Input
_—— parse, _> e round Parallel
B ffer

Z N
V/ pop N\ ‘/ push \ \/ pop
R IeSpItTh ad R‘ Thread
Rule Split Thread : Rule Thread

SINGLE RULE PARALLELISM H

(Heunsn:s for Load Balancing and Granularity Control)

Figure 1. System Architecture

modules dependency to schedule independent components in the
component buffer. The component threads process the components
placed in the component buffer according to the strategy explained
in the previous section. Each rule of the component that has to
be processed is pushed into the rule buffer. Then each component
thread waits until all scheduled rules are instantiated; and, in pres-
ence of recursive rules it reiterates the rules scheduling until the
end of the semi-naive algorithm. When all the rules of a component
are completely instantiated the component thread notifies that the
component has been processed to the master thread that might con-
tinue by scheduling the remaining components (if any) or stop the
instantiation. Similarly, rule threads take the rules to be processed
from the rule buffer, notify to the originating component threads
when the rule-instantiation task is concluded. According with the
heuristics described in the previous section each rule instantiator
thread chooses among sequential evaluation or dynamic rewriting.
Rewritten rules are pushed into a third buffer and processed by split
threads. Split threads, in turn, take a split rule from the buffer and
call the original rule instantiation procedure of the DLV system;
when the the instantiation task is concluded the originating rule
thread is notified.

5. Experiments

In order to assess the performance of our parallel instantiator we
carried out an experimental activity, reported in this section.

The machine used for the experiments is a two-processor Intel
Xeon “Woodcrest” (quad core) 3GHz machine with 4MB of L2
Cache and 4GB of RAM, running Debian GNU Linux 4.0. We
measured the efficiency of the instantiator, and test its behavior
when the number of available CPUs is between 2 and 8. To do
so, we exploited the available hardware, enabling several fixed
numbers of CPUs. We enabled/disabled the CPUS by running the
following bash Linux commands:

echo 0 >> /sys/devices/system/cpu/cpu—n/online

that disables the cpu — n CPU; and

echo 1 >> /sys/devices/system/cpu/cpu—n/online

to re-enable the same CPU.

Since our techniques focus on instantiation, all the results of
the experimental analysis refer only to the instantiation process
rather than the whole process of computing answer sets; in addition,
the time spent before the grounding stage is obviously the same
both for parallel and non-parallel version. In order to obtain more
trustworthy results, each single experiment has been repeated five
times.

In the following, we briefly describe both benchmark problems
and data. In order to meet space constraints, encodings are not pre-
sented but they are available, together with the employed instances,
and the binaries, at http://www.mat.unical.it/ricca/
downloads/parallelground09.zip. Rather, to help the
understanding of the results, some information is given on the num-
ber of rules of each program.

5.1 Benchmark Problems and Data

The benchmark problems can be grouped into two different classes:
the first class is composed of some well-know combinatorial prob-
lems, namely Ramsey Numbers, 3-Colorability, Hamiltonian Path,
Reachability, and N-Queens. These benchmark problems have been
already used for assessing ASP instantiator performance ([20, 30]).
Problems belonging to this class are, indeed, particularly difficult
to parallelize due to the compactness of their encodings; note also
that, such kind of programs are quite common given the declara-
tive nature of the ASP language which allows to compactly encode
even very hard problems. About data, we considered five instances
of increasing difficulty for each problem, except for the Hamilto-
nian Path problem, for which we considered thirteen instances of
increasing size; and, for obtaining more significant results, we con-
sidered instances where the instantiation time is non negligible.

The second class of problems is composed of problems taken
from some practical application of ASP, namely Timetabling, and
Food.

Ramsey Numbers. The Ramsey number ramsey(k,m) is the
least integer n such that, no matter how the edges of the com-
plete undirected graph (clique) with n nodes are colored using two
colors, say red and blue, there is a red clique with k nodes (a red
k-clique) or a blue clique with m nodes (a blue m-clique).The en-
coding of this problem consists of one rule and two constraints. For
the experiments, the problem was considered of deciding whether,
fork =7,m = 7,and n € {31, 32,33, 34, 35}, n is the Ramsey
number ramsey(k, m).

3-Colorability. This well-known problem asks for an assign-
ment of three colors to the nodes of a graph, in such a way
that adjacent nodes always have different colors. The encoding
of this problem consists of one rule and one constraint. Three
simplex graphs were generated with the Stanford GraphBase li-
brary [27], by using the function simplex(n,n,—2,0, 0,0,0),
(n € {150,170, 190, 210, 230}).

Reachability. Given a finite directed graph G = (V, A), we
want to compute all pairs of nodes (a,b) € V x V (i) such that
b is reachable from a through a nonempty sequence of arcs in
A. The encoding of this problem consists of one exit rule and a
recursive one. Tree trees were generated [46] having pair (number
of levels, number of siblings): (9,3),(7,5),(14,2),(10,3) and (15,2),
respectively.

Hamiltonian Path. A classical NP-complete problem in graph
theory, which can be expressed as follows: given a directed graph
G = (V, E) and anode a € V of this graph, does there exist a path
in G starting at a and passing through each node in V" exactly once.
The encoding of this problem consists of several rules, one of these
is recursive. Instances were generated, by using a tool by Patrik
Simons (cf. [41]), having 100, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, 10000, 11000 and 12000. nodes, respectively.

n-Queens. The 8-queens puzzle is the problem of putting eight
chess queens on an 8x8 chessboard such that none of them is
able to capture any other using the standard chess queen’s moves.
The n-queens puzzle is the more general problem of placing n
queens on an nxn chessboard (n > 4). The encoding consists

Instantiation time
Problem serial 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queensy 4,31 (0,03) 228 (0.01) 1.55(0.04) 1.18 (0.01) 0.97 (0.02) 0.81(0.01) 0.71 (0.01) 0.63 (0.01)
queensa 543 (0,01) 2.80 (0.01) 1.89 (0.00) 1.44(0.01) 1.17 (0.01) 1.00 (0.01) 0.87 (0.01) 0.78 (0.02)
queenss 6,66 (0,05) 3.40(0.01) 229 (0.01) 1.76 (0.01) 1.45(0.07) 1.20 (0.01) 1.04 (0.01) 0.93 (0.02)
queensy 7,96 (0,03) 4.25(0.26) 2.83(0.12) 2.10 (0.02) 1.70 (0.01) 1.43(0.01) 1.26 (0.00) 1.11 (0.00)
queenss 9,48 (0,04) 4.87(0.01) 3.30 (0.03) 248 (0.01) 2.02 (0.01) 1.70 (0.01) 1.48 (0.02) 1.32(0.01)
ramseyy 377.36 (0.05) 19420 (0.48) | 129.61(0.22) 97.95 (0.48) 78.37 (0.15) 65.85(0.15) 56.91 (0.26) 50.44 (0.20)
ramseys 485.88 (0.13) 251.09 (0.49) | 167.49(0.30) | 126.34(0.25) | 101.47(0.31) 85.07 (0.23) 73.48 (0.40) 65.27 (0.85)
ramseys 616.81 (0.21) 319.17(0.59) | 212.29(0.41) | 159.95(0.31) | 129.00(0.73) | 107.96 (0.28) 93.21(0.35) 82.07 (0.18)
ramsey, 790.51 (0.17) 405.63 (0.73) | 270.15(0.64) | 203.77(0.24) | 163.75(0.32) | 137.36 (0.67) | 118.94(0.42) | 104.31(0.25)
ramseys 944.18 (0.09) 485.88(0.74) | 323.48(0.25) | 243.63(0.60) | 195.89(0.24) | 164.51(046) | 141.69(048) | 124.76 (0.45)
3coly 87.29 (0.08) 40.65 (0.28) 27.30 (0.52) 21.14 (0.18) 17.03 (0.14) 14.52 (0.04) 12.74 (0.09) 11.41 (0.10)
3cola 145.50 (0.10) 67.61 (1.56) 45.15(0.77) 3547 (1.01) 27.59 (0.30) 23.75(0.32) 20.37 (0.42) 18.45 (0.28)
3cols 247.71 (0.23) 114.08 (3.72) 73.12 (2.56) 56.85 (1.46) 43.90 (0.66) 38.31(1.14) 33.08 (0.95) 29.06 (0.43)
3coly 375.72 (0.15) 17126 (5.87) | 112.64 (1.74) 87.46 (2.09) 70.94 (1.00) 59.82(1.33) 50.83 (0.55) 45.16 (0.53)
3cols 61298 (0.19) | 270.80 (14.10) | 174.56(3.44) | 133.72(2.43) | 106.02(0.87) 90.48 (3.39) 79.32(1.82) 68.60 (1.85)
reachy 74.30 (0.10) 32.05(0.22) 21.29 (0.05) 16.27 (0.09) 13.24(0.13) 11.17 (0.08) 9.69 (0.06) 8.55(0.02)
reachsz 224.52(0.37) 93.69 (0.35) 62.60 (0.06) 47.35(0.04) 38.02(0.22) 32.10 (0.21) 27.64 (0.05) 24.44(0.12)
reachs 325.58 (0.18) 137.52 (0.30) 92.00 (0.16) 69.18 (0.09) 55.80 (0.04) 46.82 (0.19) 40.38 (0.08) 35.63(0.17)
reachy 731.09 (0.32) 306.14 (1.12) | 203.63(0.17) | 153.39(0.49) | 123.02(0.34) | 103.12(0.31) 89.30 (0.29) 78.25 (0.15)
reachs 1431.54 (0.66) 591.13(1.62) | 393.29(0.34) | 295.59(0.32) | 237.49(0.61) | 197.96(0.38) | 170.79 (0.49) | 149.70 (0.40)
timetabling: 46,80 (0.23) 20.99 (0.37) 14.03 (0.19) 10.63 (0.14) 8.55(0.05) 7.22(0.10) 6.33(0.03) 5.59(0.03)
timetablings 58,93 (0.39) 26.15 (0.25) 17.40 (0.28) 13.32(0.20) 10.83 (0.11) 8.99 (0.11) 7.87 (0.09) 6.96 (0.07)
Food 684.95 (1.19) 0.22(0.15) 0.08 (0.01) 0.07 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.00) 0.07 (0.00)

Table 1. Benchmark Results: instantiation times in seconds (standard deviation)

of one rule and four constraints. Instances were considered having
n € {37,39,41,43,45}.

Timetabling. The problem was considered of determining a
timetable for some university lectures that have to be given in
a week to some groups of students. The timetable must respect
a number of given constraints concerning availability of rooms,
teachers, and other issues related to the overall organization of
the lectures. Many instances were provided by the University of
Calabria; they refer to different numbers of student groups.

Food. The problem here is to generate plans for repairing faulty
workflows. That is, starting from a faulty workflow instance, the
goal is to provide a completion of the workflow such that the
output of the workflow is correct. Workflows may comprise many
activities. Repair actions are compensation, (re)do and replacement
of activities. A single instance was provided related to a workflow
containing 63 predicates, 56 components and 116 rules.

5.2 Experimental Results

The results of the experimental activities on the benchmark prob-
lems presented above are summarized in Table 1-2, and Figure 2-3.
In order to study the performance of the system when the num-
ber of available processors increases, system was run on our 8-core
machine in eight different settings where 2,3,4,5,6,7 and 8 CPU
were respectively enabled. The instantiation times were measured
and reported in Table 1 and Figure 3(b); whereas the (relative) ef-
ficiency of the system is reported in Table 2 and Figure 3(a). The
results obtained in the case of Hamiltonian Path, which is the only
problem for which we considered more than five instances, are re-
ported separately in Figure 3. Finally, Figure 2 reports the average
efficiency of the system for the problems of Table 1.°

The overall picture is very positive: the performance of the
system is nearly optimal in most cases and efficiencies above 1 are
measured in four domains out of seven. As one would expect, the

5We did not report here the size of the ground programs produced by the
compared implementations because we verified that they are basically the
same (for both parallel and serial version); thus, the good behavior (see [30])
of the grounding module of DLV (that is able to produce an output that is
sensibly smaller than the theoretical ground instantiation) is preserved on
its parallel version.

efficiency of the system both slightly decreases when the number
of processors increases -still remaining at a good level-, and rapidly
increases going from very small instances (execution times below
2s) to larger ones (see Figure 2 and Figure 3).

A special case is the Food problem, showing an impressive ef-
ficiency (always above 3200), which revealed to be a case very
easy to parallelize. This behavior can be explained by a different
scheduling of the constraints performed by the serial version and
the parallel one. In particular, this instance is inconsistent (there is
a constraint always violated) and both the versions stop the compu-
tation as soon as they recognize this fact. The scheduling performed
by the parallel version allows the identification of this situation be-
fore the serial one since constraints are evaluated in parallel, while
the serial version evaluates the inconsistent constraint later on. The
super-linear speedup is already evident with two processors and
efficiency peaks when three processors are enabled, after the exe-
cution times remain almost the same (see the last row of Table 1)
since the execution is stopped basically at the same time.

The granularity control mechanism resulted to be effective in
the Queens problem, where all the considered instances required
less than 10 seconds of serial execution time. Indeed, the “very
easy” disjunctive rule was always sequentially-evaluated in all the
instances. Since the remaining constraints strictly depend on the
result of the evaluation of the disjunctive rule, the unavoidable
presence of a sequential part limited the final efficiency to a still
acceptable 0.9 in the case of 8 processors.

A similar scenario can be observed in the case of Ramsey Num-
bers, where the positive impact of the load balancing heuristics be-
comes very evident. In fact, since the encoding is composed of few
“very easy” rules and two “very hard” constraints, the heuristics se-
lects a sequential evaluation for the rules, and dynamically applies
the finer distribution of the last splits for the constraints. As a result,
the system produces a well-balanced work subdivision, that allows
for obtaining steady results with an average efficiency greater than
0.9 in all tested configurations (see Figure 2).

The very good performance (by looking at Figure 2 it can be
noted that the average efficiency is always greater than 1 in this
case) obtained in the case of Reachability is due to the dynamic
workload distribution made in case of recursive rules.

Here the system benefits of the fact that instances are redis-
tributed (with possibly different split sizes) at each different itera-

Efficiency
Problem 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queensy 0.95 0.93 091 0.89 0.89 0.87 0.86
queenss 097 0.96 0.94 0.93 091 0.89 0.87
queenss 097 0.96 0.94 091 0.92 091 0.89
queensy 0.94 0.94 0.95 0.94 0.93 0.90 0.90
queenss 0.97 0.96 0.96 0.94 0.93 0.92 0.90
ramseyi 0.97 0.97 0.96 0.96 0.96 0.95 0.94
ramseys 0.97 0.97 0.96 0.96 0.95 0.94 0.93
ramseys 097 0.97 0.96 0.96 0.95 0.95 0.94
ramseys 097 0.98 0.97 0.97 0.96 0.95 0.95
ramseys 0.97 0.97 0.97 0.96 0.96 0.95 0.95
3coly 1.07 1.07 1.03 1.03 1.00 0.98 0.96
3cola 1.08 1.07 1.03 1.05 1.02 1.02 0.99
3cols 1.09 1.13 1.09 1.13 1.08 1.07 1.07
3coly 1.10 1.11 1.07 1.06 1.05 1.06 1.04
3cols 1.13 1.17 1.15 1.16 1.13 1.10 1.12
reachy 1.16 1.16 1.14 1.12 1.11 1.10 1.09
reachsz 1.20 1.20 1.19 1.18 1.17 1.16 1.15
reachs 1.18 1.18 1.18 1.17 1.16 1.15 1.14
reachy 1.19 1.20 1.19 1.19 1.18 1.17 1.17
reachs 1.21 1.21 1.21 1.21 1.21 1.20 1.20
timetabling: 1.11 1.11 1.10 1.09 1.08 1.06 1.05
timetablings 1.13 1.13 1.11 1.09 1.09 1.07 1.06
Food 4119.59 | 7552.58 | 6473.64 | 604207 | 503506 | 4315776 | 3236.82

Table 2. Benchmark Results: efficiency

tions of the semi naive algorithm, and, still, the granularity control
has some positive effect when the iteration of recursive rules has
to compute very little domains. The load balancing method demon-
strated to be effective also for 3-Colorability and the real-world
Timetabling problem, where the performance of the system results
to be good and stable thanks to a well-balanced distribution of the
work.

The behavior of the system for instances of varying sizes was
analyzed in more detail in the case of Hamiltonian Path. This was
made possible by the availability of a generator (cf. [41]) that
allowed for controlling the size of the generated instances. Looking
at Figure 3(a) it is evident that the efficiency of the system rapidly
reaches a good level (greater than 0.9) moving from small instances
(requiring less that 2s of execution) to larger ones, and remains
stable (the surface plotted in Figure 3(a) forms a sort of plateau).
The corresponding gains are visible by looking at Figure 3(b),
where, e.g. an instance of 10000 nodes is instantiated in 638.27
seconds by the serial system and in 87.11 seconds by the parallel
one with 8-processor enabled.

Summarizing, the parallel instantiator behaved very well in all
the considered instances. It showed superlinear speedups in the case
of easy-to-parallelize instances and, in the other cases its efficiency
rapidly reaches good levels and remains stable when the sizes of
the input problem grow. Importantly, the system offers a very good
performance already when only two CPUs were enabled (i.e. for
the largest majority of the commercially-available hardware at the
time of this writing) and efficiency remains at a very good level
when up to 8 CPUs are available.

Efficiency

1 2 3 4 5 6 7 8 9
Number of processors

Figure 2. Average Efficiency

6. Related Work

Several works about parallel techniques for the evaluation of
ASP programs have been proposed, focusing on both the propo-
sitional (model search) phase [14, 17,24, 39], and the instantiation
phase [4, 7]. Model generation is a distinct phase of ASP compu-
tation, carried out after the instantiation, and thus, the first group
of proposals is not directly related to our setting. Concerning the
parallelization of the instantiation phase, some preliminary stud-
ies were carried out in [4], as one of the aspects of the attempt to
introduce parallelism in non-monotonic reasoning systems. How-
ever, there are crucial differences with our system regarding both
the employed technology and the supported parallelization strat-
egy. Indeed, our system is implemented by using POSIX threads
APIs, and works in a shared memory architecture [43, 45], while
the one described in [4] is actually a Beowulf [1] cluster work-
ing in local memory. Moreover, the parallel instantiation strategy
of [4] is applicable only to a subset of the program rules (those not
defining domain predicates), and is, in general, unable to fruitfully
exploit parallelism in case of programs with a small number of
rules. Importantly, the parallelization strategy of [4] statically as-
signs a rule per processing unit; whereas, in our approach, both the
extension of predicates and “split sizes” are dynamically computed
(and updated at different iterations of the semi-naive) while the
instantiation process is running. Note also that our parallelization
techniques and heuristics could be also adapted for improving the
other ASP instantiators like Lparse [36] and Gringo [21].
Concerning other related works, it is worth remembering that,
the dynamic rewriting technique employed in our system is related
to the copy and constrain technique for parallelizing the evaluation
of deductive databases [10, 18, 49-51]. In many of the mentioned
works (dating back to 90°s), only restricted classes of Datalog pro-
grams are parallelized; whereas, the most general ones (reported
in [49, 51]) are applicable to normal Datalog programs. Clearly,
none of them consider the peculiarities of disjunctive programs and
unstratified negation. More in detail, [49] provides the theoretical
foundations for the copy and constrain technique, whereas [51] en-
hances it in such a way that the network communication overhead

12
Effficiency!
08
06
0.4
0.2

: o
[O
oo™ o7
e
S

1 _09
N 5%°
E«\c:“%p‘oo <2
G0l

(a) Efficiency

1000 T T T T T
rial —+—

2 processors --—x---
4 processors ---¥---
8 processors @

800 4

—
Efficiency =>0.9
lime_8proc > 2 sec

600 F <—
Efficiency <=/0.9
time_8proc <i2 sec

Time in seconds

400 | i

200 [e L
T
e e o

kT X
e e =
s = a

0 2000 4000 6000 8000 10000 12000
Instances

(b) Execution times (s)

Figure 3. Efficiency results for Hamiltonian path

in distributed systems can be minimized.® The copy and constrain
technique works as follows: rules are replicated with additional
constraints attached to each copy; such constraints are generated
by exploiting an hash function and allow for selecting a subset of
the tuples. The obtained restricted rules are evaluated in parallel.
The technique employed in our system shares the idea of splitting
the instantiation of each rule, but has several differences that al-
low for obtaining an effective implementation. Indeed, in [49, 51]
copied rules are generated and statically associated to instantiators
according to an hash function which is independent from the cur-
rent instance in input. Conversely, in our technique, the distribution
of predicate extensions is performed dynamically, before assign-
ing the rules to instantiators, by taking into account the “actual”
predicate extensions. In this way, the non-trivial problem [51] of
choosing an hash function that properly distributes the load is com-
pletely avoided in our approach. Moreover, the evaluation of con-
ditions attached to the rule bodies during the instantiation phase
would require to either modify the standard instantiation procedure
(for efficiently selecting the tuples from the predicate extensions
according to added constraints) or to incur in a possible non negli-
gible overhead due to their evaluation.

Focusing on the heuristics employed on parallel databases, we
mention [10] and [8]. In [10] is described a heuristics for balanc-
ing the distribution of load in the parallel evaluation of PARULEL,
a language similar to Datalog. Here, load balancing is done by a
manager server that records the execution times at each site, and
exploits this information for distributing the load. In [8] the pro-
posed heuristics were devised for both minimizing communication
costs and choosing an opportune site for processing sub-queries
among various network-connected database systems. In both cases,
the proposed heuristics were devised and tuned for dealing with
data distributed in several sites and their application to other archi-
tectures might be neither viable nor straightforward.

7. Conclusions

In this paper, we presented a parallel ASP instantiator based on
the DLV system which is able to profitably exploit state-of-the-
art commercial multi-core/multi-processor hardware. The system
employs several parallelization strategies and dynamic techniques
for load balancing and granularity control specifically-conceived
for parallel ASP instantiation. An experimental analysis has been

6Since the enhancements introduced in [51] are not relevant in our set-
ting (i.e. SMP machines with shared memory), in the following we focus
on [49]).

conducted on both easy and hard-to-parallelize problem instances
for assessing system performance. The results confirm that multi-
core/multi-processor technology can be effectively exploited for
ASP instantiation; indeed, the parallel system showed a nearly-
optimal efficiency in the case of hard-to-parallelize problem in-
stances, and superlinear speedups in other cases.

As far as future work is concerned, we are studying other tech-
niques for further improving the single rule level parallelism. More-
over, we are assessing system performance on a larger set of bench-
marks.

References
[1] The Beowulf Cluster Site. <URL:http://www.beowulf.org>.

[2] C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for
Non-Monotonic Reasoning. In T. Eiter, W. Faber, and
M. Truszczynski, editors, Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna,
Austria, September 2001, Proceedings, volume 2173 of Lecture Notes
in AI (LNAI), pages 406—410. Springer Verlag, Sept. 2001.

C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The
nomore++ Approach to Answer Set Solving. In G. Sutcliffe and

A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, 12th International Conference, LPAR 2005, volume
3835 of Lecture Notes in Computer Science, pages 95—109. Springer
Verlag, Dec. 2005. ISBN 3-540-30553-X.

[4] M. Balduccini, E. Pontelli, O. Elkhatib, and H. Le. Issues in parallel
execution of non-monotonic reasoning systems. Parallel Computing,
31(6):608-647,2005. ISSN 0167-8191. doi:
10.1016/j.parco0.2005.03.004.

C. Baral. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press, 2003. ISBN
0-52181802-8.

C. Bell, A. Nerode, R. T. Ng, and V. Subrahmanian. Mixed Integer
Programming Methods for Computing Nonmonotonic Deductive
Databases. Journal of the ACM,41:1178-1215, 1994.

F. Calimeri, S. Perri, and F. Ricca. Experimenting with Parallelism
for the Instantiation of ASP Programs. Journal of Algorithms in
Cognition, Informatics and Logics, 63(1-3):34-54, 2008. doi:
10.1016/j.jalgor.2008.02.003.

[8] M. J. Carey and H. Lu. Load balancing in a locally distributed db
system. SIGMOD Rec., 15(2):108-119, 1986. ISSN 0163-5808. doi:
http://doi.acm.org/10.1145/16856.16865.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and
Expressive Power of Logic Programming. ACM Computing Surveys,
33(3):374-425,2001.

[3

=

[5

=

[6

)

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

H. M. Dewan, S.J. Stolfo, M. Hernandez, and J.-J. Hwang.
Predictive dynamic load balancing of parallel and distributed rule and
query processing. In P. V. Hentenryck, editor, Proceedings of the
1994 ACM SIGMOD international conference on Management of
data, pages 277-288, New York, NY, USA, 1994. ACM.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364—418, Sept. 1997.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A
Deductive System for Nonmonotonic Reasoning. In Jiirgen Dix and
Ulrich Furbach and Anil Nerode, editor, Proceedings of the 4th
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Al (LNAI),
pages 363-374, Dagstuhl, Germany, July 1997. Springer.

T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative
Problem-Solving Using the DLV System. In J. Minker, editor,
Logic-Based Artificial Intelligence, pages 79—103. Kluwer Academic
Publishers, 2000.

E. Ellguth, M. Gebser, M. Gusowski, B. Kaufmann, R. Kaminski,

S. Liske, T. Schaub, L. Schneidenbach, and B. Schnor. A simple
distributed conflict-driven answer set solver. In E. Erdem, F. Lin, and
T. Schaub, editors, LPNMR, volume 5753 of Lecture Notes in
Computer Science, pages 490—495. Springer, 2009. ISBN
978-3-642-04237-9.

W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database
Optimization Techniques for Nonmonotonic Reasoning. In INAP
Organizing Committee, editor, Proceedings of the 7th International
Workshop on Deductive Databases and Logic Programming
(DDLP’99), pages 135-139. Prolog Association of Japan, Sept. 1999.

W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in
disjunctive logic programs: Semantics and complexity. In J. J. Alferes
and J. Leite, editors, Proceedings of the 9th European Conference on
Artificial Intelligence (JELIA 2004), volume 3229 of Lecture Notes in
AI (LNAI), pages 200-212. Springer Verlag, Sept. 2004.

R. A. Finkel, V. W. Marek, N. Moore, and M. Truszczynski.
Computing stable models in parallel. In Answer Set Programming,
Towards Efficient and Scalable Knowledge Representation and
Reasoning, Proceedings of the Ist Intl. ASP’01 Workshop, pages
72-76, Stanford, Mar. 2001.

S. Ganguly, A. Silberschatz, and S. Tsur. A Framework for the
Parallel Processing of Datalog Queries. In H. Garcia-Molina and

H. V. Jagadish, editors, Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ,
May 23-25, 1990, pages 143-152, 1990.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving. In Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), pages 386-392.
Morgan Kaufmann Publishers, Jan. 2007.

M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and
M. Truszczynski. The first answer set programming system
competition. In C. Baral, G. Brewka, and J. Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning — 9th International
Conference, LPNMR’07, volume 4483 of Lecture Notes in Computer
Science, pages 3—17, Tempe, Arizona, May 2007. Springer Verlag.
ISBN 978-3-540-72199-4. doi: {10.1007/978-3-540-72200-7_3}.

M. Gebser, T. Schaub, and S. Thiele. GrinGo : A New Grounder for
Answer Set Programming. In C. Baral, G. Brewka, and J. S. Schlipf,
editors, Logic Programming and Nonmonotonic Reasoning, 9th
International Conference, LPNMR 2007, Tempe, AZ, USA, May
15-17, 2007, Proceedings, volume 4483 of Lecture Notes in
Computer Science, pages 266-271. Springer, 2007.

M. Gelfond and N. Leone. Logic Programming and Knowledge
Representation — the A-Prolog perspective . Artificial Intelligence,
138(1-2):3-38, 2002.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing, 9:365-385,
1991.

J. Gressmann, T. Janhunen, R. E. Mercer, T. Schaub, S. Thiele, and
R. Tichy. Platypus: A Platform for Distributed Answer Set Solving.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]

In Proceedings of Logic Programming and Nonmonotonic
Reasoning, 8th International Conference (LPNMR), pages 227-239,
Diamante, Italy, Sept. 2005.

T. Janhunen and I. Niemeld. Gnt - a solver for disjunctive logic
programs. In V. Lifschitz and I. Niemeld, editors, Proceedings of the
7th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR-7), volume 2923 of LNAI, pages
331-335. Springer, Jan. 2004. ISBN 3-540-20721-X.

T. Janhunen, I. Niemeld, D. Seipel, P. Simons, and J.-H. You.
Unfolding Partiality and Disjunctions in Stable Model Semantics.
ACM Transactions on Computational Logic, 7(1):1-37, Jan. 2006.

D. E. Knuth. The Stanford GraphBase : A Platform for
Combinatorial Computing. ACM Press, New York, 1994.

N. Leone, S. Perri, and F. Scarcello. Improving ASP Instantiators by
Join-Ordering Methods. In T. Eiter, W. Faber, and M. Truszczyfiski,
editors, Logic Programming and Nonmonotonic Reasoning — 6th
International Conference, LPNMR’01, Vienna, Austria, volume 2173
of Lecture Notes in Al (LNAI), pages 280-294. Springer Verlag, Sept.
2001.

N. Leone, S. Perri, and F. Scarcello. BackJumping Techniques for
Rules Instantiation in the DLV System. In Proceedings of the 10th
International Workshop on Non-monotonic Reasoning (NMR 2004),
Whistler, BC, Canada, pages 258-266, 2004. ISBN 92-990021-0-X.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The DLV System for Knowledge Representation and
Reasoning. ACM Transactions on Computational Logic, 7(3):
499-562, July 2006.

Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. In
C. Baral, G. Greco, N. Leone, and G. Terracina, editors, Logic
Programming and Nonmonotonic Reasoning — 8th International
Conference, LPNMR’05, Diamante, Italy, September 2005,
Proceedings, volume 3662 of Lecture Notes in Computer Science,
pages 447-451. Springer Verlag, Sept. 2005. ISBN 3-540-28538-5.

Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver
Enhanced to Non-tight Programs. In V. Lifschitz and I. Niemel,
editors, Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), volume
2923 of LNAI, pages 346-350. Springer, Jan. 2004. ISBN
3-540-20721-X.

V. Lifschitz. Answer Set Planning. In D. D. Schreye, editor,
Proceedings of the 16th International Conference on Logic
Programming (ICLP’99), pages 23-37, Las Cruces, New Mexico,
USA, Nov. 1999. The MIT Press.

F.Lin and Y. Zhao. ASSAT: computing answer sets of a logic
program by SAT solvers. Artificial Intelligence, 157(1-2):115-137,
2004.

V. W. Marek and M. Truszczyniski. Stable Models and an Alternative
Logic Programming Paradigm. In K. R. Apt, V. W. Marek,

M. Truszczyfiski, and D. S. Warren, editors, The Logic Programming
Paradigm — A 25-Year Perspective, pages 375-398. Springer Verlag,
1999.

I. Niemeld and P. Simons. Smodels — An Implementation of the
Stable Model and Well-founded Semantics for Normal Logic
Programs. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings
of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’97), volume 1265 of Lecture
Notes in Al (LNAI), pages 420—429, Dagstuhl, Germany, July 1997.
Springer Verlag.

I. Niemel4, P. Simons, and T. Syrjanen. Smodels: A System for
Answer Set Programming. In C. Baral and M. Truszczyfiski, editors,
Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning (NMR’2000), Breckenridge, Colorado, USA, Apr. 2000.
Online at http://xxx.lanl.gov/abs/cs/0003033v1.

S. Perri, F. Ricca, and S. Vescio. Efficient Parallel ASP Instantiation
via Dynamic Rewriting. In Proceedings of the First Workshop on
Answer Set Programming and Other Computing Paradigms
(ASPOCP 2008), Udine, Italy, 2008.

[39] E. Pontelli and O. El-Khatib. Exploiting Vertical Parallelism from
Answer Set Programs. In Answer Set Programming, Towards
Efficient and Scalable Knowledge Representation and Reasoning,
Proceedings of the 1st Intl. ASP’01 Workshop, pages 174—180,
Stanford, Mar. 2001.

[40] T.C.Przymusinski. Stable Semantics for Disjunctive Programs. New
Generation Computing, 9:401-424, 1991.

[41] P.Simons. Extending and Implementing the Stable Model Semantics.
PhD thesis, Helsinki University of Technology, Finland, 2000.

[42] P.Simons, I. Niemel4, and T. Soininen. Extending and Implementing
the Stable Model Semantics. Artificial Intelligence, 138:181-234,
June 2002.

[43] W. Stallings. Operating systems (3rd ed.): internals and design
principles. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.
ISBN 0-13-887407-7.

[44] V. Subrahmanian, D. Nau, and C. Vago. WFS + Branch and Bound =
Stable Models. IEEE Transactions on Knowledge and Data
Engineering, 7(3):362-377, June 1995.

[45] A.S. Tanenbaum and A. S. Woodhull. Operating Systems Design
and Implementation (3rd Edition). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2005. ISBN 0131429388.

[46] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with
recursive queries in database and logic programming systems. Theory
and Practice of Logic Programming, 8:129-165, 2008.

[47] J. D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume I. Computer Science Press, 1988. ISBN 0-7167-8158-1.

[48] J. D. Ullman. Principles of Database and Knowledge Base Systems.
Computer Science Press, 1989.

[49] O. Wolfson and A. Ozeri. A new paradigm for parallel and
distributed rule-processing. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, pages
133-142, New York, NY, USA, 1990. doi:
http://doi.acm.org/10.1145/93605.98723.

[50] O. Wolfson and A. Silberschatz. Distributed Processing of Logic
Programs. In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, pages 329-336, Chicago,
Illinois, USA, June 1988.

[51] W.Zhang, K. Wang, and S.-C. Chau. Data Partition and Parallel
Evaluation of Datalog Programs. /EEE Transactions on Knowledge
and Data Engineering, 7(1):163-176, 1995.

