Efficient Parallel ASP Instantiation
via Dynamic Rewriting*

Simona Perri, Francesco Ricca, and Saverio Vescio

Dipartimento di Matematica, Univeraidella Calabria, 87030 Rende, Italy
{perri,ricca, vescio}@rat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful formalism for knowl-
edge representation and reasoning. The computation of most ASPhs)fste
lows a two-phase approach: an instantiation (or grounding) phaseagena
variable-free program which is then evaluated by propositional algasithrthe
second phase. The instantiation process may be very expensiegjadiypfor
real-world problems, where huge input data are often to be dealt with.

A method that exploits the capabilities of multi-processor machines for impro
ing instantiation performance has been recently proposed. This methole;
mented in the grounding module of the ASP system DLV, proved to betigfec
especially when dealing with programs consisting of many rules.

In this paper, a dynamic rewriting of input rules is proposed that ergsatie
efficacy of the parallel evaluation also in the case of programs with eeryiles.
The effect of the technique is twofold: on the one hand, a kind of caedism is
induced by rewriting each rule at running time; on the other hand, theleastk

is dynamically distributed among processing units according to an heuristics
Dynamic rewriting was implemented, and an experimental analysis was con
ducted that confirms the effectiveness of the technique. In partichlamew
parallel implementation always outperforms the (sequential) DLV instantiato
and compared with the previous parallel method offers a very relgaantespe-
cially in the case of programs with very few rules.

1 Introduction

In the last few years, multi-core/multi-processor ardttitees have become standard,
thus making Symmetric MultiProcessing (SMP) [1] commorodts entry-level sys-
tems and PCs. The principle behind SMP architectures is sienple: two or more
identical processors connect to a single shared main mereoapling simultaneous
multithread execution. Such technology has been recerfiipiged with profit in the
field of Answer Set Programming (ASP).

ASP is a declarative approach to programming proposed iarid of nonmono-
tonic reasoning and logic programming [2—7] which featwrdsgh declarative nature
combined with a relatively high expressive power [8, 9]. fehare nowadays a number
of systems that support ASP and its variants [8, 10-17]. Téraét modules of ASP

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni deitagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresemntazith conoscenza:
estensioni e tecniche di ottimizzazione.”

systems work on a ground instantiation of the input progfEimus, an input prograr®
first undergoes the so-called instantiation process, witictluces a prograf’ seman-
tically equivalent toP, but not containing any variable. This phase is computatign
very expensive (see [7, 9]); thus, having an efficient ins#ion procedure is, in gen-
eral, crucial for the performance of the entire ASP systénteed, recent applications
of ASP in different emerging areas (see e.g., [18-21]), leidenced the practical
need for faster and scalable ASP instantiators.

In [22] a technique for the parallel instantiation of ASP gmams was proposed,
allowing for the performance of instantiators to be impibg exploiting the power of
multiprocessor computers. The technique takes advanfagene structural properties
of input programs in order to reduce the usage of concurreantrol mechanisms [1],
and, thus, the so-called parallel overhead. The stratemysés on two different aspects
of the instantiation process: on the one hand, it examinessttucture of the input
programP, splits it into modules (or sub-programs) and, accordinth&interdepen-
dencies between the modules, decides which of them can begzed in parallel; on
the other hand, it parallelizes the evaluation of rules witach module. This strategy
has been implemented into the instantiator module of the &&fem DLV [8], thus
obtaining a parallel ASP instantiator.

This parallel system proved to be effective especially i itiistantiation of pro-
grams consisting of several rules with a large amount oftinlata [22]. However, it
is not fully exploitable in case of programs with few rulef€elreason for this behav-
ior can be easily understood by considering the followirgjutictive encoding for the
well-known 3-Colorability problem:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(¢) = col(X,C), col(Y,C), edge(X,Y).

Predicatesiode andedge represent the input graph; ru(e) guesses the possible
colorings of the graph, and the constrajat imposes that two adjacent nodes cannot
have the same color.

In this case, the technique proceeds by first instantigtingthus computing the
extension of:ol, and then, only once this is done, by processing the constrai Thus,
such encoding does not allow the existing technique to miakesvaluation parallel
at all. However, one may provide different encodings (witbrenrules) for the same
problem, which are more amenable for the technique. In gérters would require the
user to knowhowthe evaluation process works, while writing a program: ityeauch
arequirement is not desirable for a fully declarative systdevertheless, an automatic
rewriting of the input program for an equivalent one, whosgalgation can be made
more parallel, could make this optimization process trarspmt to the user.

In this paper, a dynamic rewriting of input rules is propotieat enhances the ef-
ficacy of the existing parallel evaluation technique, e&lcin the case of programs
with very few rules. The basic idea is to rewrite input rulégxecution time in order
to induce a form of Or-parallelism [23—-26]. This can be ah¢al, given a rule:, by
“splitting” the extension of one single body predicatef » in several parts. Each part
is associated with a different temporary predicate; ame#ch of those predicates, say
pi, a new rule, obtained by replacimgwith p;, is produced. The so-created rules will

be instantiated in parallel in place of when they are done, a realign step gets rid of
the new names in order to obtain the same output of the otigigarithm.

However, the choice of the most convenient predicate td isphiot trivial; indeed,
a “bad” split might reduce or neutralize the benefits of galiam, thus making the
overall time consumed by the parallel evaluation not opiti@ad, in some corner case,
even worse than the time required to instantiate the ofigineoding). Thus, an heuris-
tic has also been proposed to select the “best” predicafgitarsorder to minimize the
parallel execution time. Summarizing, the contributiohths paper are the following:

- A technique is presented for rewriting rules of ASP progsamsuch a way that
they can be evaluated in parallel; rules are rewritten atwi@n time, thus dynam-
ically distributing the workload among processing units.

- An heuristic for selecting the most convenient way for liéwg a rule is proposed
aiming at minimizing the parallel time.

- An implementation of the dynamic rewriting was done inte garallel version of
the DLV instantiator.

- An experimental analysis was conducted for assessingtimigue.

The results of the experiments show that the new parallelementation always
outperforms the (sequential) DLV instantiator, and, coragavith the previous parallel
method, offers a very relevant gain especially in case ajiarms with few rules.

2 Answer Set Programming

In this section, we briefly recall syntax and semantics ofwgrsSet Programming.

Syntax. A variable or a constant istarm An atomis a(t1, ..., t,,), wherea is apred-
icateof arity n andtq, ..., t,, are terms. Aliteral is either apositive literalp or anega-
tive literal not p, wherep is an atom. Adisjunctive rule(rule, for short)r is a formula
ai V -+ V ap i— by, -, by, not briy,- -, not by,.whereay, -, a,,b1, b
are atoms and > 0, m > k > 0. The disjunctiora; VvV --- V a, is theheadof r,
while the conjunctiofby, ..., bx, not bx+1,..., not b, isthebodyof r. A rule without
head literals (i.en = 0) is usually referred to as dntegrity constraint If the body is
empty (i.e.k = m = 0), itis called afact

H(r) denotes the sdt, ..., a,, } of the head atoms, and #§(r) the set{b,, ..., by,
not byy1,-..,not by, } of the body literals.B*(r) (resp.,B~(r)) denotes the set of
atoms occurring positively (resp., negatively)iir). A rule r is safeif each variable
appearing in- appears also in some positive body literatof

An ASP program?P is a finite set of safe rules. An atom, a literal, a rule, or & pro
gram isgroundif no variables appear in it. Accordingly with the databaserninology,
a predicate occurring only ifactsis referred to as akDB predicate, all others dBB
predicates; the set of facts Bfis denoted bye D B(P).

Semantics. Let P be a program. Thelerbrand Universeand theHerbrand Basef P
are defined in the standard way and denote@pyand Bp, respectively.

Given a ruler occurring inP, a ground instanceof r is a rule obtained fromr
by replacing every variabl& in r by o(X), whereo is a substitution mapping the

variables occurring im to constants itp; ground(P) denotes the set of all the ground
instances of the rules occurringh

An interpretationfor P is a set of ground atoms, that is, an interpretation is a $ubse
I of Bp. A ground positive literald is true (resp.false w.r.t. I'if A € I (resp.,A & I).

A ground negative literahot A is truew.r.t. I if A is false w.r.t.I; otherwisenot A

is false w.r.t.I. Letr be a ground rule iground(P). The head of- is true w.r.t. I if

H(r)N 1T # (. The body ofr is truew.r.t. I if all body literals ofr are true w.r.tI (i.e.,
Bt(r) CITandB~(r) NI = 0) and isfalsew.r.t. I otherwise. The rule is satisfied
(ortrue) w.r.t. I if its head is true w.r.t/ or its body is false w.r.tl.

A modelfor P is an interpretatiod/ for P such that every rule € ground(P) is
true w.r.t. M. A model M for P is minimalif no model N for P exists such thal is a
proper subset a#/. The set of all minimal models fdP is denoted bMM(P).

Given a ground prograr® and an interpretation, thereductof P w.r.t. I is the
subsetP! of P, which is obtained fron® by deleting rules in which a body literal is
false w.r.t.I. Note that the above definition of reduct, proposed in [2ifhpéfies the
original definition of Gelfond-Lifschitz (GL) transform J2but is fully equivalent to
the GL transform for the definition of answer sets [27].

Let I be an interpretation for a prograf I is ananswer sefor stable model) for
Pif I € MM(P’) (i.e., I is a minimal model for the program’) [28, 2]. The set of
all answer sets foP is denoted byAN S(P).

3 Parallel Instantiation of ASP programs

In this Section a sketchy description of the parallel ins&dion algorithm of [22] is
provided. A detailed discussion about this technique isobuihe scope of this paper;
for further insights we refer the reader to [22].

Given an input prograr®, the algorithm efficiently generates a ground instantia-
tion of the input program that has the same answer sets aslitteng, but is much
smaller in general. In order to generate a small ground progequivalent tdP, the
parallel instantiator computes ground instances of rubggaining only atoms which
can possibly be derived frof, and thus avoiding the combinatorial explosion which
can be obtained by naively considering all the atoms in thibkdad Base. This is done
by taking into account some structural information of thpunprogram, concerning
the dependencies among IDB predicates.

In particular, each progra® is associated with a graph, called thependency
Graphof P, which, intuitively, describes how predicates depend arhesher. More
in detail, given a prograr®, the Dependency Grapbf P is a directed grapli=p =
(N, E), whereN is a set of nodes an# is a set of arcsN contains a node for each
IDB predicate ofP, and E' contains an are = (p, q) if there is a ruler in P such that
q occurs in the head af andp occurs in a positive literal of the body of

The graphG» induces a subdivision @ into subprograms (also calledodule3
allowing for a modular evaluation. We say that a rule P definesa predicate if p
appears in the head of For each strongly connected component (SQCTPf G, the

1 A strongly connected component of a directed graph is a maximal sobie vertices, such
that every vertex is reachable from every other vertex.

set of rules defining all the predicatesthis calledmoduleof C' and is denoted b§p...
A rule r occurring in a moduléP. (i.e., defining some predicatec C) is said to be
recursiveif there is a predicatp € C occurring in the positive body of; otherwise;
is said to be aexit rule As an example, consider the following progr@nwherea is
an EDB predicate, and its dependency gréfh

p<—¢

p(X,Y) s(Y) = q(X),q(Y), not (X, Y).

p(X,Y) - q(X),t(X,Y). [l
¢(X) = af X)
HX,Y) - p(X,Y),s(Y). t —— s

the strongly connected components®@$ are {s}, {¢} and{p,¢}. They corre-
spond to the three following modulesp(X,Y) VvV s(Y) :—¢(X), ¢(Y),not t(X,Y). },

{ ¢(X):—a(X). }, and{ p(X,Y) :—q(X),t(X,Y). p(X,Y)V s(Y):=q(X),q(Y),
not t(X,Y). t(X,Y):—p(X,Y), s(Y).} Note that the first and second module do not
contain recursive rules, while the third one contains orerale, namelyp(X,Y) v
s(Y):—q(X), q(Y),not t(X,Y), and two recursive rules.

The dependency graph induces a partial ordering among @sSdefined as fol-
lows: for any pair of SCCsl, B of Gp, we say thaiB directly depends on if there is
an arc from a predicate of to a predicate oB3; and, B depend®n A if there is a path
in the Dependency Graph frorto B.

Intuitively, this partial ordering guarantees that a natprecedes a nodB if the
program module corresponding #ohas to be evaluated before the ondoMoreover,
if two components do not depend on each other, they can beagedlin parallel.

The parallel instantiation algorithm exploits this pdrtadering in order to both
produce a small instantiation and identify modules that lsarevaluated in parallel.

It follows a pattern similar to the classical producer-aangrs problem. Ananager
thread (acting as a producer) identifies the componentsadépendency graph of the
input programpP that can run in parallel, and delegates their instantiatios number
of instantiatorthreads (acting as consumers).

TheParallel_Instantiateprocedure, shown in Figure 1, acts as a manager. It receives
as input both a prograr® to be instantiated and its Dependency Grdphk; and it
outputs a set of ground ruld$, such thatANS(P) = ANS(II U EDB(P)). First
of all, the algorithm creates a new set of atofshat will contain the subset of the
Herbrand Base significant for the instantiation; more iraidle$ will contain, for each
predicatep in the program, the extension pf that is, the set of all the ground atoms
having the predicate name p{significant for the instantiation).

Initially, S = EDB(P), andII = {). Then, the manager checks, whether some
SCCC can be instantiated; in particular, it checks if there is sather component’
such thatC depends o’ andC’ has not been evaluated yet. As soon as a component
C'is processable, a ne@omponentinstantiatahread is spawned for instantiatigg

ProcedureComponentinstantiatorin turn, takes as input, among the others, the
componentC' to be instantiated and the s&t for each atonu belonging toC, and
for each ruler defininga, it computes the ground instancesrafontaining only atoms
which can possibly be derived frofd. At the same time, it updates the sewith the

Procedure Parallel_Instantiate (P: Program; G»: DependencyGraph; var I1: GroundProgram)
begin
var S: SetOfAtoms; var C: SetOfPredicates;
S = EDB(P); II := 0,
while G # () do
take a SCC C from G'p that can run in parallel
Spawn(Componentlnstantiator, P, C, S, I,Gp)
end while
end;
Procedure Componentinstantiator (P: Program; C: Component;var S: SetOfAtoms;
var [I: GroundProgram; var G'»: DependencyGraph)
begin
var N'S: SetOfAtoms; var AS: SetOfAtoms;
AS =0 NS :=0;
for each r € Exit(C, P); do
T, = Spawn (Instantiate Rule,r, S, AS,N'S, IT);
for each r € Exit(C,P); do
Jjoin_with_thread(Z,);
do
AS :=NS; NS :=0;
for each r € Recursive(C,P); do
Z, = Spawn (InstantiateRule,r, S, AS,N'S, IT);
for each r € Recursive(C,P); do
Jjoin_with_thread(Z,);
S:=SUAS,
while NS # ()
Remove C from Gp;
end Procedure;
Procedure InstantiateRule (r: rule; S: SetOfAtoms; AS: SetOfAtoms
var \'S: SetOfAtomsvar II: GroundProgram)
/* Given S and AS, builds all the ground instances of v, adds them to IT, and add to N'S
the head atoms of the newly generated ground rules. */

Fig. 1. The Parallel Instantiation Procedures.

atoms occurring in the heads of the ruledbfTo this end, each rulein the program
module ofC is processed by calling procedurestantiateRuleThis, given the set of
atoms which are known to be significant up to now, builds alghound instances of
adds them td7, and marks as significant the head atoms of the newly geemait=s.

It is worth noting that, exit rules are instantiated by a Engall tolnstantiateRule
whereas recursive ones are processed several times artordi semi-ni@e evaluation
technique [29], where at each iteratiomnly the significant information derived during
iterationn — 1 has to be used. This is implemented by partitioning signifiedoms into
three setsAS, S, and/N'S. NS is filled with atoms computed during current iteration
(sayn); AS contains atoms computed during previous iteration ¢say 1); and, .S
contains the ones previously computed (up to iteration?2).

Initially, AS andA/'S are empty; the exit rules contained in the program module
of C are evaluated and, in particular, one new thread for eadhei running pro-
cedurelnstantiateRulgis spawned. Only once all the threads are done, recurdiee ru
are processed (do-while loop). At the beginning of eachaiten, V'S is assigned to
AS, i.e. the new information derived during iteratieris considered as significant in-
formation for iteratiomn + 1. Then, for each recursive rule, a new thread is spawned,

running procedurénstantiateRulewhich receives as input and AS; when all threads
terminate AS is added toS (since it has already been exploited). The evaluation stops
whenever no new information has been derived (/&5 = (}). Eventually, component
C'is removed from/I.

Proposition 1. [22] Let P be an ASP program, and be the ground program gen-
erated by the algorithrRarallel_Instantiate ThenANS(P) = ANS(II U EDB(P))
(i.e.P andII U EDB(P) have the same answer sets). O

4 Parallel Instantiation via Dynamic Rewriting

In this section, a rewriting technique is described thabeicks the parallel instantiation
algorithm of the previous Section.

Some Motivation. As already pointed out, there are problem encodings thabtio n
allow the instantiation technique described in Sectio 3nake the evaluation parallel
at all; the following encoding of the 3-Colorability prolnte is an example for that:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(¢) = col(X,C), col(Y,C), edge(X,Y).

However, one may provide different encodings for the saneblpm, which are
more amenable for the application of the technique. Oveaiifiying, since each rule
of the input program is processed by one processing unitpumethink of rewriting
it into an equivalent program containing several rules.iRstance, the following is a
possible rewriting for the constraifit), of the 3-Colorability encoding reported above:

(c1) = col(X,C), col(Y,C), edgel(X,Y).
(c2) = col(X,C), col(Y,C), edge2(X,Y).

The set of edges &plit upinto two subsets, represented by predicatkg1 andedge2.
The evaluation of constrain{s;) and(cs) is equivalent to the evaluation of the original
constraintc, modulo renaming, but the computation now can be carriednopiérallel
by two different processing units (instantiators).

This rewriting strategy can be straightforwardly extend@dallowing more than
two instantiators to work in parallel, and it can be generaliin order to deal with any
program. However, there are different, sometimes manyswagpply it. For instance,
another possible encoding for 3-Colorability could be oted by working on a literal
whose predicate namedsl, and by introducing new predicatedl; . . . col,, (obtained
by distributing the extension @bl). Hereafter, with a small abuse of notation we indi-
cate as extension of a literiathe extension of the predicateorresponding td (having
the same name d% Note that, differently fronedge, col is not anE D B predicate (it
occurs in the head of rulg-)); thus, in this case, a rewriting preserving the original
semantics, would require to further modify the originalgnam. Indeed, the extension
of col is not known a-priori; thus, the split @bl has to be induced by the split of the
predicates it depends on by means of other rules. This meydesn intricate rewriting
of the entire program (not only rules to be split) and a pdgsitower instantiation.

However, the extension of the predicate to be split is knouning the instantiation
when the rule is taken for evaluating it. Thus, if the rewagtis performed at execution

time, a rule can be split without involving the entire pragraMoreover, it can be eas-
ily automatized in order to be transparently applied. Nb#,tthis strategy somewhat
induces a form 0Or-parallelism[23—26], which is here simulated via rewriting.

Dynamic Rewriting. The enhanced parallel instantiation algorithms are now de-
scribed in detail that are based on the idea described above.

ProcedureComponentinstantiatarsed in the algorithm of Section 3 is replaced by
a new one, calle€omponentinstantiatoRew reported in Figure 2. It takes as input
the component’ to be instantiated and the set of significant atéinand for each atom
a belonging toC', and for each rule defininga, it computes the ground instancesrof

At the beginning, the new set of atormsS and 'S (which initially are empty) are
created; then, exit rules are evaluated. More in detaih eathem is rewritten into a set
of new exit rules which are added & This is done by calling the proceduRewrite
which is detailed in the following. At this point, a threadhning InstantiateRulds
spawned for each exit rule. Only when all the threads are ,dmetion Realign (i)
restoresS and AS by removing all the ground atoms inserted by procedRerite
(i) properly formats the output ground rules in such a waat tisplit predicates” do
not appear; (iii) deletes from the programall the rules containing split predicates and
reintroduces the original ones. Now, asGomponentinstantiatorecursive rules are
evaluated according to a semiiv& schema. Also in this case, rules are first rewrit-
ten and the output is “realigned”. However, since recursiNes are processed several
times, this strategy is applied at each iteration of the thileAloop.

One may think that, recursive rules could be “split” only enlut this choice is not
correct in the general case. Indeed, if the split predicatedursive, its extension may
change at each iteration; hence, the distribution madenguhie rewriting step could
not be sufficient to compute all the ground instances of thgral rule. In addition,
this choice has a relevant side-effect: at each iteratiewitrkload is dynamically re-
distributed among instantiators, thus inducing a dynaoad Ibalancing. Note that this
feature intervenes just in case of the evaluation of reeensiles, which are often the
most time consuming part of the computation.

ProcedureRewriteis now described in detail. It receives as input: the nul®
be “split”, the setsS and AS containing the extensions of the body predicates, and the
programP. Rewritefirst selects, according to an heuristics, a positive literaplit, say
[, in the body ofr; then, it replaces in P by a set of rules; (: = 1, ..., k). Eachr;
is obtained fromr- by substituting with a new literall; having a fresh new predicate
name built by concatenatingto the name of. This is done by functiorsplitRules
whereas procedunistribute creates the extension of the new literal§ = 1,..., k)
by uniformly distributing the extension éf(both.S and AS are affected).

Concerning the selection of the literal to split, the chdies to be carefully made,
since it may strongly affect the cost of the instantiationubés; a good heuristics should
minimize it. It is well-known that this cost strictly dependn the order of evaluation
of body literals, since computing all the possible instatitns of a rule is equivalent
to computing all the answers of a conjunctive query joining éxtensions of literals
of the rule body. However, the choice of the split literal niaffjuence the time spent

2 |f a predicate with this name already exists, another string which doeppeaaelsewhere in
the program is appended to the name.

on instantiating each split rule, whatever the join orderotder to help the intuition,
suppose that the rute: h(X) : —a(X),b(X), ¢(X). has to be splitin ten parts, and that
the size of the extensions of b, andc are 10, 20, and 30, respectively. The following
table reports the number of operations (i.e. comparisogsiled to instantiate a single
split rule of » in the worst case, by varying the literal to split (on the cohs) and
by considering three different body orders (on the rows)}eNbat, any other order is
equivalent to one of the table w.r.t. the number of operation

order/splifsplit a[split b[split c
ABC 620 620/ 800
ACB 630 900, 630
CBA 1200 660 660

Looking at the table, some considerations can be made afiit the order ABC is
the most efficient; moreover, in each order, the number ofadjpas is minimum when
one of the first two literals is split. Note also that, the gizéhe extension alone is not a
good discriminant for choosing the literal to split. Indet table shows that splitting
on ¢ (which has the largest extension) is always a bad choicere@isahere is an order
(CBA) in which, even if the split literal is the smallesf)the number of operations is the
highest. Similar considerations still hold if more precéstimations of costs are made.
According to these considerations, the heuristics prappbsee consists of selecting an
optimal ordering and splitting the first literal in this ord8uch heuristics tries, on the
one hand, to minimize the overall (sequential) executioretiand, on the other hand,
to distribute the workload in order to minimize the paraigécution time.

Since the ordering problem has already been investigat@dmarffective strategy
[31] has already been successfully implemented in DLV, & @ecided to adopt it.

This choice has also another important consequence: diribe gactors the heuris-
tics is based on are always already computed during the catigy, its implementa-
tion does not introduce any overhead.

Proposition Let P be an ASP program, and be the ground program generated by
the algorithmParallel_Instantiatewhere procedur€omponentinstantiatoRewis used
instead ofComponentinstantiatopthen AN .S(P) = ANS(I1 U EDB(P)).

Proof. (sketch) This follows from Proposition 1 €@omponentinstantiatoRewpro-
duces the same output@dbmponentinstantiatawhen invoked on the same input. First,
observe that the ground instances of exit rules producetéiwto procedures are the
same modulo a renaming, that is performed by the realign §&tepcerning recursive
rules, their evaluation is obtained by applying severaéithe same algorithm used for
the exit ones, where the output of each iteration is usedma for the next one. Thus,
since the realign step is performed at the end of each iberétie thesis follows. O

5 Experiments

In order to check the validity of the dynamic rewriting, it svamplemented into the
parallel grounding engine of [22]. The resulting system e@apared with the previous
one on a collection of benchmark programs taken from diffedemains.

Both problems whose encodings cannot be evaluated in glavdth the existing
technigue were considered, and problems where the olditeehapplies. All of them
have already been used for assessing ASP instantiatosparice ([8, 32, 33]).

Procedure Componentinstantiator_Rew (P: Program; C: Component; var S: SetOfAtoms;
var II: GroundProgram, var G'»: DependencyGraph)
begin
var AS, N'S: SetOfAtoms;
AS:=0NS:=0;
for each r € Exit(C,P); do
Rewrite (r,S, AS,P); // this will add new exit rules
for each r € Exit(C,P); do
T, = Spawn (InstantiateRule, r, S, AS,N'S, IT);
for each r € Exit(C,P); do
Join_with_thread(Z,);
Realign(I1 S,AS);

do
AS :=NS;NS:=0;
for each r € Recursive(C, P); do
Rewrite (r, S, AS,P); // this will add new recursive rules
for each r € Recursive(C,P); do
T, = Spawn (InstantiateRule, r, S, AS,N'S, IT);
for each r € Recursive(C, P); do
Jjoin_with_thread(Z,);
Realign(I1 S,AS,P);
S:=SUAS;
while NS # ()

Remove C from Gp;
end Procedure;

Procedure Rewrite (r: Rule; var S: SetOfAtoms; var AS: SetOfAtoms;var P: Program)
begin

Select ! € B(r); /laccording to an heuristics

P =P U SplitRules(r, 1),

P=P\{r}

Distribute(l,S,AS);
end Procedure;

Program Function SplitRules (r: Rule; [: Literal)

/*
Given rule r, returns a program containing rules r; (i = 1, ... k) obtained from r
by replacing l with a new literal l; having a fresh new name built by concatenating i
to the name of .

*/

Procedure Distribute (I: Literal; var S: SetOfAtoms; var AS: SetOfAtoms)
begin
for each a € S; do
if a has the same name of |
index s_id = DetectSplit(a);
// create atom as_;q whose name is built by concatenating s_id
// to the name of a and add it to S .;
S =SU{as.ia};
end Procedure;

Procedure Realign (11: GroundProgram; var S: SetOfAtoms; var AS: SetOfAtoms;
var P: Program)
/%
For each ground rule r € I1, if B(r) contains a split literal l; replace its name with
the original one; restore S and AS by removing all the ground atoms inserted
by function Distribute; replace rules originated by SplitRules with the original ones.
*/

Fig. 2. The Parallel Instantiation Procedures enhanced by Dynamic Rewriting.

The system was built with GCC 4.1.2, dynamically linking thesix Thread Li-
brary. Experiments were performed on a machine equippddwid Intel Xeon “Wood-
crest” (quad core) processors clocked at 3.00GHz with 4 MBewEl 2 Cache and 4GB
of RAM, running Debian GNU Linux 4.0.

The implementation allows the user for setting the numbesptifs as an input ar-
gument. For our experiments, this number was set to 8 whikcttickes with the number
of available processors (if the extension of the split ¢iterontainse instances where
x < 8 then exactlyr split rules are geenrated). Actually, an experimentalyasisinot
reported here for space reasons) confirmed that this fixédg&t optimal. The total
time needed to instantiate the inputs was measured. In trddatain more trustworthy
results, each single experiment was repeated three time&aih the average and stan-
dard deviation of the results are reported. In the followthg benchmark problems are
described, and finally, the results of the experiments grerted and discussed.

5.1 Benchmark Problems and Data

A brief description of the problems considered for the ekpents follows. In or-
der to meet space constraints, encodings are not preseuntdbely are available at
http://www.mat.unical.it/parallel/parallebench08.tar.gzip To help the understanding
of the results some information is given on the number ofsrofeeach program. About
data, we considered for each problem three instances &4sitrg size.

3-Colorability. This well-known problem asks for an assignment of three rsoto
the nodes of a graph, in such a way that adjacent nodes alveargsdifferent colors.
The encoding of this problem consists of one rule and onet@ins Three simplex
graphs were generated with the Stanford GraphBase lib8dily Iy using the function
simplex(n,n,—2,0,0,0,0), (n € {140,150, 170}).

Reachability. Given a finite directed grapi = (V, A), we want to compute all pairs
of nodes(a,b) € V x V such thab is reachable frona through a nonempty sequence
of arcs inA. The encoding of this problem consists of one exit rule aretansive one.
Tree graphs were generated [35] having pair (number ofdevelmber of siblings):
(12,2), (14,2), and (10,3), respectively.

Hamiltonian Path. A classical NP-complete problem in graph theory, and carxbe e
pressed as follows: given a directed gr&ph- (V, E') and a node. € V' of this graph,
does there exist a path @ starting ate and passing through each nodelinexactly
once? The encoding of this problem consists of several, ratesof these is recursive.
Instances were generated, by using a tool by Patrik Simdn$3@]), having 5800,
6500 and 7200 nodes, respectively.

Player. A data integration problem [18]. Given some tables contgjmliscording data,
find a repair where some key constraints are satisfied. Thaslengof this problem con-
sists of several rules, and one constraint. The considaratbmly generated databases
have 32000, 39000, 45500 tuples.

n-Queens.The8-queens puzzle is the problem of putting eight chess quaeaag&xs
chessboard such that none of them is able to capture anyustimgy the standard chess
queen’s moves. The-queens puzzle is the more general problem of plagiogieens
on annxn chessboard(> 4). The encoding consists of one rule and four constraints.
Instances were considered having {37,39,41}.

Problem serial nao_split split|split vs nasplit
3colq 60.76 (0.58) 60.79 (0.10) 9.24 (0.09 657%
3cola 92.00 (0.55) 91.97 (0.06) 13.28(0.10 692%
3cols 171.30 (0.29)171.36 (0.20) 24.80 (0.29 690%
reachi 14.20 (0.03) 14.26 (0.02) 2.24 (0.08 634%
reacha 268.13 (0.31)267.98 (0.60) 35.12(0.14] 763%
reachs 802.35 (10.74)805.47 (0.40)101.51(0.62| 790%
hampathi| 229.43 (0.13)141.02 (0.29) 33.35 (0.87, 423%
hampatho| 303.66 (0.92)185.83 (0.56) 45.49 (0.35 409%
hampathg| 377.85 (0.48)231.89 (1.07) 57.73 (0.47 402%
queensi 4.79(0.01) 2.29(0.04) 0.76 (0.03 301%
queenss 5.89 (0.01) 2.79(0.02) 0.93(0.01 300%
queenss 7.16 (0.01) 3.38(0.03) 1.08 (0.02 312%
playery 141.94 (2.02) 61.16 (0.08) 20.78 (0.26 296%
players 289.72 (0.62)126.48 (2.19) 41.95 (0.15 301%
players |481.65 (11.23)209.88 (1.15) 69.84 (0.16 300%

Table 1. Effect of the enhanced technique - Average Times and StandardtDevia
5.2 Experimental Results and Discussion

The performance of the compared systems is summarized la Taln particular, the
first three columns report the average instantiation tiraesl Standard deviation) for
the serial instantiation, the old parallel instantiatod &ine new one, respectively; the
last column shows percentage gains given by the new techmiqu. the old one.

First of all, notice that for 3-Colorability and Reachatyiihe old technique does not
apply, thus the time reported in column “split” coincides with the serial execution
time for those problems; conversely, the time required leyitistances of Hamiltonian
Path, n-Queens and Player already benefits of the presentarethan one processor.

It is worth noting that, where the old technique has no effihet best performance
is near to the theoretical maximum obtainable with eightpssors. For example, in
reachs the execution time changes from 805 seconds to 101 (i.e ajpaint 790%).

The better performance obtained in the case of Reachaility 3-Colorability) is
due to the dynamic workload distribution made in case ofnrsee rules.

Looking at the remaining problems the picture is still venod: the introduction
of the dynamic rewriting always allows to significantly inope performance. Indeed,
for these problems, the old technique already allows foresimteresting improvements
w.r.t. the serial execution. But the combination of the techniques is always the best
performer, and reaches performance gains up to 700% Wwe.sdrial version.

In particular, when comparing the old parallel instantiatith the new one, gains
range from 296% oplayer; to 423% ofhampath,. Note that, the better performance
obtained for Hamiltonian Path is due (as for Reachabiliythe dynamic workload dis-
tribution made in the presence of recursive rules. Indeaghilionian Path and Reach-
ability are the only ones exploiting recursion among proigén Table 1.

Such good results may be further improved by applying mophisticated tech-
nigue for the distribution of the extension of the literakialit.

6 Related Work and Conclusions

In this paper a new strategy is proposed for increasing lpdisah into the instantiation
process of ASP programs. This strategy allows performanioe improved by perform-
ing a dynamic rewriting of the input program that, when comeli with existing paral-

lel instantiation techniques, naturally induces both afof of Or-parallelism [23—26]
and a dynamic load-balancing technique. The technique mpleimented into the par-
allel DLV instantiator and an experimental analysis wasdemted that confirmed the
effectiveness of the technique. In particular, the new lfEramplementation always
outperforms the (sequential) DLV instantiator, and coregawith the previous parallel
method offers a very relevant gain especially in case offarog with very few rules.

Concerning related work, there are several studies abauatlglatechniques for
the evaluation of ASP programs that focus on both the prtipasi (model search)
phase [37—-39], and the instantiation phase [40, 22]. Abjwtdtter group of proposals
(which, evidently, is the only one strictly-related to thsrk), there are two distinct
approaches: in [40] a parallelization technique was desigor the ASP instantiator
Lparse [41]; whereas, in [22] the instantiator of the ASRexysDLV was parallelized.
Although the two approaches have several differences coimceboth the input lan-
guage and the exploited technology (clusters vs shared my¢nhboth of them proceed
by delegating the instantiation of rules of the program tifedént processing units.
Thus, the method proposed in this paper, which was sucdigssfiplemented as an
extension of the parallel DLV instantiator, may also be aeldpo increase parallelism
in case of the Lparse-based one (e.g. one might rewrite the program, by splitting
a domain predicate, just before launching the parallel edatjwn). Regarding load-
balancing, it is worth pointing out that, in [40] the distiiion of work to processing
units is statically determined at the beginning of the cotapon while, in the approach
described in this paper, the work is distributed at runnimgt

Our work is also related to the efforts of parallelizing thaleation of Datalog [42—
45], dating back to 90’s. In many of them, only restrictedsskss of Datalog programs
are parallelized; whereas, the most general ones (repior{d8, 45]) are applicable to
normal Datalog programs. Clearly, none of them considep#wiliarities of disjunc-
tive programs and unstratified negation. More in detail] [@®vides the theoretical
foundations for the so-callexbpy and constraitechnique, whereas [45] enhances it in
such a way that the communication overhead in distributetegys can be minimized.
The copy and constrain technique works as follows: rulesepiicated with additional
constraints attached to each copy; such constraints asraged by exploiting an hash
function and allow for selecting a subset of the tuples. Tiitaioed restricted rules are
evaluated in parallel. Our technique shares the idea dfisglithe instantiation of each
rule, but has several differences that allow for obtainingeiective implementation.
Indeed, in [43, 45] copied rules are generated and statieaBociated to instantiators
according to an hash function which is independent from threeait instance in input.
Conversely, in our technique, the distribution of predicaxtensions is performed dy-
namically, before assigning the rules to instantiatorgaking into account the “actual”
predicate extensions. In this way, the non-trivial prob[é6] of choosing an hash func-
tion that properly distributes the load is completely aeaidh our approach. Moreover,
the evaluation of conditions attached to the rule bodiesnduhe instantiation phase
would require to either modify the standard instantiatioocedure (for efficiently se-
lecting the tuples from the predicate extensions accortiirgdded constraints) or to

% Since the enhancements introduced in [45] are not relevant in our sen§MP machines
with shared memopy in the following we focus on [43]).

incur in a possible non negligible overhead due to theirwatédn. As far as future
work is concerned, it is planned to further study both loatkhcing techniques and
heuristics. A possibility is to extend to our framework dgma load redistribution tech-
niques like the one in [46].

References

=

. Stallings, W.: Operating systems (3rd ed.): internals and designigdeac Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)
2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Bxigjunctive Databases.
NGC9(1991) 365-385
3. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: I@% 23-37
4. Marek, V.W., Truszczyski, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: The Logic Programming Paradigm-A 25-Year Petiee¢1999) 375-398
5. Baral, C.: Knowledge Representation, Reasoning and Declaratidefh Solving. CUP
(2003)
6. Gelfond, M., Leone, N.: Logic Programming and Knowledge Regméation — the A-Prolog
perspective . Artificial Intelligenc&381-2) (2002) 3—38
7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TORZ3) (1997) 364-418
8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S8arcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TQG)(2006) 499-562
9. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Eegsive Power of Logic
Programming. ACM Computing Surve®8(3) (2001) 374-425
10. Janhunen, T., Nientgll.. Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, (2004) 331-335
11. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. LRNMR’05. LNCS
3662, (2005) 447-451
12. Simons, P, Niema] |., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligencel38(2002) 181-234
13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cadligen answer set solving.
Proc. of IJCAI 2007, 386—-392
14. Lin, F,, Zhao, Y.: ASSAT: computing answer sets of a logic progbg SAT solvers. Artifi-
cial Intelligencel57(1-2) (2004) 115-137
15. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Séte3dnhanced to Non-tight
Programs. In: LPNMR-7. LNCS 2923, (2004) 346—-350
16. Anger, C., Konczak, K., Linke, TNoMoRe: A System for Non-Monotonic Reasoning. In:
LPNMR’01. LNCS 2173, (2001) 406-410
17. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, The nomore++ Approach to
Answer Set Solving. Proc. of LPAR 2005, 95-109
18. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink,&feco, G., lanni, G., Kalka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Stanksg, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and trsistent Data. Proc.
of ACM SIGMOD 2005, 915-917
19. Curia, R., Ettorre, M., liritano, S., Rullo, P.: Textual Documeat-Processing and Feature
Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Ge€2005)
20. Massacci, F.: Computer Aided Security Requirements Engineerittg A5P Non-
monotonic Reasoning, ASP and Constraints, Seminar N 05171. Da@&muihar (2005)
21. Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto, Axpbiting ASP for Semantic
Information Extraction. Proc. of ASP05, Bath, UK (2005) 248—262

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism fedtistantiation of ASP
Programs. J. of Algorithms in Cognition, Informatics and Logic (208&)L-3) 34 - 54.
Leone, N., Restuccia, P.,, Romeo, M., Rullo, P.: Expliciting Parattelisthe Semi-Naive
Algorithm for the Bottom-up Evaluation of Datalog Programs. Databasaritgogy 4(4)
(1993) 245-158

Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., HermenegildaMVvl Parallel execution
of prolog programs: a survey. ACM Transactions on Programmimguage Systen3(4)
(2001) 472-602

de Kergommeaux, J.C., Codognet, P.: Parallel Logic Progrnagn8ystems. ACM Comput.
Surv.26(3) (1994) 295-336

Gupta, G., Jayaraman, B.: Analysis of Or-Parallel Executiondiod\CM Transactions on
Programming Language Systetii¥4) (1993) 659-680

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregatessjanttive logic programs: Se-
mantics and complexity. In: JELIA 2004. LNCS 3229, (2004) 200-212

Przymusinski, T.C.: Stable Semantics for Disjunctive Progran®C 81(1991) 401-424
Ullman, J.D.: Principles of Database and Knowledge Base Sys@nguter Science Press
(1989)

Garey, M.R., Johnson, D.S.: Computers and Intractability, A &tadhe Theory of NP-
Completeness. W.H. Freeman and Company (1979)

Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantidigrdoin-Ordering Methods.
Proc of LPNMR 2001, LNCS 2173, (2001) 280-294

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Sch@uyblruszczpski, M.: The
first answer set programming system competition. In: LPNMR 200GC8M483, 3-17
Perri, S., Scarcello, F., Catalano, G., Leone, N.: EnhancifgiBdtantiator by backjumping
techniques. AMAI51(2—4) (2007) 195-228.

Knuth, D.E.: The Stanford GraphBase : A Platform for Combinat@omputing. ACM
Press, New York (1994)

Giorgio, T., Leone, N., Vincenzino, L., Panetta, C.: Experimegntiith recursive queries in
database and logic programming systems. TRPL®Bambridge University Press (2007) 1-37
Simons, P.: Extending and Implementing the Stable Model SemantiBsthesis, Helsinki
University of Technology, Finland (2000)

Finkel, R.A., Marek, V.W., Moore, N., Truszczynski, M.: Cputing stable models in par-
allel. In: Proc. of ASP’01 Workshop, Stanford (2001) 72—-76

Gressmann, J., Janhunen, T., Mercer, R.E., Schaubhi€leTS., Tichy, R.: Platypus: A
Platform for Distributed Answer Set Solving. Proc. of LPNMR 2005,-2239

Pontelli, E., EI-Khatib, O.: Exploiting Vertical Parallelism from Answet 8rograms. In:
Proc. of ASP’01 Workshop, Stanford (2001) 174-180

Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in paralletcaition of non-
monotonic reasoning systems. Parallel Compu8i@) (2005) 608-647

Niemed, I., Simons, P.. Smodels — An Implementation of the Stable Model arld We
founded Semantics for Normal Logic Programs. In: LPNMR’97. LINT265, 420-429
Wolfson, O., Silberschatz, A.: Distributed Processing of LogigRnms. Proc. of ACM
SIGMOD 1998, 329-336

Wolfson, O., Ozeri, A.: A new paradigm for parallel and distributelé-processing. In:
ACM SIGMOD 1990, 133-142

Ganguly, S., Silberschatz, A., Tsur, S.: A Framework for thralRéd Processing of Datalog
Queries. In: SIGMOD Conference 1990, Atlantic City, NJ, 23-25, 199990) 143—-152
Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Btiatuof Datalog Pro-
grams. |IEEE TKDE/(1) (1995) 163-176

Dewan, H.M., Stolfo, S.J., Heandez, M., Hwang, J.J.: Predictive dynamic load balancing of
parallel and distributed rule and query processing. Proc. of ACM SIBM 994, 277-288

