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Abstract

In the last few years, microprocessor technologies have been moving towards multi-core architectures, in order to improve
performance as well as reduce power consumption. This makes real Symmetric MultiProcessing (SMP) available even on non-
dedicated machines, and paves the way to the development of better performing software. Notably, the recent application of Answer
Set Programming (ASP) in different emerging areas, such as knowledge management or information extraction/integration, shows
that performance is a crucial issue also for ASP systems. Among the tasks performed by such systems, the instantiation process,
which consists of generating a variable-free program equivalent to the input one, is one of the most expensive from a computational
viewpoint, especially in the case of huge input data. In this paper a new strategy exploiting parallelism for the instantiation of ASP
programs is proposed. An implementation of this strategy and its integration with the grounding module of the DLV system is
discussed. The results of an experimental analysis are also presented, which confirm that the strategy is effective in making ASP
instantiation more efficient.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Symmetric MultiProcessing (SMP) [1,2] is a computer architecture where two or more identical processors connect
to a single shared main memory resource allowing simultaneous multithread execution. In the past, only servers
and workstations could take advantage of it. However, recently, technology has moved to multicore/multiprocessor
architectures also for entry-level systems and PCs; this permits the enjoyment of the benefits of parallel processing
on a large scale. These benefits include better workload balances, enhanced performance, improved scalability, not
only for systems that run many processes simultaneously, but also for single (i.e., multithreaded) applications. This
technology might be profitably exploited in the field of Answer Set Programming (ASP). Indeed, recent applications
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of ASP in different emerging areas, such as knowledge management or information extraction/integration [3–5], have
evidenced the practical need for faster ASP systems.

ASP is a declarative approach to programming proposed in the area of nonmonotonic reasoning and logic program-
ming [6–12].1 The main advantage of ASP is its high declarative nature combined with a relatively high expressive
power [13,14]; but this comes at the price of a high computational cost, which makes the implementation of efficient
ASP systems a difficult task. Some effort has been made to this end, and, after some pioneering work [15,16], there
are nowadays a number of systems that support ASP and its variants [13,17–26]. The kernel modules of such sys-
tems operate on a ground instantiation of the input program, i.e. a program that does not contain any variable, but is
semantically equivalent to the original input [27]. Consequently, any given program P first undergoes the so-called in-
stantiation process computing from P an equivalent ground program P ′. This preprocessing phase is computationally
very expensive;2 thus, having an efficient instantiation procedure is, in general, a key feature of ASP systems. Many
optimization techniques have been proposed for this purpose [29–31]; nevertheless, the performance of instantiators
is still not acceptable in many cases, especially when the input data are significantly large (real-world instances, for
example, may count hundreds of thousands of tuples).

This paper proposes a new strategy for the parallel instantiation of ASP programs, allowing the performance of
instantiators to be improved by exploiting the power of multiprocessor computers. This strategy takes advantage of
some structural properties of the input program in order to reduce the usage of mutex-locks and thus the time spent
by concurrency-control mechanisms. In particular, the strategy is two-fold, focusing on two different aspects of the
instantiation process. On the one hand, it examines the structure of the input program P , splits it into modules whose
union is equivalent to P , and, according to the interdependencies between the modules, decides which of them can be
processed in parallel. On the other hand, it parallelizes the evaluation within each module by allowing the concurrent
instantiation of rules.

The proposed strategy is implemented into DLV, one of the two most popular ASP instantiators (the other being
Lparse [32,33]), building a new parallel ASP instantiator. An experimental activity is performed to evaluate the impact
of the method on the instantiation process. The results of the experiments are very positive, and confirm the effec-
tiveness of this technique, especially in the evaluation of programs with a large amount of input data. The benchmark
programs, as well as the binaries used for our experiments, are available at http://www.mat.unical.it/parallel/parallel_
bench_07.zip.

It is worthwhile noting that the results can profitably be exploited by other systems, which do not have their own
instantiators like, e.g., ASSAT [23], Cmodels [24,34], Smodels [20,21,32], NoMore [25], Clasp [22], etc.3 Indeed,
these systems can use this instantiator to obtain the ground program, and then apply their own procedures for the
evaluation of the ground program.4

The remainder of the paper is structured as follows. Section 2 outlines some basic notions of Answer Set Program-
ming; Section 3 describes how ASP programs are instantiated by the DLV system; Section 4 presents the parallel
instantiation strategy; Section 5 discusses the results of the experiments carried out in order to evaluate the proposed
technique; finally, Section 6 is devoted to related works, and Section 7 draws some conclusions.

2. Answer set programming

A formal definition of syntax and semantics of answer set programs is provided next.

1 The term “Answer Set Programming” was introduced by Vladimir Lifschitz in his invited talk at ICLP’99 to denote a declarative programming
methodology. Concerning terminology, ASP is sometimes used in a somewhat broader sense, referring to any declarative formalism, which repre-
sents solutions as sets. However, the more frequent understanding is the one adopted in this article, which dates back to [6]. Moreover, since ASP
is the most prominent branch of logic programming in which rule heads may be disjunctive, sometimes the term Disjunctive Logic Programming
can be found referring explicitly to ASP. Yet other terms for ASP are A-Prolog and Stable Logic Programming. For introductory material on ASP,
we refer to [9–12].

2 Producing the ground instantiation may require an exponential time in the size of the input program. In order to grasp the intuition consider
the following program containing only one nonground rule: obj(0).obj(1).disp(X1, . . . ,Xn) :− obj(X1), . . . ,obj(Xn). It is easy to see that the
corresponding ground instantiation contains 2n + 2 rules. For more details about complexity results the reader may refer to [7,13,14,28].

3 Obviously, systems not supporting disjunction can exploit our instantiator for nondisjunctive programs only.
4 Remember that the instantiator can deal also with normal nondisjunctive programs.
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2.1. Syntax

A variable or a constant is a term.5 An atom is a(t1, . . . , tn), where a is a predicate of arity n and t1, . . . , tn are
terms. A literal is either a positive literal p or a negative literal not p, where p is an atom. A disjunctive rule (rule,
for short) r is a formula

a1 ∨ · · · ∨ an :− b1, . . . , bk, not bk+1, . . . , not bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms and n � 0, m � k � 0. The disjunction a1 ∨ · · · ∨ an is the head of r , while
the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r . A rule without head literals (i.e. n = 0) is usually
referred to as an integrity constraint.6 A rule having precisely one head literal (i.e. n = 1) is called a normal rule. If
the body is empty (i.e. k = m = 0), it is called a fact.

H(r) denotes the set {a1, . . . , an} of the head atoms, and by B(r) the set {b1, . . . , bk, not bk+1, . . . , not bm} of
the body literals. B+(r) (respectively, B−(r)) denotes the set of atoms occurring positively (respectively, negatively)
in B(r). A rule r is safe if each variable appearing in r appears also in some positive body literal of r .

An ASP program P is a finite set of safe rules. A not-free (respectively, ∨-free) program is called positive (re-
spectively, normal). A term, an atom, a literal, a rule, or a program is ground if no variables appear in it. Accordingly
with the database terminology, a predicate occurring only in facts is referred to as an EDB predicate, all others as IDB
predicates; the set of facts of P is denoted by EDB(P).

2.2. Semantics

Let P be a disjunctive logic program. The Herbrand universe of P , denoted as UP , is the set of all constants
appearing in P . In case no constant appears in P , an arbitrary constant ψ is added to UP . The Herbrand base of P ,
denoted as BP , is the set of all ground atoms constructible from the predicate symbols appearing in P and the constants
of UP .

Given a rule r occurring in P , a ground instance of r is a rule obtained from r by replacing every variable X in r

by σ(X), where σ is a substitution mapping the variables occurring in r to constants in UP . ground(P) denotes the
set of all the ground instances of the rules occurring in P .

Interpretations and models. An interpretation for P is a set of ground atoms, that is, an interpretation is a subset
I of BP . A ground positive literal A is true (respectively, false) with respect to I if A ∈ I (respectively, A /∈ I ).
A ground negative literal not A is true with respect to I if A is false with respect to I ; otherwise not A is false with
respect to I .

Let r be a ground rule in ground(P). The head of r is true with respect to I if H(r) ∩ I �= ∅. The body of r is true
with respect to I if all body literals of r are true with respect to I (i.e., B+(r) ⊆ I and B−(r) ∩ I = ∅) and is false
with respect to I otherwise. The rule r is satisfied (or true) with respect to I if its head is true with respect to I or its
body is false with respect to I .

A model for P is an interpretation M for P such that every rule r ∈ ground(P) is true with respect to M . A model
M for P is minimal if no model N for P exists such that N is a proper subset of M . The set of all minimal models
for P is denoted by MM(P).

Answer sets. Given a ground program P and an interpretation I , the reduct of P with respect to I is the subset PI

of P , which is obtained from P by deleting rules in which a body literal is false with respect to I .

Note that the above definition of reduct, proposed in [35], simplifies the original definition of Gelfond and Lifschitz
(GL) transform [6], but is fully equivalent to the GL transform for the definition of answer sets [35].

5 Function symbols are not allowed.
6 Note that, a constraint is a shorthand for false :– b1, . . . , bk, not bk+1, . . . , not bm , and it is also assumed that a rule bad :– false, not bad

is in the program, where false and bad are special symbols appearing nowhere else in the original program.
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Definition 1. (See [6,36].) Let I be an interpretation for a program P . I is an answer set for P if I ∈ MM(PI ) (i.e.,
I is a minimal model for the program PI ).7 The set of all answer sets for P is denoted by ANS(P).

Example 1. Given the general program P1 = {a :− c, not b., b ∨ c :– not a., b :– not c, not a.} and the inter-
pretation I = {b}, the reduct PI

1 is {b∨ c :– not a., b :– not c, not a.}. As it is easy to see, I is a minimal model of
PI

1 , and, for this reason, it is also an answer set of P1. Now consider J = {a}. The reduct PJ
1 is empty, that is PJ

1 = ∅.
Therefore, J is not a minimal model of PJ

1 and, thus, it is not an answer set of P1. It can be easily verified that I is
the only answer set of P1.

3. The DLV instantiator

In this section a description is provided of the DLV instantiator. Given an input program P , it efficiently generates
a ground instantiation that has the same answer sets as the full one, but is much smaller in general [13]. Note that
the size of the instantiation is a crucial aspect for efficiency, since the answer set computation takes an exponential
time (in the worst case) in the size of the ground program received as input (i.e., produced by the instantiator). In
order to generate a small ground program equivalent to P , the DLV instantiator generates ground instances of rules
containing only atoms which can possibly be derived from P , and thus avoiding the combinatorial explosion which
can be obtained by naively considering all the atoms in the Herbrand base [30]. This is obtained by taking into account
some structural information of the input program, concerning the dependencies among IDB predicates.

The dependency graph of P is now defined, which, intuitively, describes how predicates depend on each other.

Definition 2. Let P be a program. The dependency graph of P is a directed graph GP = 〈N,E〉, where N is a set of
nodes and E is a set of arcs. N contains a node for each IDB predicate of P , and E contains an arc e = (p, q) if there
is a rule r in P such that q occurs in the head of r and p occurs in a positive literal of the body of r .

The graph GP induces a subdivision of P into subprograms (also called modules) allowing for a modular eval-
uation. We say that a rule r ∈ P defines a predicate p if p appears in the head of r . For each strongly connected
component (SCC)8 C of GP , the set of rules defining all the predicates in C is called module of C and is denoted
by Pc.9

More in detail, a rule r occurring in a module Pc (i.e., defining some predicate q ∈ C) is said to be recursive if
there is a predicate p ∈ C occurring in the positive body of r ; otherwise, r is said to be an exit rule.

Example 2. Consider the following program P , where a is an EDB predicate:

p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not t (X,Y ). q(X) :– a(X).

p(X,Y ) :– q(X), t (X,Y ). t (X,Y ) :– p(X,Y ), s(Y ).

Graph GP is illustrated in Fig. 1; the strongly connected components of GP are {s}, {q} and {p, t}. They correspond
to the three following modules:

• {p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not t (X,Y ).};
• {q(X) :– a(X).};
• {p(X,Y ) :– q(X), t (X,Y ). p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not t (X,Y ). t (X,Y ) :– p(X,Y ), s(Y ).}.

Moreover, the first and second module do not contain recursive rules, while the third one contains one exit rule,
namely p(X,Y ) ∨ s(Y ) :– q(X), q(Y ), not t (X,Y ), and two recursive rules.

7 Answer sets are also called stable models.
8 We briefly recall here that a strongly connected component of a directed graph is a maximal subset of the vertices, such that every vertex is

reachable from every other vertex.
9 Note that, since integrity constraints are considered as rules with exactly the same head (which is a special symbol appearing nowhere in the

program), they all belong to the same module.
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Fig. 1. Dependency graph.

Procedure Instantiate (P : Program; GP : DependencyGraph;
var �: GroundProgram)

begin
var S: SetOfAtoms;
var C: SetOfPredicates;
S = EDB(P); � := ∅;
while GP �= ∅ do

Remove a SCC C from GP without incoming edges;
InstantiateComponent(P,C,S,�);

end while
end Procedure;

Procedure InstantiateComponent (P : Program; C: Component;
var S: SetOfAtoms; var �: GroundProgram)
begin

var NS: SetOfAtoms;
var �S: SetOfAtoms;
NS := ∅; �S := ∅;
for each r ∈ Exit(C,P); do

InstantiateRule(r, S,�S,N ,�);
end for
do

�S :=NS; NS = ∅;
for each r ∈ Recursive(C,P); do

InstantiateRule(r, S,�S,NS,�);
S := S ∪ �S;

while NS �= ∅
end Procedure;

Fig. 2. The DLV instantiation procedure.

The dependency graph10 induces a partial ordering among its SCCs, defined as follows: for any pair of SCCs A,B

of GP , we say that B directly depends on A (denoted A ≺ B) if there is an arc from a predicate of A to a predicate
of B; and, B depends on A if A≺sB , where ≺s denotes the transitive closure of relation ≺.

Example 3. Consider the dependency graph GP shown in Fig. 1; it is easy to see that component {p, t} depends on
components {s} and {q}, while {s} depends only on {q}.

This ordering can be exploited to single out an ordered sequence C1, . . . ,Cn of SCCs of GP (which is not unique,
in general) such that whenever Cj depends on Ci , Ci precedes Cj in the sequence (i.e. i < j). Intuitively, this partial
ordering allows the evaluation of the program one module at time, so that all data needed for the instantiation of a
module Ci have been already generated by the instantiation of the modules preceding Ci .

A description of the instantiation process based on this principle follows.
The procedure Instantiate shown in Fig. 2 takes as input both a program P to be instantiated and the dependency

graph GP , and outputs a set � of ground rules containing only atoms which can possibly be derived from P , such that

10 It is worth remembering that, according to Definition 2, the dependency graph does not take into account negative dependencies.
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ANS(P) = ANS(� ∪ EDB(P)). As already pointed out, the input program P is divided into modules corresponding
to the SCCs of the dependency graph GP . Such modules are evaluated one at a time according to an ordering induced
by the dependency graph.

The algorithm creates a new set of atoms S that will contain the subset of the Herbrand Base significant for the
instantiation. Initially, S = EDB(P), and � = ∅. Then, a strongly connected component C, with no incoming edge,
is removed from GP , and the program module corresponding to C is evaluated by invoking InstantiateComponent.
This ensures that modules are evaluated one at a time so that whenever C1≺sC2, PC1 is evaluated before PC2 . The
Instantiate procedure runs on until all the components of GP have been evaluated.

Example 4. Let P be the program of Example 2. The unique component of GP having no incoming edges is {q}.
Thus the program module Pq is evaluated first. Then, once {q} has been removed from GP , {s} becomes the (unique)
component of GP having no incoming edge and is therefore taken. Once {s} has been evaluated and thus removed
from GP , {p, t} is processed at last, completing the instantiation process.

Procedure InstantiateComponent, in turn, takes as input the component C to be instantiate and S, and for each atom
a belonging to C, and for each rule r defining a, computes the ground instances of r containing only atoms which can
possibly be derived from P . At the same time, it updates the set S with the atoms occurring in the heads of the rules of
�. To this end, each rule r in the program module of C is processed by calling procedure InstantiateRule. This, given
the set of atoms which are known to be significant up to now, builds all the ground instances of r , adds them to �,
and marks as significant the head atoms of the newly generated ground rules. It is worth noting that a disjunctive rule
r may appear in the program modules of two different components. In order to deal with this, before processing r ,
InstantiateRule checks whether it has been already grounded during the instantiation of another component. This
ensures that a rule is actually processed only within one program module.

Concerning recursive rules, they are processed several times according to a semi-naïve evaluation technique [37],
where at each iteration n only the significant information derived during iteration n − 1 has to be used. This is
implemented by partitioning significant atoms into three sets: �S, S, and NS. NS is filled with atoms computed
during current iteration (say n); �S contains atoms computed during previous iteration (say n − 1); and, S contains
the ones previously computed (up to iteration n − 2). Initially, �S and NS are empty, and the exit rules contained in
the program module of C are evaluated by a single11 call to procedure InstantiateRule; then, the recursive rules are
evaluated (do-while loop). At the beginning of each iteration, NS is assigned to �S, i.e. the new information derived
during iteration n is considered as significant information for iteration n + 1. Then, InstantiateRule is invoked for
each recursive rule r , and, at the end of each iteration, �S is added to S (since it has already been exploited). The
procedure stops whenever no new information has been derived (i.e. NS = ∅).

Proposition 5. (See [38].) Let P be an ASP program, and � be the ground program generated by the algorithm
Instantiate. Then ANS(P) = ANS(� ∪ EDB(P)) (i.e. P and � ∪ EDB(P) have the same answer sets).

4. Parallel instantiation techniques

In this section a new instantiation algorithm is described that computes a ground version of a given program P by
exploiting parallelism. This new algorithm takes advantage of some structural properties of the input program P in
order to reduce the usage of mutex-locks in the main data structures, thus reducing the time spent in lock-contentions.
This is obtained combining two strategies that aim at parallelizing two different steps of the instantiation process. In
the first one, program modules are evaluated in parallel in such a way that race conditions can be avoided without using
mutex-locks. In the second one, the instantiation of a single module is made parallel by concurrently instantiating its
rules. Even in this case, the use of mutex-locks can be avoided by suitably parallelizing each iteration of the semi-naïve
algorithm.

For the sake of clarity, these two techniques are described separately.

11 Since no recursive atom occurs in the body of exit rules, a single call to InstantiateRule is sufficient for completely evaluating them.
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Fig. 3. Component graph.

4.1. Parallelizing the program instantiation

The parallel instantiation of the input program P is based on a pattern similar to the classical producer–consumers
problem. A manager thread (acting as a producer) identifies the components of the dependency graph of P that can
run in parallel, and delegates their instantiation to a number of instantiator threads (acting as consumers) that exploit
the same InstantiateComponent function introduced in Section 3.

Once the general idea has been given, some formal definitions are introduced in order to detail the proposed
technique. First of all, a new graph is defined, called component graph, whose nodes correspond to the strongly
connected components of the dependency graph GP . Then, the definition is given of a partial ordering among the
nodes of the component graph, which extends the partial order ≺s defined in Section 3. Please note how, with a small
abuse of notation, strongly connected components of GP and corresponding nodes of the component graph will be
referred to indifferently.

Definition 3. Given a program P , let GP be the corresponding dependency graph. The component graph of P is a
directed labelled graph Gc

P = 〈N,E, lab〉, where N is a set of nodes, E is a set of arcs, and lab : E → {+,−} is a
function assigning to each arc a label. N contains a node for each strongly connected component of GP ; E contains
an arc e = (B,A), with lab(e) = “ + ”, if there is a rule r in P such that q ∈ A occurs in the head of r and p ∈ B

occurs in a positive literal of the body of r ; E contains an arc e = (B,A), with lab(e) = “ − ”, if there is a rule r in
P such that q ∈ A occurs in the head of r and p ∈ B occurs in a negative literal of the body of r , and there is no arc
e′ = (B,A), with lab(e′) = “ + ”.

Example 6. Given the program P of Example 2 its component graph is illustrated in Fig. 3.

Definition 4. For any pair of nodes A,B of Gc
P , A precedes B in Gc

P (denoted A �‖ B) if there is a path in Gc
P from

A to B; and A strictly precedes B (denoted A ≺‖ B), if A �‖ B and B �‖ A.

Example 7. Given the component graph illustrated in Fig. 3, it easy to see that the node {s} precedes {p, t}, while {q}
strictly precedes {s}.

This ordering guarantees that a node A strictly precedes a node B if the program module corresponding to A has to
be evaluated before the one corresponding to B .12 It is now shown that this ordering is stronger than the one induced
by the relation ≺s on the components of GP .

Lemma 8. Let P be a program, and Gc
P and GP be the component and dependency graphs of P , respectively. Then,

for any pair C1 and C2 of Gc
P nodes, if C1 ≺s C2, then C1 �‖ C2.

Proof. Suppose that there are two components C1,C2 such that C1 ≺s C2, while C1 �‖ C2. If the latter holds, then
there is no path in Gc

P from C1 to C2, and by definition of ≺s , C1 ⊀s C2 holds, thus leading to a contradiction. �
12 Note that the presence of negative arcs in Gc

P only determines a preference among the admissible orderings induced by the dependency graph,
thus it does not affect the correctness of the overall instantiation process.
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Procedure Parallel_Instantiate (P : Program; Gc
P : ComponentGraph;

var �: GroundProgram);
begin

var U : SetOfComponents; var D: SetOfComponents; var R: SetOfComponents;
var S: SetOfAtoms; var C: SetOfPredicates;

D = ∅; R = ∅; U = nodes(Gc
P )

S = EDB(P); � := ∅;
while (U �= ∅)

for all C ∈ U ;
if (canRun(C,U,R,Gc

P ))
begin

R = R∪ {C};
Spawn(Instantiator, P,C,U,R,D, S,�);

end if
end

Procedure Instantiator (P : Program; C: Component; var U : SetOfComponents;
var R: SetOfComponents; var D: SetOfComponents;
var S: SetOfAtoms; var �: GroundProgram);

begin
InstantiateComponent(P,C,S,�);
D = D ∪ {C};
R = R− {C};
U = U − {C};

end

Fig. 4. The parallel instantiation procedures.

The parallel instantiation procedures exploiting this ordering can now be described. As previously pointed out, use
is made of some threads: a manager, and a number of instantiators running the procedures Parallel_Instantiate and
Instantiator reported in Fig. 4, respectively.

The Parallel_Instantiate procedure receives as input both a program P to be instantiated and its component graph
Gc

P ; it outputs a set of ground rules �, such that ANS(P) = ANS(� ∪ EDB(P)). First of all, the sets S, and � are
initialized as in the Instantiate procedure. Moreover, three new sets of components are created: U (which stands for
Undone) represents the components of P that have still to be processed, D (which stands for Done) those that have
already been instantiated, and R (which stands for Running) those currently being processed.

Initially, D and R are empty, while U contains all the nodes of Gc
P . The manager checks, by means of function

canRun described below, whether components in U can be instantiated. As soon as some C is processable,13 it is
added to R, and a new instantiator thread is spawned in order to instantiate C by exploiting the InstantiateComponent
function defined in Section 3. Once the instantiation of C has been completed, C is moved from R to D, and deleted
from U . The manager thread goes on until all the components have been processed (i.e., U = ∅). Obviously, an
implementation of this algorithm must ensure mutually exclusive access to auxiliary control structures, like U , D
and R, in order to obtain a correct execution.14

The function canRun, as the name suggests, checks whether a component C can be safely evaluated (i.e. without
requiring “mutexes” in the main data structures) by exploiting the following definition:

Definition 5. Let U be the set of components which still have to be processed. We say that C ∈ U can run if ∀A ∈ U
at least one of the following conditions holds:

13 One may think of adopting some kind of strategy in order to determine the schedule that maximizes the parallelism among modules. However,
the choice of avoiding the computation of an “a priori” schedule is reasonable. Indeed, the time taken by the instantiation of each module cannot be
predicted; in addition, even supposing to have an estimation, the corresponding problem of finding the best scheduling is known to be intractable
(see problem SS13 in [39]).
14 Moreover, an efficient implementation of this algorithm must exploit and an implementation of the shared buffer and classical busy-waiting
avoidance techniques [1], in order to call canRun only when it is really needed.
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Fig. 5. An example of component graph.

(i) C ≺‖;
(ii) C �‖ and �A′ ∈ U such that there is an arc e = (A′,C) of Gc

P with lab(e) = “ + ”, and ∀K ∈ R, neither is there
an arc e′ = (K,C) of Gc

P , nor is there an arc e′′ = (C,K) of Gc
P .

(iii) C �‖ and A �‖ C (i.e., C and A are not comparable).

Basically, this definition ensures that (i) a component C is not evaluated before all the components strictly preced-
ing C (with respect to the partial ordering defined above) have been processed; and, (ii) if C appears in a cycle of Gc

P
then it is selected only if it has no positive incoming edges and does not directly depend on some currently running
component. Intuitively, the conditions of Definition 5 checked by function canRun guarantee the correctness, since
they respect the dependencies of GP (as for the standard instantiation algorithm defined in Section 3). Moreover, the
conditions checked by canRun allow one to save resources and reduce the time spent in lock-contentions. Interest-
ingly, condition (ii) of Definition 5 allows one to run in parallel even components appearing in cycles of Gc

P (i.e.,
components that are, somehow, interdependent).

Example 9. Consider the component graph of Fig. 5. All the nodes of the graph are involved in a cycle; thus, the
evaluation of each component is somehow dependent on the evaluation of each other. However, condition (ii) of
Definition 5 allows A to be selected for first evaluation. While A is running, no other component can be processed,
because all conditions (i)–(iii) are violated for all of them. Once the instantiation of A has ended, component B can
run, because it satisfies condition (ii). At the same time, by virtue of condition (ii), also components C and D can run.
Then, component E can be evaluated only when the instantiations of all B , C and D have been completed.

It is worth noting that, thanks to Definition 5, procedure ParallelInstantiate never gets stuck in a deadlock situation
(where no component can be safely evaluated). Indeed, whenever there is some “undone” component (i.e. U �= ∅) and
no component is currently being processed (i.e. R = ∅), at least one component, say C, can run. More explicitly, if
there is a component C′ ∈ U such that there is no component C′′ ∈ U preceding C′, then C = C′ can run (condition (i)
or (iii)); on the contrary, if there is no such C′ then there must be a cycle in Gc

P containing at least a negative arc
(otherwise all nodes appearing in the cycle would collapse in a unique SCC); thus, let C be the component this
negative arc enters into: C can run according to condition (ii).

The following demonstrates the correctness of the algorithm and outlines its main properties. To this end, some
notation is introduced.

Let C be a component and PC its corresponding module, then: IC denotes the instantiator thread working on C

(i.e. the one calling function InstantiateComponent with input C); write(IC) (respectively read(IC)) denotes the set
of predicates occurring in the head (respectively body) of rules in PC . Intuitively, write(IC) and read(IC) represent
the sets of ground atoms created by IC and read by IC in procedure Instantiate_Rule, respectively.

It is easy to see that, for each pair IX , IY of instantiator threads spawned by Parallel_Instantiate and working
on components X and Y , respectively, write(IX) ∩ read(IY ) = ∅. Indeed, according to Definition 5, if component
X can run in parallel with component Y , then any predicate p occurring in the body of some rule in PX cannot
appear in the head of some rule of PY , and vice versa. In case of nondisjunctive programs, it always holds also that
write(IX) ∩ write(IY ) = ∅. In general, for disjunctive programs, this does not always hold. Consider, for instance, the
following example, where g is an EDB predicate:

a(X) ∨ b(X) :− g(X,Y ).

c(X) :− b(X), a(X).
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b(X) :− not c(X), g(X,X).

The SCCs are {a}, {b} and {c}, and, according to Definition 5, the program modules corresponding to {a} and {b}
can be evaluated in parallel. Nevertheless, in this case, write(I{a}) ∩ write(I{b}) = {b}, because the disjunctive rule
belongs to both the modules corresponding to {a} and {b}. However, since InstantiateRule checks whether a rule has
already been taken into account (see Section 3), only the very first instantiator processing the rule actually instantiates
it. Thus, at most one instantiator can write into the intersection of the writing sets.

It is worth pointing out that the presence of negative arcs in the component graph plays a central role for ensuring
the above-mentioned condition. Indeed, if negative arcs are not considered, both components {b} and {c} can run in
parallel. Thus, the instantiator working on {c} may write in the portion of S, storing information about predicate c,
which is also needed by the instantiator working on {b}.

Summarizing, an instantiator can never write where some other is reading/writing. This consideration has two
noticeable consequences. On the one hand, if the actual implementation of set S of procedure Parallel_Instantiate
is such that ground atoms are stored in different containers grouped by their predicate names, no “mutex” locks are
needed to protect S, which is the shared structure mostly accessed and modified during the instantiation phase. On
the other hand, whatever the schedule of the components evaluation followed by the Parallel_Instantiate algorithm,
at least a serial schedule leading to the same output exists. Indeed, whatever the execution schedule, as soon as an
instantiator thread is spawned, no other concurrently-running instantiator can modify its input data (and, thus its
output). Note that considering negative arcs in the component graph is crucial to guarantee what has been discussed
above. Indeed, two components share predicates (and thus may be in read/write conflict) also when one negatively
depends on the other.15

The foregoing allows consideration of only serial executions for demonstrating the correctness of the algorithm.

Theorem 10. Let � and �‖ be the ground programs generated by algorithms Instantiate and Parallel_Instantiate,
respectively. Then ANS(�‖ ∪ EDB(P)) = ANS(� ∪ EDB(P)).

Proof. It is now shown that each ordered sequence S = 〈C1, . . . ,Cn〉 of components, corresponding to a serial sched-
ule of instantiator threads in procedure Parallel_Instantiate, is one of the admissible orders of execution followed by
algorithm Instantiate.

It should be remembered that S is admissible for algorithm Instantiate if for each pair of component Ci , Cj in S
such that Ci ≺s Cj , i < j holds.

Suppose that, by contradiction, S is not admissible. Then, there would be a pair of components Ci , Cj such that
Ci ≺s Cj with j < i. Since it is assumed that the execution is sequential, when Cj ∈ U can run we have that R = ∅
and, from Definition 5 (since Ci ∈ U ), one of these conditions holds: (i) Cj ≺‖ Ci ; or (ii) Cj �‖ Ci and no positive
arc of Gc

P enters Cj ; or (iii) Ci �‖ Cj and Cj �‖ Ci . Moreover, in accord with Lemma 8, Ci �‖ Cj . Thus, conditions
(i) and (iii) are clearly violated, and (ii) must hold (otherwise Cj cannot run). Therefore, there is a cycle involving Cj

and Ci in Gc
P , and the arc entering Cj is negative. Hence, Ci ⊀s Cj which contradicts the hypotheses. �

4.2. Parallelizing the instantiation of a component

The previous section showed an algorithm for the instantiation of a program P , which allows for the parallel
evaluation of its modules. This algorithm is now improved by exploiting parallelism also for the instantiation of each
single module. This can be done by the new procedure Parallel_InstantiateComponent (see Fig. 6), which, given a
component C, instantiates the corresponding module PC by processing its rules in parallel.

As InstantiateComponent (see Section 3), the new procedure takes as input the component C to be instantiated,
and the set of significant atoms S; then, for each rule r in PC , computes its ground instances containing only atoms
which can possibly be derived from P , and adds them to �. Moreover, the ground atoms occurring in the heads of
newly generated ground rules are added to S.

15 Actually, thanks to the presence of the negative arcs, it is also guaranteed that each disjunction-free stratified program is completely evaluated
(i.e., the output of the algorithm is precisely the set of facts which are true in the unique answer set of the program). This property is inherited by
the standard instantiation algorithm of the DLV system, which also takes care of them when components are serially scheduled. For more details
about the standard instantiation procedure the interested reader may refer to [13,38].
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Procedure Parallel_InstantiateComponent (P : Program; C: Component;
var S: SetOfAtoms;
var �: GroundProgram)

begin
var NS: Map〈Rule, SetOfAtoms〉;
var �S: SetOfAtoms;
�S := ∅;
for each r ∈ PC do NS(r) := ∅;
for each r ∈ Exit(C,P); do

Ir = Spawn(InstantiateRule, r, S,�S,NS(r),�);
for each r ∈ Exit(C,P); do

join_with_thread(Ir );
do

�S := ⋃
r∈PC

NS(r);
for each r ∈ PC do NS(r) := ∅;
for each r ∈ Recursive(C,P); do

Ir = Spawn(InstantiateRule, r, S,�S,NS(r),�);
for each r ∈ Recursive(C,P); do

join_with_thread(Ir );
S := S ∪ �S;

while
⋃

r∈PC
NS(r) �= ∅

end Procedure;

Fig. 6. The Parallel_InstantiateComponent procedure.

Parallel_InstantiateComponent first evaluates all the exit rules. To this end, one new thread for each exit rule,
running procedure InstantiateRule (see Section 4.1), is spawned. Only once all the threads are done, recursive rules
are processed. In this case, the execution of each single iteration of the semi naïve algorithm is parallelized. More in
detail, at each iteration of the corresponding do-while loop (see Fig. 6) the following steps are performed:

– NS and �S are updated;
– for each recursive rule, a new thread is spawned running procedure InstantiateRule which receives as input S and

�S;
– wait for all threads to terminate (by exploiting function join_with_thread of Fig. 6);16

– S, which constitutes the input for the next iteration, is updated.

Intuitively, Parallel_InstantiateComponent, when invoked with the same input as InstantiateComponent defined in
Section 3, produces the same output.

Proposition 11. Let Ss , �s (respectively Sp , �p) denote the sets S,� after a call to procedure InstantiateComponent
(respectively, Parallel_InstantiateComponent). Then Ss = Sp , and �s = �p .

Proof. Procedures InstantiateComponent and Parallel_InstantiateComponent receive the set of significant atoms S

and the set of ground rules �, and update them, by only adding new elements. Locally, they define two new sets of
atoms �Ss (respectively �Sp) and NSs (respectively NSp), initially empty (NSp is actually split into several sets,
one for each rule). In both cases, when evaluating exit rules, each call to InstantiateRule is given the same input;
in fact, S is trivially the same, and �Ss = �Sp = ∅. Since the inputs to InstantiateRule coincide in the two cases,
also the outputs are the same. On the one hand, the union of the resulting sets from the split of NSp in the parallel
procedure trivially corresponds to NSs of the standard one; on the other hand, the order in which rules are added
to � is irrelevant. The outcome is the same also after processing recursive rules. Indeed, the only difference in this
case is that sets S and �Ss (respectively �Sp) change during the evaluation; however, they are updated by both the
procedures at the end of each iteration and, in particular, Parallel_InstantiateComponent does that only when all the
threads are done. �
16 Following the POSIX threads style, function join_with_thread(T ) causes the current thread to wait until the one identified by T finishes. In the
for-loop this function is called for each spawned instantiator, acting as a barrier.
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It is worth noting that this technique, similarly to the previous one, does not need mutex locks to protect S, since it
is updated only from Parallel_InstantiateComponent at the end of each iteration when no other thread can work on it.

5. Experiments

In order to check the validity of the proposed techniques, they have been implemented into the grounding engine
of the DLV system, and the resulting parallel instantiator was run on a collection of benchmark programs taken from
different domains.

The system was built with gcc 4.1.2, dynamically linking the Posix Thread Library. Experiments were performed
on a machine equipped with two Intel Xeon HT (single core) processors clocked at 3.60 GHz with 1 MB of Level 2
Cache and 3 GB of RAM, running Debian GNU Linux (kernel 2.4.27-2-686-smp).

The following instantiators were compared:

• ST: a single-threaded grounding engine;
• MT: a multi-threaded grounding engine.17

Since our techniques focus on instantiation, we report here the instantiation time rather than the total time needed
in order to compute answer sets; in addition, the time spent before the grounding stage is obviously the same both
for parallel and non-parallel version. In order to obtain more trustworthy results, each single experiment has been
repeated five times, and we report both the average and standard deviation of the results.

In the following, we describe the benchmark problems, and finally report and discuss the results of the experiments.

5.1. Benchmark problems and data

We have considered several problems whose encodings are significantly hard to instantiate. In particular, depending
on their origin, they can be grouped into two classes: “classical” and “real-world” problems. The first class contains
Hamiltonian path, Ramsey numbers, and n-Queens; all of them are well-known combinatorial problems which have
been widely used in the evaluation of the ASP systems (see for instance [13,21,40,41]). The second class, on the other
hand, counts problems arising in practical applications of ASP, namely Timetabling, Hilex, Food, Cristal, Decomp,
Player and Insurance Workflow.

We next provide a description of the problems; between parentheses are reported the names as they appear in the
tables, if shortened for space reasons. We also provide the encodings of all the “classical” ones, omitting those of
“real-world”. Indeed, in such cases, encodings are long and very involved (some times automatically generated), and
showing them here would have not given additional insight. Nevertheless, the full encodings, as well as the benchmark
instances and the binaries used for experiments, are available at http://www.mat.unical.it/parallel/parallel_bench_07.
zip.

Hamiltonian path (HamPath). This is a classical NP-complete problem in graph theory, and can be expressed as
follows: given a directed graph G = (V ,E) and a node a ∈ V of this graph, does there exist a path in G starting at a

and passing through each node in V exactly once?
Suppose that the graph G is specified by using facts over predicates node (unary) and arc (binary), and the starting

node a is specified by the predicate start (unary). Then, the following program Php solves the problem Hampath:

r1: inPath(X,Y ) ∨ outPath(X,Y ) :– start(X), arc(X,Y ).

r2: inPath(X,Y ) ∨ outPath(X,Y ) :– reached(X), arc(X,Y ).

r3: reached(X) :– inPath(Y,X).

17 Actually, this implementation allows the user to set the maximum number of allowed concurrent instantiator threads. Here the results obtained
are reported for when this parameter is set to the number of simultaneous (i.e., executed in a different processing unit) threads/processes allowed
by the hardware (i.e. a two-processor Intel Xeon HT machine). Note that several possible values of this parameter were experimented, and, as
expected, no significant differences in performance were obtained when the parameter exceeds this number.
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c1: :– inPath(X,Y ), inPath(X,Y1), Y <> Y1.

c2: :– inPath(X,Y ), inPath(X1, Y ), X <> X1.

c3: :– node(X), not reached(X), not start(X).

The two disjunctive rules r1 and r2 guess a subset S of the arcs to be in the path, while the rest of the program
checks whether S constitutes a Hamiltonian path. Here, an auxiliary predicate reached is used, which is associated
with the guessed predicate inPath using the last rule. In turn, through the second rule, the predicate reached influences
the guess of inPath, which is made somehow inductively: initially, a guess on an arc leaving the starting node is made
by the first rule, followed by repeated guesses of arcs leaving from reached nodes by the second rule, until all reached
nodes have been handled. The first two constraints ensure that the set of arcs S selected by inPath meets the following
requirements, which any Hamiltonian path must satisfy: (i) there must not be two arcs starting at the same node, and
(ii) there must not be two arcs ending in the same node. The third constraint enforces that all nodes in the graph are
reached from the starting node in the subgraph induced by S. It is easy to see that, given a set of facts F for node, arc,
and start, the program Php ∪F has an answer set if and only if the corresponding graph has a Hamiltonian path.

The instances for the experiments were generated using a tool by Patrik Simons (cf. [42]). For each problem size n

10 instances were generated, always assuming node 1 as the starting node. Sizes go from 100 to 10000 nodes.

Ramsey numbers (Ramsey). The Ramsey number ramsey(k,m) is the least integer n such that, no matter how the
edges of the complete undirected graph (clique) with n nodes are colored using two colors, say red and blue, there
is a red clique with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique). There are Ramsey
numbers for all pairs of positive integers k and m [43]. Next a program P is shown that allows the decision about
whether a given integer n is not the Ramsey number ramsey(3,4). By varying the input number n, ramsey(3,4) can
be determined, as described below. Let F be the collection of facts for input predicates node and edge encoding a
complete graph with n nodes. P is the following program:

r1: blue(X,Y ) ∨ red(X,Y ) :– edge(X,Y ).

c1 : :– red(X,Y ), red(X,Z), red(Y,Z).

c2 : :– blue(X,Y ), blue(X,Z), blue(Y,Z),

blue(X,W), blue(Y,W), blue(Z,W).

Intuitively, the disjunctive rule r1 guesses a color for each edge. The first constraint eliminates the colorings con-
taining a red clique with 3 nodes, and the second constraint eliminates the colorings containing a blue clique with
4 nodes. The program P ∪ F has an answer set if and only if there is a coloring of the edges of the complete graph
on n nodes containing no red clique of size 3 and no blue clique of size 4. Thus, if there is an answer set for a par-
ticular n, then n is not ramsey(3,4), that is, n < ramsey(3,4). On the other hand, if P ∪ F has no answer set, then
n � ramsey(3,4). Thus, the smallest n such that no answer set is found is the Ramsey number ramsey(3,4).

For the experiments, the problem was considered of deciding, for varying k, m, and n, whether n is the Ramsey
number ramsey(k,m). Note that there is no a single, uniform encoding to solve all instances, rather there is one
program for each instance. In particular, for checking that n is the Ramsey number ramsey(k,m), the first constraint
contains

(
k
2

)
atoms with predicate red and the second constraint contains

(
m
2

)
atoms with predicate blue.

n-Queens. The 8-queens puzzle is the problem of putting eight chess queens on an 8 × 8 chessboard such that none
of them is able to capture any other using the standard chess queen’s moves (in chess, a queen can move as far as she
pleases, horizontally, vertically, or diagonally). The colour of the queens is meaningless. A solution requires that no
two queens share the same row, column, or diagonal. The n-queens puzzle is the more general problem of placing n

queens on an n × n chessboard (n � 4).
If rows are represented by means of facts row(1), . . . , row(N), the 8-queens problem can be encoded as follows.

r1: q(X,1) ∨ q(X,2) ∨ q(X,3) ∨ q(X,4)

∨ q(X,5) ∨ q(X,6) ∨ q(X,7) ∨ q(X,8) :– row(X).
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c1: :– q(X,Y ), q(X,Z), Y �= Z.

c2: :– q(X,Y ), q(Z,Y ), X �= Z.

c3: :– q(X1, Y1), q(X2, Y2), X2 = X1 + K,

Y1 = Y2 + K, K > 0.

c4: :– q(X1, Y1), q(X2, Y2), X2 = X1 + K,

Y2 = Y1 + K, K > 0.

Queens are represented by atoms of the form q(X,Y ). Atom q(X,Y ) is true if a queen is placed on the chess board
at row X and column Y . The disjunctive rule guesses the position of the queens; then constraints c1 and c2 assert
that two queens cannot be on the same row or on the same column, respectively. Constraints c3 and c4 assert that two
queens cannot be on the same diagonal (from top left to bottom right (constraint c3) and from top right to bottom left
(constraint c4)). Note that, as for Ramsey, there is no a single, uniform encoding to solve all instances, rather there is
one program for each instance. In particular, what really changes is the head of the first disjunctive rule, in order to
meet the number of queens to be placed.

For the experimental evaluation different problems of sizes ranging from 25 to 37 were considered.

Timetabling. The problem was considered of determining a timetable for some university lectures that have to be
given in a week to some groups of students. The timetable must respect a number of given constraints concerning
availability of rooms, teachers, and other issues related to the overall organization of the lectures. Many instances
were provided by the University of Calabria; they refer to different numbers of student groups.

Hilex. The problem consists in recognizing and extracting meaningful information from unstructured web docu-
ments. This is done by combining both syntactic and semantic information, through the use of domain ontologies.
A preprocessor transforms the input documents into ASP facts, extraction rules are translated into ASP, and informa-
tion extraction amounts to reasoning on an ASP program, which is executed by DLV. The single problem instance
(containing 1526 predicates, 2682 rules, 1368 components) was provided by the company EXEURA s.r.l. [44].

Food. The problem here is to generate plans for repairing faulty workflows. That is, starting from a faulty workflow
instance, the goal is to provide a completion of the workflow such that the output of the workflow is correct. Workflows
may comprise many activities. Repair actions are compensation, (re)do and replacement of activities. Two distinct
instances were provided related to two different workflows, one containing 63 predicates, 56 components and 116
rules, and another one having 78 predicates, 132 rules and 58 components.

Cristal. Cristal (Cooperative Repositories & Information System for Tracking Assembly Lifecycle) is a deductive
databases application that involves complex knowledge manipulations. The main purpose is to manage the gathering of
production data during the ongoing construction of the electromagnetic calorimeter of the compact muon solenoid, at
the European Centre for Nuclear Research (CERN) [45]. The unique instance provided was used for the experiments,
which features 16 predicates, 20 rules and 16 components.

Decomp. To circumvent the high complexity of query decompositions, in [46] a new concept of decomposition and
its associated notion of width were introduced, which are called hypertree decomposition and hypertree-width, respec-
tively. The benchmark problem presented here consists in computing a k-width complete hypertree decomposition of
a query Q in a predicate P . A single instance of the problem was provided, containing 17 predicates, 20 rules and 19
components.

Player. A data integration problem. Given some tables containing discording data, find a repair where some key
constraints are satisfied. The single problem instance used for these tests was originally defined within the EU project
INFOMIX [5]. The instance contains 10 predicates, 13 rules and 12 components.
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Table 1
Ramsey—Average grounding times (standard deviations within parentheses)

Problem ST MT Gain (%)

Ramsey(5,5) �= 21 3.41 (0.00) 2.16 (0.64) 36.7
Ramsey(5,5) �= 23 4.41 (0.01) 2.53 (0.03) 42.6
Ramsey(5,5) �= 25 8.23 (0.01) 4.57 (0.14) 44.5
Ramsey(5,6) �= 23 13.16 (0.08) 11.40 (0.12) 13.4
Ramsey(5,6) �= 25 22.67 (0.12) 19.33 (0.11) 14.7
Ramsey(5,6) �= 28 43.84 (0.17) 38.24 (0.27) 12.8
Ramsey(6,6) �= 23 21.88 (0.09) 12.02 (0.34) 45.1
Ramsey(6,6) �= 25 37.13 (0.15) 20.64 (0.19) 44.4
Ramsey(6,6) �= 28 74.09 (0.13) 41.53 (0.21) 43.9
Ramsey(6,7) �= 25 84.50 (0.06) 70.30 (0.76) 16.8
Ramsey(6,7) �= 28 209.59 (0.54) 180.11 (2.01) 14.1
Ramsey(6,7) �= 26 370.17 (0.20) 322.66 (0.59) 12.8
Ramsey(7,7) �= 28 348.17 (3.03) 197.34 (1.15) 43.3
Ramsey(7,7) �= 30 – (–) 353.50 (3.41) –
Ramsey(7,7) �= 32 – (–) 546.08 (5.21) –

Table 2
n-Queens—Average grounding times (standard deviations within parentheses)

Problem ST MT Gain (%)

25-queens 1.83 (0.00) 1.24 (0.13) 32.2
27-queens 2.52 (0.08) 1.60 (0.07) 36.5
29-queens 3.26 (0.00) 2.05 (0.04) 37.1
31-queens 4.24 (0.05) 2.66 (0.08) 37.3
33-queens 5.38 (0.03) 3.54 (0.17) 34.2
35-queens 6.76 (0.01) 4.29 (0.12) 36.5
37-queens 8.41 (0.08) 5.50 (0.25) 34.6

Insurance workflow (Insurance). Here the goal is to emulate, by means of an ASP program, the execution of a
workflow, in which each step constitutes a transformation to be applied to some data (in order to query for and/or
extract implicit knowledge). A single problem instance was provided by the company EXEURA s.r.l. [44]; it has been
automatically generated by a software working on several American insurance data, and features 55 predicates, 53
rules and 52 components.

5.2. Experimental results and discussion

The results of the experimental activities on the benchmark problems presented above are summarized in Ta-
bles 1–4, and Fig. 7. The tables report, in seconds, average instantiation times and standard deviation for the two ver-
sions tested; the last column shows percentage gains. For every instance, we allowed a maximum running (real-)time
of 600 seconds. In Fig. 7, the line corresponding to an instantiator stops whenever a problem instance was not solved
within the allowed time limit; in the tables, this information is represented by means of the symbol ‘−’.

It can be observed that, overall, performance improvements of up to 45% were obtained, close to the theoretical
maximum gain of 50% which one could expect from a bi-processor machine. More detailed considerations follow.

Concerning classical problems, the parallel system enjoys improvements up to 42% (HamPath, see Fig. 7), 45.1%
(Ramsey, see Table 1), 37.3% (n-queens, see Table 2). As it is easy to see looking at the encodings, the program
structures in this class of problem consist of only a few components; thus, the system takes advantage of the parallel
rule evaluation within each module rather than of the parallel evaluation of the program modules. It is worth noting
that, while evaluating HamPath and n-queens, MT shows an almost uniform behavior; this is not the case of the
evaluation of Ramsey, where quite different improvements can be observed: a set of instances gain about 15%, while
the rest about 43%. This is due to the nature of the encodings, which, as already pointed out in Section 5.1, are actually
different as the integers m and n vary. The hard part of the computation concerns the two constraints c1 and c2. In
particular, instances of Ramsey(5,5), Ramsey(6,6) and Ramsey(7,7) allow better performance, because the “size”
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Table 3
Timetabling—Average grounding times (standard deviations within parentheses)

Problem ST MT Gain (%)

Timetabling 3c 4.67 (0.01) 3.47 (0.10) 25.7
Timetabling 4c 6.89 (0.01) 4.99 (0.13) 27.6
Timetabling 5c 9.60 (0.07) 6.65 (0.08) 30.7
Timetabling 7c 15.92 (0.06) 10.61 (0.33) 33.4
Timetabling 9c 23.80 (0.20) 14.64 (0.42) 38.5
Timetabling 11c 34.34 (0.42) 20.20 (0.68) 41.2
Timetabling 13c 47.46 (1.11) 27.54 (0.60) 42.0
Timetabling 15c 62.81 (0.88) 35.46 (0.58) 43.5

Table 4
Real-world problems—Average grounding times
(standard deviations within parentheses)

Problem ST MT Gain (%)

Hilex 67.93 (0.58) 47.87 (1.03) 29.5
Food-1 3.92 (0.07) 0.58 (0.02) 85.2
Food-2 146.55 (1.38) 131.93 (1.00) 10.0
Cristal 3.67 (0.01) 3.12 (0.04) 15.0
Decomp 8.10 (0.23) 6.02 (0.06) 25.7
Player 6.41 (0.08) 3.60 (0.22) 43.8
Insurance 106.78 (0.40) 75.43 (2.87) 29.4

Fig. 7. Average grounding times for HamPath.

of the two constraints is the same, and thus two instantiators, one for each constraint, taking the same time, work in
parallel for their whole job. This is not the case of Ramsey(5,6) and Ramsey(6,7), where one constraint takes more
time than the other.

Moreover, these results show that, on this kind of problem, the parallel instantiator scales better than the non-
parallel one. Indeed, looking at Table 1, we see that ST could not solve two out of three instances of Ramsey(7,7)

within the allowed time, while MT did. The same happens when looking at Fig. 7: when dealing with more than 8000
nodes, ST was not able to solve all instances of HamPath in time, while MT was successful with all of them.

Facing real-world problems, on the other hand, MT shows unsteady improvements when moving from a problem
to another. In particular, there are two problems, Food-2 and Cristal, where despite their structures allowing the
parallel evaluation of the program modules, the gain obtained is not as good as expected. This strange phenomenon
was investigated, and with the use of suitable profiling tools, it was discovered that it is actually a technological issue,
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concerning the standard STL [47] multithreaded memory allocator. In fact, DLV heavily relies on STL data structures;
these exploit a memory allocator function that suffers from a dramatic performance degradation when linked against
a multithreaded executable [48]. This problem negatively affects the results of all the experiments; sometimes, it may
reduce the benefits provided by parallelism, as in the case of Food-2 and Cristal. This technological problem can be
fixed, as indicated for instance in [48]; the implementation takes quite some time and it could be the subject of a future
work.

Coming to the rest of the real-world problems, instead, the parallel system performed much more regularly. Here,
in general, the programs structures consist of many components, usually containing few rules. Thus, the parallel
evaluation of the different program modules pays more than the evaluation of the rules of each module in parallel.
Improvements (see Table 4) here go from 25.7% (Decomp) to 85.2% (Food-1). The impressive speed-up for Food-1
can be explained with a different scheduling of the components performed by ST and MT. In particular, this in-
stance is inconsistent (there is a constraint always violated) and both the executables stop the computation as soon
as they recognize this fact. The scheduling performed by MT allows the identification of this situation before ST
(MT evaluates the component containing constraints in parallel with other components whose evaluation is stopped
immediately). A special note can be written for Timetabling. It is worth noting that improvements in the evaluation
of its instances (see Table 3) get better as their size increases. This is due to the fact that there is a common part of
the computation, which is exactly the same for the single-threaded and the multi-threaded systems; whose hardness
is always the same, whatever the size of the instance. Thus, for small instances its weight is significant, and seems
to overshadow the advantages produced by the parallel techniques; this effect disappears as the size of the instances
grows, thus allowing improvements of up to 43.5% to be achieved (see again Table 3).

6. Related work

The exploitation of parallel techniques for evaluating ASP programs is, as matter of fact, not completely new [41,
49–51]. However, most of the contributions focuses on the model generation task, which is a distinct phase of ASP
computation, carried out after the instantiation (whose parallelization is the subject of this work), and thus not directly
related to this approach.

Nevertheless, some preliminary studies about the parallelization of the instantiation phase in ASP computation
were carried out in [52], as one of the aspects of the attempt to introduce parallelism in non-monotonic reasoning
systems. However, there are many differences with respect to this approach. First of all, the technique described
in [52] was designed for the ASP instantiator Lparse [32,33], which, importantly, adopts an instantiation strategy
quite different from the one exploited by DLV. More in detail, Lparse accepts logic programs respecting domain
restrictions. This condition enforces each rule variable to occur in a positive body literal, called domain literal, which
(i) is not mutually recursive with the head, and (ii) is not unstratified nor (transitively) depends on an unstratified literal
(see [33] for details). This makes Lparse unable to accept many programs which are, on the contrary, accepted by DLV.
On the other hand, these restrictions on the rules allow Lparse to employ a simple instantiation strategy (basically, a
nested loop that scans the extensions of the domain predicates occurring in the body of r , and generates its ground
instances accordingly). Such strategy may lead to the generation of several useless rules inasmuch as they may contain
non-domain body literals not derivable by the program. The DLV instantiator, instead, incorporates several database
optimization techniques, and builds the domains dynamically; consequently, the instantiation generated by DLV is
generally a (sometimes very smaller) subset of that generated by Lparse [13]. Note that, since the ground program is
the input of model generation, a computationally expensive [13] task, the size of the produced instantiation strongly
affects the overall time required to compute the answer sets.

Recent comparison and benchmarks [13,53,54] showed that the more sophisticated instantiation technique is a
strong point of the DLV system, as confirmed also by the results of the First Answer Set Programming System
Competition [55].18 Indeed, also thanks to the power of its instantiator, DLV was the first place winner in the MGS
(Modeling, Grounding, Solving) category, also called the “Royal” category, where the overall performance of systems
are measured.

The simple instantiation technique adopted by Lparse may allow for a more simple parallelization technique,
as the one illustrated in [52]; there, some rules can be evaluated in parallel, without any control of dependencies

18 See also http://asparagus.cs.uni-potsdam.de/contest/.
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between predicates of the input program. Still, the parallelization schema of [52] is applicable only to the subset of
the input program consisting of the rules which do not define domain predicates; the remaining rules are preliminarily
processed, and their evaluation is not parallel. Note that, at a first glance, it seems that this approach could allow more
parallelism, if compared to ours, but this is not the case. Indeed, also in this approach the amount of parallelization
depends on the nature of the program at hand (even if in a different way with respect to our technique). More in
detail, in the case of programs where most of the rules define domain predicates, parallelism may be notably limited.
Consider the following program, where c and b are EDB predicates:

r1: h(X) :– c(X), not b(X).

r2: f (X) :– b(X), not c(X).

r3: a(Y ) :– a(Y ), not a(X), f (X), h(Y ).

It is easy to see that our instantiation technique allows for evaluating in parallel rules r1 and r2; on the contrary, the
technique described in [52] processes sequentially the input program, since both rules r1 and r2, defining domain
predicates, have to be evaluated before processing r3.

Regarding system implementations, there are significant differences between the adopted technologies. This sys-
tem was implemented by using POSIX threads APIs, and works in a shared memory architecture [1,2], while the one
described in [52] is actually a Beowulf [56] cluster working in local memory. Beowulf is a multi-computer architec-
ture which usually consists of one master server node, and one or more client nodes (which can be thought of as a
CPU + memory package that can be plugged into the cluster) connected together via Ethernet or some other net-
work. It is worth noting that our parallelization technique could also be exploited to implement this kind of distributed
system.

The approach here is related to some extent to other works in the more general fields of logic programming and
deductive databases [37,57–69]; however, the techniques are comparable to a limited extent to the one illustrated here.
The literature is vast and varied, mainly centered on top-down evaluation; for a survey (centered on Prolog) the reader
may refer to [68]. Basically, there are two major approaches (plus some hybrid). One relies on implicit exploitation of
parallelism; this means that the parallelization occurs without any input from the programmer. The other, in contrast,
concerns the design of high-level languages in order to support parallelism. These attempts start from considering
the fact that the declarative appeal of logic programming unfortunately may be lost when mechanisms to explicitly
control synchronization and communication (coordination) are introduced in logic programming languages. Thus, the
main goal of this research efforts is to define language suitable for describing reactive process which provides both a
declarative and an operational reading as in the logic paradigm (see for instance [59,70]). It is worth noting that this
approach does not rely on a modification nor an extension of a language, and thus it may be included in the first group;
it is fully transparent to the programmer, who still designs and implements her solution as before. The system is in
charge of deciding when and where the computation may be parallelized, in order to improve its overall efficiency.

With respect to the rest of the literature, most of the techniques work on those so-called And-, Or- and stream
parallelism, which try to transform certain sequential parts of the operational semantics into parallel operations [57,
60,63]. Also unification parallelism [71] (concerning unifications of arguments of a goal with arguments of a clause
head with the same name and arity) is taken into account; nonetheless, it has not been a major focus of research.
Or-parallelism arises when a subgoal can unify with the heads of more than one clause. In such a case the bodies
of these clauses can be evaluated in parallel with each other: the exploration of the different alternatives in a choice
point is parallelized. And-parallelism consists of the parallel solution of subgoals generated from literals in the same
rule body: the resolution of distinct subgoals is parallelized (usually the literature distinguishes between independent
and dependent parallelism, depending on the variable bindings which may or may not cause variable sharing among
parallel tasks). Stream parallelism refers to the eager processing by a subgoal (“consumer”) of an argument value,
such as list, that is being constructed by another subgoal (“producer”) [60].

The comparison of the techniques to ours is still not straightforward; nevertheless, some connections with the
literature can still be found. The parallel technique exploited for processing exit rules within a single component
(see Section 4) can be seen as a form of Or-parallelism; the process of non-exit rules (instantiated all together once
all the exit rules are done) just requires to implement proper adjustments for additional synchronization (see again
Section 4). In respect, many similarities can be found with to the work in [63], especially since the proposal considers
Or-parallelism while exploiting semi-naïve techniques for the bottom-up evaluation of Datalog programs. However,
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the independent rules are evaluated exploiting Or-parallelism, but the stream-Or parallelism herein described for
processing dependent rules has no contact with our techniques. Basically, the information resulting from the evaluation
of each rule is passed to the ones depending on it, as in a pipeline, while the evaluation processes are still running;
our technique, on the contrary, allows the output of a process to be available only when it ends. In addition, the work
in [63] does not consider disjunction.

Among the cited techniques, in the end, some apply to syntactically restricted classes of programs, and some require
a heavy use of concurrency-control mechanisms; in addition, it is worth noting that none separates the program into
components, as ours does; this allows us to minimize the use of “mutexes” in the main data structures, thus reducing
the overhead introduced by the concurrency-control constructs.

7. Conclusion

In this paper a new strategy is proposed for introducing parallelism into the instantiation process of ASP programs.
This strategy allows performance to be improved by taking advantage of the power of multiprocessor/multicore com-
puters. The techniques involved wisely exploit some structural properties of the input ASP programs, and try to
minimize the use of concurrency-control mechanisms in order to limit the “parallel overhead.”

The proposed techniques were implemented into the grounding module of the DLV system, thus obtaining an
experimental parallel ASP instantiator. A deep experimental analysis was then carried out, coming out with the con-
firmation that the strategy is indeed effective and causes the instantiation stage to achieve noticeable improvements,
both in case of classical AI problems and real-world applications.

As far as future work is concerned, it is planned to exploit parallelism even for the instantiation of a single rule. This
should enable further advantage to be taken of multiprocessing, especially in the case of program modules containing
very few rules.
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