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Abstract. Answer Set Programming (ASP) is a powerful formalism for knowl-
edge representation and reasoning. The computation of most ASP systems fol-
lows a two-phase approach: an instantiation (or grounding) phase generates a
variable-free program which is then evaluated by propositional algorithms in the
second phase. The instantiation process may be very expensive, especially for
real-world problems, where huge input data are often to be dealt with.
A method that exploits the capabilities of multi-processor machines for improv-
ing instantiation performance has been recently proposed. This method,imple-
mented in the grounding module of the ASP system DLV, proved to be effective
especially when dealing with programs consisting of many rules.
In this paper, a dynamic rewriting of input rules is proposed that enhances the
efficacy of the parallel evaluation also in the case of programs with very few rules.
The effect of the technique is twofold: on the one hand, a kind of or-parallelism is
induced by rewriting each rule at running time; on the other hand, the workload
is dynamically distributed among processing units according to an heuristics.
Dynamic rewriting was implemented, and an experimental analysis was con-
ducted that confirms the effectiveness of the technique. In particular,the new
parallel implementation always outperforms the (sequential) DLV instantiator,
and compared with the previous parallel method offers a very relevantgain espe-
cially in the case of programs with very few rules.

1 Introduction

In the last few years, multi-core/multi-processor architectures have become standard,
thus making Symmetric MultiProcessing (SMP) [1] common also for entry-level sys-
tems and PCs. The principle behind SMP architectures is verysimple: two or more
identical processors connect to a single shared main memory, enabling simultaneous
multithread execution. Such technology has been recently exploited with profit in the
field of Answer Set Programming (ASP).

ASP is a declarative approach to programming proposed in thearea of nonmono-
tonic reasoning and logic programming [2–7] which featuresa high declarative nature
combined with a relatively high expressive power [8, 9]. There are nowadays a number
of systems that support ASP and its variants [8, 10–17]. The kernel modules of ASP
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systems work on a ground instantiation of the input program.Thus, an input programP
first undergoes the so-called instantiation process, whichproduces a programP ′ seman-
tically equivalent toP, but not containing any variable. This phase is computationally
very expensive (see [7, 9]); thus, having an efficient instantiation procedure is, in gen-
eral, crucial for the performance of the entire ASP systems.Indeed, recent applications
of ASP in different emerging areas (see e.g., [18–21]), haveevidenced the practical
need for faster and scalable ASP instantiators.

In [22] a technique for the parallel instantiation of ASP programs was proposed,
allowing for the performance of instantiators to be improved by exploiting the power of
multiprocessor computers. The technique takes advantage of some structural properties
of input programs in order to reduce the usage of concurrencycontrol mechanisms [1],
and, thus, the so-called parallel overhead. The strategy focuses on two different aspects
of the instantiation process: on the one hand, it examines the structure of the input
programP, splits it into modules (or sub-programs) and, according tothe interdepen-
dencies between the modules, decides which of them can be processed in parallel; on
the other hand, it parallelizes the evaluation of rules within each module. This strategy
has been implemented into the instantiator module of the ASPsystem DLV [8], thus
obtaining a parallel ASP instantiator.

This parallel system proved to be effective especially in the instantiation of pro-
grams consisting of several rules with a large amount of input data [22]. However, it
is not fully exploitable in case of programs with few rules. The reason for this behav-
ior can be easily understood by considering the following disjunctive encoding for the
well-known 3-Colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– col(X, C), col(Y, C), edge(X, Y ).

Predicatesnode andedge represent the input graph; rule(r) guesses the possible
colorings of the graph, and the constraint(c) imposes that two adjacent nodes cannot
have the same color.

In this case, the technique proceeds by first instantiating(r), thus computing the
extension ofcol, and then, only once this is done, by processing the constraint (c). Thus,
such encoding does not allow the existing technique to make the evaluation parallel
at all. However, one may provide different encodings (with more rules) for the same
problem, which are more amenable for the technique. In general, this would require the
user to knowhow the evaluation process works, while writing a program: clearly, such
a requirement is not desirable for a fully declarative system. Nevertheless, an automatic
rewriting of the input program for an equivalent one, whose evaluation can be made
more parallel, could make this optimization process transparent to the user.

In this paper, a dynamic rewriting of input rules is proposedthat enhances the ef-
ficacy of the existing parallel evaluation technique, especially in the case of programs
with very few rules. The basic idea is to rewrite input rules at execution time in order
to induce a form of Or-parallelism [23–26]. This can be obtained, given a ruler, by
“splitting” the extension of one single body predicatep of r in several parts. Each part
is associated with a different temporary predicate; and, for each of those predicates, say
pi, a new rule, obtained by replacingp with pi, is produced. The so-created rules will



be instantiated in parallel in place ofr; when they are done, a realign step gets rid of
the new names in order to obtain the same output of the original algorithm.

However, the choice of the most convenient predicate to split is not trivial; indeed,
a “bad” split might reduce or neutralize the benefits of parallelism, thus making the
overall time consumed by the parallel evaluation not optimal (and, in some corner case,
even worse than the time required to instantiate the original encoding). Thus, an heuris-
tic has also been proposed to select the “best” predicate to split in order to minimize the
parallel execution time. Summarizing, the contributions of this paper are the following:

- A technique is presented for rewriting rules of ASP programs in such a way that
they can be evaluated in parallel; rules are rewritten at execution time, thus dynam-
ically distributing the workload among processing units.

- An heuristic for selecting the most convenient way for rewriting a rule is proposed
aiming at minimizing the parallel time.

- An implementation of the dynamic rewriting was done into the parallel version of
the DLV instantiator.

- An experimental analysis was conducted for assessing the technique.

The results of the experiments show that the new parallel implementation always
outperforms the (sequential) DLV instantiator, and, compared with the previous parallel
method, offers a very relevant gain especially in case of programs with few rules.

2 Answer Set Programming

In this section, we briefly recall syntax and semantics of Answer Set Programming.

Syntax. A variable or a constant is aterm. An atomis a(t1, ..., tn), wherea is apred-
icateof arity n andt1, ..., tn are terms. Aliteral is either apositive literalp or anega-
tive literal not p, wherep is an atom. Adisjunctive rule(rule, for short)r is a formula
a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm. wherea1, · · · , an, b1, · · · , bm

are atoms andn ≥ 0, m ≥ k ≥ 0. The disjunctiona1 ∨ · · · ∨ an is theheadof r,
while the conjunctionb1, ..., bk, not bk+1, ..., not bm is thebodyof r. A rule without
head literals (i.e.n = 0) is usually referred to as anintegrity constraint. If the body is
empty (i.e.k = m = 0), it is called afact.

H(r) denotes the set{a1, ..., an} of the head atoms, and byB(r) the set{b1, ..., bk,

not bk+1, . . . , not bm} of the body literals.B+(r) (resp.,B−(r)) denotes the set of
atoms occurring positively (resp., negatively) inB(r). A rule r is safeif each variable
appearing inr appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. An atom, a literal, a rule, or a pro-
gram isgroundif no variables appear in it. Accordingly with the database terminology,
a predicate occurring only infactsis referred to as anEDB predicate, all others asIDB
predicates; the set of facts ofP is denoted byEDB(P).

Semantics. LetP be a program. TheHerbrand Universeand theHerbrand Baseof P
are defined in the standard way and denoted byUP andBP , respectively.

Given a ruler occurring inP, a ground instanceof r is a rule obtained fromr
by replacing every variableX in r by σ(X), whereσ is a substitution mapping the



variables occurring inr to constants inUP ; ground(P) denotes the set of all the ground
instances of the rules occurring inP.

An interpretationfor P is a set of ground atoms, that is, an interpretation is a subset
I of BP . A ground positive literalA is true (resp.,false) w.r.t. I if A ∈ I (resp.,A 6∈ I).
A ground negative literalnot A is true w.r.t. I if A is false w.r.t.I; otherwisenot A

is false w.r.t.I. Let r be a ground rule inground(P). The head ofr is true w.r.t. I if
H(r)∩ I 6= ∅. The body ofr is truew.r.t. I if all body literals ofr are true w.r.t.I (i.e.,
B+(r) ⊆ I andB−(r) ∩ I = ∅) and isfalsew.r.t. I otherwise. The ruler is satisfied
(or true) w.r.t. I if its head is true w.r.t.I or its body is false w.r.t.I.

A modelfor P is an interpretationM for P such that every ruler ∈ ground(P) is
true w.r.t.M . A modelM for P is minimal if no modelN for P exists such thatN is a
proper subset ofM . The set of all minimal models forP is denoted byMM(P).

Given a ground programP and an interpretationI, the reductof P w.r.t. I is the
subsetPI of P, which is obtained fromP by deleting rules in which a body literal is
false w.r.t.I. Note that the above definition of reduct, proposed in [27], simplifies the
original definition of Gelfond-Lifschitz (GL) transform [2], but is fully equivalent to
the GL transform for the definition of answer sets [27].

Let I be an interpretation for a programP. I is ananswer set(or stable model) for
P if I ∈ MM(PI) (i.e., I is a minimal model for the programPI ) [28, 2]. The set of
all answer sets forP is denoted byANS(P).

3 Parallel Instantiation of ASP programs

In this Section a sketchy description of the parallel instantiation algorithm of [22] is
provided. A detailed discussion about this technique is outof the scope of this paper;
for further insights we refer the reader to [22].

Given an input programP, the algorithm efficiently generates a ground instantia-
tion of the input program that has the same answer sets as the full one, but is much
smaller in general. In order to generate a small ground program equivalent toP, the
parallel instantiator computes ground instances of rules containing only atoms which
can possibly be derived fromP, and thus avoiding the combinatorial explosion which
can be obtained by naively considering all the atoms in the Herbrand Base. This is done
by taking into account some structural information of the input program, concerning
the dependencies among IDB predicates.

In particular, each programP is associated with a graph, called theDependency
Graph of P, which, intuitively, describes how predicates depend on each other. More
in detail, given a programP, theDependency Graphof P is a directed graphGP =
〈N,E〉, whereN is a set of nodes andE is a set of arcs.N contains a node for each
IDB predicate ofP, andE contains an arce = (p, q) if there is a ruler in P such that
q occurs in the head ofr andp occurs in a positive literal of the body ofr.

The graphGP induces a subdivision ofP into subprograms (also calledmodules)
allowing for a modular evaluation. We say that a ruler ∈ P definesa predicatep if p

appears in the head ofr. For each strongly connected component (SCC)1 C of GP , the

1 A strongly connected component of a directed graph is a maximal subset of the vertices, such
that every vertex is reachable from every other vertex.



set of rules defining all the predicates inC is calledmoduleof C and is denoted byPc.
A rule r occurring in a modulePc (i.e., defining some predicateq ∈ C) is said to be
recursiveif there is a predicatep ∈ C occurring in the positive body ofr; otherwise,r
is said to be anexit rule. As an example, consider the following programP, wherea is
an EDB predicate, and its dependency graphGP :

the strongly connected components ofGP are {s}, {q} and {p, t}. They corre-
spond to the three following modules:{ p(X,Y )∨s(Y ) :–q(X), q(Y ), not t(X,Y ). },
{ q(X) :–a(X). }, and{ p(X,Y ) :–q(X), t(X,Y ). p(X,Y ) ∨ s(Y ) :–q(X), q(Y ),
not t(X,Y ). t(X,Y ) :–p(X,Y ), s(Y ).} Note that the first and second module do not
contain recursive rules, while the third one contains one exit rule, namelyp(X,Y ) ∨
s(Y ) :–q(X), q(Y ), not t(X,Y ), and two recursive rules.

The dependency graph induces a partial ordering among its SCCs, defined as fol-
lows: for any pair of SCCsA,B of GP , we say thatB directly depends onA if there is
an arc from a predicate ofA to a predicate ofB; and,B dependsonA if there is a path
in the Dependency Graph fromA to B.

Intuitively, this partial ordering guarantees that a nodeA precedes a nodeB if the
program module corresponding toA has to be evaluated before the one ofB. Moreover,
if two components do not depend on each other, they can be evaluated in parallel.

The parallel instantiation algorithm exploits this partial ordering in order to both
produce a small instantiation and identify modules that canbe evaluated in parallel.
It follows a pattern similar to the classical producer-consumers problem. Amanager
thread (acting as a producer) identifies the components of the dependency graph of the
input programP that can run in parallel, and delegates their instantiationto a number
of instantiatorthreads (acting as consumers).

TheParallel Instantiateprocedure, shown in Figure 1, acts as a manager. It receives
as input both a programP to be instantiated and its Dependency GraphGP ; and it
outputs a set of ground rulesΠ, such thatANS(P) = ANS(Π ∪ EDB(P)). First
of all, the algorithm creates a new set of atomsS that will contain the subset of the
Herbrand Base significant for the instantiation; more in detail, S will contain, for each
predicatep in the program, the extension ofp, that is, the set of all the ground atoms
having the predicate name ofp (significant for the instantiation).

Initially, S = EDB(P), andΠ = ∅. Then, the manager checks, whether some
SCCC can be instantiated; in particular, it checks if there is some other componentC ′

such thatC depends onC ′ andC ′ has not been evaluated yet. As soon as a component
C is processable, a newComponentInstantiatorthread is spawned for instantiatingC.

ProcedureComponentInstantiator, in turn, takes as input, among the others, the
componentC to be instantiated and the setS; for each atoma belonging toC, and
for each ruler defininga, it computes the ground instances ofr containing only atoms
which can possibly be derived fromP. At the same time, it updates the setS with the



Fig. 1. The Parallel Instantiation Procedures.

atoms occurring in the heads of the rules ofΠ. To this end, each ruler in the program
module ofC is processed by calling procedureInstantiateRule. This, given the set of
atoms which are known to be significant up to now, builds all the ground instances ofr,
adds them toΠ, and marks as significant the head atoms of the newly generated rules.

It is worth noting that, exit rules are instantiated by a single call to InstantiateRule,
whereas recursive ones are processed several times according to a semi-näıve evaluation
technique [29], where at each iterationn only the significant information derived during
iterationn−1 has to be used. This is implemented by partitioning significant atoms into
three sets:∆S, S, andNS. NS is filled with atoms computed during current iteration
(sayn); ∆S contains atoms computed during previous iteration (sayn − 1); and,S
contains the ones previously computed (up to iterationn − 2).

Initially, ∆S andNS are empty; the exit rules contained in the program module
of C are evaluated and, in particular, one new thread for each exit rule, running pro-
cedureInstantiateRule, is spawned. Only once all the threads are done, recursive rules
are processed (do-while loop). At the beginning of each iteration,NS is assigned to
∆S, i.e. the new information derived during iterationn is considered as significant in-
formation for iterationn + 1. Then, for each recursive rule, a new thread is spawned,



running procedureInstantiateRule, which receives as inputS and∆S; when all threads
terminate,∆S is added toS (since it has already been exploited). The evaluation stops
whenever no new information has been derived (i.e.NS = ∅). Eventually, component
C is removed fromΠ.

Proposition 1. [22] Let P be an ASP program, andΠ be the ground program gen-
erated by the algorithmParallel Instantiate. ThenANS(P) = ANS(Π ∪ EDB(P))
(i.e.P andΠ ∪ EDB(P) have the same answer sets). 2

4 Parallel Instantiation via Dynamic Rewriting

In this section, a rewriting technique is described that enhances the parallel instantiation
algorithm of the previous Section.

Some Motivation. As already pointed out, there are problem encodings that do not
allow the instantiation technique described in Section 3, to make the evaluation parallel
at all; the following encoding of the 3-Colorability problem, is an example for that:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– col(X, C), col(Y, C), edge(X, Y ).

However, one may provide different encodings for the same problem, which are
more amenable for the application of the technique. Oversimplifying, since each rule
of the input program is processed by one processing unit, onemay think of rewriting
it into an equivalent program containing several rules. Forinstance, the following is a
possible rewriting for the constraint(c), of the 3-Colorability encoding reported above:

(c1) :– col(X, C), col(Y, C), edge1(X, Y ).
(c2) :– col(X, C), col(Y, C), edge2(X, Y ).

The set of edges issplit upinto two subsets, represented by predicatesedge1 andedge2.
The evaluation of constraints(c1) and(c2) is equivalent to the evaluation of the original
constraintc, modulo renaming, but the computation now can be carried outin parallel
by two different processing units (instantiators).

This rewriting strategy can be straightforwardly extendedfor allowing more than
two instantiators to work in parallel, and it can be generalized in order to deal with any
program. However, there are different, sometimes many, ways to apply it. For instance,
another possible encoding for 3-Colorability could be obtained by working on a literal
whose predicate name iscol, and by introducing new predicatescol1 . . . coln (obtained
by distributing the extension ofcol). Hereafter, with a small abuse of notation we indi-
cate as extension of a literall the extension of the predicatep corresponding tol (having
the same name asl). Note that, differently fromedge, col is not anEDB predicate (it
occurs in the head of rule(r)); thus, in this case, a rewriting preserving the original
semantics, would require to further modify the original program. Indeed, the extension
of col is not known a-priori; thus, the split ofcol has to be induced by the split of the
predicates it depends on by means of other rules. This may lead to an intricate rewriting
of the entire program (not only rules to be split) and a possibly slower instantiation.

However, the extension of the predicate to be split is known during the instantiation
when the rule is taken for evaluating it. Thus, if the rewriting is performed at execution



time, a rule can be split without involving the entire program. Moreover, it can be eas-
ily automatized in order to be transparently applied. Note that, this strategy somewhat
induces a form ofOr-parallelism[23–26], which is here simulated via rewriting.

Dynamic Rewriting. The enhanced parallel instantiation algorithms are now de-
scribed in detail that are based on the idea described above.

ProcedureComponentInstantiatorused in the algorithm of Section 3 is replaced by
a new one, calledComponentInstantiatorRew, reported in Figure 2. It takes as input
the componentC to be instantiated and the set of significant atomsS; and for each atom
a belonging toC, and for each ruler defininga, it computes the ground instances ofr.

At the beginning, the new set of atoms∆S andNS (which initially are empty) are
created; then, exit rules are evaluated. More in detail, each of them is rewritten into a set
of new exit rules which are added toP. This is done by calling the procedureRewrite
which is detailed in the following. At this point, a thread running InstantiateRuleis
spawned for each exit rule. Only when all the threads are done, function Realign(i)
restoresS and∆S by removing all the ground atoms inserted by procedureRewrite,
(ii) properly formats the output ground rules in such a way that “split predicates” do
not appear; (iii) deletes from the programP all the rules containing split predicates and
reintroduces the original ones. Now, as inComponentInstantiator, recursive rules are
evaluated according to a semi-naı̈ve schema. Also in this case, rules are first rewrit-
ten and the output is “realigned”. However, since recursiverules are processed several
times, this strategy is applied at each iteration of the do-while loop.

One may think that, recursive rules could be “split” only once, but this choice is not
correct in the general case. Indeed, if the split predicate is recursive, its extension may
change at each iteration; hence, the distribution made during the rewriting step could
not be sufficient to compute all the ground instances of the original rule. In addition,
this choice has a relevant side-effect: at each iteration the workload is dynamically re-
distributed among instantiators, thus inducing a dynamic load balancing. Note that this
feature intervenes just in case of the evaluation of recursive rules, which are often the
most time consuming part of the computation.

ProcedureRewrite is now described in detail. It receives as input: the ruler to
be “split”, the setsS and∆S containing the extensions of the body predicates, and the
programP. Rewritefirst selects, according to an heuristics, a positive literal to split, say
l, in the body ofr; then, it replacesr in P by a set of rulesri (i = 1, . . . , k). Eachri

is obtained fromr by substitutingl with a new literalli having a fresh2 new predicate
name built by concatenatingi to the name ofl. This is done by functionSplitRules,
whereas procedureDistributecreates the extension of the new literalsli (i = 1, . . . , k)
by uniformly distributing the extension ofl (bothS and∆S are affected).

Concerning the selection of the literal to split, the choicehas to be carefully made,
since it may strongly affect the cost of the instantiation ofrules; a good heuristics should
minimize it. It is well-known that this cost strictly depends on the order of evaluation
of body literals, since computing all the possible instantiations of a rule is equivalent
to computing all the answers of a conjunctive query joining the extensions of literals
of the rule body. However, the choice of the split literal mayinfluence the time spent

2 If a predicate with this name already exists, another string which does not appear elsewhere in
the program is appended to the name.



on instantiating each split rule, whatever the join order. In order to help the intuition,
suppose that the ruler : h(X) : −a(X), b(X), c(X). has to be split in ten parts, and that
the size of the extensions ofa, b, andc are 10, 20, and 30, respectively. The following
table reports the number of operations (i.e. comparisons) needed to instantiate a single
split rule of r in the worst case, by varying the literal to split (on the columns) and
by considering three different body orders (on the rows). Note that, any other order is
equivalent to one of the table w.r.t. the number of operations.

order/split split a split b split c
ABC 620 620 800
ACB 630 900 630
CBA 1200 660 660

Looking at the table, some considerations can be made. Firstof all, the order ABC is
the most efficient; moreover, in each order, the number of operations is minimum when
one of the first two literals is split. Note also that, the sizeof the extension alone is not a
good discriminant for choosing the literal to split. Indeed, the table shows that splitting
on c (which has the largest extension) is always a bad choice; whereas there is an order
(CBA) in which, even if the split literal is the smallest (a) the number of operations is the
highest. Similar considerations still hold if more preciseestimations of costs are made.
According to these considerations, the heuristics proposed here consists of selecting an
optimal ordering and splitting the first literal in this order. Such heuristics tries, on the
one hand, to minimize the overall (sequential) execution time; and, on the other hand,
to distribute the workload in order to minimize the parallelexecution time.

Since the ordering problem has already been investigated and an effective strategy
[31] has already been successfully implemented in DLV, it was decided to adopt it.

This choice has also another important consequence: since all the factors the heuris-
tics is based on are always already computed during the computation, its implementa-
tion does not introduce any overhead.

Proposition Let P be an ASP program, andΠ be the ground program generated by
the algorithmParallel Instantiatewhere procedureComponentInstantiatorRewis used
instead ofComponentInstantiator; thenANS(P) = ANS(Π ∪ EDB(P)).

Proof. (sketch) This follows from Proposition 1 ifComponentInstantiatorRewpro-
duces the same output ofComponentInstantiatorwhen invoked on the same input. First,
observe that the ground instances of exit rules produced by the two procedures are the
same modulo a renaming, that is performed by the realign step. Concerning recursive
rules, their evaluation is obtained by applying several times the same algorithm used for
the exit ones, where the output of each iteration is used as input for the next one. Thus,
since the realign step is performed at the end of each iteration the thesis follows. 2

5 Experiments

In order to check the validity of the dynamic rewriting, it was implemented into the
parallel grounding engine of [22]. The resulting system wascompared with the previous
one on a collection of benchmark programs taken from different domains.

Both problems whose encodings cannot be evaluated in parallel with the existing
technique were considered, and problems where the old technique applies. All of them
have already been used for assessing ASP instantiators performance ([8, 32, 33]).



Fig. 2.The Parallel Instantiation Procedures enhanced by Dynamic Rewriting.



The system was built with GCC 4.1.2, dynamically linking thePosix Thread Li-
brary. Experiments were performed on a machine equipped with two Intel Xeon “Wood-
crest” (quad core) processors clocked at 3.00GHz with 4 MB ofLevel 2 Cache and 4GB
of RAM, running Debian GNU Linux 4.0.

The implementation allows the user for setting the number ofsplits as an input ar-
gument. For our experiments, this number was set to 8 which coincides with the number
of available processors (if the extension of the split literal containsx instances where
x < 8 then exactlyx split rules are geenrated). Actually, an experimental analysis (not
reported here for space reasons) confirmed that this fixed setting is optimal. The total
time needed to instantiate the inputs was measured. In orderto obtain more trustworthy
results, each single experiment was repeated three times, and both the average and stan-
dard deviation of the results are reported. In the following, the benchmark problems are
described, and finally, the results of the experiments are reported and discussed.

5.1 Benchmark Problems and Data

A brief description of the problems considered for the experiments follows. In or-
der to meet space constraints, encodings are not presented but they are available at
http://www.mat.unical.it/parallel/parallelbench08.tar.gzip. To help the understanding
of the results some information is given on the number of rules of each program. About
data, we considered for each problem three instances of increasing size.
3-Colorability. This well-known problem asks for an assignment of three colors to
the nodes of a graph, in such a way that adjacent nodes always have different colors.
The encoding of this problem consists of one rule and one constraint. Three simplex
graphs were generated with the Stanford GraphBase library [34], by using the function
simplex(n, n,−2, 0, 0, 0, 0), (n ∈ {140, 150, 170}).
Reachability. Given a finite directed graphG = (V,A), we want to compute all pairs
of nodes(a, b) ∈ V × V such thatb is reachable froma through a nonempty sequence
of arcs inA. The encoding of this problem consists of one exit rule and a recursive one.
Tree graphs were generated [35] having pair (number of levels, number of siblings):
(12,2), (14,2), and (10,3), respectively.
Hamiltonian Path. A classical NP-complete problem in graph theory, and can be ex-
pressed as follows: given a directed graphG = (V,E) and a nodea ∈ V of this graph,
does there exist a path inG starting ata and passing through each node inV exactly
once? The encoding of this problem consists of several rules, one of these is recursive.
Instances were generated, by using a tool by Patrik Simons (cf. [36]), having 5800,
6500 and 7200 nodes, respectively.
Player. A data integration problem [18]. Given some tables containing discording data,
find a repair where some key constraints are satisfied. The encoding of this problem con-
sists of several rules, and one constraint. The considered randomly generated databases
have 32000, 39000, 45500 tuples.
n-Queens.The8-queens puzzle is the problem of putting eight chess queens on an8x8
chessboard such that none of them is able to capture any otherusing the standard chess
queen’s moves. Then-queens puzzle is the more general problem of placingn queens
on annxn chessboard (n ≥ 4). The encoding consists of one rule and four constraints.
Instances were considered havingn ∈ {37, 39, 41}.



Problem serial no split split split vs nosplit
3col1 60.76 (0.58) 60.79 (0.10) 9.24 (0.09) 657%

3col2 92.00 (0.55) 91.97 (0.06) 13.28(0.10) 692%

3col3 171.30 (0.29)171.36 (0.20) 24.80 (0.29) 690%

reach1 14.20 (0.03) 14.26 (0.02) 2.24 (0.08) 634%

reach2 268.13 (0.31)267.98 (0.60) 35.12(0.14) 763%

reach3 802.35 (10.74)805.47 (0.40)101.51(0.62) 790%

hampath1 229.43 (0.13)141.02 (0.29) 33.35 (0.87) 423%

hampath2 303.66 (0.92)185.83 (0.56) 45.49 (0.35) 409%

hampath3 377.85 (0.48)231.89 (1.07) 57.73 (0.47) 402%

queens1 4.79 (0.01) 2.29 (0.04) 0.76 (0.03) 301%

queens2 5.89 (0.01) 2.79 (0.02) 0.93 (0.01) 300%

queens3 7.16 (0.01) 3.38 (0.03) 1.08 (0.02) 312%

player1 141.94 (2.02) 61.16 (0.08) 20.78 (0.26) 296%

player2 289.72 (0.62)126.48 (2.19) 41.95 (0.15) 301%

player3 481.65 (11.23)209.88 (1.15) 69.84 (0.16) 300%

Table 1.Effect of the enhanced technique - Average Times and Standard Deviation.

5.2 Experimental Results and Discussion

The performance of the compared systems is summarized in Table 1. In particular, the
first three columns report the average instantiation times (and standard deviation) for
the serial instantiation, the old parallel instantiator and the new one, respectively; the
last column shows percentage gains given by the new technique w.r.t. the old one.

First of all, notice that for 3-Colorability and Reachability the old technique does not
apply, thus the time reported in column “nosplit” coincides with the serial execution
time for those problems; conversely, the time required by the instances of Hamiltonian
Path, n-Queens and Player already benefits of the presence ofmore than one processor.

It is worth noting that, where the old technique has no effect, the best performance
is near to the theoretical maximum obtainable with eight processors. For example, in
reach3 the execution time changes from 805 seconds to 101 (i.e. gainabout 790%).

The better performance obtained in the case of Reachability(w.r.t 3-Colorability) is
due to the dynamic workload distribution made in case of recursive rules.

Looking at the remaining problems the picture is still very good: the introduction
of the dynamic rewriting always allows to significantly improve performance. Indeed,
for these problems, the old technique already allows for some interesting improvements
w.r.t. the serial execution. But the combination of the two techniques is always the best
performer, and reaches performance gains up to 700% w.r.t. the serial version.

In particular, when comparing the old parallel instantiator with the new one, gains
range from 296% ofplayer1 to 423% ofhampath1. Note that, the better performance
obtained for Hamiltonian Path is due (as for Reachability) to the dynamic workload dis-
tribution made in the presence of recursive rules. Indeed, Hamiltonian Path and Reach-
ability are the only ones exploiting recursion among problems in Table 1.

Such good results may be further improved by applying more sophisticated tech-
nique for the distribution of the extension of the literal tosplit.

6 Related Work and Conclusions

In this paper a new strategy is proposed for increasing parallelism into the instantiation
process of ASP programs. This strategy allows performance to be improved by perform-
ing a dynamic rewriting of the input program that, when combined with existing paral-



lel instantiation techniques, naturally induces both a form of of Or-parallelism [23–26]
and a dynamic load-balancing technique. The technique was implemented into the par-
allel DLV instantiator and an experimental analysis was conducted that confirmed the
effectiveness of the technique. In particular, the new parallel implementation always
outperforms the (sequential) DLV instantiator, and compared with the previous parallel
method offers a very relevant gain especially in case of programs with very few rules.

Concerning related work, there are several studies about parallel techniques for
the evaluation of ASP programs that focus on both the propositional (model search)
phase [37–39], and the instantiation phase [40, 22]. About the latter group of proposals
(which, evidently, is the only one strictly-related to thiswork), there are two distinct
approaches: in [40] a parallelization technique was designed for the ASP instantiator
Lparse [41]; whereas, in [22] the instantiator of the ASP system DLV was parallelized.
Although the two approaches have several differences concerning both the input lan-
guage and the exploited technology (clusters vs shared memory), both of them proceed
by delegating the instantiation of rules of the program to different processing units.
Thus, the method proposed in this paper, which was successfully implemented as an
extension of the parallel DLV instantiator, may also be adapted to increase parallelism
in case of the Lparse-based one (e.g. one might rewrite the input program, by splitting
a domain predicate, just before launching the parallel computation). Regarding load-
balancing, it is worth pointing out that, in [40] the distribution of work to processing
units is statically determined at the beginning of the computation while, in the approach
described in this paper, the work is distributed at running time.

Our work is also related to the efforts of parallelizing the evaluation of Datalog [42–
45], dating back to 90’s. In many of them, only restricted classes of Datalog programs
are parallelized; whereas, the most general ones (reportedin [43, 45]) are applicable to
normal Datalog programs. Clearly, none of them consider thepeculiarities of disjunc-
tive programs and unstratified negation. More in detail, [43] provides the theoretical
foundations for the so-calledcopy and constraintechnique, whereas [45] enhances it in
such a way that the communication overhead in distributed systems can be minimized.3

The copy and constrain technique works as follows: rules arereplicated with additional
constraints attached to each copy; such constraints are generated by exploiting an hash
function and allow for selecting a subset of the tuples. The obtained restricted rules are
evaluated in parallel. Our technique shares the idea of splitting the instantiation of each
rule, but has several differences that allow for obtaining an effective implementation.
Indeed, in [43, 45] copied rules are generated and statically associated to instantiators
according to an hash function which is independent from the current instance in input.
Conversely, in our technique, the distribution of predicate extensions is performed dy-
namically, before assigning the rules to instantiators, bytaking into account the “actual”
predicate extensions. In this way, the non-trivial problem[45] of choosing an hash func-
tion that properly distributes the load is completely avoided in our approach. Moreover,
the evaluation of conditions attached to the rule bodies during the instantiation phase
would require to either modify the standard instantiation procedure (for efficiently se-
lecting the tuples from the predicate extensions accordingto added constraints) or to

3 Since the enhancements introduced in [45] are not relevant in our setting(i.e. SMP machines
with shared memory), in the following we focus on [43]).



incur in a possible non negligible overhead due to their evaluation. As far as future
work is concerned, it is planned to further study both load-balancing techniques and
heuristics. A possibility is to extend to our framework dynamic load redistribution tech-
niques like the one in [46].
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4. Marek, V.W., Truszczýnski, M.: Stable Models and an Alternative Logic Programming

Paradigm. In: The Logic Programming Paradigm-A 25-Year Perspective. (1999) 375–398
5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP

(2003)
6. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog

perspective . Artificial Intelligence138(1–2) (2002) 3–38
7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22(3) (1997) 364–418
8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL7(3) (2006) 499–562
9. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys33(3) (2001) 374–425
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