
Ann Math Artif Intell (2007) 51:229–266
DOI 10.1007/s10472-008-9087-4

On look-ahead heuristics
in disjunctive logic programming

Wolfgang Faber · Nicola Leone ·
Gerald Pfeifer · Francesco Ricca

Published online: 5 March 2008
© Springer Science + Business Media B.V. 2008

Abstract Disjunctive logic programming (DLP), also called answer set programming
(ASP), is a convenient programming paradigm which allows for solving problems in a
simple and highly declarative way. The language of DLP is very expressive and able
to represent even problems of high complexity (every problem in the complexity
class �P

2 = NPNP). During the last decade, efficient systems supporting DLP have
become available. Virtually all of these systems internally rely on variants of the
Davis–Putnam procedure (for deciding propositional satisfiability [SAT]), combined
with a suitable model checker. The heuristic for the selection of the branching literal
(i.e., the criterion determining the literal to be assumed true at a given stage of
the computation) dramatically affects the performance of a DLP system. While
heuristics for SAT have received a fair deal of research, only little work on heuristics
for DLP has been done so far. In this paper, we design, implement, optimize, and
experiment with a number of heuristics for DLP. We focus on different look-ahead
heuristics, also called “dynamic heuristics” (the DLP equivalent of unit propagation
[UP] heuristics for SAT). These are branching rules where the heuristic value of a
literal Q depends on the result of taking Q true and computing its consequences. We
motivate and formally define a number of look-ahead heuristics for DLP programs.
Furthermore, since look-ahead heuristics are computationally expensive, we design
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two techniques for optimizing the burden of their computation. We implement all
the proposed heuristics and optimization techniques in DLV—the state-of-the-art
implementation of disjunctive logic programming, and we carry out experiments,
thoroughly comparing the heuristics and optimization techniques on a large number
of instances of well-known benchmark problems. The results of these experiments
are very interesting, showing that the proposed techniques significantly improve the
performance of the DLV system.

Keywords Artificial intelligence · Logic programming · Nonmonotonic reasoning ·
Answer set programming · Heuristics · Stable models · Efficient evaluation

Mathematics Subject Classifications (2000) 68N17 · 68T27 · 68T20

1 Introduction

Disjunctive logic programming (DLP), first proposed by Jack Minker in the early
eighties [34], is a powerful language for knowledge representation and reasoning. Its
semantics, nowadays usually based on the notion of stable models [21] to account
for negation,1 is fully declarative. Disjunctive logic programming is very expressive
in a precise mathematical sense; in its general form, allowing for disjunction in rule
heads and nonmonotonic negation in rule bodies, DLP can represent every problem
in the complexity class �P

2 and �P
2 (under brave and cautious reasoning, respectively)

[11]. Thus, DLP is strictly more powerful than both OR-free ASP and SAT-based
programming, as it allows us to solve problems which cannot be translated to SAT
in polynomial time (unless P = NP). The high expressive power of DLP can be
profitably exploited in AI, which often has to deal with problems of high complexity.
For instance, problems in diagnosis and planning under incomplete knowledge are
complete for the complexity class �P

2 or �P
2 [10, 40], and can be naturally encoded in

DLP [1, 26].
The high expressiveness of disjunctive logic programming comes at the price

of a high computational cost in the worst case, which strongly motivates the re-
search in the area of heuristics and optimization techniques for the efficient DLP
implementation.

After the instantiation process, where variables are eliminated and a ground
program is generated, the core of the second phase of the computation of a DLP
system is model generation, where a model of the program is produced, which is
then subjected to a stability check [25]. For the generation of models, DLP systems
employ procedures which are similar to Davis–Putnam procedures used in SAT
solvers. As for SAT solvers, the heuristic (branching rule) for the selection of the
branching literal (i.e., the criterion determining the literal to be assumed true at
a given stage of the computation) is fundamentally important for the efficiency of
a model generation procedure, and dramatically affects the overall performance of a
DLP system. While a lot of work has been done in AI developing new heuristics and
comparing alternative heuristics for SAT (see, e.g., [7, 19, 23, 24, 28–30, 36]), only

1Stable models are also called answer sets, and disjunctive logic programming is often referred to as
answer set programming (ASP).
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little work has been done so far for DLP systems. In particular, we are not aware of
any previous comparison between heuristics for DLP.

In this paper, we evaluate different heuristics for DLP systems. In particular,
we consider DLV [25]—the state-of-the-art DLP system—and focus on different
look-ahead heuristics, also called “dynamic heuristics” (the DLP equivalent of UP
heuristics for SAT), that is, branching rules where the heuristic value of a literal Q
depends on the result of taking Q true and computing its consequences, and possibly
combining it with the result of taking Q false (and computing the consequences) as
well. Look-ahead heuristics, employed in competitive and well-assessed ASP systems
like DLV [25] and Smodels [43], have been shown to be effective and they bear the
additional benefit of detecting choices that deterministically cause an inconsistency,
thereby pruning the search space. However, looking ahead is a comparatively costly
operation, the computation of this kind of heuristics can be very expensive, since the
number of literals to be “looked-ahead” may be very large, and indeed look-ahead
often accounts for the majority of time taken by DLP solvers. To tackle this problem,
we define two techniques for optimizing the computation of look-ahead heuristics,
and discuss their properties. Moreover, we carry out an ample experimental activity
comparing the different heuristics and the proposed techniques.

In sum, the contribution of the paper is the following:

� We formally define a number of look-ahead heuristics for DLP programs. In
particular, some heuristics come from the DLP adaptation of heuristics for SAT
and non-disjunctive ASP systems, and some heuristics are defined “ad hoc” to
efficiently deal with �P

2 /�P
2 -hard DLP programs.

� We define two techniques for optimizing the computation of look-ahead heuris-
tics. One of these is based on the demonstration of an equivalence theorem,
allowing us to recognize pairs of literals which are “a priori” guaranteed to
have precisely the same heuristic value (this technique allows for avoiding
50% of the look-aheads in several cases including, e.g., Hamiltonian Path and
3SAT programs). The other technique is based on a two-layered approach. A
computationally cheap heuristic criterion singles out the (sub)set of atoms to be
considered for the heuristic involving look-ahead, which is applied only on the
atoms in this set.

� We implement all the proposed heuristics and optimization techniques in DLV—
the state-of-the-art implementation of disjunctive logic programming.

� We carry out an experimental activity comparing the heuristics and the opti-
mization techniques on a large number of instances of well-known benchmark
problems. In particular, we consider also two benchmark problems which are
hard for the second level of the polynomial hierarchy, and strictly require the
full power of disjunction.

The experiments show interesting results: a newly defined heuristic (h4) on
average outperforms the other heuristics on the set of considered benchmarks.
Moreover, the two proposed optimization techniques are effective, they both reduce
the computational cost of h4, and can be profitably combined. These results led us
to incorporate the heuristic and the optimization techniques in DLV: the current
release of DLV adopts h4 and both optimization techniques by default.

The organization of the paper is as follows. In Section 2 the syntax and semantics
of DLP is reviewed, and some of its properties are recalled. In Section 3, the
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computational core of DLV is presented and the techniques used for evaluating
heuristic functions are detailed. Then, in Section 4 a number of heuristic criteria are
described, and in Section 5 two optimization techniques, that reduce the amount
of time needed to evaluate the heuristics, are introduced. In Section 6 we report
on the benchmarks performed to assess the impact of both heuristics and opti-
mization techniques. Eventually, in Section 7 we draw our conclusions and discuss
related work.

2 Language

In this section, we provide a brief introduction to the syntax and semantics of
disjunctive logic programming (DLP). For further background see [8, 21, 35].

2.1 Syntax

A disjunctive rule r is a formula

a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an, b1, · · · , bm are atoms2, n≥0, m≥k≥0, and n+m≥1. A literal
is either an atom a (in this case, it is positive) or its default negation not a (in
this case, it is negative). Given a rule r, let H(r) = {a1, ..., an} denote the set of head
literals, B+(r) = {b1, ..., bk} and B−(r) = {not bk+1, ...,not bm} the sets of positive
and negative body literals, and B(r) = B+(r) ∪ B−(r) the set of body literals.

Given a literal l, we define its complementary literal not.l as follows: not.l = a if
l is of the form not a, otherwise not.l = not l. Given a set L of literals, not.L =
{not.l | l ∈ L}.

A rule r with B−(r) = ∅ is called positive. A rule with H(r) = ∅ is referred to
as integrity constraint or just constraint. If the body B(r) is empty we usually omit
the :− sign.

A disjunctive logic program P is a finite set of rules; P is a positive program if
all rules in P are positive (i.e., not-free). An object (atom, rule, etc.) containing no
variables is called ground or propositional. A rule is safe if each variable in that rule
also appears in at least one positive literal in the body of that rule. A program is
safe if each of its rules is safe and in the following we will assume that all programs
are safe.

Example 1 Consider the following program:

r1: a(X) ∨ b(X) :− c(X, Y), d(Y),not e(X).

r2: :− c(X, Y), k(Y), e(X),not b(X)

r3: m :− n, o, a(1).

r4: c(1, 2).

2For simplicity, we do not consider strong negation in this paper. It can be emulated by introducing
new atoms and integrity constraints.
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r1 is a disjunctive rule with H(r1) = {a(X), b(X)}, B+(r1) = {c(X, Y), d(Y)}, and
B−(r1) = {not e(X)}. r2 is an integrity constraint with B+(r2) = {c(X, Y), k(Y),

e(X)}, and B−(r2) = {not b(X)}. r3 is a ground, positive, and non-disjunctive rule
with H(r3) = {m}, B+(r3) = {n, o, a(1)}, and B−(r3) = ∅. r4, finally, is a fact (note
that :− is omitted). Moreover, all of the rules are safe.

2.2 Semantics

The semantics of a disjunctive logic program is given by its stable models [21, 39],
which we briefly review in this section.

Herbrand Universe Given a program P , let the Herbrand Universe UP be the set
of all constants appearing in P and the Herbrand Base BP be the set of all possible
ground atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Ground Instantiation Given a rule r, Ground(r) denotes the set of rules obtained
by applying all possible substitutions σ from the variables in r to elements of UP .
Similarly, given a programP , the ground instantiation ofP is the set

⋃
r∈P Ground(r).

Interpretation A set L of ground literals is said to be consistent if, for every atom
� ∈ L, its complementary literal not � is not contained in L, viz. L ∩ not.L = ∅.
An interpretation I for P is a consistent set of ground literals over atoms in BP .3 A
ground literal � is true w.r.t. I if � ∈ I; � is false w.r.t. I if its complementary literal is
in I; � is undefined w.r.t. I if it is neither true nor false w.r.t. I. An interpretation I
is total if, for each atom a in BP , either a or not.a is in I, viz. I ∪ not.I = BP , or in
other words, if no atom in BP is undefined w.r.t. I.

Stable Models For every program, we define its stable models using its ground
instantiation in two steps: First we define the stable models of positive programs,
then we give a reduction of general programs to positive ones and use this reduction
to define stable models of general programs. In the following, we will assume for
simplicity that P already denotes the ground instantiation of a given program.

Let r be a ground rule in P . The head of r is true w.r.t. I if there is a ∈ H(r) such
that a is true w.r.t. I (i.e., some atom in H(r) is true w.r.t. I). The body of r is true
w.r.t. I if ∀� ∈ B(r), � is true w.r.t. I (i.e. all literals in B(r) are true w.r.t. I). The body
of r is false w.r.t. I if ∃� ∈ B(r) such that � is false w.r.t. I (i.e., some literal in B(r) is
false w.r.t. I). The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its
body is false w.r.t. I.

A total interpretation M is a model for P if for every r ∈ P at least one literal
in the head is true w.r.t. M whenever all literals in the body are true w.r.t. M. X is a
stable model for a positive program P if its positive part is minimal w.r.t. set inclusion
among the models of P .

3We represent interpretations as sets of literals, since we have to deal with partial interpretations in
the next sections.
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Example 2 Consider the positive programs:

p1 = {a ∨ b ∨ c. , :−a.}
P2 = {a ∨ b ∨ c. , :−a. , b :−c. , c:−b .}

The stable models of P1 are {not a, b ,not c} and {not a,not b , c}, while
{not a, b , c} is the only stable model of P2.

The reduct or Gelfond–Lifschitz transform of a general ground programP w.r.t. an
interpretation X is the positive ground program PX , obtained from P by (1) deleting
all rules r ∈ P whose negative body is false w.r.t. X and (2) deleting the negative body
from the remaining rules.

A stable model of a general ground program P is a model X of P such that X is a
stable model of PX .

Example 3 Given the following program

P3 = {a ∨ b : −c., b : −not a,not c., a ∨ c− : not b . }
and the interpretation I = {not a, b ,not c}. The reduct P I

3 is {a ∨ b :− c., b .}. I is a
stable model of P I

3 , and for this reason it is also a stable model of P3. Now consider
the interpretation J = {a,not b ,not c}. The reduct P J

3 is {a ∨ b :− c. , a ∨ c.}. It can
be easily verified that J is a stable model of P J

3 , and thus also a stable model of P3.
On the other hand, for K = {not a,not b , c} the reduct PK

3 is equal to P J
3 , and it is

easy to see that K is not a stable model of PK
3 . Therefore K is also not a stable model

of P3.

2.3 Some DLP properties

In this section, we recall some properties of (ground) disjunctive logic programs.

Supportedness Given an interpretation I for a ground program P , we say that a
ground atom A is supported in I if there exists a supporting rule r in the ground
instantiation of P such that the body of r is true w.r.t. I and A is the only true atom
in the head of r.

Proposition 1 [2, 27, 33] If M is a stable model of a program P , then all atoms in M
are supported.

Head-Cycle Free Programs Another relevant property of disjunctive logic pro-
grams is head-cycle freeness (HCF). With every ground program P , we associate
a directed graph DGP = (N, E), called the dependency graph of P , where (1) the
nodes in N are the atoms of P , (2) there is an arc in E from a node a to a node b iff
there is a rule r in P such that b appears in the head of r and a appears in the positive
body of r.

The graph DGP singles out the dependencies of the head atoms of a rule r from
the positive atoms in its body. Negative literals cause no arc in DGP .
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Fig. 1 Graphs (a) DGP4 , and
(b) DGP5

a b

Example 4 Consider the following two programs:

P4 = {a ∨ b . , c:−a. , c:−b .}
P5 = P4 ∪ {d ∨ e:−a. , d:−e. , e:−d,not b .}

The dependency graph DGP4 is depicted in Fig. 1a, while the dependency graph
DGP5 is depicted in Fig. 1b.

The dependency graphs allow us to define HCF programs [3]. A program P is
HCF iff there is no rule r in P such that two atoms occurring in the head of r occur
in a single cycle of DGP .

Example 5 The dependency graphs given in Fig. 1 reveal that program P4 of
Example 4 is HCF and that program P5 is not HCF, as rule d ∨ e:−a contains in
its head two atoms belonging to the same cycle of DGP5 .

It has been shown that HCF programs are computationally easier than general
(non-HCF) programs.

Proposition 2 [3, 11] Deciding whether an atom belongs to some stable model of a
ground HCF program P is NP-complete, while deciding whether an atom belongs to
some stable model of a ground (non-HCF) program P is �P

2 -complete.

A component C of a dependency graph DG is a maximal subgraph of DG such
that each node in C is reachable from any other node in C. The subprogram of C
consists of all rules having some atom from C in the head. An atom is non-HCF if the
subprogram of its component is non-HCF.

3 Computational framework

In this section, we describe the main steps of the computational process performed
by DLP systems. We will refer particularly to the computational engine of the DLV
system [12, 25, 27], which will be used for the experiments, but also other DLP
systems like Smodels [43] and Clasp [20] employ a very similar procedure.4

In general, a logic program P contains variables. The first step of a computation
of a DLP system, performed by the so-called instantiator procedure (or grounding),

4Other solvers like Cmodels [31] and ASSAT [32] use a different architecture based on transforma-
tions to SAT.
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eliminates these variables and generates a ground instantiation of P . This process
has been optimized in the DLV system where a (usually much smaller) subset of
all syntactically constructible instances of the rules of P , that has precisely the same
stable models as P [14] is computed. The nondeterministic part of the computation
is then performed on this ground program generated by the instantiator. For brevity,
in the sequel P shall refer to the simplified ground program.

3.1 Model generation procedure

The heart of the computation is performed by the model generator, which is
sketched in Fig. 2. Note that for reasons of presentation, the description here is quite
simplified. For instance, the actual implementation computes and outputs all or a
fixed number of stable models rather than just deciding whether stable models exist;
however, the extension is quite straightforward and not important for this paper.
Moreover, the implementation uses quite advanced data structures, which are also
not important for the discussion of this paper. A more detailed description can be
found in [12].

Roughly, the model generator produces some “candidate” stable models. Each
candidate I is then verified by the function IsStable(I), which checks whether I is
a minimal model of the program P I (obtained by applying the GL-transformation
w.r.t. I). This part of the computation is also referred to as model check or stability
checker. The underlying task is co-NP-complete (cf. [11]).

Fig. 2 Computation of stable models in DLV



On look-ahead heuristics in disjunctive logic programming 237

Note again that the interpretations handled by the model generator are partial
interpretations where any literal is either one of true, false, or undefined w.r.t. an
interpretation I.

The ModelGenerator function is first called with parameter I set to the empty
interpretation (all atoms are undefined at this stage). If the program P has a stable
model, then the function returns true setting I to the computed stable model; oth-
erwise it returns false. We observe that the model generator is similar to the Davis–
Putnam procedure, variants of which are frequently employed by SAT solvers. It first
calls a function DetCons(I) which returns the extension of I with those literals that
can be deterministically inferred (or the set of all literals L upon inconsistency). This
function is similar to a unit propagation procedure employed by SAT solvers, but
exploits the peculiarities of DLP for making further inferences, e.g., it exploits the
knowledge that every stable model is a minimal model. [5, 12, 15]

If DetCons does not detect any inconsistency, a literal L is selected according to
a heuristic criterion (by a call to the Select procedure) and ModelGenerator is called
on both I ∪ {L} and I ∪ {not.L}. The literal L corresponds to a branching variable
in SAT solvers. And indeed, like for SAT solvers, the selection of a “good” literal L
is crucial for the performance of a DLP system.

Remark 1 On hard DLP programs (non-HCF programs), a very large part of the
computation time may be consumed by function isStable(I) which performs a co-
NP-complete task if the program is non-HCF.

In the following, we introduce the framework for evaluating heuristic criteria as
adopted in the DLV system. In Section 4 we then describe a number of heuristic
criteria for the selection of such branching literals.

3.2 Evaluation of heuristic functions

The heuristic of DLV is a “dynamic heuristic” (the DLP equivalent of UP heuristics
for SAT), that is, the heuristic value of a literal L depends on the result of taking L
true as well as false and computing its consequences, respectively. In order to reduce
the number of look-aheads, the DLV system does not evaluate the heuristic value of
all undefined literals; rather, it considers only a subset of the undefined literals called
possibly-true literals. The correctness of this strategy, adopted since the first release
of DLV, has been shown in [27].

Definition 1 (PT literal) Let I be a partial interpretation for the (ground) program
P .

A positive Possibly-True (PT) literal of P w.r.t. I is an undefined positive literal l
such that there exists a rule r ∈ P for which all of the following conditions hold:

1. l is in the head of r: l ∈ H(r);
2. The head of r is not true w.r.t. I: H(r) ∩ I = ∅;
3. The body of r is true w.r.t. I: B(r) ⊆ I.

A negative PT literal of P w.r.t. I is an undefined negative literal not l such that
there exists a rule r ∈ P for which all of the following conditions hold:

1. not l is in the body of r: not l ∈ B(r);
2. The head of r is not true w.r.t. I: H(r) ∩ I = ∅;
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3. The positive body of r is true w.r.t. I: B+(r) ⊆ I;
4. No negative body literal is false w.r.t. I: I ∩ not.B−(r) = ∅.

The set of all PT literals of P w.r.t. I is denoted by PTP (I).

Example 6 Consider the program P6 ={a ∨ b:− c, d., e :− d,not f.} and let I ={c, d}
be an interpretation for P6, then PTP6(I) = {a, b ,not f }.

It is worthwhile noting that the PT literals do not always restrict the set of literals
to be looked-ahead, since all undefined literals are PT in some cases. For instance, in
the program encoding 3SAT (see Section 6) every undefined literal is a PT literal, as
it occurs in the head of a rule having a true (empty) body. In contrast, in the program
HAMPATH, at any given stage of the computation, the PTs are those literals of the
form inPath(a, b) or outPath(a, b), where a is a node already reached from the start
(reached(a) is true) and (a, b) is an arc of the input graph.

The general procedure evaluating the heuristically best literal is shown in
Fig. 3. Roughly, each PT literal A is considered (foreach statement). Look-aheads
for I ∪ {A} and for I ∪ {not.A} are performed (calls to DetCons), and results are
stored in I+

A and I−
A, respectively. If either the assumption of A or the assumption of

not.A leads to an inconsistency, then the complementary literal is deterministically
added to the interpretation (also calling DetCons). Otherwise, A is compared with
the previously best literal L by exploiting a heuristic criterion hC.

Once all PTs have been considered, the best literal according to the heuristic is
returned in the parameter L and then assumed in the ModelGenerator Function.

In the next section we describe a number of heuristic criteria that can be exploited
for selecting the “best” branching literal.

Fig. 3 Framework for the selection of the branching literal in DLV
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4 Heuristics

Throughout this section, we assume that a ground program P and a partial inter-
pretation I for P have been fixed. Here, we describe the heuristic criteria that will
be compared in Section 6. We assume that the framework described in Section 3 is
employed, and in particular that “dynamic heuristics” are evaluated using Select as
in Fig. 3. Therefore, in order to define a heuristic for this framework, it is sufficient
to define an appropriate comparison operator <hC , which may depend on I+

A and/or
I−

A, or rather on some values that have been collected during the computation of I+
A

and/or I−
A.

Given a literal L, from now we denote with ext(I, L) the interpretation resulting
from the application of a deterministic consequence operator on I ∪ {L}. In DLV,
this amounts to a call to DetCons (see Section 3), i.e. ext(I, L) = DetCons(I ∪ L).
We usually assume that ext(I, L) is consistent, otherwise the framework for heuristic
evaluation of DLV (see Fig. 3) deterministically assumes not.L and the heuristic is
not evaluated on L at all.

Heuristic h1 This is an extension of the branching rule adopted in the system SATZ
[28]—an efficient SAT solver—to the framework of DLP.

The length of a rule r (w.r.t. an interpretation I), is the number of undefined literals
occurring in r. Let Unsatk(L) denote the number of unsatisfied rules5 of length k
w.r.t. ext(I, L), which have a greater length w.r.t. I. In other words, Unsatk(L) is the
number of unsatisfied rules whose length shrinks to k if L is assumed and propagated
in the interpretation I. The weight w1(L) is:

w1(L) = �k>1 Unsatk(L) ∗ 5−k

Thus, the weight function w1 prefers literals introducing a higher number of short
unsatisfied rules. Intuitively, the introduction of a high number of short unsatisfied
rules is preferred because it creates more and stronger constraints on the interpre-
tation so that a contradiction can be found earlier [28]. The factor 5 has been taken
over directly from [28], where it is justified as being “empirically optimal,” which we
could confirm in informal tests also in our setting. We combine the weight of L with
the weight of its complement not.L to favour L such that w1(L) and w1(not.L) are
roughly equal, in order to avoid that a possible failure leads to a very bad state. To
this end, as in SATZ, we define the combined weight comb-w1(L) of L as follows:

comb-w1(L) = w1(L) ∗ w1(not.L) ∗ 1,024 + w1(L) + w1(not.L).

The idea is that for values w1(L) and w1(not.L) which are closer together, the
product is greater than for values which are further apart but have the same sum.
The weighting factor 1,024 is a “magic number,” which has been experimentally
established in [28] as being optimal. We have informally performed tests with other
factors and also obtained that 1,024 performs well.

5Recall that a rule r is satisfied w.r.t. an interpretation J if the body of r is false w.r.t. J or the head
of r is true w.r.t. J.
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Given two literals A and B, heuristic h1 prefers B over A (A <h1 B) if:

1. comb-w1(A) < comb-w1(B) when A �= not.B;
2. w1(A) < w1(B) when A = not.B.6

Example 7 Consider the following program

P7 = {r1 : a1 ∨ na1. , r2 : a2 ∨ na2. , r3 : a3 ∨ na3. , r4 : a4 ∨ na4. ,

c1 : :−a1, a2, a3. , c2 : :−na1, a2, a3. , c3 : :−a1, a4, a3.},

and let the current interpretation I be {}. We have eight PTs, one for each atom in
the program. The heuristic will select either a1 or na1 which are <h1 -maxima; indeed,
both a1 and na1 are the only PTs having combined weight greater than zero. This
happens because when we assume a1 two unsatisfied constraints (c1 and c3) shrink
from length 3 to 2 [i.e. Unsat2(a1) = 2]; moreover, if we assume not a1 constraint c2

shrinks from length 3 to 2 [i.e. Unsat2(not a1) = 1].7 On the other hand, we have that
for i > 1 Unsat2(not ai) = Unsat2(not nai) = 0 hold (no unsatisfied rule changes its
length).

Heuristic h2 The second heuristic we consider is inspired by the branching rule of
Smodels [43]. Let |J| denote the number of literals in a (three-valued) interpretation
J. Then, define

w2(L) = |ext(I, L)|.
Since w2 maximizes the size of the resulting interpretation, it minimizes the literals
which are left undefined. Intuitively, this minimizes the size of the remaining search
space [43] [which is 2u, where u is the number of undefined atoms w.r.t. ext(I, L)].
Similar to Smodels, the heuristic h2 cautiously maximizes the minimum of w2(L)

and w2(not.L). More precisely, the preference relationship <h2 of h2 is defined as
follows. Given two literals A and B:

1. A <h2 B if min(w2(A), w2(not.A)) < min(w2(B), w2(not.B));
2. Otherwise, A <h2 B if min(w2(A), w2(not.A)) = min(w2(B), w2(not.B)), and

max(w2(A), w2(not.A)) < max(w2(B), w2(not.B))

Example 8 Consider P8 ={a∨b ∨c. , d∨e:−not a. , f :−not a.}, and let the current
interpretation I be {}; We have three PT literals a, b and c (d, e and f are not
PT because the positive body of the second rule contains an undefined literal). We
observe that if either b or c are assumed, only not a and f are derived, while nothing
is derived from the second rule. However, if a is assumed we obtain a total interpre-
tation. In particular, we obtain ext(I, a) = {a,not b ,not c,not d,not e,not f },
ext(I, b) = {not a, b ,notc, f }, ext(I, c) = {not a,not b , c, f }. Concerning the
complementary literals, we observe that assuming not a can derive f , while nothing
can be derived by assuming not b or not c. In particular, we have ext(I,not a) =
{not a, f }, ext(I,not b) = {not b}, and ext(I,not c) = {not c}. Looking at the

6Note that comb-w1(A) = comb-w1(B) if A = not.B.
7It is easy to see that the same happens for not na1 and na1, respectively.
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counters we have that w2(a) = 6 and w2(b) = w2(c) = 4, while w2(not a) = 2 and
w2(not b) = w2(not c) = 1. Therefore a is the best choice w.r.t. heuristic h2. Note
that a is really the best choice, since by assuming it we immediately reach a stable
model, while another choice is needed if we assume either b or c.

Remark 2 It is worthwhile noting that the heuristic of Smodels, while following
the above intuition, is somewhat more sophisticated than h2. Unfortunately, it is
defined for non-disjunctive programs, and centered around properties of unstratified
negation. We do not see any better extension of Smodels’ heuristic to the framework
of disjunctive programs.

Heuristic h3 Let us consider now the heuristic originally used in the DLV system.
Even if this is more “naïve” than the previous heuristics, we will benchmark it in
order to evaluate the impact of changing the branching rule on the test system.

A peculiar property of stable models is supportedness, cf. Section 2.3. Since a DLP
system must eventually converge to a supported interpretation, it makes sense to
keep the interpretations “as much supported as possible” during the intermediate
steps of the computation. To this end, we count the number of UnsupportedTrue
(UT) atoms, i.e., atoms which are true in the current interpretation but still miss a
supporting rule (further details on UTs can be found in [12, 15] where they are called
must-be-true atoms or MBTs). For instance, the rule :−not x. implies that x must be
true in every stable model of the program; but it does not give a “support” for x. Thus,
DetCons derives x in order to satisfy the rule and adds it to the set UnsupportedTrue.
It will be removed from this set once a supporting rule for x is found (e.g., x ∨ b :−c.
would be a supporting rule for x in the interpretation I = {x,not b , c}). Given a
literal L, let UT(L) be the number of UT atoms in ext(I, L). Moreover, let UT2(L)

and UT3(L) be the number of UT atoms occurring, respectively, in the heads of
exactly 2 and 3 unsatisfied rules w.r.t. ext(I, L). Intuitively, these are the most
constrained UTs. Note that a UT atom in the head of only one unsatisfied rule
will cause DetCons to make appropriate derivations in order to turn that rule into
a supporting rule, therefore such atoms will not occur anymore during the evaluation
of the heuristic.

The heuristic h3 of DLV considers UT(L), UT2(L) and UT3(L) in a prioritized
way, to favor atoms yielding interpretations with fewer UT/UT2/UT3 atoms (which
should more likely lead to a supported model). If all UT counters are equal, then
the heuristic considers the total number Sat(L) of rules which are satisfied w.r.t.
ext(I, L). More precisely, given two literals A and B:

1. A <h3 B if UT(A) > UT(B);
2. Otherwise, A <h3 B if UT(A) = UT(B) and UT2(A) > UT2(B);
3. Otherwise, A <h3 B if UT(A) = UT(B), UT2(A) = UT2(B) and UT3(A) >

UT3(B);
4. Otherwise, A <h3 B if UT(A) = UT(B), UT2(A) = UT2(B), UT3(A) = UT3(B)

and Sat(A) < Sat(B).

Note that, unlike the previous heuristics, h3 is not balanced [i.e., ext(I,not.L) is
not considered in the heuristic]. Therefore L <h3 not.L or not.L <h3 L may hold
if both L and not.L are PT, which does not occur for h1 and h2.
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Example 9 Consider P9 = {a ∨ b ∨ c. , d ∨ e ∨ f. , :−not w. , w:−a. , w:−d. , a ∨
z:−w. , b ∨ z:−w. , :−d, z. , :−a, z.}, and let the current interpretation I be {w}.
Here, w is UT. a and d are the <h3 -maxima, as only assuming their truth can eliminate
the UT w. Indeed, anything apart from a or d would be a poor choice.

Heuristic h4 The unsupported true atoms are, in a sense, the hardest constraints
occurring in a DLP program. Indeed, as pointed out above, an unsupported true
atom x is intuitively like a unary constraint :−not x., which must be satisfied. By
minimizing the UT atoms and maximizing the satisfied rules, the heuristic h3 tries
to drive the DLV computation toward a supported model (i.e., all rules are satisfied
and no UT exists). Intuitively, supported models have good chances to be stable
models (while unsupported models are guaranteed to be not stable models), and, for
simple classes of programs (e.g., tight stratified disjunctive programs) the supported
models are precisely the stable models. If the program is not tight and stratified, then
supported models are not guaranteed to be stable models; but stability checking can
be done efficiently if the program is HCF.

For hard programs (i.e., non-HCF programs), supported models are often not
stable models. Stability checking is computationally expensive (co-NP-complete),
and may consume a large portion of the resources needed for computing a stable
model.

The heuristic h4, described next, tries to elaborate on h3 and drives the computa-
tion toward supported models having higher chances to be stable models, with the
goal of reducing the overall number of the expensive stability checks. Models having
a higher degree of supportedness are preferred, where the degree of supportedness
is the average number of supporting rules for a true atom (note that this number is
greater or equal to 1 for supported models). Intuitively, if all true atoms have many
supporting rules in a model M, then the elimination of an atom from the model would
violate many rules. In this case, it becomes less likely that a subset of M exists, which
is a model of PM and would thus disprove that M is a stable model. The idea for h4

is thus to prefer choices which lead to a greater degree of supportedness.
We next formalize this intuition. Given a literal L, let True(L) be the number

of true non-HCF atoms in ext(I, L), and let SuppRules(L) be the number of all
supporting rules for non-HCF atoms w.r.t. ext(I, L). Let DS be the degree of support-
edness of the interpretation intended as the ratio between the number of supporting
rules and the number of true atoms [i.e. DS(L) = SuppRules(L)/True(L)8]. Note
that heuristic h4 is “balanced” (i.e. it takes into account both the look-ahead for
the branching literal and its complement) and is defined as a refinement of the
heuristic h3.

To this end, given a literal L, let UT ′(L) = UT(L) + UT(not.L), UT ′
2(L) =

UT2(L) + UT2(not.L), UT ′
3(L) = UT3(L) + UT3(not.L), Sat′(L) = Sat(L) +

Sat(not.L), and DS′(L) = DS(L) + DS(not.L).

8In the implementation, the denominator is increased by 1, in order to avoid possible divisions
by zero.
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The preference relationship <h4 of h4 is defined as follows. Given two literals A
and B:

1. A <h4 B if UT ′(A) > UT ′(B);
2. Otherwise, A <h4 B if UT ′(A) = UT ′(B) and UT ′

2(A) > UT ′
2(B);

3. Otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B) and UT ′
3(A) >

UT ′
3(B);

4. Otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B), UT ′
3(A) =

UT ′
3(B) and Sat′(A) < Sat′(B).

5. Otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B), UT ′
3(A) =

UT ′
3(B), Sat′(A) = Sat′(B) and DS′(A) < DS′(B).

Example 10 Reconsider Example 9 where we assumed that I = {w}. We get
ext(I, a) = {w, a, b ,not z,not c}, ext(I, d) = {w, d, a, b ,not z,not c,not e,not f }.
DS(a) = 3/3, since w:−a; a ∨ z:−w and b ∨ z:−w are supporting rules for the three
true non-HCF atoms w, a, b . On the other hand, DS(d) = 4/3, since w:−d is an
additional supporting rule for the same three true non-HCF atoms w, a, b . Since
DS(not a) = DS(not d) = 2/2, we obtain a <h4 d. Indeed, d is arguably a better
choice than a. It immediately leads to a stable model whereas a would require at
least another choice, and choosing e or f would cause a failing stability check.

5 Optimizing the computation of heuristics

In the previous section we described a number of “dynamic” heuristics for deciding
which branching literal to assume. To select the “best” next branching literal the
system looks ahead by tentatively assuming each undefined (PT) literal L and its
complement. Then the heuristic value of L [which is a measure of the “quality” of
the resulting interpretations ext(I, L) and ext(I,not.L)] is exploited to select the
next branching literal.

As will be shown in Section 6.3.1, some of the heuristics are very effective, as they
drastically reduce the number of choice points arising in the computation of stable
models. However, the computation of these heuristics often is quite expensive since
the number of (PT) literals to be considered is very large in some cases, and the cost
of a look-ahead is linear or quadratic in the size of the Herbrand Base in the worst
case. The computation of the heuristics thus often consumes most of the total time
taken by a DLP system.

In this section, we present two techniques that reduce the amount of time needed
to evaluate the heuristics by reducing the number of look-aheads that need to be
performed.

5.1 Look-ahead equivalences

Dynamic heuristics depend only on the interpretations resulting from ext(I, L) and
ext(I,not.L). We would therefore like to identify cases in which two literals L and
L′ are look-ahead equivalent, i.e., ext(I, L) = ext(I, L′), since only one of the two
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look-ahead computations has to be done in order to obtain the heuristic value for
both L and L′ then. This notion of equivalence is formalized next.

Definition 2 Let p and q be two undefined literals w.r.t. an interpretation I and ext a
function mapping interpretations to interpretations (plus L). p and q are look-ahead
equivalent with respect to ext if ext(I, p) = ext(I, q).

To single out a sufficient and efficiently checkable condition which guarantees
such an equivalence, we first define the notion of a potentially supporting rule:

Definition 3 Given a program P , an atom a, and a (three-valued) interpretation I, a
rule r ∈ P is a potentially supporting rule for a w.r.t. I, if the following conditions are
satisfied: (1) a occurs in the head of r, (2) no atom in H(r) \ {a} is true w.r.t. I, and
(3) no literal in the body of r is false w.r.t. I. Let psuppP (a, I) denote the number of
potentially supporting rules for a.

The optimization which we describe next actually does not depend on a particular
version or implementation of ext which is used. In order to formulate a minimal
assumption on what should be computed by ext such that the optimization is
applicable, we introduce the disjunctive extension of the classic inflationary TP
operator.

Definition 4 Given a ground program P and an interpretation I, we define

TP (I) = I ∪ {a | r ∈ P, a ∈ H(r), the body of r is true w.r.t. I,
the head of r apart from a is false w.r.t. I}

Furthermore we employ the disjunctive inflationary version of Fitting’s operator.

Definition 5 Given a ground program P and an interpretation I, let

φP (I) = I ∪ {not a | psuppP (a, I) = 0}

Moreover, we assume that ext computes a fixpoint and introduce a property called
saturating.

Definition 6 Given a ground program P , an interpretation I, and a function ext
mapping interpretations to interpretations (in the context of assuming a literal L),
ext is called saturating if a ∈ ext(I, L) implies ext(I, L) = ext(I ∪ {a}, L).

We can now formulate some look-ahead equivalence results.

Proposition 3 Let ext be a saturating operator such that for any interpretation I
it holds that TP (I ∪ {L}) ⊆ ext(I, L) and φP (I ∪ {L}) ⊆ ext(I, L). If two undefined
positive literals a and b occur in the head of a rule r in a program P , and a and b are
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the only undefined literals w.r.t. an interpretation I in r (where we assume that there is
no multiple occurrence of atoms in rules), then it holds that:

1. If psuppP (b , I) = 1, a and not b are look-ahead equivalent w.r.t. ext.
2. If psuppP (a, I) = 1, not a and b are look-ahead equivalent w.r.t. ext.

Proof Suppose that a and b are the only undefined literals w.r.t. an interpretation
I in r and that psuppP (b , I) = 1. Therefore psuppP (b , I ∪ {a}) = 0, hence not b ∈
φP (I ∪ {a}) and not b ∈ ext(I, a). Since ext is saturating, we have ext(I, a) = ext(I ∪
{not b}, a). On the other hand, the body of r is true w.r.t. I ∪ {not b} and the head
apart from a is false w.r.t. I ∪ {not b}, so a ∈ TP (I ∪ {not b}) and a ∈ ext(I,not b).
Because ext is saturating we obtain ext(I,not b) = ext(I ∪ {a},not b). In total, we
have ext(I, a) = ext(I ∪ {not b}, a) = ext(I ∪ {a},not b) = ext(I,not b). It follows
that a and not b are look-ahead equivalent w.r.t. ext, thus proving item 1.

Symmetrically, suppose that a and b are the only undefined literals w.r.t. an
interpretation I in r and that psuppP (a, I) = 1. It is easy to see that this implies
psuppP (b , I ∪ {b}) = 0, hence not a ∈ φP (I ∪ {b}) and not a ∈ ext(I, b). Since
ext is saturating, we have ext(I, b) = ext(I ∪ {not a}, b). On the other hand, the
body of r is true w.r.t. I ∪ {not a} and the head apart from b is false w.r.t.
I ∪ {not a}, so b ∈ TP (I ∪ {not a}) and b ∈ ext(I,not a). Because ext is saturating
we obtain ext(I,not a) = ext(I ∪ {b},not a). In total, we have ext(I, b) = ext(I ∪
{not a}, b) = ext(I ∪ {b},not a) = ext(I,not a), proving item 2. ��

Corollary 1 Proposition 3 holds if ext is a version of DetCons as defined in [5], [12],
or [15].

Example 11 Consider the program {a ∨ b .} and I = ∅. Both a and b are PT literals,
so look-ahead for a, not a, b , and not b is performed, i.e. we compute ext(I, a) =
{a,not b}, ext(I,not a) = {not a, b}, ext(I, b) = {not a, b}, and ext(I,not b) =
{a,not b}. In this example we can save the look-aheads for not b and b because of
Proposition 3, and thus save half of the look-aheads.

In the implementation of DLV we recognize the applicability of Proposition 3
very efficiently and avoid superfluous look-aheads. Experimental results reported in
Section 6 will show that we can avoid up to 50% of look-aheads in some practical
cases (e.g. on 3SAT) by exploiting this simple condition.

5.2 Two-layered heuristics

In [28] a different idea on reducing look-aheads has been presented: An easy-to-
compute heuristic is defined as a first layer, and look-ahead is only computed on
those possible choices which look promising in that regard. This gives a two-layered
heuristics. While the optimization exploiting look-ahead equivalence was exact in
the sense that the choices and computation trees remain precisely the same, this
optimization is somewhat fuzzy as the simple heuristic in the first layer may cut away
the best literal according to the more expensive second layer heuristic. The properties
of these two optimizations are therefore quite different.

The simple heuristic criterion defined in [28] involves the number of binary clauses
a literal occurs in. The rationale is that this is the number of immediate propagations
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that can be performed during look-ahead. This idea can be directly transferred to the
DLP framework:

Definition 7 A binary clause is a rule which contains exactly two undefined literals
w.r.t. an interpretation I. The number of binary occurrences of an undefined literal l
is the number of binary clauses l occurs in.

Note that this notion directly corresponds to the number of immediate propaga-
tions which can be performed by assuming l and not l, so it matches the intuition
of [28]. To reduce the number of literals to be looked-ahead, we adopt the following
criterion:

First-Layer Heuristic Sbin Let PTP (I) be the set of PT literals of a ground program
P w.r.t. an interpretation I, and let Sbin ⊆ PTP (I) be the set of PT literals having
more than the average number of binary occurrences w.r.t. all literals in PTP (I).
Then, consider only the literals in Sbin for the selection of the branching literals (i.e.,
perform look-ahead only on these literals).

Note that our first-layer heuristic is inspired by the same intuition as the first-layer
heuristic in [28], even though it is not precisely the same due to the different setting.

6 Experiments and benchmarks

In this section, we first describe in detail the benchmark problems and instances
considered. Then we comparatively analyze the heuristics from Section 4, and finally
evaluate the impact of the optimization techniques described in Section 5.

6.1 Benchmark problems

We evaluate the considered heuristics and the proposed optimizations on the follow-
ing problems:

– Hamiltonian Path (HAMPATH)
– Satisfiability (3SAT)
– Strategic Companies (STRATCOMP)
– Quantified Boolean Formulae (2QBF)

The first two benchmarks (HAMPATH and 3SAT) are well-known NP-complete
problems, which have been frequently used to assess the efficiency of DLP systems
(see, e.g., [25, 37]). Since our goal is also the evaluation of heuristics for disjunctive
logic programming systems, we consider two additional benchmarks (STRATCOMP
and 2QBF) that strictly require the use of disjunction, as their complexity is located
at the second level of the polynomial hierarchy.

HAMPATH is a classical NP-complete problem from the area of graph theory:

Given an undirected graph G = (V, E), where V is the set of vertices of G and
E is the set of edges, and a node a ∈ V of this graph, does there exist a path of
G starting at a and passing through each node in V exactly once?
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Suppose that the graph G is specified by using two predicates node(X) and
arc(X, Y)9, and the starting node is specified by the unary predicate start(X)

which contains only a single tuple. Then, the following program solves the problem
HAMPATH:

% Guess whether to take a path or not.
inPath(X, Y) ∨ outPath(X, Y) :− reached(X), arc(X, Y).

% Reach nodes starting from the given one.
reached(X) :− start(X).

reached(X) :− inPath(Y, X).

% Each node has to be reached.
:− node(X),not reached(X).

% At most one incoming/outgoing arc!
:− inPath(X, Y), inPath(X, Y1), Y<>Y1.

:− inPath(X, Y), inPath(X1, Y), X<>X1.

Basically, the disjunctive rule guesses a subset S of the arcs to be in the path,
while the rest of the program checks whether S constitutes a Hamiltonian Path. By
means of the first rule, the auxiliary predicate reached (modeling nodes that can be
reached) influences the guess of inPath, which is done in a gradual way: Initially, the
second rule is applied, marking the starting node as reached. Then a guess among
arcs leaving the starting node is made, followed by repeated guesses of arcs leaving
from nodes marked as reached by the third rule, until all reachable nodes have been
handled. The first constraint enforces that all nodes in the graph are reached from
the starting node in the subgraph induced by S. The other two constraints ensure
that the set of arcs S selected by inPath meets the following requirements, which any
Hamiltonian Path must satisfy: (1) there must not be two arcs starting at the same
node, and (2) there must not be two arcs ending in the same node.

3SAT is a special case of SAT, one of the best researched problems in AI and fre-
quently used for solving many other problems by translating them to SAT, solving
the SAT problem, and transforming the solution back to the original domain.

Let � be a propositional formula in conjunctive normal form (CNF) � =∧n
i=1(di,1 ∨ di,2 ∨ di,3) where the di,· are literals over propositional variables

x1, . . . , xm.
� is satisfiable, iff there exists a consistent conjunction I of literals such that
I |= �.

3SAT is a classical NP-complete problem [38] and can be easily represented in
DLP as follows:

For every propositional variable xi (1 ≤ i ≤ m), we add the following rule which
ensures that we either assume that variable xi or its complement nxi is true: xi ∨ nxi.

9Predicate arc is symmetric, since undirected arcs are bidirectional.
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And for every clause d1 ∨ d2 ∨ d3 in � we add the constraint :−d̄1, d̄2, d̄3. where d̄k

(1 ≤ k ≤ 3) is nx j if dk = x j, and d̄k = x j if dk = ¬x j.

STRATCOMP is a �P
2 -complete problem, which has first been described in [4]:

A holding owns companies C(1), . . . , C(c), each of which produces some goods.
Some of these companies may jointly control another one.
Now, some companies should be sold, under the constraint that all goods can
still be produced, and that no company is sold which would still be controlled
by the holding afterwards. A company is strategic, if it belongs to a strategic set,
which is a minimal set of companies satisfying these constraints.

Computing strategic companies is �P
2 -hard in general [4]. Reformulated as a

decision problem (“Given a particular company c in the input, is c strategic?”), it
is �P

2 -complete.
As in [4] we assume that each product is produced by at most two companies and

each company is jointly controlled by at most three companies. In this settings, an
instance of STRATCOMP can be modeled by asserting the following facts:

– A fact produced_b y(P, C1, C2) whenever product P is produced by companies
C1 and C2;

– A fact controlled_b y(C, C1, C2, C3) whenever company C is jointly controlled
by C1, C2 and C3

The following program solves this hard problem elegantly by only the following
two rules [25].

strategic(C1) ∨ strategic(C2) :− produced_b y(P, C1, C2).

strategic(C) :− controlled_b y(C, C1, C2, C3),

strategic(C1), strategic(C2), strategic(C3).

Here strategic(C) means that company C is a strategic company.
Basically, the program exploits the minimization which is inherent to the seman-

tics of stable models for the check whether a candidate set C′ of companies that
produces all goods and obeys company control is also minimal with respect to this
property. In particular, the disjunctive rule intuitively guesses one of the companies
c1 and c2 that produce some item p; while the second rule checks that no company
is sold that would be controlled by other companies in the strategic set, by simply
requesting that this company must be strategic as well. The stable models of this
program correspond one-to-one to the strategic sets, indeed a company c is strategic
iff strategic(c) is in some stable model of the program [25]. The minimality of the
strategic sets is automatically ensured by the minimality of stable models.

Checking whether any given company ci is strategic is done by brave reasoning:
“Is there any stable model containing ci?”

2QBF is the canonical problem for the second level of the polynomial hierarchy [38].

Let � be a quantified Boolean formula (QBF) of the form � = ∃X∀Yφ, where
X and Y are disjoint sets of propositional variables and φ = C1 ∨ . . . ∨ Ck is a
3DNF formula over X ∪ Y.
Check whether � evaluates to true.



On look-ahead heuristics in disjunctive logic programming 249

We used a transformation from 2QBF to disjunctive logic programming which is a
slightly altered form of a reduction used in [9]. The propositional disjunctive logic
program Pφ produced by the transformation requires 2 ∗ (|X| + |Y|) + 1 proposi-
tional predicates (with one dedicated predicate w), and is made as follows:

– For every variable vi ∈ X ∪ Y add a rule vi ∨ nvi.;
– For every variable y ∈ Y add a couple of rules of the form y:−w. ny:−w.;
– For every conjunction l1 ∧ l2 ∧ l3 in φ add a rule w:−l̄1, l̄2, l̄3. where l̄ = l if l is a

variable and l̄ = nv if l is ¬v, and
– Add the constraint :−not w;

The 2QBF formula � is valid iff P� is satisfiable [9].

6.2 Benchmark data

The instances for HAMPATH were generated by a tool by Patrik Simons which has
been used to compare Smodels against SAT solvers (cf. [42]). For each problem size
n we generated 20 instances, always assuming node 1 as the starting node.

Concerning the instances for 3SAT, we have randomly generated 3CNF formulas
over n variables using a tool by Selman and Kautz [41]. Again, for each size we
generated 20 such instances, where we kept the ratio between the number of clauses
and the number of variables at 4.3, which is near the cross-over point for random
3SAT [6].

For STRATCOMP, we randomly generated 20 instances for each problem size
n, with n companies and n products. Each company O is controlled by one to five
companies (two groups of companies, where each of these groups controls the same
company O, must have at least one member in common), where the actual number of
companies is uniform randomly chosen. On average this results in 1.5 controlled_b y
relations per company.

In case of 2QBF, finally, we generated 100 random 2QBF instances for each
problem size, according to the method presented in [22] where transition phase
results for QBFs are reported. In all generated 2QBF instances, the number of
∀-variables in any formula is the same as the number of ∃-variables (that is, |X| =
|Y|) and each disjunct contains at least two universal variables. Moreover, the
number of clauses is ((|X| + |Y|)/2)0.5.

It is worthwhile noting that these numbers of clauses have been chosen according
to the experimental verification reported in [22] (see [25], for a discussion on this
issue).

6.3 Experimental results

The experiments have been performed on a machine equipped with two Intel Xeon
HT CPUs clocked at 3.60GHz with 2 MB of Level 2 Cache and 3GB of RAM,
running Debian GNU Linux (kernel 2.4.27-2-686-smp). The binaries were generated
with GCC 3.4.

We have allowed at most 7,200 s (2 h) of execution time for each instance, and
we set a memory usage limit to 1 GB of memory for each process (by exploiting the
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�Fig. 4 Comparison of the heuristics: average execution time and number of look-aheads

ulimit command). The experimentation was stopped (for each system) at the size at
which some instance exceeded this time limit10.

The executables and input files used for the benchmarks are available on the web
at http://www.mat.unical.it/ricca/downloads/amai07.tar.gz.

The results of our experiments are displayed in the graphs of Figs. 4 and 5. For
each problem domain we report two graphs: In both graphs the horizontal axis
reports a parameter representing the size of the instance, while on the vertical axis
we report the running time (expressed in seconds) and the number of look-aheads,
respectively, averaged over the instances of the same size we have run (see previous
section). The details of the experimental results are reported in the Appendix.

6.3.1 Comparison of the heuristics

The results obtained for comparing the relative efficiencies of the heuristics h1 to h4

are reported in Fig. 4.
In the graphs displaying the benchmark results, the line of a heuristic stops before

the largest instance size whenever some problem instance was not solved within the
allowed time limit.

Table 1 displays, for each heuristic, the maximum instance-size where the heuristic
could solve all problem instances in the maximum allowed time; and, the “winner”
heuristic (i.e. the heuristic solving the largest instances, or, in case two heuristics
solved the same instances, the one taking the lowest average time on the largest
instances) is outlined in bold face.

As expected, heuristic h3, the earliest look-ahead heuristic of the DLV system,
which is “unbalanced” (i.e., it does not combine the heuristic values of complemen-
tary atoms), is the worst in most cases. Indeed, apart from the case of 2QBF, where
it performs slightly better than both h1 and h2, heuristic h3 is outperformed by all
the competitors; moreover, it could solve STRATCOMP instances only up to 2,400
companies (taking 3,553.4 s where h4 required at most 10.9 s).

Heuristic h1, the extension of SATZ heuristic to DLP, behaves quite well on
average. As expected (this heuristic was defined for SAT), h1 is the fastest on 3SAT.
It behaves well also on STRATCOMP, where h1 was the second fastest and, as
h2 and h4, it could solve all benchmark instances we have run. It shows suboptimal
behaviour on HAMPATH and, especially, on 2QBF, where considering unsupported
true atoms and (for 2QBF) the degree of support seems to be crucial for the
efficiency.

Heuristic h4 behaves (somehow expectedly) much better than its “predecessor”
h3. It is “balanced” (the heuristic values of the positive and of the negative literal are
combined by sum) and, it is tailored for hard (�P

2 -complete) problems (in addition
to unsupported true, it considers also the degree of support).

10Actually, the memory usage limit had never been exceeded.

http://www.mat.unical.it/ricca/downloads/amai07.tar.gz
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�Fig. 5 Impact of the optimizations: average execution time and number of look-aheads

Thanks to these refinements, heuristic h4 dramatically improves the performance
of h3. Indeed, heuristic h4 is the best one in nearly all problems we ran (only on
3SAT it stopped earlier than other heuristics). Importantly, h4 is the best heuristic
on the hardest problems (STRATCOMP and 2QBF), and it beats all other heuristics
by a relevant factor on both HAMPATH and 2QBF. In particular, in the former
problem the second best (h1) stopped at 110, while h4 could solve instances up to 130
nodes within the time limit; moreover, to solve an instance of size 110, h4 averagely
takes 1.3s, while h1 takes 157.4 s. The performance gap is even more significant in
the case of 2QBF, where the heuristics different from h4 can solve instances up to
size 56 (within the time limit), while h4 can solve all qbf problems having up to 112
propositional variables (twice the size of all the others). Here, the second best (h3)
took 425.12 s to solve instances of size 56, an enormity compared with the 0.47 s
required by h4.

The behaviour of heuristic h2, based on the minimization of the undefined atoms,
is rather controversial. It behaves well on 3SAT, but it is rather bad on HAMPATH,
where it stops at 50 nodes already, and is beaten even by the “naive” heuristic h3. This
confirms that further studies are needed to find a proper extension of the heuristic of
Smodels to the setting of disjunctive programs.

Concluding, we observe that both heuristic h1 and heuristic h4 significantly
improve the efficiency of the native heuristic h3 of the DLV system. While h1 is the
fastest in 3SAT, heuristic h4 is the best performing in all the remaining problems,
being orders of magnitude faster than all the competitors in both HAMPATH and
2QBF.

6.3.2 Impact of the optimization techniques

As previously pointed out, heuristic functions can help to significantly reduce the
number of choices made by the DLP system, and consequently they can increase
the performance of DLP systems. However, most of the execution time is spent by
systems for “looking-ahead”. The graphs of Fig. 4 confirm this observation. Indeed,
the lines reporting the execution times have nearly the same “shape” of the (corre-
sponding) ones reporting the number of look-aheads performed, demonstrating that
execution times directly correlate with the number of look-ahead performed.

Table 1 Maximum instance-size where a heuristic could solve all problem instances in the maximum
allowed time

Prob./Heur. h1 h2 h3 h4

HAMPATH 110 50 60 130
3SAT 400 380 340 340
STRATCOMP >3,000 >3,000 2,400 >3,000
2QBF 56 56 56 112
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We have experimentally evaluated the impact of the two optimization techniques
described in Section 5, which are aimed at reducing the number of look-ahead,
in order to improve the system performance. In particular, we have selected the
best heuristic resulting from the experiments of the previous section (namely,
heuristic h4), and we have evaluated the impact of the two optimization techniques
on our collection benchmark problems. The results of the experiments are displayed
in Fig. 5. In the graphs, the curves labeled by “nle.npl”, “le.npl”, “nle.pl”, and “le.pl”
denote, respectively, the initial (unoptimized) version (i.e., precisely heuristic h4 as
benchmarked in the previous subsection), the look-ahead equivalence optimization,
the two-layered optimization (pl stands for pre-look-ahead), and the combination of
both look-ahead equivalence and two-layered optimization (all versions adopt the
same heuristic h4). Again, the line of a version stops before the largest instance size
whenever some problem instance was not solved within the allotted time limit.

Observe first that both optimizations always bring some gain over the original
version, as the “no optimization” curve is always on top of the other three curves in
all graphs. In addition, there are cases where the “optimized” versions of the system
could increase the maximum size of instances solved within the time limit, (e.g. for
3SAT le.pl could solve instances having up to 340 variables, while the unoptimized
nle.npl could reach only size 320).

The two optimizations have different impact, depending on the problem domain:
For 2QBF, the equivalence optimization performs better than the two-layered
approach, while for Strategic Companies and 3SAT the opposite holds. For Hamil-
tonian Path both optimizations behave roughly equal.

In most cases, the combination of the two optimizations combines the benefits in
the sense that performance is as good as for the best of the two strategies. Indeed,
apart from 2QBF, where le-npl is clearly the best option (it has been the only one
able to solve all the instances we provided), the curve combining the two strategies
(le.pl) nearly coincides with the curve of the best of le.npl and nle.pl (e.g. for Strategic
Companies le.pl and nle.pl actually overlap). On Hamiltonian Path le.npl, nle.pl,
and le.pl all give the same speed-up, while in the case of 3SAT there are even
better results for the “combined” le.pl than for any of the two methods alone: the
combination even sums up the individual gains of the two optimizations here!

Note that when the two-layered option is exploited (nle.pl and le.pl), the run-
time and the number of look-aheads need not correlate, as fewer look-aheads are
performed but the quality of the PTs may be worse, which may lead to larger
computation trees (this seems to be crucial in the case of 2QBF). On the other hand,
for look-ahead equivalence the choices remain the same, but only the number of
look-aheads can be reduced, so avoided look-aheads directly reduce the runtime in
this case. This can be easily noted in the graphs reporting the number of look-aheads
performed where the line of nle.npl is never on top of le.npl.

It is worthwhile noting that the gap between the original version and the best
option, which is really impressive in some cases (e.g. for an instance of 2000
companies of STRATCOMP the average number of look-aheads steps from 38045
to 16090), grows exponentially. Indeed, the gain appears to be nearly constant in the
graphs, in which we have employed a logarithmic scale.

In conclusion, both optimizations turned out to be useful, and the combination of
the two seems to be the best choice since the introduced benefits combine well in
most cases.
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7 Related work and conclusion

In this paper, we have studied the use of look-ahead heuristics to enhance the
efficiency of a DLP system. We have introduced a number of heuristic criteria for
DLP and we have also described two optimization techniques for reducing the cost
of their computation.

Specifically, we have designed, implemented and evaluated several look-ahead
heuristics for DLP systems. Among these, some are extensions to DLP of successful
heuristics for SAT solvers or non-disjunctive systems, while others are custom-
designed for DLP, being geared towards hard problems on the second level of the
polynomial hierarchy.

Since the computational core of a DLP system is somewhat similar to a SAT-
solver, the literature on the design and comparison of heuristics for SAT [7, 19,
23, 24, 28–30, 36] is related to our work. In particular, the works dealing with “unit
propagation” [UP] heuristics [19, 24, 28–30] are directly related to our techniques,
since look-ahead heuristics are the DLP equivalent of UP heuristics for SAT.

While a lot of work has been done for SAT in this area, only little is available for
logic programming systems. A couple of works have dealt with heuristics for non-
disjunctive logic programs [20, 43], and we are not aware of any previous comparison
between look-ahead heuristics for DLP, apart from preliminary versions of the
present work.

Since the computation of look-ahead heuristics is often very expensive, we have
also introduced two methods which aim at reducing the amount of time needed by
the system to evaluate the heuristics. The first one is based on a condition which is
sufficient to guarantee that two literals have precisely the same heuristic value, thus
being able to avoid look-ahead for one of them. The second one is a two-layered
heuristic (a computationally cheap heuristic criterion reduces the set of literals
to be considered for look-ahead) similar to the one employed in the SAT solver
SATZ [28].

Some techniques for reducing the number of look-aheads have been employed
also in SAT solvers and in other LP systems. In particular, Smodels makes a drastic
pruning of the look-aheads by eliminating each literal which has been derived during
a previous look-ahead at the same branch point: For each literal B ∈ ext(I, A), the
look-ahead for B is not performed in that case because B is guaranteed to be worse
than A w.r.t. the heuristic function of Smodels. This technique eliminates a high
number of look-aheads. It is not generally applicable, though, since it relies on a
monotonicity property of the heuristic in that it requires that ext(I, B) ⊂ ext(I, A)

implies that B is worse than A w.r.t. the heuristic. Our technique avoids a smaller
number of look-aheads, but it is applicable to every criterion determining the
heuristic value from the result of the look-ahead (i.e., its applicability requires that
the heuristic value of A depends only on ext(I, A)), and is therefore very general. In
fact, our technique can also be applied in Smodels, while the optimization employed
by Smodels cannot be used in DLV since the heuristic employed in DLV is not
monotonic in the sense described above.

We have implemented these heuristics and optimization techniques in the state-
of-the-art system DLV and we have compared their respective efficiency on a
number of benchmark problems taken from various domains. The experiments show
interesting results and evidence a couple of promising heuristic criteria for DLP. In
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particular, we verified that the newly proposed heuristic h4 significantly improves the
performance of DLV by consistently reducing the average execution time, and, in
some cases, by enlarging the maximum solvable size of considered problems for a
fixed time limit.

In addition, both proposed optimization techniques proved to be useful and
demonstrated to be somehow “orthogonal” to each other, since their integration
performs at least as well as the best individual technique, resulting in a relevant
improvement of the performance of the DLV system. In particular, the time spent for
looking-ahead often decreases by an exponential factor w.r.t. the size of the instance
to be solved.

We believe that this paper is not at all a conclusive work on heuristics for DLP.
Rather, it is a first step in this field that will hopefully stimulate further work on
the design and evaluation of heuristics for DLP, which are strongly needed to build
efficient DLP solvers. Ongoing work concerns the design and experimentation of
“look-back” heuristics for DLP, preliminary results in this direction are reported
in [13].

Acknowledgements This work was supported by M.I.U.R. within projects “Potenziamento e
Applicazioni della Programmazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la
rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione.”

Appendix: Experimental results

In Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, we report all the results
of the experiments.

Table 2 Running time (HAMPATH)

HAMPATH Running time

Nodes h1 h2 h3 h4

10 0.01 0.02 0.01 0.02
20 0.03 0.02 0.02 0.03
30 0.04 0.05 0.04 0.04
40 0.05 1,416.00 0.05 0.06
50 0.08 4,715,785.00 0.08 0.10
60 89,895.00 – 0.11 0.23
70 0.27 – – 0.15
80 624,185.00 – – 0.19
90 8,444.00 – – 0.27
100 157,409.00 – – 1,318.00
110 – – – 0.34
120 – – – 0.46
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Table 3 Number of look-aheads (HAMPATH)

HAMPATH Number of look-aheads

Nodes h1 h2 h3 h4

10 79.35 76.70 43.25 105.15
20 184.65 200.15 100.40 251.90
30 296.00 482.40 162.20 395.00
40 406.75 29,725.15 219.70 543.85
50 519.85 8,564,268.85 454.40 956.65
60 136,628.85 – 618.70 2,516.85
70 2,419.50 – – 959.25
80 687,010.15 – – 1,089.35
90 84,250.50 – – 1,498.05
100 1,509,390.80 – – 9,730.75
110 – – – 1,498.75
120 – – – 2,032.85

Table 4 Running time (3SAT)

3SAT Running time

Variables h1 h2 h3 h4

200 19,195.00 28,745.00 34,875.00 43,725.00
220 4,224.00 67,725.00 9,481.00 105,415.00
240 104,375.00 18,747.00 25,425.00 29,709.00
260 22,033.00 42,075.00 66,682.00 64,428.00
280 359,915.00 80,237.00 1,589,445.00 151,774.00
300 778,575.00 1,823,165.00 418,283.00 299,256.00
320 1,749,885.00 4,585,625.00 10,172,035.00 7,914,295.00
340 4,228,155.00 1,327.11 – –
360 9,386,135.00 2,252,265.00 – –
380 1,579,625.00 – – –

Table 5 Number of look-aheads (3SAT)

3SAT Number of look-aheads

Variables h1 h2 h3 h4

200 514,541.70 795,779.00 977,001.65 1,292,602.15
220 1,098,561.25 1,825,065.95 2,594,416.40 3,038,620.50
240 2,606,440.10 4,823,409.50 6,615,051.75 8,165,741.60
260 5,432,957.90 10,693,855.90 17,141,645.70 17,529,559.85
280 8,443,585.00 19,506,935.00 38,855,545.50 39,383,455.25
300 18,081,627.30 43,433,842.00 101,069,224.40 76,431,371.60
320 39,188,497.45 105,771,076.50 238,706,623.20 195,322,397.70
340 91,660,077.00 295,788,065.10 – –
360 199,284,838.60 495,248,261.90 – –
380 329,516,744.50 – – –
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Table 6 Running time (STRATCOMP)

STRATCOMP Running time

Companies h1 h2 h3 h4

700 0.23 0.34 0.27 0.13
800 0.29 0.43 0.48 0.19
900 0.37 0.52 1,373.00 0.19
1,000 2,705.00 0.67 1,047.00 0.24
1,100 0.53 0.81 2,115.00 0.32
1,200 0.62 0.92 5,287.00 0.32
1,300 0.72 1,134.00 111,995.00 0.35
1,400 0.82 12,875.00 96,865.00 0.40
1,500 0.92 1,481.00 13,054.00 0.48
1,600 10,465.00 1.65 247,975.00 0.61
1,700 11,845.00 1,964.00 189,625.00 0.58
1,800 13,225.00 20,635.00 74,577.00 0.63
1,900 14,645.00 2,395.00 1,963,045.00 0.69
2,000 16,365.00 2,676.00 1,567,705.00 0.81
2,100 17,135.00 29,985.00 434.19 0.86
2,200 20,075.00 32,415.00 299.56 10,375.00
2,300 2,083.00 35,495.00 8,931,435.00 0.98
2,400 23,495.00 3,738.00 5,560,345.00 15,335.00
2,500 2,569.00 44,955.00 – 12,385.00
2,600 27,775.00 45,385.00 – 13,525.00
2,700 30,625.00 5,073.00 – 13425.00
2,800 34,025.00 54,015.00 – 14,545.00
2,900 3,442.00 5,992.00 – 4,293.00
3,000 36,915.00 64,085.00 – 1.85

Table 7 Number of look-aheads (STRATCOMP)

STRATCOMP Number of look-aheads

Companies h1 h2 h3 h4

700 13,031.40 21,929.05 45,650.95 5,735.80
800 16,852.75 28,628.55 81,811.40 8,060.35
900 21,875.50 34,335.70 204,873.75 8,360.30
1,000 332,296.20 43,511.20 157,318.10 11,204.85
1,100 30,823.95 53,457.30 292,091.45 14,958.75
1,200 36,160.30 60,980.35 706,348.40 14,829.30
1,300 43,622.20 76,758.95 1,517,438.90 16,539.05
1,400 49,097.35 88,730.75 1,267,056.70 19,404.15
1,500 56,237.30 97,674.55 1,638,255.70 23,159.20
1,600 64,874.45 109,316.95 2,983,529.75 28,657.30
1,700 68,839.35 125,757.05 1,899,242.85 27,420.65
1,800 81,121.40 137,760.10 8,877,178.85 31,548.00
1,900 91,075.50 161,964.35 23,483,449.20 33,674.40
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Table 7 (continued)

STRATCOMP Number of look-aheads

Companies h1 h2 h3 h4

2,000 101,156.95 173,019.50 17,946,809.60 38,045.15
2,100 103,774.60 197,531.30 49,823,881.10 42,271.25
2,200 120,292.15 212,608.70 32,262,209.70 48,830.60
2,300 126,411.15 231,114.50 94,124,164.55 48,334.50
2,400 138,313.85 244,560.10 62,033,350.30 66,393.05
2,500 152,924.85 286,094.30 – 58,562.85
2,600 165,031.60 289,985.60 – 64,365.45
2,700 181,622.15 318,022.55 – 66,289.10
2,800 197,537.45 336,483.00 – 70,120.45
2,900 202,460.30 373,462.60 – 135,650.40
3,000 212,902.45 397,690.35 – 85,673.65

Table 8 Running time (2QBF)

2QBF Running time

Variables h1 h2 h3 h4

4 0.01 0.01 0.01 0.01
8 0.01 0.01 0.01 0.01
12 0.01 0.01 0.01 0.01
16 0.01 0.01 0.01 0.01
20 0.01 0.02 0.01 0.01
24 0.02 0.02 0.02 0.01
28 0.02 0.02 0.01 0.01
32 0.05 0.07 0.04 0.01
36 0.30 0.38 0.26 0.02
40 0.25 0.38 0.18 0.02
44 23,334.00 0.66 32,824.00 0.02
48 24,811.00 35,131.00 20,384.00 0.02
52 223,282.00 265,495.00 173,356.00 0.07
56 16,884.00 344,734.00 172,966.00 0.03
60 – – – 0.07
64 – – – 0.02
68 – – – 0.04
72 – – – 0.03
76 – – – 30,688.00
80 – – – 15,778.00
84 – – – 0.51
88 – – – 72,453.00
92 – – – 32,962.00
96 – – – 0.23
100 – – – 109,595.00
104 – – – 52,949.00
108 – – – 444,365.00
112 – – – 102,539.00
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Table 9 Number of look-aheads (2QBF)

2QBF Number of look-aheads

Variables h1 h2 h3 h4

4 13.24 13.04 6.52 13.10
8 47.08 47.16 23.58 46.08
12 106.56 108.68 54.22 101.72
16 244.88 229.28 113.52 203.88
20 330.56 314.40 156.84 277.04
24 669.72 687.28 307.72 379.12
28 733.60 742.28 368.74 512.40
32 3,040.84 3,417.36 1,768.20 787.00
36 13,534.00 13,545.84 6,754.06 982.80
40 20,653.24 21,751.40 10,703.06 1,392.08
44 96,369.88 33,646.40 71,258.36 1,806.88
48 171,224.16 170,043.60 86,794.20 2,573.92
52 1,129,738.32 1,043,890.68 522,107.62 13,135.96
56 1,392,740.76 1,910,637.04 958,009.30 4,064.52
60 – – – 17,808.16
64 – – – 3,425.52
68 – – – 8,326.52
72 – – – 7,530.52
76 – – – 867,439.12
80 – – – 440,212.76
84 – – – 164,039.12
88 – – – 2,323,932.52
92 – – – 952,475.08
96 – – – 80,552.52
100 – – – 3,618,697.28
104 – – – 1,975,514.12
108 – – – 14,342,517.28
112 – – – 3,684,184.80

Table 10 Running time (HAMPATH)

HAMPATH Running time

Nodes nle.npl le.npl nle.pl le.pl

10 0.02 0.02 0.02 0.02
20 0.03 0.02 0.02 0.02
30 0.04 0.04 0.04 0.04
40 0.06 0.05 0.06 0.05
50 0.10 0.09 0.08 0.09
60 0.23 0.18 0.19 0.20
70 0.15 0.12 0.12 0.12
80 0.19 0.15 0.15 0.16
90 0.27 0.21 0.21 0.21
100 1,318.00 10,125.00 0.99 10,885.00
110 0.34 0.26 0.26 0.27
120 0.46 0.35 0.35 0.36
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Table 11 Number of look-aheads (HAMPATH)

HAMPATH Number of look-aheads

Nodes nle.npl le.npl nle.pl le.pl

10 105.15 57.55 66.35 57.55
20 251.90 132.90 142.70 132.90
30 395.00 206.90 217.50 206.70
40 543.85 284.75 295.80 284.60
50 956.65 529.15 539.90 529.00
60 2,516.85 1,541.35 1,552.75 1,541.05
70 959.25 501.75 513.75 501.55
80 1,089.35 567.95 579.85 567.75
90 1,498.05 816.95 828.80 816.80
100 9,730.75 6,028.55 6,040.35 6,028.35
110 1,498.75 782.45 793.25 782.25
120 2,032.85 1,115.15 1,126.20 1,114.80

Table 12 Running time (3SAT)

3SAT Running time

Variables nle.npl le.npl nle.pl le.pl

200 43,725.00 28,355.00 30,525.00 27,445.00
220 105,415.00 6,813.00 7,415.00 6.61
240 29,709.00 19,054.00 21,127.00 18,617.00
260 64,428.00 41,016.00 459,785.00 40,218.00
280 151,774.00 960,185.00 109,531.00 945,885.00
300 299,256.00 1,887,345.00 216,654.00 186.38
320 7,914,295.00 4,948,535.00 575,797.00 491,587.00
340 1,493,447.00 17,560,215.00 1,489,379.00

Table 13 Number of look-aheads (3SAT)

3SAT Number of look-aheads

Variables nle.npl le.npl nle.pl le.pl

200 1,292,602.15 655,452.35 612,828.40 479,154.00
220 3,038,620.50 1,539,643.70 1,461,513.85 1,139,557.65
240 8,165,741.60 4,134,930.20 4,050,509.00 3,139,523.40
260 17,529,559.85 8,869,320.35 8,706,728.95 6,733,015.45
280 39,383,455.25 19,920,812.65 20,129,210.15 15,450,580.35
300 76,431,371.60 38,635,094.50 39,267,676.20 30,041,871.00
320 195,322,397.70 98,691,034.80 101,875,220.60 77,573,921.70
340 288,756,198.70 303,486,353.80 229,903,935.70
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Table 14 Running time (STRATCOMP)

STRATCOMP Running time

Companies nle.npl le.npl nle.pl le.pl

700 0.13 0.13 0.10 0.10
800 0.19 0.18 0.12 0.13
900 0.19 0.19 0.14 0.15
1,000 0.24 0.24 0.18 0.19
1,100 0.32 0.32 0.19 0.20
1,200 0.32 0.32 0.23 0.23
1,300 0.35 0.36 0.26 0.26
1,400 0.40 0.40 0.31 0.31
1,500 0.48 0.48 0.30 0.31
1,600 0.61 0.60 0.36 0.38
1,700 0.58 0.58 0.36 0.38
1,800 0.63 0.63 0.43 0.44
1,900 0.69 0.69 0.45 0.46
2,000 0.81 0.81 0.47 0.49
2,100 0.86 0.86 0.58 0.59
2,200 10,375.00 1,043.00 0.55 0.56
2,300 0.98 0.98 0.62 0.63
2,400 15,335.00 1,529.00 0.62 0.63
2,500 12,385.00 1,212.00 0.73 0.74
2,600 13,525.00 13,595.00 0.80 0.81
2,700 13,425.00 1,337.00 0.77 0.79
2,800 14,545.00 1,437.00 0.88 0.89
2,900 4,293.00 4,292.00 0.89 0.92
3,000 1.85 1,869.00 0.99 10,085.00

Table 15 Number of look-aheads (STRATCOMP)

STRATCOMP Number of look-aheads

Companies nle.npl le.npl nle.pl le.pl

700 5,735.80 5,650.15 3,217.90 3,205.70
800 8,060.35 7,921.45 3,903.05 3,892.15
900 8,360.30 8,222.45 4,637.85 4,625.95
1,000 11,204.85 11,018.65 5,865.60 5,837.15
1,100 14,958.75 14,750.40 6,233.80 6,219.45
1,200 14,829.30 14,589.55 7,209.30 7,173.50
1,300 16,539.05 16,278.80 8,153.40 8,123.75
1,400 19,404.15 19,073.40 10,237.85 10,200.40
1,500 23,159.20 22,781.00 10,529.40 10,478.70
1,600 28,657.30 28,195.65 12,328.80 12,280.75
1,700 27,420.65 26,906.55 12,500.10 12,435.45
1,800 31,548.00 30,961.90 14,756.15 14,704.00
1,900 33,674.40 32,990.90 16,052.90 15,981.85
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Table 15 (continued)

STRATCOMP Number of look-aheads

Companies nle.npl le.npl nle.pl le.pl

2,000 38,045.15 37,309.70 16,165.05 16,090.95
2,100 42,271.25 41,445.65 19,703.20 19,653.40
2,200 48,830.60 48,021.35 19,322.55 19,227.75
2,300 48,334.50 47,312.10 21,500.60 21,381.20
2,400 66,393.05 65,436.50 22,300.80 22,184.85
2,500 58,562.85 57,553.60 24,590.80 24,494.80
2,600 64,365.45 63,173.40 27,096.30 26,920.30
2,700 66,289.10 65,087.45 27,662.65 27,571.85
2,800 70,120.45 68,819.15 30,066.35 29,971.10
2,900 135,650.40 133,928.70 30,800.35 30,649.55
3,000 85,673.65 84,038.60 33,627.30 33,469.70

Table 16 Running time (2QBF)

2QBF Running time

Variables nle.npl le.npl nle.pl le.pl

4 0.01 0.01 0.01 0.01
8 0.01 0.01 0.01 0.01
12 0.01 0.01 0.01 0.01
16 0.01 0.01 0.01 0.01
20 0.01 0.01 0.01 0.01
24 0.01 0.01 0.01 0.01
28 0.01 0.01 0.01 0.01
32 0.01 0.01 0.02 0.01
36 0.02 0.01 0.02 0.01
40 0.02 0.02 0.02 0.02
44 0.02 0.02 0.02 0.02
48 0.02 0.02 0.02 0.02
52 0.07 0.06 0.07 0.07
56 0.03 0.02 0.02 0.02
60 0.07 0.06 0.07 0.06
64 0.02 0.02 0.02 0.02
68 0.04 0.04 0.04 0.04
72 0.03 0.03 0.03 0.03
76 30,688.00 28,618.00 31,274.00 29,549.00
80 15,778.00 14,719.00 16,102.00 15,212.00
84 0.51 0.47 0.52 0.49
88 72,453.00 66,394.00 73,765.00 68,642.00
92 32,962.00 30,524.00 33,556.00 31,431.00
96 0.23 0.21 0.23 0.21
100 109,595.00 9,967.00 112,119.00 103,267.00
104 52,949.00 47,661.00 54,132.00 49,446.00
108 444,365.00 408,852.00 453,752.00 42,249.00
112 102,539.00 93,693.00 104,998.00 97,255.00
114 – 709,231.00 – –
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Table 17 Number of look-aheads (2QBF)

2QBF Number of look-aheads

Variables nle.npl le.npl nle.pl le.pl

4 13.10 6.58 12.70 6.58
8 46.08 23.04 44.26 22.72
12 101.72 50.86 97.10 49.76
16 203.88 101.94 192.40 97.26
20 277.04 138.52 276.28 138.28
24 379.12 189.56 379.12 189.56
28 512.40 256.20 512.40 256.20
32 787.00 393.50 787.00 393.50
36 982.80 491.40 982.80 491.40
40 1,392.08 696.04 1,392.08 696.04
44 1,806.88 903.44 1,806.88 903.44
48 2,573.92 1,286.96 2,573.92 1,286.96
52 13,135.96 6,567.98 13,135.96 6,567.98
56 4,064.52 2,032.26 4,064.52 2,032.26
60 17,808.16 8,904.08 17,808.16 8,904.08
64 3,425.52 1,712.76 3,425.52 1,712.76
68 8,326.52 4,163.26 8,326.52 4,163.26
72 7,530.52 3,765.26 7,530.52 3,765.26
76 867,439.12 433,719.56 867,439.12 433,719.56
80 440,212.76 220,106.38 440,212.76 220,106.38
84 164,039.12 82,019.56 164,039.12 82,019.56
88 2,323,932.52 1,161,966.26 2,323,932.52 1,161,966.26
92 952,475.08 476,237.54 952,475.08 476,237.54
96 80,552.52 40,276.26 80,552.52 40,276.26
100 3,618,697.28 1,809,348.64 3,618,697.28 1,809,348.64
104 1,975,514.12 987,757.06 1,975,514.12 987,757.06
108 14,342,517.28 7,171,258.64 14,342,517.28 7,171,258.64
112 3,684,184.80 1,842,092.40 3,684,184.80 1,842,092.40
114 – 10,882,713.96 – –
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