
Fundamenta Informaticae XX (2009) 1–29 1

IOS Press

Look-back Techniques for ASP Programs with Aggregates∗

Wolfgang Faber

Department of Mathematics - University of Calabria

Nicola Leone C

Department of Mathematics - University of Calabria

Marco Maratea

DIST - University of Genova, and

Department of Mathematics - University of Calabria

Francesco Ricca

Department of Mathematics - University of Calabria

Abstract. The introduction of aggregates has been one of the most relevant language extensions to
Answer Set Programming (ASP). Aggregates are very expressive, they allow to represent many prob-
lems in a more succint and elegant way compared to aggregate-free programs. A significant amount
of research work has been devoted to aggregates in the ASP community in the last years, and rele-
vant research results on ASP with aggregates have been published, on both theoretical and practical
sides. The high expressiveness of aggregates (eliminating aggregates often causes a quadratic blow-
up in program size) requires suitable evaluation methods and optimization techniques for an efficient
implementation. Nevertheless, in spite of the above-mentioned research developments, aggregates
are treated in a quite straightforward way in most ASP systems.

In this paper, we explore the exploitation of look-back techniques for an efficient implementation
of aggregates. We define a reason calculus for backjumping in ASP programs with aggregates.
Furthermore, we describe how these reasons can be used in order to guide look-back heuristics for
programs with aggregates. We have implemented both the new reason calculus and the proposed
heuristics in the DLV system, and have carried out an experimental analysis on publicly available
benchmarks which shows significant performance benefits.

Keywords: Knowledge Representation and Reasoning, Nonmonotonic Reasoning, Answer Set
Programming, Heuristics, Aggregates.

Address for correspondence: Department of Mathematics, University of Calabria Via P. Bucci, cubo 30b, 87036 Rende (CS),
Italy.
∗Preliminary versions of this work have been published at 15th RCRA workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion (RCRA’08) and Workshop on Logic and Search: Computation of structures
from declarative descriptions (LASH’08).
CCorresponding author

2 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

1. Introduction

Answer Set Programming (ASP) [20] has become a popular logic programming framework during the
last decade, the reason being mostly its intuitive declarative reading, a mathematically precise expres-
sivity, and last but not least the availability of some efficient ASP systems. One of the most important
extensions of the language of ASP has been the introduction of aggregates. Aggregates significantly
enhance the language of ASP, allowing for natural and concise modelling of many problems. A lot of
work has been done both theoretically (mostly for determining the semantics of aggregates that occur
in recursion) [27, 32, 10], and practically, for endowing systems with a selection of aggregate functions
[31, 6, 12, 17].

However, work on optimizing system performance with respect to aggregates in ASP is still sparse,
and current implementations use more or less ad-hoc techniques. Moreover, fine-grained details on their
treatment have been rarely presented (with the recent, notable exception of [16], which nonetheless focus
on a single aggregate function).

In this work, we explore the exploitation of look-back techniques for an efficient implementation of
aggregates. We build upon a technique for backjumping, which was developed in the setting of the solver
DLV for aggregate-free ASP programs. As a main contribution, we describe how the reason calculus
defined in [29] can be extended for keeping track of the reasons for several types of aggregates supported
by DLV. The information collected in this way can then be exploited directly for backjumping, using the
original method described in [29].

Importantly, reasons for aggregates can also be exploited for look-back heuristics. Indeed, we show
how the look-back heuristics presented in [25] can be extended to the aggregate case. For this task, a
key issue is the initialization of heuristic values: since look-back heuristics use information of the com-
putation done so far, they would be completely uninformed at the beginning of the computation, as no
information can be looked back on. In order to tackle this issue, we consider two alternatives: in the first,
simple alternative, the “relevance” of an aggregate literal is determined by the size of its aggregate set.
The second, more informed, alternative applies standard techniques on an aggregate-free program equiv-
alent to the given program with aggregates for initializing the heuristic values. In this second case we pay
particular attention at avoiding the materializetion of this aggregate-free program, but use the knowledge
about its structure for computing the initial values. This second method is exact in the aggregate-stratified
case, in the sense that the aggregate-free program is equivalent to the original program with aggregates,
and it can still be used for the purpose of a heuristics in the aggregate-unstratified case, as it can serve as
a reasonable approximation.

We have implemented the proposed techniques for the aggregate-stratified setting, and report on a
performance evaluation of the obtained prototype on publicly available benchmarks, in which we ob-
served performance benefits for the enhanced system.

Summing up the main contributions of the work:

• We extend the reason calculus in [29] to include reasons for all the aggregate functions supported
by DLV;

• We show how this extension can be used to guide look-back heuristics, and we present two alter-
natives for their initialization;

• We implement these new features in DLV;

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 3

• We perform an experimental analysis on publicly available benchmarks, which shows performance
benefits for the enhanced system employing the more elaborate heuristic.

The paper is structured as follows: First we review syntax and semantics of ASP with aggregates
in Section 2, and the backjumping method and reason calculus of DLV in Section 3. We then describe
the extension of the reason calculus to aggregates in Section 4. Dealing with look-back heuristics in the
presence of aggregates is discussed in Section 5. The experimental evaluation of the enhanced system
is presented and discussed in Section 6. In Section 7 we discuss related work and conclude the paper in
Section 8. The appendix provides further details on the experiments.

2. Answer Set Programming with Aggregates

In this section, we recall syntax, semantics, and some basic properties of logic programs with aggregates
under the answer set semantics.

2.1. Syntax

Variables, Constants, and Predicates We consider finite sets of variables, constants, and predicates.
Similar to Prolog notation, we will denote variables as strings starting with uppercase letters and con-
stants as non-negative integers or strings starting with lowercase letters. Predicates are strings starting
with lowercase letters or symbols such as =, <, > (so-called built-in predicates that have a fixed mean-
ing). An arity (non-negative integer) is associated with each predicate.

Standard Atoms and Literals. A term is either a variable or a constant. A standard atom is an
expression p(t1, . . .,tn), where p is a predicate of arity n and t1,. . . ,tn are terms. A standard literal L
is either a standard atom A (in this case, it is positive) or a standard atom A preceded by the default
negation symbol not (in this case, it is negative). A conjunction of standard literals is of the form
L1, . . . , Lk where each Li (1 ≤ i ≤ k) is a standard literal. Two literals are complementary if they are
of the form p and not p (where p is an atom). Given a literal L, let ¬.L denote its complementary literal.
Accordingly, given a set L of literals, ¬.L = {¬.L | L ∈ L}.

Set Terms. A set term is either a symbolic set or a ground set. A symbolic set is a pair {Vars : conj},
where Vars is a list of variables and conj is a conjunction of standard atoms.1 A ground set is a set of
pairs of the form 〈t : conj 〉, where t is a list of constants and conj is a ground conjunction of standard
atoms.

Aggregate Functions. An aggregate function is of the form f(S), where S is a set term, and f is an
aggregate function symbol. Intuitively, an aggregate function can be thought of as a (possibly partial)
function mapping multisets of constants to a constant.

Example 2.1. In the examples, we adopt the syntax of DLV to denote aggregates. Aggregate functions
currently supported by the DLV system are: #count (number of terms), #sum (sum of non-negative

1Intuitively, a symbolic set {X : a(X, Y), p(Y)} stands for the set of X-values making a(X, Y), p(Y) true, that is,
{X |∃Y such that a(X, Y), p(Y) is true}.

4 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

integers), #min (minimum term), #max (maximum term).2

Aggregate Literals. An aggregate atom is f(S) ≺ T , where f(S) is an aggregate function, ≺∈ {=
, <, ≤, >,≥} is a predefined comparison operator, and T is a term (variable or constant) referred to as
guard.

Example 2.2. In the following aggregate atoms, the latter contains a ground set and could be a ground
instance of the former:

#max{Z : r(Z), a(Z, V)} > Y

#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atom is either a standard atom or an aggregate atom. A literal L is an atom A or an atom A preceded
by the default negation symbol not; if A is an aggregate atom, L is an aggregate literal.

Programs. A rule r is a construct

a1 v · · · v an :- b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bm are atoms, and n ≥ 1, m ≥ k ≥ 0. The disjunction
a1 v · · · v an is referred to as the head of r while the conjunction b1, ..., bk, not bk+1, ..., not bm is
the body of r. We define H(r) = {a1, . . . , an}, B+(r) = {b1, ..., bk}, B−(r) = {not bk+1, ..., not bm},
and B(r) = B+(r)∪B−(r). A global variable of a rule r appears in a standard atom of r (possibly also
in other atoms); all other variables are local. A program is a set of rules.

Note that this syntax does not explicitly allow rules without head atoms, also known as integrity
constraints, which are usually found in ASP languages. They can, however, be simulated in a standard
way by using a new symbol and negation.

Safety. A rule r is safe if the following conditions hold: (i) each global variable of r appears in a positive
standard literal in the body of r; (ii) each local variable of r appearing in a symbolic set {Vars : conj}
appears in an atom of conj ; (iii) each guard of an aggregate atom of r is a constant or a global variable.
A program P is safe if all r ∈ P are safe. In the following we assume that programs are safe. Note that
unsafe rules in general are not domain-independent, a condition which gives rise to semantic issues.

Example 2.3. Consider the following rules with aggregates:

p(X) :- q(X, Y, V), #max{Z : r(Z), a(Z, V)} > Y.

p(X) :- q(X, Y, V), #sum{S : a(Z, Z)} > Y.

p(X) :- q(X, Y, V), #min{Z : r(Z), a(Z, V)} > T.

The first rule is safe, while the second is not, since the local variable S violates condition (ii). The third
rule is not safe either, since the guard T violates condition (iii).

2The first two aggregates roughly correspond, respectively, to the cardinality and weight constraint literals of LPARSE. #min

and #max are undefined for an empty set.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 5

Stratification. A program P is aggregate-stratified if there exists a function || ||, called level mapping,
from the set of (standard) predicates of P to ordinals, such that for each pair a and b of standard
predicates, occurring in the head and body of a rule r ∈ P , respectively: (i) if b appears in an aggregate
atom, then ||b|| < ||a||, and (ii) if b occurs in a standard atom, then ||b|| ≤ ||a||.

Example 2.4. Consider the program consisting of the following two rules:

q(X) :- p(X), #count{Y : a(Y, X), b(X)} ≤ 2.

p(X) :- q(X), b(X).

The program is aggregate-stratified, as the level mapping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2 satisfies
the required conditions. If we add the rule b(X) :- p(X), then no such level-mapping exists and the
program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursion through aggregates. While the semantics of
aggregate-stratified programs is more or less agreed upon, different and disagreeing semantics for aggregate-
unstratified programs have been defined in the past, cf. [27, 32, 10]. In the following, we will consider
aggregate-stratified programs. We refer to [22] for an overview of proposed semantics for the unstratified
case and how they relate.

2.2. Answer Set Semantics

Universe and Base. Given a programP , let UP denote the set of constants appearing inP (its Herbrand
universe), and BP be the set of standard atoms constructible from the (standard) predicates of P with
constants in UP (the Herbrand base). Given a set X , let 2

X denote the set of all multisets over elements
from X . Without loss of generality, we assume that aggregate functions map to I (the set of integers).

Example 2.5. #count is defined over 2
UP, #sum over 2

N, #min and #max are defined over 2
N
\ {∅}.

Instantiation. A substitution is a mapping from a set of variables to UP . A substitution from the set
of global variables of a rule r (to UP) is a global substitution for r; a substitution from the set of local
variables of a symbolic set S (to UP) is a local substitution for S. Given a symbolic set without global
variables S = {Vars : conj}, the instantiation of S is the ground set of pairs inst(S) = {〈γ(Vars) :
γ(conj)〉 | γ is a local substitution for S}.3

A ground instance of a rule r is obtained in two steps: (1) a global substitution σ for r is first applied over
r; (2) every symbolic set S in σ(r) is replaced by its instantiation inst(S). The instantiation Ground(P)
of a program P is the set of all possible instances of the rules of P .

Example 2.6. Consider the program P1:

q(1) v p(2, 2). q(2) v p(2, 1). t(X) :- q(X), #sum{Y : p(X, Y)} > 1.

3Given a substitution σ and an object Obj of the language (rule, set, etc.), we denote by σ(Obj) the object obtained by replacing
each variable X in Obj by σ(X).

6 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

The instantiation Ground(P1) is

q(1) v p(2, 2). t(1) :- q(1), #sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.

q(2) v p(2, 1). t(2) :- q(2), #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

Interpretations. An interpretation for a program P is a consistent set of standard ground literals, that
is I ⊆ (BP ∪ ¬.BP) such that I ∩ ¬.I = ∅. A standard ground literal L is true (resp. false) with respect
to I if L ∈ I (resp. L ∈ ¬.I). If a standard ground literal is neither true nor false with respect to I then
it is undefined with respect to I . We denote by I+ (resp. I−) the set of all atoms occurring in standard
positive (resp. negative) literals in I . We denote by Ī the set of undefined atoms with respect to I (that
is, BP \ I+ ∪ I−). An interpretation I is total if Ī is empty (that is, I+ ∪ ¬.I− = BP), otherwise I is
partial.

An interpretation also provides a meaning for aggregate literals. Their truth value is first defined for
total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction is true with respect to I if all its literals
are true with respect to I; it is false if any of its literals is false with respect to I . Let f(S) be an aggregate
function, where S is a ground set. The valuation I(S) of S with respect to I is the multiset of the first
constant of the elements in S whose conjunction is true with respect to I . More precisely, let I(S) denote
the multiset [t1 | 〈t1, ..., tn : conj 〉 ∈ S∧ conj is true with respect to I]. The valuation I(f(S)) of an
aggregate function f(S) with respect to I is the result of the application of f on I(S). If the multiset
I(S) is not in the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P).

An instantiated aggregate atom A of the form f(S) ≺ k is true with respect to I if: (i) I(f(S)) 6=
⊥, and, (ii) I(f(S)) ≺ k holds; otherwise, A is false. An instantiated aggregate literal of the form
notf(S) ≺ k is true with respect to I if (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k does not hold;
otherwise, it is false.

If I is a partial interpretation, an aggregate literal A is true (resp. false) with respect to I if it is true
(resp. false) with respect to each total interpretation J extending I (that is, for all J such that I ⊆ J , A
is true (resp. false) with respect to J); otherwise, it is undefined.

Example 2.7. Consider the atom A = #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1. Let S be the ground set
in A. For the interpretation I = {p(2, 2)}, each extending total interpretation contains either p(2, 1) or
not p(2, 1). Therefore, either I(S) = [2] or I(S) = [1, 2] and the application of #sum yields either
2 > 1 or 3 > 1, hence A is true with respect to I .

The above definitions of interpretation and truth values preserve “knowledge monotonicity”. If an
interpretation J extends I (that is, I ⊆ J), then each literal which is true with respect to I is true with
respect to J , and each literal which is false with respect to I is false with respect to J as well.

Minimal Models. Given an interpretation I , a rule r is satisfied with respect to I if some head atom
is true with respect to I whenever all body literals are true with respect to I . A total interpretation M
is a model of a program P if all rules r ∈ Ground(P) are satisfied with respect to M . A model M
for P is (subset) minimal if no model N for P exists such that N+ (M+. Note that, under these
definitions, the word interpretation refers to a possibly partial interpretation, while a model is always a
total interpretation.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 7

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transformation and answer
sets for programs with aggregates from [10]: Given a ground program P and a total interpretation I , let
PI denote the transformed program obtained from P by deleting all rules in which a body literal is false
with respect to I . I is an answer set of a program P if it is a minimal model of Ground(P)I .

Example 2.8. Consider the total interpretations I1 = {p(a), q(a)}, I2 = {not p(a), q(a)}, I3 =
{p(a), not q(a)}, and I4 = {not p(a), not q(a)} and program:

P = {p(a) :-#count{X : q(X)} > 0.}

Then we obtain:

Ground(P) = {p(a) :-#count{〈a : q(a)〉} > 0.}

Ground(P)I1 = Ground(P)

Ground(P)I2 = Ground(P)

Ground(P)I3 = ∅

Ground(P)I4 = ∅

We observe that: I1 and I3 are not answer sets of P , indeed both I1 and I3 are not minimal models of
respectively Ground(P)I1 and Ground(P)I3 ; I2 is not a model for P (the only rule in P is not satisfied
in I2); and I4 is the only answer set of P .

Note that any answer set A of P is also a model of P because Ground(P)A ⊆ Ground(P), and
rules in Ground(P) \Ground(P)A are satisfied with respect to A.

3. Answer Sets Computation with Backjumping and Reason Calculus in
DLV

The computation of the answer sets of a disjunctive program P is usually carried out in two steps. The
first, called instantiation (or grounding), has the role of generating a ground program having the same
answer sets of P (usually, much smaller than —but equivalent to— the theoretical ground instantiation
of P); whereas, the second step of the computation, often called model generation, amounts to searching
for the answer sets of the ground program produced by the instantiation.

Model generation is the non-deterministic core of an ASP system, and it is usually implemented as
a backtracking search similar to the Davis-Putnam-Logemann-Loveland (DPLL) procedure [3] for SAT
solving. The Model Generator algorithm employed by DLV is sketched In Figure 1.4 Basically, starting
from the empty (partial) interpretation (I = ∅), the ModelGenerator procedure repeatedly assumes
truth-values for atoms (chosen according to a heuristic), subsequently computing their deterministic
consequences (by a call to PropagateDetCons). This is done until either an answer set is found or
an inconsistency is detected. In particular, if the program in input has an answer set, the procedure
ModelGenerator returns True (and I contains the computed solution); otherwise, it returns False.

4The algorithm presented here is simplified in order to focus on the aspects that are relevant to our contribution. For details, we
refer to [8] for the basic DLV algorithm and [29] for backjumping.

8 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Inconsistencies are detected in two cases: (i) conflicting literals, that is, propagation determines that
an atom a and its negation not a should both hold (in this case PropagateDetCons returns the set of
all literals L); or (ii) stability check failures. The latter case occurs if the checked interpretation, which
is guaranteed to be a model, is not stable (and the function IsAnswerSet returns false). This is a pecu-
liarity of disjunctive ASP, since the stability check is not needed in non-disjunctive ASP systems [23].
In both cases, since the last choice might not be the only cause of the found inconsistency, the system
detects (using the ComputeNextLevel function) the most recent choice ` that is relevant for the found
inconsistency and it goes back to modify ` (non-chronological backtracking or backjumping). Note that
this is done in order to avoid encountering again the same inconsistency, thus performing a lot of useless
computations.

A crucial point is how relevance for an inconsistency can be determined. The necessary information
for deciding relevance is recorded by means of a reason calculus [29], which collects information about
the choices (“reasons”) whose truth-values have caused truth-values of other deterministically derived
atoms. In practice, once an atom has been assigned a truth-value during the computation, we can asso-
ciate a reason to it. For instance, given a rule a :- b, c, not d., if b and c are true and d is false in the
current partial interpretation, then a will be derived as true during propagation. In this case, a is true be-
cause b and c are true and d is false. Therefore, the reasons for a will consist of the reasons for b, c, and d.
More generally, the reason of a derived literal consists of the reasons of those literals that entail its truth;
whereas chosen literals become true unconditionally, and their only reason is their choice. Therefore,
each literal l derived during the propagation has an associated set of positive integers R(l) representing
the reasons for l, which contains essentially the recursion levels of the choices which entail l. Hence, for
any chosen literal c, |R(c)| = 1 holds, while for any derived (that is, non-chosen) literal n, |R(n)| ≥ 1
holds. For instance, if R(l) = {1, 3, 4}, then the literals chosen at recursion levels 1,3 and 4 entail l.

The reason information is used for detecting the set of chosen literals that are relevant for an incon-
sistency. It is easy to see that, for avoiding that the same inconsistency occurs again, we have to go back
in the search until at least one choice that causes the inconsistency is undone. This set of choices (that
entail the inconsistency) is called reason for the inconsistency, and, in the case of conflicting literals, it is
obtained by the combination of the reasons for a and not a: R(a) ∪R(not a); whereas, in the case of a
stability check failure the reason for such an inconsistency is always based on an unfounded set, which
has been determined inside IsAnswerSet as a side-effect. Using this unfounded set, the reason for the
inconsistency is composed of the reasons of literals which satisfy rules containing unfounded atoms in
their head [29].

In the algorithm of Figure 1, the reason for an inconsistency is stored in the variable IncReason,
and backjumping is performed by computing the next recursion level (next level) by calling the function
ComputeNextLevel. ComputeNextLevel, basically, selects the maximal recursion level contained
in IncReason, which is different form current level.

It is worth noting that PropagateDetCons plays a crucial role in the model generation process. It
is similar to unit propagation (UP) in DPLL SAT solvers; however, its implementation is quite more
complex than UP, because PropagateDetCons implements a set of inference rules. Those rules com-
bine an extension of the Well-founded operator for disjunctive programs with a number of techniques
based on disjunctive ASP program properties. We will not report in detail here all the propagation rules
for standard ASP programs and the associated reason calculus, as they are not a novelty of this paper,
and refer to [9, 2] for their precise definitions and implementation. However, in the following, we will
describe the inference rules needed for correctly implementing aggregates [31, 6], and we present the

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 9

static integer curr level = 0; //stores the current recursion level
static integer next level = 0; //used to control recursion

bool ModelGenerator (Interpretation& I) {

curr level ++; //update current recursion level
next level = current level;

I = PropagateDetCons (I, IncReason);

if (I == L) //conflicting literals found during propagation
curr level --; return false;

if (“no atom is undefined in I”)
if IsAnswerSet(I, IncReason); return true; //answer set found
else { //inconsistency from model checking

next level = ComputeNextLevel(IncReason);
curr level --; return false; }

Select an undefined atom A using a heuristic;

if (ModelGenerator(I ∪ {A}) return true;
else if (next level < curr level) // control recursion (backjumping?)

return false;

if (ModelGenerator (I ∪ {not A}) return true;
else if (next level < curr level) // control recursion (backjumping?)

return false;

// tried both A and not A, deal with inconsistency
next level = ComputeNextLevel(IncReason);
curr level --; return false;

};

Figure 1. Computation of Answer Sets in DLV.

associated extension of the reason calculus which allows for dealing with aggregates.

4. Propagation Rules and Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supported by DLV. Hereafter, a partial interpre-
tation (denoted by a set of literals) I is assumed to be given. Moreover, without loss of generality, we
assume that aggregate literals are in the simplified form f(A)Θk, where: (i) the aggregate set A only
contains pairs of the form 〈t : a〉, where a is an atom; and (ii) only two comparison operators are
allowed, namely Θ ∈ {<, >}.

10 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Actually, DLV internally rewrites the input program P to obtain this simplified form. In particular,
each aggregate literal f(S) ≺ T (with ≺∈ {=, <, ≤, >,≥}) occurring in P is first transformed in such
a way that only one of the comparison operators in Θ ∈ {<, >} is used;5 then, for each 〈t : conj〉 ∈
S, conj is replaced by a new atom auxf(S)<T (v), and the rule auxf(S)<T (v) :- conj is added to the
program, where v are the variables occurring in conj. This means that conjunctions in S are replaced
by freshly introduced auxiliary atoms, along with a rule defining the auxiliary atom by means of the
conjunction.

This transformation has several advantages: it simplifies both the description and the implementa-
tion of propagation; and (as it will become clear in the following) allows for defining some additional
derivation rules.

Moreover, let A = {〈t1 : a1〉, . . . , 〈tn : an〉} be a set term, we define CA =
⋃

〈v,t:a〉∈A∧not a∈I R(not a)
and SA =

⋃

〈v,t:a〉∈A∧a∈I R(a). Intuitively, CA represents the reasons for false atoms in A, while SA

represents the reason for true atoms in A.
In the next sections, each propagation rule and the corresponding reason calculus are described in

detail. In particular, we consider two different scenarios depending on whether the propagation proceeds
from atoms in A to aggregate literals f(A)Θk (forward inference) or the other way round (backward
inference). Basically, in the first case we derive the truth/falsity of the aggregate literal f(A)Θk from
the truth/falsity of some atoms occurring in A; whereas, in the second case, given a rule containing an
aggregate atom which is already known to be true or false with respect to the current interpretation,6 we
infer some atoms occurring in the conjunctions in A to be true/false.

4.1. Forward Inference

This kind of propagation rules apply when it is possible to derive an aggregate literal f(A)Θk to be true
or false because some atom in A is true or false with respect to I . As an example consider the program:

a(1). a(2). h : −#count{〈1 : a(1)〉, 〈1 : a(2)〉} < 1.

Since both a(1) and a(2) are facts, they are immediately derived to be true; then, since the function
value for the aggregate is 2, the aggregate literal is inferred to be false by forward inference.

In the following, we report in a separate paragraph propagation rules and reason calculus for the
aggregates supported by DLV. Hereafter, 〈v, t : a〉 is a syntactic shorthand for 〈v, t1, . . . , tn : a〉, where
v is a constant and t is the list of constants t1, . . . , tn, n ≥ 0.

#count{A} > k. Suppose that there exists a set A′ ⊆ A such that for each 〈t : a〉 ∈ A′, a is false
in I and |A′| ≥ |A| − k, then #count{A} > k is inferred to be false and its reasons are set to CA′ .
Conversely, suppose that there exists a set A′ ⊆ A such that for each 〈t : a〉 ∈ A′, a is true in I and
|A′| > k, then we infer that #count{A} > k is true and we set its reason to SA′ .

Let us now consider the symmetric case.

5Note that, for the aggregates considered in this paper, f(S) ≤ T (resp. f(S) ≥ T) is equivalent to f(S) < T + 1 (resp.
f(S) > T − 1), and f(S) = T can be replaced by the conjunction f(S) < T + 1, f(S) > T − 1.
6This can happen in our setting as a consequence of the application of either contraposition for true head or contraposition for
false head propagation rules, see [29].

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 11

#count{A} < k. Suppose that there exists a set A′ ⊆ A such that for each 〈t : a〉 ∈ A′, a is true in
I and |A′| ≥ k, then #count{A} < k is inferred to be false and its reasons are set to SA′ Conversely,
suppose that there exists a set A′ ⊆ A such that for each 〈t : a〉 ∈ A′, a is false in I and |A′| > |A| − k,
then we infer that #count{A} < k is true and we set its reason to CA′ .

Example 4.1. Suppose that the input program contains the rule:

h :- c, #count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1.

and suppose also that the current partial interpretation I contains both a(1) and a(2). Then, we have that
there exists a set, namely A′ = {〈1 : a(1)〉, 〈2 : a(2)〉} (which contains true atoms), that ensures that
the aggregate function value is at least greater than the guard; thus, #count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 :
a(3)〉} < 1 is derived to be false, and its reason is set to SA′ = R(a(1)) ∪R(a(2)).

Note that the specifications described above leaves some freedom for an implementation, since there
might exist several sets A′ that satisfy the respective properties. A possibility with more information
value would be to consider all of these sets, which however might be costly to compute. A compromise
solution is to create one such A′ by iterating over the set A, adding suitable elements to an initially empty
A′ until the condition is met. The latter option has been implemented in our prototype (cf. Section 6),
also for cases described below, where analogous options are available.

#min{A} > k. Let A′ be the set of all pairs 〈v, t : a〉 ∈ A such that v ≤ k. If for each 〈v, t : a〉 ∈ A′,
a is false in I , and if there exists also a pair 〈v, t : a〉 ∈ A such that a is true in I then #min{A} > k
is derived to be true and we set its reason to CA′ ∪ R(a), otherwise (the function is undefined over the
empty set) #min{A} > k is derived to be false with reason CA\A′ . Conversely, suppose there exists a
pair 〈v, t : a〉 ∈ A such that a is true in I and v ≤ k, then we infer that #min{A} > k is false and set its
reason to R(a).

#min{A} < k. Let A′ be the set of all pairs 〈v, t : a〉 ∈ A such that v < k. If for each 〈v, t : a〉 ∈ A′, a
is false in I , then #min{A} < k is derived to be false and we set its reason to CA′ . Conversely, suppose
there exists a pair 〈v, t : a〉 ∈ A such that a is true in I and v < k, then we infer that #min{A} < k is
true and set its reason to R(a).

Example 4.2. Suppose that the input program contains the rule:

h :- c, #min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2.

and suppose also that the current partial interpretation I contains both a(1) and a(3). Then, we have that
there exists a pair, namely 〈1 : a(1)〉, that ensures that the minimum is 1 which is smaller than the guard
(here 1 < k = 2); thus, #min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2 is derived to be true and its reason
is set to R(a(1)).

#max{A} < k. Suppose there exists a pair 〈v, t : a〉 ∈ A such that a is true in I and v ≥ k, then
we infer that #max{A} < k is false and set its reason to R(a). Conversely, let A′ be the set of all pairs
〈v, t : a〉 ∈ A such that v ≥ k. If for each 〈v, t : a〉 ∈ A′, a is false in I , and if there exists also a pair
〈v, t : a〉 ∈ A \ A′ such that a is true in I then #max{A} < k is derived to be true and we set its reason

12 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

to CA′ ∪ R(a), otherwise (the function is undefined over the empty set) #max{A} < k is derived to be
false with reason CA\A′ .

#max{A} > k. Suppose there exists a pair 〈v, t : a〉 ∈ A such that a is true in I and v > k, then
we infer that #max{A} > k is true and set its reason to R(a). Conversely, let A′ be the set of all
pairs 〈v, t : a〉 ∈ A such that v > k, and suppose that for each 〈v, t : a〉 ∈ A′, a is false in I , then
#max{A} > k is derived to be false and we set its reason to CA′ .

Example 4.3. Suppose that the input program contains the rule:

h :- c, #max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 2.

and suppose also that the current partial interpretation I contains not a(1), not a(2), and not a(3). Then,
we have that the entire set A = {〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} contains only false atoms; thus, the
aggregate atom is is derived to be false, and its reason is set to CA = R(a(1)) ∪R(a(2)) ∪R(a(3)).

#sum{A} > k. Suppose that there exists a set A′ ⊆ A such that for each 〈v, t : a〉 ∈ A′ a is false in
I and Σ[v|〈v,t:a〉∈A]v − Σ[v|〈v,t:a〉∈A′]v ≤ k,7 then #sum{A} > k is false and we set its reason to CA′ .
Conversely, suppose that there exists a set A′ ⊆ A such that for each 〈v, t : a〉 ∈ A′, a is true in I and
Σ[v|〈v,t:a〉∈A′]v > k, then #sum{A} > k is true and its reason is SA′ .

#sum{A} < k. Suppose that there exists a set A′ ⊆ A such that for each 〈v, t : a〉 ∈ A′ a is true in I
and Σ[v|〈v,t:a〉∈A′]v ≥ k, then #sum{A} < k is false and we set its reason to SA′ . Conversely, suppose
that there exists a set A′ ⊆ A such that for each 〈v, t : a〉 ∈ A′, a is false in I and Σ[v|〈v,t:a〉∈A]v −
Σ[v|〈v,t:a〉∈A′]v < k, then #sum{A} < k is true and its reason is CA′ .

Example 4.4. Suppose that the input program contains the rule:

h :- c, #sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4.

and suppose also that the current partial interpretation I contains a(1), a(2) and not a(3). Then there
exists a set, namely A′ = {〈3 : a(3)〉} (which contains a false atom), that ensures that the function value
cannot be greater than the guard (here 3 > 6− 4); thus, #sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4 is
derived to be false and its reason is set to R(not a(3)).

4.2. Backward Inference

This kind of propagation rules apply when an aggregate literal f(A)Θk, Θ ∈ {<, >} has been derived
true (or false), and there is a unique way8 to satisfy it by inferring that some atom belonging to A is true
or false. For example, suppose that I is empty and consider the program:

:- not h. h : −#count{〈1 : a〉, 〈1 : b〉} > 1.

During propagation we first infer h to be true for satisfying the constraint, and then, in order to satisfy
the rule, also the aggregate literal is inferred to be true (independently of its aggregate set). At this point,

7Recall that by [. . .] we denote a multiset.
8Since the propagation process must be deterministic.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 13

backward propagation can happen, since there is an unique way to satisfy the aggregate literal: infer both
a and b to be true.

Note that, as far as the reason calculus is concerned, literals are inferred to be true or false by back-
ward inference because both the aggregate literal is true/false and a set of atoms in A (whose elements
are either true or false) made the process deterministic; thus, the reason for each atom a inferred by
backward inference is set to R(a) = R(f(A)Θk) ∪ CA ∪ SA.

The following paragraphs report sufficient conditions for applying backward inference in the case of
the aggregates supported by DLV. Since conditions for f(A) > k to be true (resp. false) coincide with
the ones of f(A) < k+1 to be false (resp. true), only one of the two cases is reported for each aggregate.

Definition 4.1. Given a ground set A and a partial interpretation I , let TA be the set {〈ti : ai〉 ∈ A such
that ai is true with respect to I}, and FA be the set {〈ti : ai〉 ∈ A such that ai is false with respect to I}.

#count{A} < k. Suppose that both #count{A} < k is true with respect to I and |TA| = k− 1, then
all undefined atoms ai such that 〈ti : ai〉 ∈ A are made false. Conversely, suppose #count{A} < k is
false with respect to I and |A| − |FA| = k, then all undefined atoms ai such that 〈ti : ai〉 ∈ A are made
true.

Example 4.5. Suppose that the input program contains the rule:

h :-#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1.

and suppose also that the current partial interpretation I contains both h and
#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1. Since we have that |TA| = 0 = 1 − 1, we infer
a(1), a(2), and a(3) to be false, and set their reason to R(#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} <
1).

#min{A} < k. Suppose that #min{A} < k is true with respect to I and that there is only one
〈v, t : a〉 ∈ A such that v < k and a is undefined with respect to I; suppose also that all the remaining
〈vi, ti : ai〉 ∈ A such that vi < k are such that ai is false with respect to I . Then, a is inferred to be true.
Conversely, suppose that #min{A} < k is false with respect to I , there is no 〈v, t : a〉 ∈ A such that
v < k with a true with respect to I , and, in addition, suppose that either: (i) there exist 〈v ′, t′ : a′〉 ∈ A
such that v′ > k and a′ is true with respect to I or (ii) there is only one 〈v′′, t′′ : a′′〉 ∈ A such that
v′′ > k with a′′ undefined with respect to I . Then, all the ai such that 〈vi, ti : ai〉 ∈ A and vi < k are
inferred to be false, and, if case (ii) holds, also a′′ is made true with respect to I .

Example 4.6. Suppose that the input program contains the rule:

h :-#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2.

and suppose also that both a(2), and #min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. are false with
respect to the current partial interpretation. It can be easily verified that condition (ii) holds,9 then a(1)
is inferred to be false, a(3) is inferred to be true, and R(a(1)) and R(a(3)) are both set to R(#min{〈1 :
a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2) ∪R(a(2)).

9Note that the aggregate atom is false, a(1) is the only undefined atom that can make it true, and a(3) is the only undefined
atom that can make it false.

14 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

#max{A} < k. Suppose that #max{A} < k is false with respect to I , there is only one 〈v, t : a〉 ∈ A
such that v > k with a undefined with respect to I , while all the remaining 〈vi, ti : ai〉 ∈ A such that
vi > k are such that ai is false with respect to I , then a is inferred to be true. Conversely, suppose that
both #max{A} < k is true with respect to I and there is no 〈v, t : a〉 ∈ A such that v ≥ k and a is
true with respect to I , and, in addition, suppose that one of the following condition holds: (i) there exist
〈v′, t′ : a′〉 ∈ A such that v′ < k and a′ is true with respect to I; or (ii) there is only one 〈v′′, t′′ : a′′〉 ∈ A
such that v′′ < k with a′′ undefined with respect to I . Then, in case (ii) holds a′′ is inferred to be true,
and all the remaining undefined ai such that 〈vi, ti : ai〉 ∈ A (ai 6= a′′) and vi < k are inferred to be
false.

Example 4.7. Suppose that the input program contains the rule:

h :-#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3.

and suppose also that #max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3 is false, a(1) is true, while a(2)
and a(3) are undefined (with respect to the current partial interpretation). Then, a(3) is inferred to be
true, (note that this is the only way for ensuring that the aggregate atom is false) and R(a(3)) is set to
R(a(1)) ∪R(#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3).

#sum{A} < k. Let us denote by S(X) the sum
∑

〈vi,ti:ai〉∈X vi, and suppose that #sum{A} < k is
true with respect to I and S(TA) = k − 1, then all undefined atoms in A are made false. Conversely,
suppose that #sum{A} < k is false in I and S(A) − S(FA) = k, then all undefined atoms in A are
made true.

Example 4.8. Suppose that the input program contains the rule:

h :-#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4.

and suppose also that both a(3) and #sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4 are true, while
a(1) and a(2) are undefined with respect to the current partial interpretation. It can be easily verified
that S(TA) = 3, thus both a(1) and a(2) are inferred to be false, and their reason is set to R(a(1)) =
R(a(2)) = R(a(3)) ∪R(#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4).

5. Heuristics in the Presence of Aggregates

The efficiency of the answers set computation process strongly depends on heuristics used for choosing
the branching variables. In the following sections, we describe both the look-ahead [11] and the look-
back [25] heuristics employed by the DLV system; and, in particular, we point out how the presence of
aggregates can be taken into account in both cases.

5.1. Look-ahead Heuristic.

The look-ahead heuristic of DLV [11] was shown to be very effective on many relevant problems, and it
is still the default in the standard distribution.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 15

In general, in a look-ahead heuristic each possible choice literal is tentatively assumed, its conse-
quences are computed, and some characteristic values on the result are recorded. Hence, according to a
heuristic criterion based on these values, the choice is determined.

The main heuristic criterion employed by DLV exploits a peculiar property of ASP, called support-
edness. Basically, for each true atom A of an answer set I , there exists a rule r of the program such
that the body of r is true with respect to I and A is the only true atom in the head of r. Since answer
sets are supported interpretations, an ASP system must eventually converge to a situation in which there
are no Unsupported True (UT) atoms, i.e, true atoms missing a supporting rule. Following this obser-
vation, the idea is to prefer the choice of those literals that minimize the number of UnsupportedTrue
(UT) atoms. In more detail, the heuristic of DLV “layers” several criteria, and, in particular, for each
literal L the following measures (with respect to the interpretation resulting from the propagation of L)
are considered: UT (L), UT2(L), UT3(L), Sat(L), DS(L); where UT is the number of UT atoms; UT2

and UT3 are, respectively the number of UT atoms occurring in the heads of exactly 2 and 3 unsatisfied
rules; Sat(L) is the total number of satisfied rules; and, DS is the degree of supportedness (namely,
the average number of supporting rules for the true non-head-cycle-free atoms). The heuristic of DLV
considers UT (L), UT2(L) and UT3(L) in a prioritized way, to favor atoms yielding interpretations with
fewer UT/UT2/UT3 atoms (which should more likely lead to a supported model). If all UT counters are
equal, then the heuristic considers the total number Sat(L) of rules which are satisfied; finally, literals
with higher degree of supportedness are preferred (this last criterion has been added in order to deal with
hard problems, see [13]). Moreover, the heuristic is “balanced”, that is, the heuristic values of a literal L
depend on both the effect of taking L and not.L.

Example 5.1. Consider the following program:

a v b v c. d v e v f. :- not w. w :- a. w :- d.

a v z :-w. b v z :-w. :- d, z. :- a, z.

and let the current interpretation I = {w, not x}. Notice that w is true but misses a supporting rule, that
is, is UT. Moreover, a and d are the best choices according with the look-ahead heuristics of DLV as
only assuming their truth can eliminate the UT w. Indeed, anything apart from a or d would be a poor
choice.

Note that this heuristic does not need to be modified in order to take the presence of aggregate literals
into account; indeed, the values for all the above-mentioned counters are directly computed during the
propagation of aggregate literals.

5.2. Look-back Heuristics.

Look-back heuristics, which have been originally exploited in SAT solvers like CHAFF [26] (where the
heuristic is called VSIDS), have also been considered for DLV, in conjunction with backjumping, leading
to positive results [25].

The intuition behind this kind of heuristics is to periodically update a numeric value V (l), associated
to each literal l, indicating the number of occurrences of l in a conflict. Basically, this heuristic favors
the choice of literals which are more likely to lead to inconsistent sub-branches, which in general has
the effect of more likely exploring a smaller search tree. In detail, after having chosen k literals, V (l)

16 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

is updated for each l as follows: V (l) := V (l)/Ag + I(l), where I(l) is the number of inconsistencies
l has been a reason for (since the most recent heuristic value update), and Ag is the “aging” factor that
allows for giving more importance to recent data. Whenever a choice has to be made among undefined
literals, the positive literal with the largest V (l) will be chosen. If several literals have the same V (l),
then negative literals are preferred over positive ones, but among negative and positive literals having the
same V (l), the ordering will be random.

A key factor of this type of heuristic is the initialization of the weights of the literals [25], to be
updated by the reason calculus during the search. Indeed, at the beginning of the search, the solver has
no information about inconsistencies, and all V (l) initially will be 0, and so a random choice would
be taken. A common practice is to initialize V (l) values with the number of occurrences of l in the
input (ground) program. However, this strategy, originally devised for aggregate-free programs, does
not take properly into account the presence of aggregates in the program, which can be exploited for
guiding the search instead. To this end, we propose two different new heuristics: the first and simpler
criterion (called size-based heuristic) is based on the size of the aggregate sets; whereas, the second
(called equivalent-program heuristic) tries to estimate more precisely the effect of aggregate literals in a
program by exploiting the following idea: aggregates can be simulated by replacing the original program
with an equivalent aggregate-free one, so that standard techniques can be used for counting occurrences.

However, physically replacing a program by an aggregate-free one is impractical for a number of
reasons, such as the additional space requirement or the loss of structure, which would quite clearly
outweigh the benefit of having a smarter heuristic. Our approach is therefore to compute (or in some
cases estimate) these values without materializing the equivalent program, as described below.

The generic method for computing the values of V (l) is by iterating on the input rules. Whenever
a standard literal l is encountered, V (l) is increased by 1, while when an aggregate literal f(A)Θk is
encountered, the value of V (f(A)Θk) is increased by Eocc(f(A)Θk), which is the heuristically esti-
mated weight of the aggregate literal, and for each 〈t : a〉 ∈ A, V (a) is incremented by Eocc(a) (again
determined by the chosen heuristic).

Size-based Heuristic. This heuristic is based on a simple principle: if an aggregate literal f(A)Θk
occurs in the input program, its “weight” is given by the size of its aggregate set; moreover, also the
occurrences of each atom a such that 〈t : a〉 ∈ A have to be added to V (a) (to take into account the role
played by a in the aggregate). In particular, we have that Eocc(f(A)Θk) = |A|, and Eocc(a) is set to the
number of occurrences of 〈t : a〉 in A.

Example 5.2. Consider the following program:

r1 : h :-#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1.

r2 : b :- c, d, #sum{〈2 : a(2)〉, 〈3 : a(3)〉, 〈4 : a(4)〉, 〈5 : a(5)〉} > 3.

r3 : a(1). r4 : a(2).

according to the size-based heuristic, we have that:

• V (h) = V (b) = 1, because h and b occur once in the head of r1 and r2, respectively;

• V (c) = V (d) = 1, because c and d both occur once in the body of r2;

• V (a(1)) = 2, because a(1) occurs both in the aggregate literal of rule r1 and in fact r3;

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 17

• V (a(2)) = 3, because a(2) occurs in both aggregate literals of the program and in fact r4;

• V (a(3)) = 2, because a(3) occurs in both aggregate literals of the program;

• V (a(4)) = V (a(5)) = 1, because a(4) and a(5) occur in the aggregate literals of rule r2.

• V (#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1) = 3 and V (#sum{〈2 : a(2)〉, 〈3 : a(3)〉, 〈4 :
a(4)〉, 〈5 : a(5)〉} > 3) = 4, because the corresponding aggregate sets have cardinality 3 and 4,
respectively.

Equivalent-program Heuristic. This heuristic computes a somewhat more precise estimation of the
impact of aggregates by also taking into account their semantics. The idea is to virtually replace each
occurrence of an aggregate atom of the form f(A)Θk with a fresh-new predicate h, and “define” h
by means of a standard subprogram which emulates f(A)Θk.10 As mentioned earlier, this equivalent
program does not have to be materialized in memory; in Table 1 we summarize the formulas that allow
for directly computing the additional number of occurrences Eocc(l) that would have been determined by
replacing f(A)Θk by its equivalent subprogram, for each literal l occurring in a given aggregate literal
f(A)Θk. Since h replaces f(A)Θk in the aggregate-free program, we set Eocc(f(A)Θk) to Eocc(h).

In the following paragraphs, we provide both the description of the considered equivalent programs,
and detail on how the results in Table 1 have been determined.

#min{A} < k. The equivalent standard program for this aggregate atom contains a rule of the type
h :- ai, for each 〈vi, ti : ai〉 ∈ A (1 ≤ i ≤ n) such that vi < k. In this way, h is true if at least one
of the ai with vi < k is true, that is, if the minimum computed by the aggregate is less than k. Thus,
Eocc(h) = |{vi : 〈vi, ti : ai〉 ∈ A, vi < k}| + 1, whereas for each ai such that 〈vi, ti : ai〉 ∈ A,
Eocc(ai) = 1 if v < k, otherwise Eocc(ai) = 0.

Example 5.3. Consider the following program:

f :- c, #min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3. a(1). a(2).

Its aggregate-free version is:

f :- c, h. h :- a(1). h :- a(2). a(1). a(2).

thus, V (c) = V (f) = 1, V (h) = Eocc(h) = 3, V (a(1)) = Eocc(a(1)) + 1 = 2, V (a(2)) = Eocc(a(2)) +
1 = 2, and V (a(3)) = Eocc(a(3)) = 0.11

#min{A} > k. The equivalent standard program for this aggregate atom contains: a single rule of
the form h :- not b1 . . . , not bm, haux., where [b1, . . . , bm] = [ai | 〈vi, ti : ai〉 ∈ A and vi ≤ k]; and,
(possibly) several auxiliary rules of the form haux :- aj , one for each 〈vj , tj : aj〉 ∈ A such that vj > k.

10Actually, a distinct not-appearing-elsewhere-in-the-program predicate name hf(A)Θk should be employed for each aggregate
literal f(A)Θk occurring in P . With a small abuse of notation, we omit the additional subscript for obtaining a simpler
notation. Note also that equivalence with subprograms in general holds only in the stratified setting, but could also serve as an
approximation also in non-recursive settings.
11In the following examples, we only report Eocc(.).

18 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Note that, in the obtained equivalent program, h is true if all the ai (associated with a vi ≤ k) are
false, and at least one aj (with vj > k) is true, that is if the actual minimum computed by the aggregate
is greater than k (note that the auxiliary rules are needed because I(min(∅)) = ⊥). Thus, in this case:
Eocc(h) = 2, and for each ai such that 〈vi, ti : ai〉 ∈ A we have that Eocc(ai) = 1 if vi > k, otherwise (if
vi ≤ k) we have that Eocc(not ai) = 1 .

Example 5.4. Consider the following program:

f :- c, #min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 2. a(1). a(2).

its equivalent version is:

f :- c, h. h :- not a(1), not a(2), haux. haux :- a(3). a(1). a(2).

thus, Eocc(h) = 2, Eocc(a(3)) = 1, and Eocc(not a(1)) = Eocc(not a(2)) = 1.

#max{A} < k. The equivalent standard program for this aggregate contains a single rule of the form
h :- not b1, . . . , not bm, haux., where [b1, . . . , bm] = [ai | 〈vi, ti : ai〉 ∈ A and vi ≥ k]; and (possibly)
several auxiliary rules of the form haux :- aj for each 〈vj , tj : aj〉 ∈ A such that vj < k.

Note that, in the obtained program, h is true if all the ai (with vi ≥ k) are false, and at least one
aj (with vj < k) is true, that is if the maximum computed by the aggregate is less than k in the current
interpretation (note that, again, auxiliary rules are needed because I(max(∅)) = ⊥). Thus, in this case:
Eocc(h) = 2, and for each ai such that 〈vi, ti : ai〉 ∈ A, vi ≥ k we have that Eocc(not ai) = 1, otherwise
(if vi < k) we have that Eocc(ai) = 1.

Example 5.5. Consider the following program:

f :- c, #max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. a(1). a(2).

its equivalent version is:

f :- c, h. h :- not a(2), not a(3), haux. haux :- a(1). a(1). a(2).

thus, Eocc(h) = 2, Eocc(a(1)) = 1, and Eocc(not a(2)) = Eocc(not a(3)) = 1.

#max{A} > k. The equivalent standard program for this aggregate contains a rule of the type h :- ai,
for each 〈vi, ti : ai〉 ∈ A such that vi > k (1 ≤ i ≤ n). In this way, h is true if at least one of the ai

with vi > k is true, that is if the maximum computed by the aggregate is more than k in the current
interpretation. Thus, Eocc(h) = |{vi : 〈vi, ti : ai〉 ∈ A, vi > k}| + 1, whereas for each ai such that
〈vi, ti : ai〉 ∈ A Eocc(ai) = 1 if vi > k, otherwise Eocc(ai) = 0.

Example 5.6. Consider the following program:

f :- c, #max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1. a(1). a(2).

Its aggregate-free version is:

f :- c, h. h :- a(2). h :- a(3). a(1). a(2).

thus, Eocc(h) = 3, and Eocc(a(2)) = Eocc(a(3)) = 1.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 19

#count{A} < k. For this kind of aggregate atoms we have to distinguish two different cases. In
particular, if k > |A| the value of the aggregate cannot exceed the guard; thus there is no interpretation
in which the aggregate is false. In this case, the equivalent program is made of a single fact h, and:
Eocc(h) = 2, Eocc(ai) = Eocc(not ai) = 0, for each ai such that 〈ti : ai〉 ∈ A.

In the other case (in which k ≤ |A|), we consider a more involved subprogram denoted by P < that is
obtained as follows. Let P <

i be the program containing a rule of the form h :- not a1, not a2, . . . , not ai−1

for each (i − 1)-combination of elements in the aggregate set A, where a1, . . . , ai−1 are the atoms they
contain. Intuitively, h will be derived to be true in P <

i if there are at least i − 1 false conjunctions (that
is if #count{A} < i.).

Then, the subprogram P < is obtained by taking the union of all P <
i such that i ≤ k, that is P < =

∪i≤kP
<
i . Intuitively, in P < we consider the contribution given by each of the possible combinations

of 1 < i < k atoms of the aggregate set (a1, . . . , ai−1) that, if true (i.e., a1, . . . , ai−1 ∈ I), can make
the count less than the guard (that is original aggregate to be true). It can be shown that in this case we
obtain: Eocc(h) =

∑k−1
i=0

(

|A|
i

)

+ 1, Eocc(ai) = 0, and Eocc(not ai) =
∑k−1

i=0

(

|A|−1
i

)

.

Example 5.7. Consider the following program:

f :- c, #count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. a(1). a(2).

Its aggregate-free version is:

f :- c, h. a(1). a(2). h :- not a(1), not a(2), not a(3).

h :- not a(1), not a(2). h :- not a(1), not a(3). h :- not a(2), not a(3).

thus, Eocc(h) =
(

3
0

)

+
(

3
1

)

+1 = 5, and Eocc(not a(1)) = Eocc(not a(2)) = Eocc(not a(3)) =
(

2
0

)

+
(

2
1

)

=
3.

#count{A} > k. For this kind of aggregate atom, we again distinguish two different cases. In
particular, if |A| ≤ k the value of the aggregate cannot satisfy the guard; thus, there is no interpretation
in which the aggregate is true. In this case, the equivalent program would be made of a single constraint
:-h, and: Eocc(h) = 2, Eocc(ai) = Eocc(not ai) = 0, for each ai such that 〈ti : ai〉 ∈ A.

In the other case (in which |A| > k), we consider a subprogram denoted by P > that is obtained as
follows. Let P >

i be the program containing a rule of the form h :- a1, a2, . . . , ai+1 for each possible
combination of atoms obtained by taking i + 1 different atoms from the |A| different ones available in
the aggregate set A. Intuitively, h will be derived to be true in P >

i if there are at least i + 1 true atoms
(that is if #count{A} > i.).

Then, the subprogram P > is obtained by taking the union of all P >
i such that i ≤ k, that is P > =

∪i≤kP
>
i . Intuitively, in P > we consider the contribution given by each of the possible combinations

of true atoms making the original aggregate true. We obtain that: Eocc(h) =
∑|A|−1

i=k

(

|A|
i+1

)

+ 1 =
∑|A|−k−1

i=0

(

|A|
i

)

+ 1, Eocc(ai) =
∑|A|

i=k+1

(

|A|−1
i−1

)

=
∑|A|−k

i=1

(

|A|−1
i−1

)

, and Eocc(not ai) = 0.

Example 5.8. Consider the following program:

f :- c, #count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1. a(1). a(2).

20 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Its aggregate-free version is:

f :- c, h. a(1). a(2). h :- a(1), a(2), a(3).

h :- a(1), a(2). h :- a(1), a(3). h :- a(2), a(3).

thus, Eocc(h) =
(

3
0

)

+
(

3
1

)

+ 1 = 5, and Eocc(a(1)) = Eocc(a(2)) = Eocc(a(3)) =
(

2
0

)

+
(

2
1

)

= 3.

#sum{A}Θk. Θ ∈ [<, >]. Equivalent programs in the case of #sum are quite involved, render-
ing the computation of the exact values fairly inefficient (many binomial coefficients have to be calcu-
lated). Therefore we decided to approximate the corresponding heuristic value, replacing #sum{A} by
#count{A∗} where A∗ contains vi different elements for each 〈vi, ti : ai〉 ∈ A.

Example 5.9. Consider the following aggregate atom:

h :-#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 5

it is approximated by:
#count{〈1, 1 : a(1)〉, 〈1, 1 : a(2)〉, 〈1, 2 : a(2)〉,

〈1, 1 : a(3)〉, 〈1, 2 : a(3)〉, 〈1, 3 : a(3)〉} > 5

Thus: Eocc(h) =
(

6
0

)

= 1, Eocc(a(1)) = Eocc(a(2)) = Eocc(a(3)) =
(

5
0

)

= 1.

6. Experimental analysis

We have implemented the techniques described in Sections 3-5 as an extension of the system DLV. In
this section we report on the experimental evaluation of the various versions thus obtained.

6.1. Compared methods

For our experiments, we have compared three versions of DLV, which differ on the employed heuristic
for dealing with aggregates, namely:

• DLV, the standard DLV system, employing the heuristic based on look-ahead described in Sec-
tion 5.1.

• DLV.BJA.VS.SIZE, DLV with backjumping on aggregates and (look-back) size-based heuristic.

• DLV.BJA.VS.EQ, DLV with backjumping on aggregates and (look-back) equivalent-program heuris-
tic.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 21

#
c
o
u
n
t
{A

}
<

k
#
m
i
n
{A

}
<

k
#
m
a
x
{A

}
<

k
#
s
u
m
{A

}
<

k

E
o
c
c
(h

)

{

∑

k
−

1

i
=

0

(

|A
|

i

)

+
1

k
≤
|A
|

2
el

se
|{

v i
|
〈v

i
,t

i
:
a

i
〉
∈

A
,v

i
<

k
}|

+
1

2

{

∑

k
−

1

i
=

0

(

|A
∗

|
i

)

+
1

k
≤
|A

∗
|

2
el

se

E
o
c
c
(a

i
)

0

{

1
v i

<
k

0
el

se

{

1
v i

<
k

0
el

se
0

E
o
c
c
(n

ot
a

i
)

{

∑

k
−

1

i
=

0

(

|A
|−

1

i

)

k
≤
|A
|

0
el

se
0

{

0
v i

<
k

1
el

se

{

∑

k
−

1

i
=

0

(

|A
∗

|−
1

i

)

k
≤
|A

∗
|

0
el

se

#
c
o
u
n
t
{A

}
>

k
#
m
i
n
{A

}
>

k
#
m
a
x
{A

}
>

k
#
s
u
m
{A

}
>

k

E
o
c
c
(h

)

{

∑

|A
|−

k
−

1

i
=

0

(

|A
|

i

)

+
1

k
≤
|A
|

2
el

se
2

|{
v i
|
〈v

i
,t

i
:
a

i
〉
∈

A
,v

i
>

k
}|

+
1

{

∑

|A
∗

|−
k
−

1

i
=

0

(

|A
∗

|
i

)

+
1

k
≤
|A

∗
|

2
el

se

E
o
c
c
(a

i
)

0

{

1
v i

>
k

0
el

se

{

1
v i

>
k

0
el

se
0

E
o
c
c
(n

ot
a

i
)

{

∑

|A
|−

k

i
=

1

(

|A
|−

1

i
−

1

)

k
≤
|A
|

0
el

se

{

0
v i

>
k

1
el

se
0

{

∑

|A
∗

|−
k

i
=

1

(

|A
∗

|−
1

i
−

1

)

k
≤
|A

∗
|

0
el

se

Ta
bl

e
1.

O
cc

ur
re

nc
e

fo
rm

ul
as

fo
r

lit
er

al
s

in
vo

lv
ed

in
ag

gr
eg

at
es

.

22 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

#count #min #max #sum

BoundendSpanningTree X

TravelingSalesperson X X

WeightedLatinSquares X X

WeightedSpanningTree X X

Labyrinth X X

KnightTour X

TimeTabling X

MagicSquares X X

Table 2. Occurrence of aggregate functions in the considered domains.

In this paper, we thus compare our new proposals to the basic version of DLV. This is because we are
interested in the evaluation of the techniques presented, in comparison to the standard setting of DLV.
This comparison is motivated by the fact that these versions work on the very same logic program, the
output of the internal DLV grounder. Other ASP solvers work with different grounders, the most widely
used ones at the time of writing are LPARSE12 [33] and GRINGO13 [19]. The evaluation of our techniques
with respect to solvers working with the output of these grounders could be (at least in part) misleading,
because of both the availability of different language features in the grounders’ input language and the
difference in the ground programs.

In look-back heuristics, as a matter of fact, there are two parameters affecting the VSIDS behavior.
One is the “importance” of literals in reasons (called “reward”, that is, how much the related counters
for such literals are to be increased, which corresponds to the coefficient of I(l) in the definition of V (l)
in Section 5.2) and the other is the constant factor Ag by which counters are periodically divided. For
the experiments presented here, these parameters have been set to 1 and 2, respectively, which are the
original values used in CHAFF.

6.2. Benchmarks

For the experimental analysis on benchmarks with aggregates, we have considered some domains (see,
e.g., Table 2) already used in literature for the comparative evaluation of ASP systems on logic programs
with aggregates [6, 18, 7, 24].

In Table 2 we list these domains and specify what types of aggregates are contained in each of them.
Observe that all but one domain contain #count, some domains contain #sum, while #min and #max

are contained in one single domain.
For two of the domains, BoundedSpanningTree and WeightedSpanningTree, we have noticed that

all the versions based on DLV can solve the available instances easily (instances are solved in less
than 0.1 seconds on average). Considering that the graphs the problems are built on are relatively

12http://www.tcs.hut.fi/Software/smodels/lparse/.
13http://sourceforge.net/projects/potassco/.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 23

small, we have generated larger instances for these domains, and made the additional instances avail-
able at http://www.mat.unical.it/~ricca/downloads/fi-benchmarks.zip. In the following
we briefly describe how these additional instances have been generated.

Instances in the BoundedSpanningTree are defined on graphs with vertices V , edges E and a param-
eter d: the problem is deciding whether there exists a d-bounded spanning tree. The available instances
are made of 4 sets of (randomly generated) graphs with |V |=35 or |V |=45, |E|=250, d=2 or d=4. The
additional instances have been created randomly (as were the original instances), expanding the graph
sizes by a factor of four, maintaining the ratio between the number of nodes and the number of edges. In
this way, we have obtained four further sets with |V |=140 or |V |=180, |E|=1000, and d = 2 or d = 4,
consisting of 10 graphs each. In Table 3, we have grouped the instances in two sets, those having |V |=140
and |E|=1000, and |V |=180 and |E|=1000, respectively.

The WeightedSpanningTree problem is similar to the BoundedSpanningTree, but each edge has an
associated weight between 1 and |V |. The available instances contain five sets of instances with |V |
between 30 and 45, and |E| between 138 and 146. Again, the new sets have been created randomly,
where the graph sizes have been enlarged by a factor of eight (again maintaining the ratio between the
number of nodes and the number of edges), and the weights still range between 1 and |V |. We have thus
created 5 sets of 10 new instances for WeightedSpanningTree.

6.3. Results

All the experiments were performed on a machine equipped with two Intel Xeon “Woodcrest” (quad
core) processors clocked at 3.GHz with 4MB of Level 2 Cache and 4GB of RAM, running Debian
GNU Linux 4.0. Time measurements have been done using the time command provided by the system,
counting total CPU time for the respective process. We report the results in terms of execution time for
finding one answer set, if any, within 10 minutes. The virtual memory available to the solvers has been
limited to 512MB. Results are summarized in Table 3, and reported in detail in the appendix (Tables 4-
11).14 Table 3 is organized as follows: the first column reports the domain name, the second column
reports the data for the standard version of DLV, and the third and fourth columns report the data for
DLV.BJA.VS.SIZE and DLV.BJA.VS.EQ, respectively. The data for each system is presented in two
rows: the first row contains the number of instances solved within the time limit, and the second row
reports the mean CPU time of solved instances. We remark that the data reported in these two rows is
normally used in sytem evaluations and competitions (for both presenting results and determining the
winners) where the winning system is determined by the number of solved instances, and ties are broken
by considering the mean CPU time. As an example we refer to the Max-SAT evaluations.15

The cumulative results of our experiments, reported in the last row of Table 3, clearly indicate
that DLV.BJA.VS.EQ performs better than the other two systems in the considered domains. Indeed,
DLV.BJA.VS.EQ is the system which solves the highest number of instances, and it is much faster than
the other systems on average. In particular, considering the mean time, DLV.BJA.VS.EQ is more than
4 times faster that DLV (8.57 vs 36.71 seconds), and it is nearly 3 times faster than DLV.BJA.VS.SIZE

(8.57 vs 22.41 seconds).

Focusing on the results of the specific domains, observe that DLV.BJA.VS.EQ is the best performer on

14Results for the original instances of BoundedSpanningTree and WeightedSpanningTree domains are not reported.
15See http://www.maxsat.udl.cat/08/, and http://www.maxsat.udl.cat/09/ for the last two evaluations.

24 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

the WeightedLatinSquares domain, where it solves 4 (resp. 19) instances more than standard DLV (resp.
DLV.BJA.VS.SIZE) and in shorter time; it is also the best on TimeTabling where, even if standard DLV
solves the same number of instances, it gains one order of magnitude considering mean CPU time (while
DLV.BJA.VS.SIZE solves only 2 instances on this domain), and on Magic Square where it solves one in-
stance more than DLV.BJA.VS.SIZE, and has a better mean CPU time of approximately 30% than DLV.
Moreover, in other four domains, that is, BoundedSpanningTree, WeightedSpanningTree, Labyrinth and
KnightTour it performs similar to DLV.BJA.VS.SIZE, and better (with respect to the number of prob-
lems solved and/or mean CPU time) than standard DLV. In the domains that contain instances with and
without answer sets, DLV.BJA.VS.EQ is usually particularly effective on instances having solutions. We
refer to the appendix for details.

In Section 5.2 we noted that a characteristic of the DLV.BJA.VS.EQ method is that atoms “involved”
in aggregates receive a higher priority. Till now, we have seen that this heuristic leads to positive re-
sults on the domains we considered, but, of course, a more “lazy” heuristic could be preferred in some
situation. Indeed this is witnessed by the results of DLV.BJA.VS.SIZE on the TravelingSalesperson do-
main: Besides the good results in comparison to DLV cited above, in the TravelingSalesperson domain
DLV.BJA.VS.SIZE solves 2 instances more than DLV.BJA.VS.EQ and in less time, being much faster
than standard DLV (approximately by a factor of 20).

It is worthwhile evidencing also some relationships between the set of instances solved by the various
systems: (i) In the WeightedLatinSquares domain, as seen in the appendix in Table 10, both DLV and
DLV.BJA.VS.SIZE solve a subset of the instances solved by DLV.BJA.VS.EQ, while the sets of instances
solved by DLV and DLV.BJA.VS.SIZE are incomparable; (ii) in the Labyrinth domain, as reported in
the appendix in Table 9, DLV.BJA.VS.SIZE and DLV.BJA.VS.EQ solve the same set of instances, which
is incomparable to the set of instances solved by DLV; (iii) in the KnightTour domain, as gleaned
from Table 7 in the appendix, the same set of instances is solved by the three methods; (iv) in the
TimeTabling and MagicSquares domains, DLV.BJA.VS.SIZE solves a subset of the instances solved by
DLV and DLV.BJA.VS.EQ.

7. Related Work

Backjumping [15] has been first studied in the area of constraints solving (see, e.g., [4, 28, 5]), and then
successfully applied to related research areas such as SAT [1, 30, 26], QBF [21], and ASP [29] solving.
We refer to [25] for a detailed comparison of the backjumping strategies employed in these research
areas.

In ASP, aggregates are arguably the most important linguistic enhancement in recent years, and most
of the available systems are already able to deal with them. In particular, CLASP, CMODELS, SMOD-
ELS and PBMODELS support cardinality and weight constraints, which correspond to #count and #sum

aggregates, respectively, while SMODELS-CC supports only cardinality constraints, and both GNT and
ASSAT do not support aggregates. About solvers based on look-back techniques, aggregates are con-
sidered explicitly for backjumping in SMODELS-CC (where additional arcs are added to its implication
graph) and CLASP; conversely, CMODELS (resp. PBMODELS) translates the original program into a
propositional (resp. Pseudo-Boolean) formula that is then evaluated by a SAT (resp. PB) solver: back-
jumping is then (possibly) exploited within the underlying SAT (resp. PB) solver, without thus having
the possibility of taking advantage of the original “structure” of the aggregate. Notably, fine-grained

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 25

#I DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ

BoundedSpanningTree 20 #Solved 20 20 20

V =140 E=1000 Mean 3.08 0.14 0.15

BoundedSpanningTree 20 #Solved 20 20 20

V =190 E=1000 Mean 4.8 0.15 0.15

WeightedLatinSquares 35 #Solved 30 15 34

Mean 144.07 188.58 27.5

WeightedSpanningTree 50 #Solved 50 50 50

Mean 1.53 0.17 0.17

Labyrinth 29 #Solved 6 8 8

Mean 114.73 58.48 58.41

TravelingSalesperson 29 #Solved 29 29 27

Mean 36.49 1.5 3.34

KnightTour 10 #Solved 6 6 6

Mean 12.4 0.22 0.23

TimeTabling 9 #Solved 9 2 9

Mean 2.07 25.1 0.22

MagicSquare 5 #Solved 3 2 3

Mean 3.25 0.01 2.45

Total 207 #Solved 173 152 177

Mean 36.71 22.41 8.57

Table 3. Number of solved instances within the time limit and their mean CPU time for the domains we consid-
ered. The last row contains cumulative results.

26 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

details on the treatment of aggregates have been rarely presented before, and current implementations
use more or less ad-hoc techniques. An exception, which nonetheless involves only #sum (weight con-
straints), has been recently presented in [16]. In this work has been performed a comparison of different
strategies to handle weight constraints in CLASP. In particular, two strategies have been presented and
compared: One where weight constraint rules are incorporated in CLASP’s constraint-based character-
ization in terms of nogoods, and another which (similar to the approach in CMODELS16) translates the
aggregate into (constraints corresponding to) an aggregate-free program. Experimental analysis on some
domains show that each strategy performs well on different domains.

8. Conclusion

In this paper we have described techniques and heuristics for the evaluation of logic programs with
aggregates. In particular the main contributions are: (i) an extension of the reason calculus defined
in [29]; and, (ii) enhanced versions of the heuristic presented in [25] that explicitly take the presence
of aggregates into account. Moreover, we have implemented the proposed techniques in a prototype
version of the DLV system and performed a set of benchmarks, which indicate performance benefits of
the enhanced system employing the equivalent-program heuristic.

Acknowledgements

This work has been partially supported by M.I.U.R. under the Italia-Austria internationalization project
“Sistemi basati sulla logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimiz-
zazione”, and under the FIRB project “tocai.it: Tecnologie Orientate alla Conoscenza per Aggregazioni
di Imprese in Internet”.

References

[1] Bayardo, R., Schrag, R.: Using CSP Look-back Techniques to Solve Real-world SAT Instances, Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-97), 1997.

[2] Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Answer Set Programming Systems,
Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR’2002), April 2002.

[3] Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving, Communications of the
ACM, 5, 1962, 394–397.

[4] Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decom-
position, Artificial Intelligence, 41(3), 1990, 273–312.

[5] Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems., Artificial Intelli-
gence, 136(2), 2002, 147–188.

[6] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in DLV, Proceedings ASP03
- Answer Set Programming: Advances in Theory and Implementation (M. de Vos, A. Provetti, Eds.), Messina,
Italy, September 2003, Online at http://CEUR-WS.org/Vol-78/.

16CMODELS implements the transformation described in [14], while CLASP implements a polynomial transformation.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 27

[7] Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second Answer Set Programming
Competition, Proceedings of tre 10th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR’09 (E. Erdem, F. Lin, T. Schaub, Eds.), 5753, Springer, 2009.

[8] Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems, Ph.D. Thesis,
Institut für Informationssysteme, Technische Universität Wien, 2002.

[9] Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations, Proceedings of the 5th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99) (M. Gelfond,
N. Leone, G. Pfeifer, Eds.), 1730, Springer Verlag, El Paso, Texas, USA, December 1999.

[10] Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs: Semantics and
Complexity, Proceedings of the 9th European Conference on Artificial Intelligence (JELIA 2004) (J. J.
Alferes, J. Leite, Eds.), 3229, Springer Verlag, September 2004.

[11] Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On look-ahead heuristics in disjunctive logic programming,
Annals of Mathematics and Artificial Intelligence, 51(2–4), 2007, 229–266.

[12] Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and Implementation of Aggregate Func-
tions in the DLV System, Theory and Practice of Logic Programming, 8(5–6), 2008, 545–580.

[13] Faber, W., Ricca, F.: Solving Hard ASP Programs Efficiently, Logic Programming and Nonmonotonic
Reasoning — 8th International Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings
(C. Baral, G. Greco, N. Leone, G. Terracina, Eds.), 3662, Springer Verlag, September 2005, ISBN 3-540-
28538-5.

[14] Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions, Theory and Practice of Logic Program-
ming, 5(1-2), 2005, 45–74.

[15] Gaschnig, J.: A General Backtrack Algorithm That Eliminates Most Redundant Tests, Proceedings of the
Fifth International Joint Conference on Artificial Intelligence (IJCAI) 1977, 1977.

[16] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the Implementation of Weight Constraint Rules in
Conflict-Driven ASP Solvers, Proceedings of 25th International Conference on Logic Programming (ICLP-
09) (P. M. Hill, D. S. Warren, Eds.), 5649, Springer, 2009.

[17] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving, Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-07), Morgan Kaufmann Publishers, January
2007.

[18] Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The First Answer Set
Programming System Competition, 9th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR’07 (C. Baral, G. Brewka, J. Schlipf, Eds.), 4483, Springer Verlag, Tempe, Arizona, May
2007, ISBN 978-3-540-72199-4.

[19] Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Grounder for Answer Set Programming, Logic Pro-
gramming and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceedings (C. Baral, G. Brewka, J. S. Schlipf, Eds.), 4483, Springer, 2007.

[20] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases, New Genera-
tion Computing, 9, 1991, 365–385.

[21] Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic Satisfiability,
Artificial Intelligence, 145, 2003, 99–120.

[22] Lee, J., Meng, Y.: On Reductive Semantics of Aggregates in Answer Set Programming, Logic Programming
and Nonmonotonic Reasoning — 10th International Conference (LPNMR 2009) (E. Erdem, F. Lin, T. Schaub,
Eds.), 5753, Springer Verlag, September 2009, ISBN 978-3-642-04237-9.

28 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

[23] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowl-
edge Representation and Reasoning, ACM Transactions on Computational Logic, 7(3), July 2006, 499–562.

[24] Liu, L., Truszczyńki, M.: The Second Answer Set Programming Competition homepage, Since 2005, http:
//www.cs.uky.edu/ai/pbmodels/#Benchmark|region.

[25] Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-Back Techniques and Heuristics in DLV: Implementation,
Evaluation and Comparison to QBF Solvers, Journal of Algorithms in Cognition, Informatics and Logics,
63(1–3), 2008, 70–89.

[26] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT
Solver, Proceedings of the 38th Design Automation Conference, DAC 2001, ACM, Las Vegas, NV, USA,
June 2001.

[27] Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic Programs with
Aggregates, Theory and Practice of Logic Programming, 7(3), 2007, 301–353.

[28] Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem., Computational Intelligence, 9, 1993,
268–299.

[29] Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Programming, AI Commu-
nications – The European Journal on Artificial Intelligence, 19(2), 2006, 155–172.

[30] Silva, J. P. M., Sakallah, K. A.: GRASP: A Search Algorithm for Propositional Satisfiability, IEEE Transac-
tion on Computers, 48(5), 1999, 506–521.

[31] Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics, Artificial
Intelligence, 138, June 2002, 181–234.

[32] Son, T. C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP, Theory and
Practice of Logic Programming, 7, May 2007, 355–375.

[33] Syrjänen, T.: Lparse 1.0 User’s Manual, 2002, http://www.tcs.hut.fi/Software/smodels/lparse.
ps.gz.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 29

APPENDIX

In Tables 4-11 we show detailed results for the benchmarks. The reported numbers are seconds for
runtime (user + system time). We do not report instances where no version can find a solution within the
time limit: this is the case for Tables 6, 7, 9 and 10. In Tables 4-11, the first column reports the specific
instance name, the second column reports the results for the standard version of DLV, and the third
and fourth columns report the results for the new versions: DLV.BJA.VS.SIZE and DLV.BJA.VS.EQ,
respectively. Moreover, if the related domain contains both instances that have answer sets and others
that do not, a last column (AS?) is added, which indicates whether the related instance has an answer set
(Y) or does not (N). If all instances of a domain have answer sets, this column is omitted.

30 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ AS?

rand-140-1000-b2-0.gph 2.53 0.14 0.14 Y

rand-140-1000-b2-1.gph 2.49 0.14 0.15 Y

rand-140-1000-b2-2.gph 2.57 0.14 0.15 Y

rand-140-1000-b2-3.gph 5.60 0.14 0.15 Y

rand-140-1000-b2-4.gph 3.04 0.14 0.14 Y

rand-140-1000-b2-5.gph 2.69 0.14 0.14 Y

rand-140-1000-b2-6.gph 2.48 0.14 0.15 Y

rand-140-1000-b2-7.gph 2.46 0.14 0.15 Y

rand-140-1000-b2-8.gph 2.50 0.14 0.15 Y

rand-140-1000-b2-9.gph 2.49 0.14 0.14 Y

rand-140-1000-b4-0.gph 2.68 0.14 0.15 Y

rand-140-1000-b4-1.gph 5.70 0.16 0.15 Y

rand-140-1000-b4-2.gph 2.54 0.14 0.16 Y

rand-140-1000-b4-3.gph 2.86 0.15 0.16 Y

rand-140-1000-b4-4.gph 2.71 0.14 0.15 Y

rand-140-1000-b4-5.gph 5.87 0.14 0.16 Y

rand-140-1000-b4-6.gph 2.73 0.15 0.14 Y

rand-140-1000-b4-7.gph 2.44 0.14 0.14 Y

rand-140-1000-b4-8.gph 2.73 0.18 0.16 Y

rand-180-1000-b2-0.gph 6.92 0.15 0.16 Y

rand-180-1000-b2-1.gph 7.27 0.15 0.16 Y

rand-180-1000-b2-2.gph 3.01 0.15 0.16 Y

rand-180-1000-b2-3.gph 3.05 0.16 0.16 Y

rand-180-1000-b2-4.gph 6.44 0.15 0.16 Y

rand-180-1000-b2-5.gph 6.94 0.15 0.16 Y

rand-180-1000-b2-6.gph 7.58 0.15 0.15 Y

rand-180-1000-b2-7.gph 7.28 0.15 0.15 Y

rand-180-1000-b2-8.gph 3.47 0.14 0.16 Y

rand-180-1000-b2-9.gph 3.44 0.15 0.16 Y

rand-180-1000-b4-0.gph 0.13 0.13 0.13 N

rand-180-1000-b4-1.gph 3.55 0.15 0.15 Y

rand-180-1000-b4-2.gph 0.13 0.12 0.13 N

rand-180-1000-b4-3.gph 7.95 0.15 0.16 Y

rand-180-1000-b4-4.gph 7.57 0.15 0.16 Y

rand-180-1000-b4-5.gph 7.26 0.15 0.16 Y

rand-180-1000-b4-6.gph 3.31 0.15 0.16 Y

rand-180-1000-b4-7.gph 7.04 0.16 0.16 Y

rand-180-1000-b4-8.gph 3.56 0.14 0.16 Y

rand-180-1000-b4-9.gph 0.13 0.13 0.12 N

Table 4. Instances of the Bounded Spanning Tree domain. rand-V -E-bW -i.gph indicates the i-th graph with V
vertexes, E edges and bound W .

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 31

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ as?

rand-240-1120-b1600-0.gph 9.49 0.19 0.19 Y

rand-240-1120-b1600-1.gph 5.60 0.18 0.19 Y

rand-240-1120-b1600-2.gph 0.15 0.14 0.16 N

rand-240-1120-b1600-3.gph 0.16 0.15 0.16 N

rand-240-1120-b1600-4.gph 5.63 0.19 0.21 Y

rand-240-1120-b1600-5.gph 5.52 0.20 0.20 Y

rand-240-1120-b1600-6.gph 0.15 0.15 0.15 N

rand-240-1120-b1600-7.gph 0.15 0.15 0.15 N

rand-240-1120-b1600-8.gph 0.17 0.16 0.16 N

rand-240-1120-b1600-9.gph 0.15 0.16 0.15 N

rand-256-1120-b1472-0.gph 5.82 0.19 0.19 Y

rand-256-1120-b1472-1.gph 0.16 0.15 0.16 N

rand-256-1120-b1472-2.gph 0.16 0.16 0.16 N

rand-256-1120-b1472-3.gph 0.16 0.15 0.15 N

rand-256-1120-b1472-4.gph 0.16 0.15 0.15 N

rand-256-1120-b1472-5.gph 13.39 0.19 0.21 Y

rand-256-1120-b1472-6.gph 0.15 0.15 0.15 N

rand-256-1120-b1472-7.gph 0.16 0.16 0.16 N

rand-256-1120-b1472-8.gph 5.57 0.20 0.21 Y

rand-256-1120-b1472-9.gph 0.15 0.16 0.16 N

rand-256-1160-b1600-0.gph 0.17 0.18 0.17 N

rand-256-1160-b1600-1.gph 0.18 0.17 0.17 N

rand-256-1160-b1600-2.gph 0.17 0.16 0.16 N

rand-256-1160-b1600-3.gph 6.40 0.21 0.21 Y

rand-256-1160-b1600-4.gph 5.97 0.21 0.21 Y

rand-256-1160-b1600-5.gph 0.16 0.16 0.16 N

rand-256-1160-b1600-6.gph 0.18 0.17 0.18 N

rand-256-1160-b1600-7.gph 0.16 0.16 0.16 N

rand-256-1160-b1600-8.gph 6.76 0.21 0.22 Y

rand-256-1160-b1600-9.gph 0.17 0.17 0.17 N

rand-280-1104-b1984-0.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-1.gph 0.16 0.16 0.17 N

rand-280-1104-b1984-2.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-3.gph 0.15 0.14 0.14 N

rand-280-1104-b1984-4.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-5.gph 0.14 0.13 0.14 N

rand-280-1104-b1984-6.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-7.gph 0.16 0.15 0.14 N

rand-280-1104-b1984-8.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-9.gph 0.15 0.15 0.16 N

rand-360-1104-b2496-0.gph 0.16 0.15 0.15 N

rand-360-1104-b2496-1.gph 0.15 0.16 0.15 N

rand-360-1104-b2496-2.gph 0.16 0.17 0.17 N

rand-360-1104-b2496-3.gph 0.15 0.15 0.16 N

rand-360-1104-b2496-4.gph 0.17 0.16 0.16 N

rand-360-1104-b2496-5.gph 0.17 0.16 0.17 N

rand-360-1104-b2496-6.gph 0.15 0.14 0.14 N

rand-360-1104-b2496-7.gph 0.16 0.17 0.16 N

rand-360-1104-b2496-8.gph 0.16 0.16 0.15 N

rand-360-1104-b2496-9.gph 0.16 0.17 0.16 N

Table 5. Instances of the WeightedSpanningTree domain. rand-V -E-bW -i.gph indicates the i-th graph with V
vertexes, E edges and bound W .

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ

magic-square-2by2 0.00 0.00 0.00

magic-square-3by3 0.01 0.02 0.01

magic-square-4by4 9.75 TIME 7.34

Table 6. Instances of the MagicSquares domain.

32 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ

knightTour.in1 0.20 0.10 0.10

knightTour.in2 0.10 0.10 0.11

knightTour.in3 2.22 0.13 0.12

knightTour.in4 6.11 0.17 0.20

knightTour.in5 14.00 0.21 0.36

knightTour.in6 51.76 0.62 0.46

Table 7. Instances of the KnightTour domain.

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ

time-tabling.dat.1 0.08 0.03 0.03

time-tabling.dat.2 0.28 50.17 0.06

time-tabling.dat.3 0.58 TIME 0.10

time-tabling.dat.4 0.98 TIME 0.15

time-tabling.dat.5 1.62 TIME 0.18

time-tabling.dat.6 2.04 TIME 0.25

time-tabling.dat.7 2.85 TIME 0.32

time-tabling.dat.8 4.25 TIME 0.38

time-tabling.dat.9 5.98 TIME 0.50

Table 8. Instances of the TimeTabling domain.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 33

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ

laby-17-17-07 16.83 4.88 4.83

laby-18-18-04 112.46 289.38 289.80

laby-18-18-13 TIME 30.51 40.63

laby-18-18-14 18.16 3.86 3.86

laby-19-19-14 TIME 105.03 105.03

laby-19-19-16 TIME 11.21 11.13

laby-19-19-19 448.95 TIME TIME

laby-20-20-04 TIME 7.35 7.25

laby-20-20-16 TIME 5.60 5.57

laby-21-21-05 46.96 TIME TIME

laby-21-21-15 45.04 TIME TIME

Table 9. Instances of the Labyrinth domain.

34 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ AS?

505.6.1976043347.dat.data 160.28 TIME 6.33 N

505.6.1976043746.dat.data 313.57 TIME 1.66 N

505.6.1976049584.dat.data 267.15 TIME 34.72 N

505.6.1976055607.dat.data 490.32 TIME 2.79 N

505.6.1976056195.dat.data 426.55 TIME 173.44 N

505.6.1976048051.dat.data 59.31 TIME 0.02 Y

505.6.1976089585.dat.data 3.43 5.86 0.02 Y

505.6.1976090993.dat.data 230.87 TIME 77.41 N

505.6.1976095999.dat.data 476.51 1.07 0.02 Y

505.6.1976097106.dat.data TIME 0.02 0.04 Y

505.6.1976097683.dat.data 107.60 TIME 488.43 Y

505.6.1976102161.dat.data 378.58 TIME 20.22 N

505.6.1976103815.dat.data 246.21 TIME 0.03 N

505.6.1976128002.dat.data TIME 645.10 33.53 Y

505.6.1976128122.dat.data 0.15 TIME 0.03 Y

505.6.1976131149.dat.data 31.30 0.99 0.01 Y

505.6.1976135316.dat.data 420.92 TIME 94.67 N

505.6.1976148351.dat.data TIME TIME 0.16 Y

505.6.1976153426.dat.data 46.85 42.80 0.02 Y

505.6.1976164056.dat.data TIME TIME 1.17 Y

505.6.1976164284.dat.data 0.09 558.48 0.07 Y

511.6.1162362547.dat.data 64.69 3.84 0.02 Y

511.6.1162368434.dat.data 70.96 204.38 0.02 Y

511.6.1162583044.dat.data 0.07 0.44 0.03 Y

511.6.1162586028.dat.data 184.04 TIME 0.02 Y

512.6.1669104030.dat.data 22.26 423.10 0.02 Y

512.6.1669117391.dat.data 0.08 4.23 0.03 Y

512.6.1669132369.dat.data 11.31 TIME 0.02 Y

512.6.1669131750.dat.data 3.37 450.98 0.01 Y

512.6.1669245041.dat.data 24.21 TIME 0.03 Y

512.6.1669208235.dat.data 0.08 TIME 0.02 Y

512.6.1669316059.dat.data 29.62 487.31 0.01 Y

512.6.1669326545.dat.data 10.39 TIME 0.05 Y

513.6.2014058873.dat.data 241.45 0.03 0.02 Y

Table 10. Instances of the WeightedLatinSquares domain.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 35

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS

dom-rand-70-300-1155482584-3 424.70 1.03 2.09

rand-70-300-1155482584-3 0.09 0.06 1.17

rand-70-300-1155482584-4 0.11 0.03 0.31

rand-70-300-1155482584-5 0.11 0.04 0.30

rand-70-300-1155482584-7 0.10 0.07 0.46

rand-70-300-1155482584-8 0.09 0.03 0.29

rand-70-300-1155482584-9 0.09 0.04 0.28

rand-70-300-1155482584-11 0.11 0.03 0.30

rand-70-300-1155482584-12 0.13 0.06 0.30

rand-70-300-1155482584-14 0.11 0.04 1.05

rand-80-340-1159656267-0 0.12 0.06 0.39

rand-80-340-1159656267-4 0.12 0.04 0.63

rand-80-340-1159656267-6 0.13 0.11 0.38

rand-80-340-1159656267-10 0.12 0.05 0.56

rand-80-340-1159656267-11 0.18 0.10 0.70

rand-80-340-1159656267-13 0.12 0.07 1.28

rand-80-340-1159656267-15 0.16 0.44 0.35

rand-80-340-1159656267-16 0.13 0.05 1.00

rand-80-340-1159656267-17 0.14 0.51 0.99

rand-80-340-1159656267-18 0.14 0.04 11.19

tsp-rand-70-300-1155482584-0 0.46 0.04 0.56

tsp-rand-70-300-1155482584-4 85.97 0.88 60.76

tsp-rand-70-300-1155482584-5 0.11 0.24 2.30

tsp-rand-70-300-1155482584-7 1.26 0.08 TIME

tsp-rand-70-300-1155482584-8 0.15 0.03 0.28

tsp-rand-70-300-1155482584-9 2.82 28.30 0.48

tsp-rand-70-300-1155482584-11 540.09 10.75 TIME

tsp-rand-70-300-1155482584-12 0.14 0.16 0.39

tsp-rand-70-300-1155482584-14 0.12 0.04 1.50

Table 11. Instances of the TravelingSalesperson domain.

