
Fundamenta Informaticae XXI (2001) 1001–1020 1001

IOS Press

A Logic-Based System for e-Tourism

Francesco Ricca C

Dipartimento di Matematica
Università della Calabria, via P. Bucci Cubo 30b, 87030
Rende, Italy
ricca@mat.unical.it

Antonella Dimasi
Exeura Srl
Via Pedro Alvares Cabrai - C.da Lecco 87036 Rende
(CS), Italy
antonella.dimasi@exeura.com

Giovanni Grasso
Dipartimento di Matematica
Università della Calabria, via P. Bucci Cubo 30b, 87030
Rende, Italy
grasso@mat.unical.it

Salvatore Maria Ielpa
Dipartimento di Matematica
Università della Calabria, via P. Bucci Cubo 30b, 87030
Rende, Italy
s.ielpa@mat.unical.it

Salvatore Iiritano
Exeura Srl
Via Pedro Alvares Cabrai - C.da Lecco 87036 Rende
(CS), Italy
salvatore.iiritano@exeura.com

Nicola Leone
Dipartimento di Matematica
Università della Calabria, via P. Bucci Cubo 30b, 87030
Rende, Italy
leone@mat.unical.it

Abstract. In this paper we present a successful application of logic programming for e-tourism: the
IDUM system. The system exploits two technologies that are based on the state-of-the-art computa-
tional logic system DLV: (i) a system for ontology representation and reasoning, called OntoDLV;
and, (ii) HıLεX a semantic information-extraction tool. The core of IDUM is an ontology which
models the domain of touristic offers. The ontology is automatically populated by extracting the
information contained in the touristic leaflets produced by tour operators. A set of specifically de-
vised logic programs is used to reason on the information contained in the ontology for selecting the
holiday packages that best fit the customer needs. An intuitive web-based user interface eases the
task of interacting with the system for both the customers and the operators of a travel agency.

Keywords: Answer Set Programming, ASP, E-Tourism, Knowledge Representation and Reason-
ing, Information Extraction

Address for correspondence: Dipartimento di Matematica, Università della Calabria, via P. Bucci Cubo 30b, 87030 Rende,
Italy
CCorresponding author

1002 F. Ricca et al. / A Logic-Based System for e-Tourism

1. Introduction

In the last few years, the tourism industry has strongly modified marketing strategies with the diffusion
of e-tourism portals in the Internet. Large tour operators are exploiting new technologies, such as web
portals and e-mails, in order both to simplify their advertising strategies and reduce the selling costs. The
efficacy of e-tourism solutions is also witnessed by the continuously growing community of e-buyers who
prefer to surf the Internet for buying holiday packages. On the other hand, traditional travel agencies are
undergoing a progressive loss of marketing competitiveness. This is partially due to the presence of
web portals, which basically exploit a new market. Indeed, Internet surfers often like to be engaged
in self-constructing their holiday by manually searching for flights, accommodation etc. Instead, the
traditional selling process, whose strength lies in both direct contact with customer and knowledge about
customer habits, is experiencing a reduced efficiency. This can be explained by the increased complexity
of matching demand and offer. Indeed, travel agencies receive thousand of e-mails per day from tour
operators containing new pre-packaged offers. Consequently, the employees of the agency cannot know
all the available holiday packages (since they cannot analyze all of them). Moreover, customers are
more demanding than in the past (e.g. the classic statement “I like the sea” might be enriched by “I
like snorkeling”, or “please find an hotel in Cortina” might be followed by “with beauty and fitness
center facilities”) and they often do not declare immediately all their preferences and/or constraints (like,
e.g., budget limits, preferred transportation mean or accommodation etc.). The knowledge of customers
preferences plays a central role in the traditional selling process. However, the task of matching this
information with the large and unstructured e-mail database is both difficult to carry out in a precise way
and is time consuming. Consequently, the seller is often unable to find the best possible solution to the
customer needs in a reasonable time.

The goal of the IDUM project is to devise a system that addresses the above-mentioned causes of
inefficiency by offering:

(i) an automatic extraction and interpretation of the touristic offers contained in the touristic
leaflets which are received by email by the travel agents,

(i) a classification of the incoming touristic offers in a rich and easy-to-browse ontology (so that
they are immediately available for the seller), and

(ii) an “intelligent” search that combines knowledge about users preferences with geographical
information, and matches user needs with the available offers, automatically taking into account
also the knowledge of the travel agent on recommended/unrecommended places and dates, along
with general information on meteorological and political dangers taken by the internet (e.g., from
the web site of the Italian Ministry for Foreigner Affairs).

We could achieve the goal by exploiting some tools based on Computational Logics and, particularly,
on Answer Set Programming (ASP) [10]. ASP is a powerful logic programming language, which is very
expressive in a precise mathematical sense: in its general form, allowing for disjunction in rule heads
and nonmonotonic negation in rule bodies, ASP can represent every problem in the complexity class
ΣP

2
and ΠP

2
(under brave and cautious reasoning, respectively) [7] in a fully declarative way. The core

functionalities of IDUM were based on two technologies1 relying on the state-of-the-art ASP system

1Both systems are developed by Exeura srl, a technology company working on analytics, data mining, and knowledge manage-
ment, that is investing on their industrialization finalized to commercial distribution.

F. Ricca et al. / A Logic-Based System for e-Tourism 1003

DLV [13]:

• OntoDLV [21, 22] a powerful ASP-based system for ontology representation and reasoning; and,

• HıLεX [16, 24, 23], an advanced tool for semantic information-extraction from unstructured or
semi-structured documents.

More in detail, in the IDUM system, behind the web-based user interface (which can be used by
both employees of the agency and customers), there is an “intelligent” core that exploits a rich OntoDLV
ontology that models the domain of discourse and the user preferences, and stores all the available data.
Geographic information was obtained by including GeoNames [20], one of the largest publicly-available
geographical databases, and enriched by modeling the knowledge of the travel agent regarding places
and offered holidays. The ontology is automatically populated with touristic offers by extracting the
information contained in the touristic leaflets produced by tour operators. It is worth noting that, offers
are mostly received by the travel agency in a dedicated e-mail account. Moreover, the received e-mails
are human-readable, and the details are often contained in email-attachments of different format (plain
text, pdf, gif, or jpeg files) and structure that might contain a mix of text and images. The HıLεX system
allows for automatically processing the received contents, and for populating the ontology with the data
extracted from touristic leaflets. Once the information is loaded onto the ontology, the user can perform
an “intelligent” search for selecting the holiday packages that best fit the customer needs. IDUM tries to
mimic the behavior of the typical employee of a travel agency by exploiting a set of specifically devised
logic programs that “reason” on the information contained in the ontology.

In the remainder of the paper, we first introduce the employed ASP-based technologies; then, in
Section 3, we describe how the crucial tasks have been implemented; we show the architecture of the
IDUM system in Section 4; in Section 5 we discuss related work; finally, we draw the conclusion in
Section 6.

2. Underlying ASP-based technologies

The core functionalities of the e-tourism systems IDUM were based on two technologies relying on
the DLV system [13]: OntoDLV [21, 22] a powerful ASP-based ontology representation and reasoning
system; and, HıLεX [16, 24, 23], an advanced tool for semantic information-extraction from unstructured
or semi-structured documents.

In the following we briefly describe both OntoDLV and HıLεX, the reader interested in a more detailed
description is referred to [21, 22] and [16, 24, 23], respectively.

2.1. The OntoDLV System

Traditional ASP in not well-suited to ontology specifications, since it does not directly support features
like classes, taxonomies, individuals, etc. Moreover, ASP systems are a long way from comfortably
enabling the development of industry-level applications, mainly because they lack important tools for
supporting programmers. All the above-mentioned issues were addressed in OntoDLV [21, 22] a sys-
tem for ontologies specification and reasoning. Indeed, by using OntoDLV, domain experts can create,
modify, store, navigate, and query ontologies; and, at the same time, application developers can easily
develop their own knowledge-based applications on top of OntoDLV, by exploiting a complete Applica-
tion Programming Interface [8]. OntoDLV implements a powerful logic-based ontology representation

1004 F. Ricca et al. / A Logic-Based System for e-Tourism

language, called OntoDLP, which is an extension of (disjunctive) ASP with all the main ontology con-
structs including classes, inheritance, relations, and axioms. In OntoDLP, a class can be thought of as a
collection of individuals who belong together because they share some features. An individual, or object,
is any identifiable entity in the universe of discourse. Objects, also called class instances, are unambigu-
ously identified by their object-identifier (oid) and belong to a class. A class is defined by a name (which
is unique) and an ordered list of attributes, identifying the properties of its instances. Each attribute has a
name and a type, which is, in truth, a class. This allows for the specification of complex objects (objects
made of other objects). Classes can be organized in a specialization hierarchy (or data-type taxonomy)
using the built-in is-a relation (multiple inheritance). Relationships among objects are represented by
means of relations, which, like classes, are defined by a (unique) name and an ordered list of attributes
(with name and type). OntoDLP relations are strongly typed while in ASP relations are represented
by means of simple flat predicates. Importantly, OntoDLP supports two kind of classes and relations:
(base) classes and (base) relations, which correspond to basic facts (that can be stored in a database); and
collection classes and intensional relations, which correspond to facts that can be inferred by logic pro-
grams; in particular, collection classes are mainly intended for object reclassification (i.e., for repeatedly
classifying individuals of an ontology). For instance, the following statement declares a class modeling
customers, which has six attributes, namely: firstName, lastName, and status of type string; birthDate
of type Date; a positive integer childNumber, and job which contains an instance of another class called
Job.

class Customer (firstName: string, lastName: string, birthDate: Date,

status: string,childNumber: positive integer, job: Job).

As in ASP, logic programs are sets of logic rules and constraints. However, OntoDLP extends the
definition of logic atom by introducing class and relation predicates, and complex terms (allowing for
a direct access to object properties). This way, the OntoDLP rules merge, in a simple and natural way,
the declarative style of logic programming with the navigational style of the object-oriented systems.
In addition, logic programs are organized in reasoning modules, to take advantage of the benefits of
modular programming. For example, with the following program we single out the pairs of customers
having the same birthdate:

module (CustomersWithTheSameBirthDate) {

sameBirthDate(C1,C2,D) :- C1: Customer(birthDate:D), C2: Customer(birthDate:D).

}

Classes and relations can be populated by either asserting logic facts or by exploiting the information
contained in existing relational databases [2]. In the latter case, the instances are defined by means of
mapping rules that “virtually import” the data from a given database. For instance the following speci-
fication populates Continent class by taking the information from table continent codes in the database
identified by geo db:

virtual class Continent (name:string)

{

f(ID):Continent(name:Name) :- continent_codes@geo_db(geoname_id:ID, name:Name).

}

Here, the rule acts as mapping between the data contained in table continent codes and the instances
of class continent; whereas functional object identifiers are suitably built from database values for iden-
tifying ontology instances. This kind of classes and relations are called virtual because their instances

F. Ricca et al. / A Logic-Based System for e-Tourism 1005

come from (and might permanently reside in) an external source; but, as far as reasoning and querying
are concerned they are like any other class directly specified in OntoDLP.

The core of OntoDLV is a rewriting procedure [22] that translates ontologies, and reasoning mod-
ules to an equivalent standard ASP program which, in the general case, runs on the state-of-the art ASP
system DLV [13]. OntoDLV features an advanced persistency manager that allows one to store on-
tologies transparently both in text files and internal relational databases; while powerful type-checking
routines are able to analyze ontology specifications and single out consistency problems. Importantly, if
the rewritten program is stratified and non-disjunctive [10, 9, 19] (and the input ontology resides in rela-
tional databases) then the evaluation is carried out directly in mass memory by exploiting a specialized
version of the same system, called DLV DB [27]. Note that, since class and relation specifications are
rewritten into stratified and non-disjunctive programs, queries on ontologies can always be evaluated by
exploiting a DBMS. This makes the evaluation process very efficient, and allows the knowledge engineer
to formulate queries in a language more expressive than SQL.

2.2. The HıLεX System

HıLεX [16, 24, 23] is an advanced system for ontology-based information extraction from semi-structured
and unstructured documents, which is already exploited in many relevant real-world applications. The
HıLεX system implements a semantic approach to the information extraction problem based on a new-
generation semantic conceptual model by exploiting: (i) ontologies as knowledge representation formal-
ism; (ii) a general document representation model for unifying different input formats (html, pdf, doc,
...); and, (iii) the definition of a formal attribute grammar able to describe, by means of declarative rules,
objects/classes w.r.t. a given ontology.

Most of the existing information extraction approaches do not work in a semantical way and they are
not independent of the specific type of document they process. Contrariwise, the approach implemented
in HıLεX confirms that it is possible recognize, extract and structure relevant information from hetero-
geneous sources. HıLεX is based on OntoDLP for describing ontologies, since this language perfectly
fits the definition of semantic extraction rules. Regarding the unified document representation, the idea
is that a document (unstructured or semi-structured) can be seen as a suitable arrangement of objects in
a two-dimensional space. Each object has its own semantics, is characterized by some attributes and is
located in a two-dimensional area of the document called portion. A portion is defined as a rectangular
area univocally identified by four cartesian coordinates of two opposite vertices. Each portion “contains”
one or more objects and an object can be recognized in different portions.

The language of HıLεX is founded on the concept of ontology descriptor. A “descriptor” looks like a
production rule in a formal attribute grammar, where syntactic items are replaced by ontology elements,
and where extensions for managing two-dimensional objects are added. Each descriptor allows us to
describe: (i) an ontology object in order to recognize it in a document; or (ii) how to “generate” a new
object that, in turn, may be added in the original ontology.

Note that an object may also have more than one descriptor, thus allowing one to recognize the same
kind of information when it is presented in different ways.

1006 F. Ricca et al. / A Logic-Based System for e-Tourism

Figure 1. The IDUM System.

3. The IDUM System

In this section we describe the core of the IDUM system: its innovative features based on ASP. IDUM
is an e-tourism system conceived for classifying and driving the search of pre-packaged touristic of-
fers for both travel agencies operators and their customers. The system, like other existing portals, is
equipped with a proper (web-based) user interface; but, behind the user interface there is an “intelligent”
core that exploits knowledge representation and reasoning technologies based on ASP. In IDUM (see
Figure 1), the information regarding the touristic offers provided by tour operators is mainly received
by the system as a set of e-mails. Each e-mail might contain plain text and/or a set of leaflets, usually
distributed as pdf or image files which store the details of the offer (e.g., place, accommodation, price
etc.). Leaflets are devised to be human-readable, might mix text and images, and usually do not have
the same layout. E-mails (and their content) are automatically processed by using the HıLεX system (i.e.,
e-mails are ”unwrapped”: attachments are separately processed, enclosed external links are followed and
corresponding web pages analyzed); and, the extracted data about touristic offers is used to populate an
OntoDLP ontology that models the domain of discourse: the “tourism ontology”.

Note that, the automatic population of the ontology is one of the innovative features of the system;
but IDUM can deal also with sources different from e-mails. Indeed, the internal ontology can be also
manually-populated by travel agents by exploiting a proper form, and additional leaflets can be given in
input to the extraction system.

The resulting ontology is, then, analyzed by exploiting a set of reasoning modules (ASP programs)
combining the extracted data with knowledge about places (geographical information) and user prefer-
ences specified in the tourism ontology. The system mimics the typical deductions made by a travel
agency employee for selecting the most appropriate answers to the user needs.

It is worth pointing out that the final goal of the system is to provide an effective interface for the
employees of a travel agency, and, thus, IDUM is not equipped with a reservation system (travel agencies
already own conventional systems for managing reservations). The same holds for the customer interface,
which only allows for browsing the holiday packages. Indeed, the customer interface has been devised
with the intent of welcoming customers and offering a comfortable access to the travel agency. The goal
is also to reduce the “visiting-only” phenomenon, which consists in the repeated visit of customers that
not necessarily end in a purchase.

In the following subsections, we describe the main components of the tourism ontology and the

F. Ricca et al. / A Logic-Based System for e-Tourism 1007

implementation of the above-mentioned ASP-based features. It is worthwhile noting that, for clarity of
presentation, we show a simplified version of both ontology and reasoning modules (logic programs).

3.1. The Tourism Ontology

The “tourism ontology” was developed with the cooperation of the staff of a real touristic agency. In
this way, we could model the key entities that describe the process of organizing and selling a holiday
package. In particular, the tourism ontology models: geographic information, travel agent knowledge,
user preferences, and touristic offer information.

Geographical Information. The most relevant ontology entities that model geographical informa-
tion are reported in Figure 2. World locations are modeled by class Place, and partitioned into six
(sub)classes, one for each touristically-relevant kind of place: Continent, Nation, AdminSubArea, Popu-
latedPlace, Mountain, and Island. In practice, places are hierarchically organized into four levels accord-
ing to their natural containment relationship. In particular, the basic place-containment is modeled in the
ontology by means of five relations, namely: ContinentContainsNation, NationContainsAdminSubArea,
AdminSubAreaContainsPopulatedPlace, AdminSubAreaContainsMountain, and AdminSubAreaContain-
sIsland. The first one models the containment of nations in continents; whereas we considered only one
level of subdivision of nations, which was determined in accordance with their administrative organiza-
tion (e.g., Italy is divided into ”regioni”, England is divided into “countries”, etc.); on the last level, there
are “populated places” (i.e., cities and villages), mountains and islands, which, in turn, are contained
in administrative areas. The complete part-of hierarchy of places, containing all direct and indirect in-
clusions, is obtained with the intensional relation Contains. Indeed, Contains is defined by means of a
logic program made up of six logic rules (see Figure 2): one for each virtual relation modeling basic
place-containment, and an additional one that basically encodes a transitive closure. Note that, ASP
rules allowed us to define (and compute) the full place-inclusion hierarchy in a simple yet effective way.
In the following it will be clear that the information modeled in the Contains relation is crucial for the
effectiveness of both extraction process and package search.

The relation AlternateNames associates all the known toponyms with corresponding places (e.g. a
different one for each language); this information is exploited during both the extraction process and
pre-processing of user queries steps for correctly disambiguating the input.

The above-described ontology entities have been populated by exploiting one of the largest publicly-
available geographical databases: GeoNames [20]. GeoNames contains thousand of places, alternative
toponyms and related geographic information. In order to map the GeoNames database to our ontology
we exploited both virtual classes and virtual relations [2].2 In particular, some of the mappings between
tourism ontology classes and GeoNames tables are reported in Figure 3. The first statement of Figure 3
links the GeoNames database to the ontology by defining the database identifier “geo db”; whereas, the
instances of class Continent (resp. Nation) are obtained from table continent codes (resp. country info)
by means of a single mapping rule where database tables are referred by exploiting sourced atoms.
Note that, object identifiers are univocally built by exploiting the database code geoname id. Finally,
ContinentContainsNation is given by the join of tables continent codes and country info. The remaining
virtual classes and relations were defined in a similar way.3

2Note that, apart from class Place and relation Contains, all the remaining (basic) ontology entities in Figure 2 are virtual.
3A description of GeoNames is not reported here for space reasons. The interested reader can find it on the Web at [20].

1008 F. Ricca et al. / A Logic-Based System for e-Tourism

% places and related information

class Place (name:string, kind:PlaceKind).

class PlaceKind ().

continent:PlaceKind(). nation:PlaceKind(). adminSubArea:PlaceKind().

populatedPlace:PlaceKind(). mountain:PlaceKind(). island:PlaceKind().

% virtual classes taking places from GeoNames

virtual class Continent(name:string, kind:PlaceKind) isa Place.

virtual class Nation(name:string, kind:PlaceKind) isa Place.

virtual class AdminSubArea(name:string, kind:PlaceKind) isa Place.

virtual class PopulatedPlace(name:string, kind:PlaceKind) isa Place.

virtual class Mountain(name:string, kind:PlaceKind) isa Place.

virtual class Island(name:string, kind:PlaceKind) isa Place.

% alternative place-names from GeoNames

virtual relation AlternativeName (place:Place, alternateName:string).

% place containment

intentional relation Contains (ctr:Place, ctd:Place).

{

Contains(ctr:P1, ctd:P2) :- ContinentContainsNation(ctr:P1, ctd:P2).

Contains(ctr:P1, ctd:P2) :- NationContainsAdminSubArea(ctr:P1, ctd:P2).

Contains(ctr:P1, ctd:P2) :- AdminSubAreaContainsPopulatedPlace(ctr:P1, ctd:P2).

Contains(ctr:P1, ctd:P2) :- AdminSubAreaContainsMountain(ctr:P1, ctd:P2).

Contains(ctr:P1, ctd:P2) :- AdminSubAreaContainsIsland(ctr:P1, ctd:P2).

Contains(ctr:P1, ctd:P2) :- Contains(ctr:P1, ctd:P3), Contains(ctr:P3, ctd:P2).

}

% virtual relations reconstructing basic place containment from GeoNames

virtual relation ContinentContainsNation (ctr:Continent, contained:Nation).

virtual relation NationContainsAdminSubArea (ctr:Nation, contained:AdminSubArea).

virtual relation AdminSubAreaContainsPopulatedPlace (ctr:AdminSubArea,

ctd:PopulatedPlace).

virtual relation AdminSubAreaContainsMountain (ctr:AdminSubArea,

ctd:Mountain).

virtual relation AdminSubAreaContainsIsland (ctr:AdminSubArea,

ctd:Island).

Figure 2. Tourism Ontology: Geographic Information.

Travel Agent Knowledge. In the ontology, the mere geographic information is enriched by the knowl-
edge that is usually exploited by travel agency employees for selecting a travel destination (see Figure 4).
For example, travel agents know which place offers a specific kind of trip (e.g. Kenya offers safari, Sicily
offers both sea and sightseeing). To this end, the tourism ontology contains the class TripKind (e.g. sa-

F. Ricca et al. / A Logic-Based System for e-Tourism 1009

% specify source database

geo_db:dbsource(jdbc:"jdbc:mysql://localhost/geonames",odbc:"gn",user:"geo",psw:"geo").

% Continent class specification

virtual class Continent (name:string, kind:PlaceKind) {

f(ID):Continent(name:Name, kind:continent) :-

continent_codes@geo_db(geoname_id:ID, name:Name).}

% Nation class specification

virtual class Nation (name:string, kind:PlaceKind) {

f(ID):nation(name:Name, kind:nation) :-

country_info@geo_db(geoname_id:ID, country:Name).}

% ContinentContainsNation relation specification

virtual relation ContinentContainsNation(ctr:Continent, ctd:Nation) {

ContinentContainsNation(ctr:f(ContId), ctd:f(NatId)) :-

continent_codes@geo_db(geoname_id:ContId,code:Code),

country_info@geo_db(geoname_id:NatId,continent:Code).}

...

Figure 3. Mapping the Geonames database.

fari, cruise, etc. are instances of the TripKind class) and relation PlaceOffer that associates a kind of trip
with places. Nevertheless, a place might offer some specific facilities (e.g. in Marsa Alam Egypt it is
possible to go snorkeling). Thus, the ontology contains a class called PlaceFacility and a binary relation
PlaceOffersFacility associating facilities with places. Moreover, travel agents might suggest avoiding
sea holidays in winter, or going to India during the wet monsoon period; whereas, a visit to Sicily might
be recommended during summer. This information is encoded in the ontology by means of the two
relations: RecommendedPeriod, BadPeriod, respectively associating places with periods in which they
should be visited or avoided. It is also the case that places engaged in a war or subjected to terrorism
(like, eg. Afghanistan today) should not be recommended for a holiday; thus, relation DangerousPlace
lists places that are currently considered risky.

It is worth noting that the instances of classes and relations modeling the knowledge of travel agents
were manually-inserted (in accordance with the information provided by a real travel agent and/or pub-
licly available on the Internet) for a large number of places, and can be updated in the system through
the travel agent interface.

Touristic Offer Information. Holiday packages are modeled by the TouristicOffer class (see Figure 4).
In detail, for each holiday package we store: both the place of departure and the final destination; the
kind of trip; cost and duration (in days); the tour operator selling the package (which is an instance of the
TourOperator class); an url pointing to the original leaflet, and the expiration date (which is exploited
by the system for periodically removing expired offers). The instances of TouristicOffer are added either
automatically, by exploiting the HıLεX system (see next Section), or manually (via the user interface)
by the personnel of the agency. Optionally, touristic offers might have associated some transportation

1010 F. Ricca et al. / A Logic-Based System for e-Tourism

% travel agent knowledge

relation PlaceOffer (place: Place, kind: TripKind).

relation SuggestedPeriod (place:Place, period: HolidayPeriod).

relation BadPeriod (place:Place, period: HolidayPeriod).

relation DangerousPlace (place:Place).

class PlaceFacility ().

relation PlaceOffersFacility(place:Place, fac:PlaceFacility).

% touristic offer information

class TouristicOffer (start: Place, destiNation: Place,

kind: TripKind, cost: positive integer, fromDay: Date, toDay: Date,

period: HolidayPeriod, maxDuration: positive integer,

deadline: Date, uri: string, tourOperator: TourOperator).

class TripKind ().

class HolidayPeriod ().

class TourOperator (name:string, company:string, phone:string, fax:string,

email:string, contact:string).

class TransportationMean ().

class AccommodationKind ().

class AccommodationFacility ().

relation OfferMean (offer:TouristicOffer, means:TransportationMean).

relation OfferAccommodation (offer:TouristicOffer, acc:AccommodationKind,

descr:string).

relation OfferAccommodationFacility(offer:TouristicOffer, fac:AccommodationFacility).

% user profile

class Customer (firstName: string, lastName: string, birthDate: Date, status: string,

childNumber: positive integer, job: Job).

relation CustomerPreferredTrip(cust:Customer, kind:TripKind).

relation CustomerPreferredMean(cust:Customer, mean: TransportationMean,

relevance:positive integer).

relation CustomerPreferredAccommodation(cust:Customer, acc:Accommodation,

relevance:positive integer).

relation CustomerPreferredAccommodationFacility(cust:Customer, fac:AccommodationFacility,

relevance:positive integer).

relation CustomerPreferredPlaceFacility(cust:Customer, fac:PlaceFacility,

relevance:positive integer).

Figure 4. Tourism Ontology: Travel Agent Knowledge, Offers Information and User Profile.

means,4 an accommodation kind (e.g. hotel, apartment, etc.) and some accommodation facilities (e.g.
swimming pool, spa service, etc.). This additional information is modeled in the ontology by means

4In case there is more than one alternative transportation mean, the ontology is intended to be filled with the main one.

F. Ricca et al. / A Logic-Based System for e-Tourism 1011

of the following classes: TransportationMean, AccommodationKind and AccommodationFacility. The
association of this information to touristic offers is modeled by the following relations: OfferMean,
OfferAccommodation and OfferAccommodationFacility.

User Profile. In order to personalize the trip-search, user profiles are also modeled in the tourism
ontology. The class Customer models the personal information of each customer. User preferences
are modeled by exploiting a number of relations, namely: CustomerPreferredTrip, CustomerPreferred-
Mean, CustomerPreferredAccommodation, CustomerPreferredAccommodationFacility, and Customer-
PreferredPlaceFacility. The first relation associates a preferred trip kind to each customer; whereas, the
remaining ones associate, for each customer, a preference score with each specific facility that might
be associated to an offer, namely: transportation means, accommodation kind, accommodation facilities
and place facilities.

It is worth pointing out that, at the moment, the user profile data is manually-inserted in the ontology
and can be updated by either the travel agent or the customer himself by filling-in an appropriate form.

3.2. Automatic Extraction of Touristic Offers

Touristic offers are mainly available in digital format and they are received via e-mail. It is usual that
more than a hundred emails per day crowd the mail folder of a travel agency, and often the personnel
cannot even analyze the entire in-box. This causes a loss of efficiency in the selling process, because
some interesting offers will be ignored. Note that, most of the information is contained in pdf, gif or jpeg
files attached to the e-mail messages, and this strongly limits the efficacy of standard search tools like,
e.g., the ones provided by e-mail clients.

To deal with this problem, the IDUM system is equipped with an automatic classification system
based on HıLεX. Basically, after some pre-processing steps, in which e-mails are automatically read from
the inbox, and their attachments are properly handled (e.g. image files are analyzed by using OCR
software), the input is sent to HıLεX. In turn, HıLεX is able to both extract the information contained
in the e-mails and populate the TouristicOffer class. This was obtained by encoding several ontology
descriptors (actually, we provided several descriptors for each kind of file received by the agency). For
instance, the following descriptor:

<TouristicOffer (Destination, Period)> -> <X:place(XX)>{Destination:=X;}

<X:date(XX)>{Period:=X;} SEPBY <X:separator()>.

extracts from the leaflet in Figure 5(a) that the proposed holiday package regards trips to both the
Caribbean islands and Brazil. Moreover, it also extracts the period in which this trip is offered. The
extracted portions are outlined in Figure 5(b). The result of the application of this descriptor are two new
instances of the TouristicOffer class.

3.3. Personalized Trip Search

The second crucial task carried out in the IDUM system is the personalized trip search. This feature was
conceived to make simpler the task of selecting the holiday packages that best fit the customer needs.
We tried to “simulate” the deductions made by an employee of the travel agency in the selling process
by using a set of reasoning modules, i.e. a set of specifically devised logic programs.

1012 F. Ricca et al. / A Logic-Based System for e-Tourism

Figure 5. Extracting offer information.

In a typical scenario, when a customer enters the travel agency, an employee tries to understand his
current desires and preferences at first; then, the seller has to match the obtained information with a
number of pre-packaged offers. Actually, a number of candidate offers are proposed to the customer and,
then, the employee has to understand his needs by interpreting the preferences of the customer. Customer
preferences depend on his personal information but also on his holiday habits. Actually, this information
has to be elicited by the seller by interviewing the customer, but most of it might be already known by
the employee if he is serving a regular customer. In this process, what has to be clearly understood (for
properly selecting a holiday package fitting the customer needs) is summarized in the following four
words: where, when, how, and budget. Indeed, the seller has to understand where the customer desires to
go; when he can/wishes to leave; how much time he will dedicate to his holiday; which is the preferred
transportation means (how); and, finally, the available budget. However, the customer does not directly
specify all this information, for example, he can ask for a sea holiday in January but he does not specify
a precise place, or he can ask for a kind of trip that is unfeasible in a given period (e.g. winter holiday in
Sicily in August). In this case the seller has to exploit his knowledge of the world for selecting the right
destination and a good offer in a huge range of proposals. This is exactly what the IDUM system does
while searching for a holiday package. Current needs are specified by filling an appropriate search form,
where some of the key information has to be provided (i.e. where and/or when and/or available money
and/or how). Note that, the tourism ontology models both the knowledge of the seller and the profile
of customers; moreover, the extraction process continuously populates the ontology with new touristic
offers and periodically removes the expired ones. Thus, the system, by running some specifically devised
reasoning modules, combines the specified information with the one available in the ontology, and shows
the holiday packages that best fit the customer needs.

Some of the reasoning modules exploited by the IDUM system are reported (in a simplified form) in
Figure 6. The first module, named match profile, allows for ranking the available offers w.r.t. the user
preferences. In particular, the first four rules single out the scores obtained by offers w.r.t. the profile of
customers. In detail, the first rule can be read as follows: “for each customer C associate to each offer O

the score R if the transportation mean included in O has relevance R according to the preferences of C”.

F. Ricca et al. / A Logic-Based System for e-Tourism 1013

In a similar way, the next three rules associate, for each customer, a specific score with available offers
depending on: accommodation kind, accommodation facilities and destination facilities, respectively.
Finally, the auxiliary predicate preferenceSatisfaction computes the overall satisfaction ranking obtained
by available offers. Given a customer C, the overall satisfaction ranking Sat for an offer O is obtained
by summing up all the scores obtained by the features included in O (in accordance with the preferences
of C). The ranking defined by preferenceSatisfaction is, then, exploited by the system either for (a)
proposing some possibly interesting offer to the user when he/she logs-in (see Figure 9); or (b) for
ranking the results obtained during the search of touristic offers. Task (a) is implemented by evaluating
module welcome recommendations; whereas, task (b), is encoded in the module called personalized
search (see Figure 6). Basically, module welcome recommendations mimics the usual behavior of a
travel agent that proposes to an incoming old customer some “tempting” offer. More in detail, predicate
loginOffers is defined that lists the touristic offers that propose the trip kind preferred by C and maximize
the satisfaction of user preferences. However, the customer might have in mind some specific holiday,
and in this case, the system has to search a holiday package that matches the current customer requests.
Suppose that the customer specifies destination and period, then the personalized search module creates a
suitable selection of holiday packages as follows. The first two rules select requested places by exploiting
Contains relation (i.e. we consider the specified destination together with all the places it contains). Note
that, this additional information plays a fundamental role for improving the search; indeed, it is common
that the user specifies a nation (e.g., “Italy”) and the system has to consider also packages having a
specific place (e.g., “Rome”) as destination. Then, rule (iii) singles out each offer O having a requested
place as destination. However, it might be the case that a matching offer is not recommendable (and
we call it “bad offer”) either because the chosen period is not the right one for the specified destination
(rule iv) or because a trip to the specified destination is currently considered risky (rule v). If some “bad
offer” matches the customer query, then the system prompts an alert message next to the search results
(see Figure 10); moreover, the system might recommend some alternative for the specified period which
is not bad (rule vi). Note that, predicates collecting both matching and alternative holiday packages
associate to found offers a preference satisfaction score. In this way, results can be ordered by the user
interface according to user preferences and offers that best fit the customer needs are showed first (see
Figure 10).

Several other search criteria can be specified, including trip kind, available budget, and so on (see
Figure 8). Actually, depending on the input parameters, the system selects a specific reasoning module
obtained by suitably modifying the one described above. For instance, when the user specifies both trip
kind and holiday period rule (i) is replaced by:

requestedPlace(P) :- query(tripKind:K), PlaceOffer(place:P, kind:K).

where requested places are the ones offering the specified trip kind. Otherwise, when the budget is also
specified both rule (iii) and rule (iv) are replaced by:

matchingOffer(O) :- O:TouristicOffer(destination:P, cost:C),

requestedPlace(P), query(budget:B), C <=B.

recommendedAlternative(Off, Sat) :- query(customer:Cust, period:Per, budget:B),

SuggestedPeriod(place:Dest, period:Per),

not DangerousPlace(place:Dest),

Off:TouristicOffer(destination:Dest, cost:C),

preferenceSatisfaction(Cust, Off, Sat), C <=B.

1014 F. Ricca et al. / A Logic-Based System for e-Tourism

% ----------------------- Offer ranking based on customer preferences -----------------------

module(match profile) {

satisfiesCustomerPreference(O, C, R) :- O:TouristicOffer(), OfferMean(offer:O, means:M).

CustomerPreferredMean(cust:C, mean:M, relevance:R),

satisfiesCustomerPreference(O, C, R) :- O:TouristicOffer(),

CustomerPreferredAccomodation(cust:C, acc:A, relevance:R),

OfferAccomodation(offer:O, acc:A).

satisfiesCustomerPreference(O, C, R) :- O:TouristicOffer(),

CustomerPreferredAccomodationFacility(cust:C, fac:AF, relevance:R),

OfferAccomodationFacility(offer:O, fac:AF).

satisfiesCustomerPreference(O, C, R) :- O:TouristicOffer(destination:P),

CustomerPreferredPlaceFacility(cust:C, fac:PF, relevance:R),

PlaceOffersFacility(place:P, fac:PF).

preferenceSatisfaction(C, O, Sat) :- C:Customer(), O:TouristicOffer(),

#sum{ R : satisfiesCustomerPreference(O, C, R) } = Sat. }

% ---------------------- Recommend best offers when the user logs-in ----------------------

module(welcome recommendations) {

loginOffer(C, O) :- query(customer:C), CustomerPreferredTrip(cust:C, kind:K),

O:TouristicOffer(kind:K), preferenceSatisfaction(C, O, MaxSat),

MaxSat = #max{ Sat : preferenceSatisfaction(C, O, Sat)}. }

% ----------------------------- Search offers - basic method -----------------------------

module(personalized search) {

% select available offers matching query

(i) requestedPlace(P) :- query(place:P).

(ii) requestedPlace(Pc) :- requestedPlace(Pp), Contains(cts:Pp, ctd:Pc).

(iii) matchingOffer(O, Sat) :- O:TouristicOffer(destination:Dest, period:Per),

requestedPlace(Dest), query(customer:Cust, period:Per),

preferenceSatisfaction(Cust, O, Sat).

% generate alert messages if matching offers are not recommendable

(iv) badOffer(O) :- matchingOffer(O), O:TouristicOffer(period:P, destination:D),

BadPeriod(place:D, period:P).

(v) badOffer(O) :- matchingOffer(O), O:TouristicOffer(destination:P),

DangerousPlace(place:P).

% select alternative/recommended offers

(vi) recommendedAlternative(Off, Sat) :- query(customer:Cust, period:Per),

SuggestedPeriod(place:Dest, period:Per),

not DangerousPlace(place:Dest),

Off:TouristicOffer(destination:Dest, period:Per),

preferenceSatisfaction(Cust, Off, Sat). }

Figure 6. Personalized Trip Search: Welcome Suggestions and Touristic Offer Search.

where the additional condition is considered in the body and so on.

F. Ricca et al. / A Logic-Based System for e-Tourism 1015

Figure 7. System Architecture.

4. System Architecture

The architecture of the IDUM system, which is depicted in Figure 7, is made up of four layers: Data
Layer, Information Layer, Knowledge Layer, and Service Layer. In the Data Layer the input sources are
dealt with. In particular, the system is able to store and handle the most common kind of sources: e-mails,
plain text, pdf, gif, jpeg, and HTML files. The Information Layer provides ETL (Extraction, Transfor-
mation and Loading) functionalities, in particular: in the loading step the documents to be processed are
stored in an auxiliary database (that also manages the information about the state of the extraction activi-
ties); whereas, in the Transformation step, semi-structured or non-structured documents are manipulated.
First the document format is normalized; then, the “bi-dimensional logical representation” is generated
(basically, the HıLεX portions are identified); finally, HıLεX descriptors are applied in the Semantic Ex-
traction step and ontology instances are recognized within processed documents. The outcome of this
process is a set of concept instances, which are recognized by matching semantic patterns, and stored in
the core knowledge base of the system where the tourism ontology resides (Knowledge Layer). Domain
ontology and extracted information are handled by exploiting the Persistency manager of the OntoDLV
system (see Section 2.1). The Services Layer features the profiling service and the intelligent search (see
Section 3.3) which implements the reasoning on the core ontology by evaluating in the OntoDLV system
a set of logic programs. The Graphical User Interface (GUI) can access the system features by interacting
with a set of web-services. The GUI offers both a dedicated access to travel agents (see Figure 8) and a
user friendly environment for customers (see Figure 9-10).

5. Related Work

The usage of ontologies for developing e-tourism applications was already studied in the literature [15,
12, 3, 17, 18], and the potential of the application of semantic technology recognized [6, 11].

The architecture of an e-tourism system able to create a touristic package in a dynamic way is pre-

1016 F. Ricca et al. / A Logic-Based System for e-Tourism

Figure 8. Agent Home Page

sented in [12]. This system permits the customer to specify a set of preferences for a vacation and
dynamically access and query a set of information sources to find component such as accommodation,
car rental, and leisure activities in real time. It is based on an ontology written in OWL-DL [26]. The
ontology exploited in [3, 12] encodes the same key concepts as ours, but does not include information
about user preferences. Another advantage of the our approach is the possibility of developing ASP pro-
grams that reason on the data contained in the ontology for developing complex searches, while there is
no accepted solution for combining logic rules and OWL-DL ontologies.

The SPETA system [1], which is based on the ontology of [12], acts as an advisor for tourists. Fun-
damentally, SPETA follows people who need advising when visiting a new place, and who consequently
do not know what is interesting to visit. Here the ontology is enriched with user profile information for
determining the common characteristics of the previously visited places and the user behavior. In this
way the system recommends attractions which are likely to fit the user expectations. It exploits GPS
technology to know user position and it gets user data from previous users history and also from social
networks. Both SPETA and IDUM exploit an ontology for building personalized solutions for the users,
but the goal of SPETA is different from that of IDUM. Indeed, the former was conceived for offering
assistance and information to the user when they already are on a place, while the goal of IDUM is to
assist the users in the selection of a holiday.

The E-Tourism Working Group at DERI [4] is developing e-tourism solutions based on the Semantic

F. Ricca et al. / A Logic-Based System for e-Tourism 1017

Figure 9. Customer Home Page

Web technology. Their goal is to develop an advanced eTourism Semantic Web portal which will connect
the customers and virtual travel agents from anywhere at any time with any needs and requests. In [25],
they present OnTour an information retrieval system that exploits an RDF engine for storing the data
regarding accommodation facilities of different types. DERI also developed a content management sys-
tem: OnTourism [5]. The solution is similar to IDUM, but it is based on the use of Lixto Software [14]
which extracts information from web pages. Information about current events is crawled from several
web sources and it is rendered in a machine-accessible semantic.

6. Conclusion and Market Perspective

In this paper we have described a successful example of commercial and practical use of logic program-
ming: the e-tourism system IDUM.

The core of IDUM is an ontology modeling the domain of the touristic offers, which is automatically
populated by extracting the information contained in the e-mails sent by tour operators; and an intelligent
search tool based on answer set programming is able to search the holiday packages that best fits the
customer needs. Actually, several logic programs have been devised for implementing the intelligent
search. In the development process, we exploited many of the advanced features of the language like
negation as failure and aggregates. The declarative nature of ASP allowed us to design effective solutions

1018 F. Ricca et al. / A Logic-Based System for e-Tourism

Figure 10. Query Result (search by place and period)

and to tune rapidly our modules by following the suggestions of the domain experts.

The system has been developed under project “IDUM: Internet Diventa Umana” (project n. 70
POR Calabria 2000/2006 Mis. 3.16 Azione D Ricerca e Sviluppo nella Imprese Regionali - Modulo B
Voucher Tecnologici) funded by the Calabrian Region. The project team involved five organizations: the
Department of Mathematics of the University of Calabria (which has ASP as one of the principal research
area), the consortium Spin, Exeura srl (a company working on knowledge management), Top Class srl
(a travel agency), and ASPIdea (a software farm specialized in the development of web applications).
The members exploited their specific knowledge for developing the innovative features of the system.
The strong synergy among partners made it possible to push the domain knowledge of the travel agency
TopClass in both the ontology and in the reasoning modules. The result is a system that mimics the
behavior of a seller of the agency and it is able to search in a huge database of automatically classified
offers. IDUM combines the speed of computers with the knowledge of a travel agent for improving the
efficiency of the selling process.

F. Ricca et al. / A Logic-Based System for e-Tourism 1019

The IDUM system was initially conceived for solving the specific problems of a travel agency, and
it is currently employed by one of the project partners: Top Class srl. We are working on an enterprise
version of the system conceived for offering its advanced services to several travel agencies. The en-
hancements of IDUM will be developed under another technology-transfer PIA (Pacchetti Integrati di
Agevolazione industria, artigianato e servizi) project funded by the Calabrian region. The value of the
system was confirmed by the good position obtained by the proposal in the project evaluation ranking
(IDUM occupies the 2nd position ahead of more than 400 competing proposals). Moreover, we received
very positive feedbacks from the market, indeed many travel agents are willing to use the system, and the
potential of IDUM has been recognized also by the chair of the Italian touring club, which is the most
important Italian association of tour operators.

As far as future work is concerned, we are investigating the application of data-mining techniques
for automatically updating the user profile according to the customers’ buying history. The actual system
is targeted for finding closed packages (as they are presented in the leaflets), and it does not features
an automatic holiday composition from more packages (clearly, this task can be carried out manually
by both the travel agent and the final customer). An automatic package-composition feature is also the
subject of future work.

Acknowlegments

The authors are thankful to the staff of Top Class srl and ASPIdea srl; a special thanks is addressed to
Giuliano Candreva, Gianfranco De Franco, Dino De Santo and Carmine Donato.

References

[1] Angel, G.-C., Javier, C., Ismael, R., Myriam, M., Ricardo, C.-P., Miguel, G.-B. J.: SPETA: Social pervasive
e-Tourism advisor, Telemat. Inf., 26(3), 2009, 306–315, ISSN 0736-5853.

[2] Bennardo, G., Grasso, G., Leone, N., Ricca, F.: Upgrading Databases to Ontologies, Proceedings of the
3rd International Workshop on Applications of Logic Programming to the (Semantic) Web and Web Services
(ALPSWS2008) 9-13 2008, Udine, Italy (J. de Bruijn, S. Heymans, D. Pearce, A. Polleres, E. Ruckhaus,
Eds.), 434, CEUR, 2008.

[3] Cardoso, J.: Developing An Owl Ontology For e-Tourism, in: Semantic Web Services, Processes and Appli-
cations, 2006, 247–282.

[4] DERI: Digital Enterprise Research Institute. Innsbruck, A.: http://e-tourism.deri.at//.

[5] Ding, Y., Prantner, K., Luger, M., Herzog, C.: OnTourism: Semantic eTourism Portal, Proceedings of the 2nd
International Scientific Conference of the e-Business Forum - E-Business in Travel, Tourism and Hospitality,
Athens, Greece, 3 2008.

[6] Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Kirbas, S., Gurcan, Y.: Semantically enriched web
services for the travel industry, SIGMOD Rec., 33(3), 2004, 21–27, ISSN 0163-5808.

[7] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog, ACM TODS, 22(3), 1997, 364–418.

[8] Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for an ASP-based Ontology
Language, Proceedings of the Workshop on Software Engineering for Answer Set Programming (SEA’07)
(M. D. Vos, T. Schaub, Eds.), 2007.

1020 F. Ricca et al. / A Logic-Based System for e-Tourism

[9] Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog perspective ,
AI, 138(1–2), 2002, 3–38.

[10] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases, NGC, 9, 1991,
365–385.

[11] Joe, B., Carole, G.: TourisT: the application of a description logic based semantic hypermedia system for
tourism, HYPERTEXT ’98: Proceedings of the ninth ACM conference on Hypertext and hypermedia : links,
objects, time and space—structure in hypermedia systems, ACM, 1998, ISBN 0-89791-972-6.

[12] Jorge, C.: Combining the semantic web with dynamic packaging systems, AIKED’06: Proceedings of the 5th
WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, World
Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2006, ISBN
111-2222-33-9.

[13] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowl-
edge Representation and Reasoning, ACM TOCL, 7(3), 2006, 499–562.

[14] Lixto:: http://www.lixto.at//.

[15] Maedche, A., Staab, S.: Applying Semantic Web Technologies for Tourism Information Systems, Pro-
ceedings of the 9th International Conference for Information and Communication Technologies in Tourism,
ENTER 2002, Innsbruck, Austria, 23 - 25th 2002 (K. Wber, A. Frew, M. H. (eds.), Eds.), 2002.

[16] Manna, M.: Semantic Information Extraction: Theory and Practice, Ph.D. Thesis, Dipartimento di Matem-
atica, Universitá della Calabria, Rende, Cosenza Italia, 2008.

[17] Martin, H., Katharina, S., Daniel, B.: Towards the semantic web in e-tourism: can Annotation do the trick?,
Proceedings of the 14th European Conference on Information System (ECIS 2006), 2006.

[18] Martin, H., Katharina, S., Daniel, B.: Towards the Semantic Web in e-Tourism: Lack of Semantics or Lack
of Content?, Poster Proceedings of the 3rd Annual European Semantic Web Conference (ESWC 2006), 2006.

[19] Minker, J.: Overview of Disjunctive Logic Programming, AMAI, 12, 1994, 1–24.

[20] Names:, G.: http://www.geonames.org//.

[21] Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an ASP-based
System for Enterprise Ontologies, Journal of Logic and Computation, 2009.

[22] Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The DLV+ System, Journal of
Applied Logics, 5(3), 2007, 545–573.

[23] Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic Information Ex-
traction, Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation (M. de
Vos, A. Provetti, Eds.), Bath, UK, 2005.

[24] Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction from Web Documents,
ICEIS (Selected Papers) (Y. Manolopoulos, J. Filipe, P. Constantopoulos, J. Cordeiro, Eds.), 3, 2008, ISBN
978-3-540-77580-5.

[25] Siorpaes, K., Bachlechner, D.: OnTour: Tourism Information Retrieval based on YARS, Proceedings of
ESWC 2006, 2006.

[26] Smith, M. K., Welty, C., McGuinness, D. L.: OWL web ontology language guide. W3C Candidate Recom-
mendation, 2003, http://www.w3.org/TR/owl-guide/.

[27] Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with Recursive Queries in Database and Logic
Programming Systems, TPLP, 8, 2008, 129–165.

