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Abstract

DLV is the state-of-the-art system for evaluating disjunctive answer set programs. As in most Answer Set Programming (ASP)
systems, its implementation is divided in a grounding part and a propositional model-finding part. In this paper, we focus on the
latter, which relies on an algorithm using backtracking search.

Recently, DLV has been enhanced with backjumping techniques, which also involve a reason calculus, recording causes for
the truth or falsity of atoms during the search. This reason calculus allows for looking back in the search process for identifying
areas in the search space in which no answer set will be found. We can also define heuristics which make use of the information
about reasons, preferring literals that were the reasons of more inconsistent branches of the search tree. This heuristics thus use
information gathered earlier in the computation, and are therefore referred to as look-back heuristics.

In this paper, we formulate suitable look-back heuristics and focus on the experimental evaluation of the look-back techniques
that we have implemented in DLV, obtaining the system DLVLB. We have conducted a thorough experimental analysis considering
both randomly-generated and structured instances of the 2QBF problem, the canonical problem for the complexity classes ΣP

2
and ΠP

2 . Any problem in these classes can be expressed uniformly using ASP and can therefore be solved by DLV. We have
also evaluated the same benchmark using “native” QBF solvers, which were among the best solvers in recent QBF Evaluations.
The comparison shows that DLV endowed with look-back techniques is competitive with the best available QBF solvers on such
instances.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Answer Set Programming (ASP) [1,2] is a purely declarative programming paradigm based on nonmonotonic
reasoning and logic programming. The idea of answer set programming is to represent a given computational prob-
lem by a logic program the answer sets of which correspond to solutions, and then use an answer set solver to find
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such solutions [3]. The language of ASP is based on rules, allowing for both disjunction in rule heads and non-
monotonic negation in the body. ASP is very expressive, allowing for representing every property in the second level
of the polynomial hierarchy. Therefore, ASP is strictly more expressive than using encodings based on satisfiability
of propositional formulas (unless P = NP).

DLV is the state-of-the-art disjunctive ASP system, and it is based on an algorithm relying on backtracking search,
like most other competitive ASP systems, which include the disjunctive solvers GnT [4] and Cmodels [5]. Recently,
DLV has been enhanced with a backjumping procedure [6]. Backjumping [7,8] refers to an optimized recovery upon
inconsistency during the search: instead of restoring the state of the search to the previous choice point, irrelevant
choices for the encountered inconsistency are “jumped over,” thereby restoring the search state to the previous relevant
choice point. A crucial point is how relevance to an inconsistency can be determined. In [6], the necessary informa-
tion for deciding relevance is recorded by means of a reason calculus, which collects information about the literals
(“reasons”) whose truth has caused the truth of other derived literals. Look-back heuristics [9] further strengthen the
potential of backjumping by using the information made explicit by the reasons. The idea of this family of heuristics
is to preferably choose those atoms which frequently caused inconsistencies. This significantly differs from classi-
cal ASP heuristics that use information arising from tentatively applying the simplification part (look-ahead) of the
algorithm and analyzing the result. Look-back optimization techniques and heuristics have been shown, in various
research areas, to be very effective on data intensive benchmarks coming from applications, like planning and formal
verification (see, e.g., the reports of the various Competitions).

In this paper, we report on the formulation, implementation, and especially the experimental evaluation of look-
back heuristics for DLV, yielding the system DLVLB. Since the hardest problems that can be uniformly represented
by disjunctive logic programs, the language accepted by DLVLB, are hard for the class ΣP

2 or ΠP
2 , we have used

the canonical problem for these classes, 2QBF—quantified boolean formulas with two alternating quantifiers, for
evaluation purposes. In the literature of SAT a dichotomy has been reported, according to which random problem
instances generally do not gain much from look-back techniques, while structured problem instances do—we have
considered both types of problems in our experiments in order to assess whether a similar behavior can be observed
for ASP.

DLVLB provides several options regarding the initialization of the heuristics and the truth value to be assigned
to an atom chosen by the heuristics. In our experimental analysis, we provide a comprehensive comparison of the
impact of these options, and demonstrate how the new components of DLVLB enhance the efficiency of DLV. We
also provide a comparison to the other competitive disjunctive ASP systems GnT and Cmodels. Moreover, since
we consider 2QBFs as a benchmark, we have also compared DLVLB to the performance of native QBF solvers. In
particular, we have chosen those solvers which were the best in recent QBF Evaluations over the various categories
and which are freely available. As a result, we observe that DLVLB clearly outperforms its direct competitors GnT
and Cmodels, and that DLVLB is also on par with the best available QBF solvers on 2QBF instances. Considering its
knowledge representation merits and its computational competitiveness, we conjecture that DLVLB is currently the
system of choice for representing and solving problems which are on the second level of the polynomial hierarchy.

The paper is organized as follows. In Section 2 we review syntax, semantics and some properties of Answer Set
Programming. In Section 3 we present first in Section 3.1 the basic algorithm underlying the DLV system and its
extension by a reason calculus and backjumping. Since a main parameter of this algorithm is a heuristic choice to
be made, in Section 3.2 we review some choice criteria from literature and define new look-back criteria in several
variants. In Section 4 we then present the settings of the performed experiments, report the obtained results and discuss
them. We discuss related work in Section 5 and draw our conclusions in Section 6.

2. Answer Set Programming language

A (disjunctive) rule r is a formula

a1 ∨ · · · ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an, b1, . . . , bm are function-free atoms, n � 0, m � k � 0, and “not” is the nonmonotonic negation as
failure operator. The disjunction a1 ∨ · · · ∨ an is the head of r , while b1, . . . , bk, not bk+1, . . . , not bm is the body,
of which b1, . . . , bk is the positive body, and not bk+1, . . . , not bm is the negative body of r . We will also denote
the head and (positive or negative) body as sets containing the respective literals.
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A rule r with empty negative body is called positive. A rule with empty head is referred to as integrity constraint
or just constraint. If the body of a rule is empty we usually omit the :– sign.

An (ASP) program P is a finite set of rules; P is a positive program if all rules in P are positive (i.e., not-free).
An object (atom, rule, etc.) containing no variables is called ground or propositional. A rule is safe if each variable in
that rule also appears in at least one positive literal in the body of that rule. A program is safe if each of its rules is
safe and in the following we will assume that all programs are safe.

Example 1. Consider the following ASP program P1:

x(U) ∨ x(V ) :– d(U,V ).

g :– x(U), x(V ), d(U,V ), not e(U,V ).

:– g, x(U), x(V ), d(U,V ).

d(1,2). d(3,4). d(5,6).

e(1,5). e(1,6).

The first rule is a positive and disjunctive rule, where its head is {x(U), x(V )}, its positive body is {d(U,V )}, and its
negative body is empty. The second rule is a non-disjunctive rule with head {g}, positive body {x(U), x(V ), d(U,V )},
and negative body {not e(U,V )}. The third rule is a positive integrity constraint with empty head, positive body
{g,x(U), x(V ), d(U,V )}, and empty negative body. The last five rules are all ground facts. All of these rules are safe.

Given a program P , let the Herbrand Universe UP be the set of all constants appearing in P and the Herbrand
Base BP be the set of all possible ground atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Given a rule r , Ground(r) denotes the set of rules obtained by applying all possible substitutions σ from the
variables in r to elements of UP . Similarly, given a program P , the ground instantiation Ground(P) of P is the set⋃

r∈P Ground(r).

Example 2. Reconsider program P1 of Example 1. UP1 = {1, . . . ,6} and

BP1 = {
x(1), . . . , x(6)

} ∪
⋃

(x,y)∈{1,...,6}×{1,...,6}

{
e(x, y), d(x, y)

}
.

The program Ground(P1) is

x(1) ∨ x(1) :– d(1,1).

x(1) ∨ x(2) :– d(1,2).

...

x(6) ∨ x(5) :– d(6,5).

x(6) ∨ x(6) :– d(6,6).

g :– x(1), x(1), d(1,1), not e(1,1).

g :– x(1), x(2), d(1,2), not e(1,2).

...

g :– x(6), x(5), d(6,5), not e(6,5).

g :– x(6), x(6), d(6,6), not e(6,6).

:– g, x(1), x(1), d(1,1), not e(1,1).

:– g, x(1), x(2), d(1,2), not e(1,2).
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...

:– g, x(6), x(5), d(6,5), not e(6,5).

:– g, x(6), x(6), d(6,6), not e(6,6).

d(1,2). d(3,4). d(5,6).

e(1,5). e(1,6).

Note that the last five rules were already ground in P1.

For every program P , its answer sets are defined using its ground instantiation Ground(P) in two steps: first answer
sets of positive programs are defined, then a reduction of general programs to positive ones is given, which is used
to define answer sets of general programs. A set L of ground literals is said to be consistent if, for every atom � ∈ L,
its complementary literal not � is not contained in L. An interpretation I for P is a consistent set of ground literals
over atoms in BP .1 A ground literal � is true w.r.t. I if � ∈ I ; � is false w.r.t. I if its complementary literal is in I ;
� is undefined w.r.t. I if it is neither true nor false w.r.t. I . Interpretation I is total if, for each atom A in BP , either
A or not A is in I (i.e., no atom in BP is undefined w.r.t. I ). A total interpretation M is a model for P if, for every
r ∈ Ground(P), at least one literal in the head is true w.r.t. M whenever all literals in the body are true w.r.t. M . X is
an answer set for a positive program P if it is minimal w.r.t. set inclusion among the models of P .

Example 3. For the positive ground program P2 = {a ∨ b ∨ c., :– a.}, the two interpretations {b, not a, not c} and
{c, not a, not b} are the only answer sets. For the positive ground program P3 = {a ∨b∨c., :– a., b :– c., c :– b.},
{b, c, not a} is the only answer set.

The reduct or Gelfond–Lifschitz transform of a general ground program P w.r.t. an interpretation X is the positive
ground program PX , obtained from P by (i) deleting all rules r ∈ P the negative body of which is false w.r.t. X and
(ii) deleting the negative body from the remaining rules. An answer set of a general program P is a model X of P
such that X is an answer set of Ground(P)X .

Example 4. For the negative ground program P4 = {a :– not b.}, A = {a, not b} is the only answer set, as PA
4 =

{a.}. For example for B = {not a, b}, PB
4 = ∅, and so B is not an answer set.

Example 5. Reconsider program P1 from Example 1 and its grounding Ground(P1) of Example 2. First, we note that
any reduct of Ground(P1) contains the following program Pf :

x(1) ∨ x(1) :– d(1,1).

x(1) ∨ x(2) :– d(1,2).

...

x(6) ∨ x(5) :– d(6,5).

x(6) ∨ x(6) :– d(6,6).

:– g, x(1), x(1), d(1,1), not e(1,1).

:– g, x(1), x(2), d(1,2), not e(1,2).

...

:– g, x(6), x(5), d(6,5), not e(6,5).

:– g, x(6), x(6), d(6,6), not e(6,6).

1 We represent interpretations as set of literals, since we have to deal with partial interpretations in the next sections.
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d(1,2). d(3,4). d(5,6).

e(1,5). e(1,6).

So any minimal model of a reduct, and thus any answer set, must contain F+ = {d(1,2), d(3,4), d(5,6), e(1,5),

e(1,6)}. It is also easy to see that any minimal model of a reduct must contain F− = ⋃
(x,y)∈{1,...,6}×{1,...,6}{not d(x, y),

not e(x, y)} \ {not d(1,2), not d(3,4), not d(5,6), not e(1,5), not e(1,6)} as there is no reason for the truth
of the atoms in F−. So that means that for any possible answer set A ⊃ F+ ∪ F−, the reduct Ground(P1)

A contains
Pf and

g :– x(1), x(1), d(1,1).

g :– x(1), x(2), d(1,2).

g :– x(1), x(2), d(1,3).

g :– x(1), x(2), d(1,4).

g :– x(1), x(1), d(2,1).

g :– x(1), x(2), d(2,2).

...

g :– x(6), x(5), d(6,5).

g :– x(6), x(6), d(6,6).

The reducts of all possible answer sets are therefore equal, and so it is sufficient to isolate those A ⊃ F+ ∪ F−
which are minimal models of this reduct program, and thus answer sets:

{
x(1), not x(2), x(3), not x(4), x(5), not x(6)

} ∪ F+ ∪ F−,{
not x(1), x(2), x(3), not x(4), x(5), not x(6)

} ∪ F+ ∪ F−,{
x(1), not x(2), not x(3), x(4), x(5), not x(6)

} ∪ F+ ∪ F−,{
not x(1), x(2), not x(3), x(4), x(5), not x(6)

} ∪ F+ ∪ F−,{
x(1), not x(2), x(3), not x(4), not x(5), x(6)

} ∪ F+ ∪ F−,{
not x(1), x(2), x(3), not x(4), not x(5), x(6)

} ∪ F+ ∪ F−,{
x(1), not x(2), not x(3), x(4), not x(5), x(6)

} ∪ F+ ∪ F−,{
not x(1), x(2), not x(3), x(4), not x(5), x(6)

} ∪ F+ ∪ F−.

3. Answer Set computation algorithms

In this section, we briefly describe the main steps of the computational process performed by ASP systems. We
will refer particularly to the computational engine of the DLV system, which will be used for the experiments, but
also other ASP systems employ a similar procedure. In general, an answer set program P contains variables. The
first step of a computation of an ASP system eliminates these variables, generating a ground instantiation ground(P)

of P .2 The subsequent computations, which constitute the non-deterministic core of the system, are then performed
on ground(P) by the so called Model Generator procedure.

In the following paragraphs, we briefly illustrate the original model generation algorithm of DLV and an enhance-
ment of it by means of a backjumping technique. Finally, we report a description of all the heuristics, that will later
be compared in the experiments.

2 Note that ground(P) is usually not the full Ground(P); rather, it is a subset (often much smaller) of it having precisely the same answer sets as
P [10].



M. Maratea et al. / J. Algorithms 63 (2008) 70–89 75
bool ModelGenerator (Interpretation & I ) {
I = DetCons (I );
if (I == L) then

return false;
if (“no atom is undefined in I ”)

return IsAnswerSet(I );
Select an undefined atom A using a heuristic;
if (ModelGenerator (I ∪ {A}))

return true;
else

return ModelGenerator (I ∪ {not A});
};

Fig. 1. Computation of Answer Sets without backjumping.

3.1. The Model Generator algorithms

Note that the algorithms presented here are abstractions of actual implementations, which have to deal with several
additional technical details and optimizations. For more details we refer to [11] for the basic technique and to [6] for
the enhancement by backjumping. Moreover, the algorithms presented here compute one answer set for simplicity,
however they can be modified to compute all or n answer sets in a straightforward way.

The basic method is the Model Generator algorithm sketched in Fig. 1. This function is initially called with para-
meter I set to the empty interpretation, in which all atoms are undefined.3

If the program P has an answer set, then the function returns True, setting I to the computed answer set; otherwise
it returns False. The Model Generator is similar to the DPLL procedure employed by SAT solvers. It first calls a
function DetCons, which returns the extension of I with the literals that can be deterministically inferred (or the
set of all literals L upon inconsistency). This function is similar to a unit propagation procedure employed by SAT
solvers, but exploits the peculiarities of ASP for making further inferences (e.g., it exploits the knowledge that every
answer set is a minimal model). If DetCons does not detect any inconsistency, an atom A is selected according to a
heuristic criterion and Model Generator is called on I ∪ {A} and on I ∪ {not A}. The atom A plays the role of a
branching variable of a SAT solver. And indeed, like for SAT solvers, the selection of a “good” atom A is crucial for
the performance of an ASP system. In Section 3.2, we will describe some heuristic criteria for the selection of such
branching atoms.

If no atom is left for branching, the Model Generator has produced a “candidate” answer set, the stability of which
is subsequently verified by IsAnswerSet(I ). This function checks whether the given “candidate” I is a minimal model
of the program Ground(P)I and if so, outputs I . IsAnswerSet(I ) returns True if the computation should be stopped
and False otherwise. Note that, if during the execution of the Model Generator function a contradiction arises, or the
stable model candidate is not a minimal model, Model Generator backtracks and modifies the last choice. This kind
of backtracking is called chronological backtracking.

To give an intuition on how backjumping is supposed to work, consider the following simple example.
Consider the following program, which is a simplified ground version of P1 of Example 1.

r1: x(1) ∨ x(2). r2: x(3) ∨ x(4). r3: x(5) ∨ x(6).

r4: g :– x(1). x(5), r5: :– g, x(1), x(5).

r6: g :– x(1), x(6). r7: :– g, x(1), x(6).

and suppose that the search tree is as depicted in Fig. 2.
Here we first assume x(1) to be true, deriving x(2) to be false (from r1 to ensure the minimality of answer sets).

Then we assume x(3) to be true, deriving x(4) to be false (from r2 for minimality). Third, we assume x(5) to be
true and derive x(6) to be false (from r3 for minimality) and g to be true (from r4 by forward inference). This
truth assignment violates constraint r5 (where g must be false), yielding an inconsistency. We continue the search by
inverting the last choice, that is, we assume x(5) to be false and we derive x(6) to be true (again from r3 to preserve

3 Observe that the interpretations built during the computation are 3-valued, that is, a literal can be True, False or Undefined w.r.t. I .
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Fig. 2. Backtracking vs backjumping.

minimality) and g to be true (from r6 by forward inference), but obtain another inconsistency (because constraint r7
is violated, here g must also be false).

At this point, Model Generator goes back to the previous choice point, in this case inverting the truth value of x(3)

(cf. the arc labelled BK in Fig. 2).
Now it is important to note that the inconsistencies obtained are independent of the choice of x(3), and only the

truth value of x(1) and x(5) are the reasons for the encountered inconsistencies. In fact, no matter what the truth value
of x(3) is, if x(1) is true then any truth assignment for x(5) will lead to an inconsistency. Looking at Fig. 2, this means
that in the whole subtree below the arc labelled x(1) no stable model can be found. It is therefore obvious that the
chronological backtracking search explores branches of the search tree that cannot contain a stable model, performing
a lot of useless work. A better policy would be to go back directly to the point at which we assumed x(1) to be true
(see the arc labelled BJ in Fig. 2). In other words, if we know the reasons of an inconsistency, we can backjump
directly to the closest choice that caused the inconsistent subtree.

In practice, once a literal has been assigned a truth value during the computation, we can associate a reason for
that fact with the literal. For instance, given a rule a :– b, c, not d., if b and c are true and d is false in the current
partial interpretation, then a will be derived as true (by Forward Propagation). In this case, we can say that a is true
“because” b and c are true and d is false. A special case are chosen literals, as their only reason is the fact that they
have been chosen. The chosen literals can therefore be seen as being their own reason, and we may refer to them as
elementary reasons. All other reasons are consequences of elementary reasons, and hence aggregations of elementary
reasons. Each literal l derived during the propagation (i.e., DetCons) will have an associated set of positive integers
R(l) representing the reason of l, which are essentially the recursion levels of the chosen literals which entail l.
Therefore, for any chosen literal c, |R(c)| = 1 holds.

The process of defining reasons for derived (non-chosen) literals is called reason calculus. For a detailed definition
of this calculus we refer to [6].

When an inconsistency is determined, we use reason information in order to understand which chosen literals have
to be undone in order to avoid the found inconsistency. Implicitly this also means that all choices which are not in the
reason do not have any influence on the inconsistency. We can isolate two main types of inconsistencies: (i) deriving
conflicting literals, and (ii) failing stability checks. Of these two, the second one is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, that DetCons determines that an atom a and its negation not a

should both hold. In this case, the reason of the inconsistency is—rather straightforward—the combination of the
reasons for a and not a: R(a) ∪ R(not a).



M. Maratea et al. / J. Algorithms 63 (2008) 70–89 77
bool ModelGeneratorBJ (Interpretation & I , Reason & IR,
int & bj_level ) {

bj_level ++;
int curr_level = bj_level;

I = DetConsBJ (I , IR);
if (I ==L) return false;
if (“no atom is undefined in I ”)

if IsAnswerSetBJ (I , IR); return true;
else

bj_level = MAX (IR);
return false;

Reason posIR, negIR;

Select an undefined atom A using a heuristic;

R(A) = {curr_level};
if (ModelGeneratorBJ (I ∪ {A}, posIR, bj_level)

return true;
if (bj_level < curr_level)

IR = posIR; return false;

bj_level = curr_level;
R(not A) = {curr_level};
if (ModelGeneratorBJ (I ∪ {not A}, negIR, bj_ level)

return true;

if (bj_level < curr_level)
IR = negIR; return false;

IR = trim(curr_level, Union (posIR, negIR));
bj_level = MAX (IR);
return false;

};

Fig. 3. Computation of Answer Sets with backjumping.

Inconsistencies from failing stability checks are a peculiarity of disjunctive ASP, as non-disjunctive ASP systems
usually do not employ a stability check. This situation occurs if the function IsAnswerSet(I ) of Model Generator
returns false, hence if the checked interpretation (which is guaranteed to be a model) is not stable. The reason for
such an inconsistency is always based on an unfounded set, which has been determined inside IsAnswerSet(I ) as a
side-effect. Using this unfounded set, the reason for the inconsistency is composed of the reasons of literals which
satisfy rules containing unfounded atoms in their head (the cancelling assignments of these rules). The information
on reasons for inconsistencies can be exploited for backjumping by going back to the closest choice which is a reason
for the inconsistency, rather than always to the immediately preceding choice.

The function ModelGeneratorBJ (shown in Fig. 3) is a modification of the Model Generator function, which im-
plements backjumping. To this end, two new parameters IR and bj_level are introduced, which hold the reason of the
inconsistency encountered in the subtrees whose current recursion level is the root, and the recursion level to back-
track or backjump to. When going forward in recursion, bj_level is also used to hold the current level. The variables
curr_level, posIR, and negIR are local to ModelGeneratorBJ and used for holding the current recursion level, and the
reasons for the positive and negative recursive branch, respectively.

Instead of DetCons, here DetConsBJ is used, which additionally computes the reasons of the inferred literals and
if it encounters an inconsistency it will return the reason of this inconsistency in its second parameter IR. Instead of
IsAnswerSet, ModelGeneratorBJ uses IsAnswerSetBJ, which additionally computes the inconsistency reason in case
of a failure of the stability check, returning it in its second parameter.

Whenever there is the possibility to backjump, we set bj_level to the maximal level of the inconsistency reason (or
0 if it is the empty set) before returning from this instance of ModelGeneratorBJ, the idea being that the maximum
level in IR corresponds to the nearest (chronologically) choice causing the failure.
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The information provided by reasons can be further exploited in a backjumping-based solver. In particular, in the
following paragraph we describe how reasons for inconsistencies can be exploited for defining look-back heuristics.

3.2. Heuristics

In this paragraph we will first describe the two main heuristics for DLV (based on look-ahead), and subsequently
define several new heuristics based on reasons (or based on look-back), which are computed as side-effects of the
backjumping technique. We assume that a ground ASP program P and an interpretation I have been fixed. We first
recall the “standard” DLV heuristic hUT [12], which has recently been refined to yield the heuristic hDS [13], which
is more “specialized” for hard disjunctive programs (like 2QBF). These are look-ahead heuristics, that is, the heuristic
value of a literal Q depends on the result of taking Q true and computing its consequences. Given a literal Q, ext(Q)

will denote the interpretation resulting from the application of DetCons on I ∪ {Q}; without loss of generality, we
assume that ext(Q) is consistent, otherwise Q is automatically set to false and the heuristic is not evaluated on Q at
all.

Standard Heuristic of DLV(hUT). This heuristic, which is still the default in the DLV distribution, has been pro-
posed in [12], where it was shown to be very effective on many relevant problems. It exploits a peculiar property
of ASP, namely supportedness: for each true atom A of an answer set I , there exists a rule r of the program such
that the body of r is true w.r.t. I and A is the only true atom in the head of r . Since an ASP system must eventually
converge to a supported interpretation, hUT is geared towards choosing those literals which minimize the number of
UnsupportedTrue(UT) atoms, i.e., atoms which are true in the current interpretation but still miss a supporting rule.
The heuristic hUT is “balanced,” that is, the heuristic values of an atom Q depend on both the effect of taking Q and
not Q, the decision between Q and not Q is based on the UT atoms criteria.

Enhanced Heuristic of DLV(hDS). The heuristic hDS [14] is based on hUT , and is different from hUT only for pairs
of literals which are not ordered by hUT . The idea of the additional criterion is that interpretations having a “higher
degree of supportedness” are preferred, where the degree of supportedness is the average number of supporting rules
for the true atoms. Intuitively, if all true atoms have many supporting rules in a model M , then the elimination of a
true atom from the interpretation would violate many rules, and it becomes less likely finding a subset of M which is
a model of PM (which would disprove that M is an answer set). Interpretations with a higher degree of supportedness
are therefore more likely to be answer sets. Just like hUT , hDS is “balanced.”

The Family of Look-back Heuristics (hLB). We next describe a family of new look-back heuristics hLB, motivated
by heuristics implemented in SAT solvers like Chaff [9]. Different to hUT and hDS, which provide a partial order
on potential choices, hLB assigns a number V (L) to each literal L (thereby inducing an implicit order). The basic
idea is that this number is periodically updated using information about the inconsistencies that the assumption of the
respective literal caused. The effect of basing this value on previous chosen literals is twofold: first, it causes literals
to be chosen that have also previously been chosen in a different subtree of the search, thereby avoiding blindly
choosing literals of which nothing is known yet. Second, it favors the choice of literals which are more likely to
lead to inconsistent sub-branches, which in general has the effect of more likely generating a smaller search tree.4

Whenever a literal is to be selected, the literal with the largest V (L) will be chosen. If several literals have the same
V (L), then negative literals are preferred over positive ones, but among negative and positive literals having the same
V (L), the ordering will be random.

In more detail, for each literal L, two values are stored: V (L), the current heuristic value, and I (L), the number of
inconsistencies L has been a reason for since the most recent heuristic value update. After having chosen k literals,
V (L) is updated for each L as follows: V (L) := V (L)/2 + I (L). The division is often referred to as “aging” and
has the effect of giving more importance to recent data. The division itself is assumed to be defined on integers by
rounding the result. It is important to note that I (L) �= 0 can hold only for literals that have been chosen earlier (in a
temporal sense, thus in a previously explored branch of the search tree) during the computation. This criterion is fairly

4 Note that the search tree is not stored in its entirety in DLV, but only one partial branch at a time.
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simple and obviously very efficient to compute once the reason calculus is used. Especially compared to the previously
described look-ahead based criteria, which involve a fairly heavy computation for almost every literal, computing this
criterion takes negligible time, especially if backjumping is employed, in which the reasons have to be calculated and
maintained anyway.

A crucial point left basically unspecified by the definition so far are the initial values of V (L). Given that, initially,
no information about inconsistencies is available, all V (L) will initially be 0, and so a random choice would be taken.
It is not immediately clear how to define this initialization in the best way. Yet, initializing these values seems to be
crucial, as making poor choices in the beginning of the computation can be fatal for efficiency, especially since the
heuristics favor choosing literals that have already been chosen earlier.

Here, we present two possibilities for initialization: the first, denoted by hMF
LB , is done by initializing V (L) to the

number of occurrences of L in the program rules. The motivation for hMF
LB is that it is fast to compute and stays with

the “no look-ahead” and “most constrained first” ideas of hLB. The second initialization, denoted by hLF
LB , involves

ordering the atoms with respect to hDS, and initializing V (L) by the rank in this ordering. The motivation for hLF
LB is

to try to use as much initialization as possible initially, as the first choices can be critical for the size of the subsequent
computation tree, as hLB implicitly prefers choosing atoms that have already been taken.

We also introduce yet another option for hLB, motivated by the fact that answer sets for disjunctive programs
must be minimal with respect to atoms interpreted as true, and the fact that the checks for minimality are costly: if
false literals are chosen preferably, then the computed answer set candidates may have a better chance to be already
minimal. The heuristics hLB already prefers false literals having the same V (L) as positive ones, but we can go one
step further and completely ignore the polarity of the best literals with respect to V (L), choosing always the negative
literal containing the atom of the best literal, even if it is positive and the corresponding negative literal has a lower
value. This really means to consider, for each atom A, the value max(V (A),V (not A)), and then choose the negative
literal containing the best atom according to that value. If we employ this option in the heuristics, we denote it by
adding AF to the superscript, arriving at h

MF,AF
LB and h

LF,AF
LB , respectively.

4. Experiments

We have implemented the above-mentioned look-back techniques and heuristics in DLV; in this section, we report
on their experimental evaluation.

4.1. Compared methods

For our experiments, we have compared several versions of DLV [15], which differ on the employed heuristics and
the use of backjumping. For having a broader picture, we have also compared our implementations to the competing
systems GnT and CModels3, and with the QBF solvers ssolve and sKizzo. The considered systems are:

• dlv.ut; the standard DLV system employing hUT (based on look-ahead).
• dlv.ds; DLV with hDS, the look-ahead based heuristic specialized for ΣP

2 /ΠP
2 hard disjunctive programs.

• dlv.ds.bj; DLV with hDS and backjumping.
• dlv.mf.bj; DLV with hMF

LB and backjumping.

• dlv.mf.af.bj; DLV with h
MF,AF
LB and backjumping.

• dlv.lf.bj; DLV with hLF
LB and backjumping.

• dlv.lf.af.bj; DLV with h
LF,AF
LB and backjumping.

• gnt [4]: the solver GnT, based on the Smodels system, can deal with disjunctive ASP. One instance of Smodels
generates candidate models, while another instance tests if a candidate model is stable.

• cm3 [5]: CModels3, a solver based on the definition of completion for disjunctive programs and the extension
of loop formulas to the disjunctive case. CModels3 uses two SAT solvers in an interleaved way, the first for
finding answer set candidates using the completion of the input program and loop formulas obtained during the
computation, the second for verifying if the candidate model is indeed an answer set. In the experiments, we used
zChaff (ver. 2004) as underlying SAT solver: it is the default and fastest SAT solver among the ones available in
CModels3.
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• ssolve [16]: is a search based native QBF solver that won the QBF Evaluation in 2004 on random (or probabilistic)
benchmarks (performing very well also on non-random, or fixed, benchmarks), and performed globally (i.e., both
on fixed and probabilistic benchmarks) well in the last two editions.

• sKizzo [17]: is a reasoning engine for QBF featuring several techniques, including search, resolution and skolem-
ization, that won the last QBF Evaluation 2007 (which was run only on fixed benchmarks).

• quantor [18]: is a QBF solver based on Q-resolution (to eliminate existential variables) and Shannon expan-
sion (to eliminate universal variables), plus a number of features, such as equivalence reasoning, subsumption
checking, pure literal detection, unit propagation, and also a scheduler for the elimination step.

For hLB heuristics we fixed k = 100. We have conducted further experiments with different values for k which indicate
that 100 is a local optimum. Since the basic picture does not seem to change significantly with different values for k,
we do not report on these experiments here. Note that we have not taken into account other solvers like Smodelscc [19]
or Clasp [20] because our focus is on disjunctive ASP.

Furthermore, we want to point out that the QBF solvers which we have evaluated, besides being among the best in
recent QBF evaluations, also represent the three main lines of research for implementing QBF solvers: (i) search-based
extension of the DLL algorithm for SAT (ssolve), (ii) quantifier elimination and Q-resolution (quantor), and (iii) hybrid
method (sKizzo). Note also that the performance comparison to QBF solvers is not to be seen as a competition, as
these systems are fairly different in nature: on the one hand, QBF solvers can deal with arbitrary QBFs, not just
2QBFs, thus also PSPACE-hard problems. On the other hand, ASP can make use of variables, and in this way allows
for uniformly expressing all problems on the second level of the polynomial hierarchy. The goal of our analysis is
therefore to check whether the runtimes of DLV are acceptable in comparison.

4.2. Benchmark programs and data

The proposed heuristic aims at improving the performance of DLV on disjunctive ASP programs. Therefore we
focus on hard programs in this class, which is known to be able to express each query of the complexity class ΣP

2 /ΠP
2 ,

and can therefore be considered to be the canonical problem for these complexity classes. All of the instances that we
have considered in our benchmark analysis have been derived from instances for 2QBF, the canonical problem for the
second level of the polynomial hierarchy. This choice is motivated by the fact that many real-world, structured (i.e.,
fixed) instances in this complexity class are available for 2QBF on QBFLIB [21,22], and moreover, studies on the
location of hard instances for randomly generated 2QBFs have been reported in [23–25].

The problem 2QBF consists of deciding whether a quantified Boolean formula (QBF) Φ = ∀X∃Yφ, where X and
Y are disjoint sets of propositional variables and φ = D1 ∧ · · · ∧ Dk is a CNF formula over X ∪ Y , is valid.

The transformation from 2QBF to disjunctive logic programming is a slightly altered form of a reduction used
in [26]. The propositional disjunctive logic program Pφ produced by the transformation requires 2 ∗ (|X| + |Y |) + 1
propositional predicates (with one dedicated predicate w), and consists of the following rules:

v ∨ v̄. for each variable v ∈ X ∪ Y ;
y ← w. ȳ ← w. for each variable y ∈ Y ;
w ← vm+1, . . . , vn, v̄1, . . . , v̄m. for each disjunction ¬vm+1 ∨ · · · ∨ ¬vn ∨ v1 ∨ · · · ∨ vm in φ;
← not w.

The 2QBF formula Φ is valid iff PΦ has no answer set [26].

Example 6. The 2QBF Φ = ∀x∃y[(¬x ∨ y) ∧ (¬y ∨ x)] is transformed into

PΦ = {x ∨ x̄.; y ∨ ȳ.; y ← w.; ȳ ← w.; w ← x, ȳ.; w ← y, x̄.; ← not w.}.
PΦ does not have an answer set, thus the 2QBF φ is valid. To check this manually, observe that Φ is equivalent to

∀x∃y : x ↔ y, and indeed for each valuation for x we can find a valuation for y (namely the same as for x) such that
the equivalence holds.



M. Maratea et al. / J. Algorithms 63 (2008) 70–89 81
We have selected both random and structured 2QBF instances. The random 2QBF instances have been generated
following recent phase transition results for QBFs [23–25]. In particular, the generation method described in [25] has
been employed and the generation parameters have been chosen according to the experimental results reported in the
same paper. First, we have generated 10 different sets of instances, each of which is labelled with an indication of the
employed generation parameters. In particular, the label “A-E-C-ρ” indicates the class of instances in which each
clause has A universally-quantified variables and E existentially-quantified variables randomly chosen from a set
containing C variables, such that the ratio between universal and existential variables is ρ. For example, the instances
in the class “3-3-70-0.8” are 6CNF formulas (each clause having exactly 3 universally-quantified variables and 3
existentially-quantified variables) whose variables are randomly chosen from a set of 70 containing 31 universal and
39 existential variables, respectively. In order to compare the performance of the systems in the vicinity of the phase
transition, each set of generated formulas has an increasing ratio of clauses over existential variables (from 1 to max r).
Following the results presented in [25], max r has been set to 21 for each of the classes 3-3-70-*, and 12 for each of
2-3-80-*. We have generated 10 instances for each ratio, thus obtaining, in total, 210 and 120 instances, respectively.
Then, because these instances do not provide information about the scalability of the systems w.r.t. the total number
of variables, we generated yet more sets. We took the “2-3-80-1.0” and “3-3-70-1.2” classes, fixed the ratio of clauses
over existential variables to the “harder” value for the DLV versions and vary the number of variables C (from 5 to
maxC, step 5), where maxC is 80 and 70, respectively. We have generated 10 instances for each point, thus obtaining,
in total, 160 and 140 instances per set, respectively.

Concerning the structured instances, we have analyzed:

Narizzano-Robot. These are real-word instances encoding the robot navigation problems presented in [27], as used
in the QBF Evaluation 2004 and 2005.

Ayari-MutexP. These 2QBFs encode instances to problems related to the formal equivalence checking of partial
implementations of circuits, as presented in [28].

Letz-Tree. These instances consist of simple variable-independent subprograms generated according to the pattern:
∀x1x3 . . . xn−1∃x2x4 . . . xn(c1 ∧ · · · ∧ cn−2) where ci = xi ∨ xi+2 ∨ xi+3, ci+1 = ¬xi ∨ ¬xi+2 ∨ ¬xi+3, i = 1,3, . . . ,

n − 3.

The benchmark instances belonging to Letz-Tree, Narizzano-Robot, Ayari-MutexP have been obtained from
QBFLIB [21], including the 32 (respectively 40) Narizzano-Robot instances used in the QBF Evaluation 2004 (re-
spectively 2005), and all the ∀∃ instances from Letz-Tree and Ayari-MutexP.

4.3. Results

All the experiments were performed on a 3GHz PentiumIV equipped with 1GB of RAM, 2MB of level 2 cache
running Debian GNU/Linux. Time measurements have been done using the time command shipped with the system,
counting total CPU time for the respective process.

We start with the results of the experiments with random 2QBF formulas. For every instance, we have allowed a
maximum running time of 20 minutes. In Table 1 we report, for each system, the number of instances solved in each
set within the time limit, highlighting the best value for each group of systems. Looking at the table, it is clear that
the new look-back heuristic combined with the “mf” initialization (corresponding to the system dlv.mf.bj) performed
very well on these domains, being the version which was able to solve most instances in most settings among the ASP
systems, particularly on the 3-3-70-* sets. Also dlv.lf.bj, in particular when combined with the “af” option, performed
quite well, while the other variants do no seem to be very effective. Considering the look-ahead versions of DLV,
dlv.ds performed reasonably well. Considering GnT and CModels3, we note that they solve quite few instances, while
it is clear that ssolve is very efficient, being able to solving almost all instances. In contrast, sKizzo and quantor did not
perform well here, which is in line with the results of the QBF Evaluations which showed that ssolve is very efficient
on probabilistic (i.e., fixed) benchmarks, while sKizzo and quantor are not efficient on this domain.

Figs. 4 and 5 show the results for the “2-3-80-1.0,” Figs. 6 and 7 for the “3-3-70-1.2” set, regarding scalability.
For the sake of readability, only the instances with a high number of variables are presented: GnT, Cmodels3, ssolve,
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Table 1
Number of solved instances within timeout for Random 2QBF

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor

2-3-80-0.4 119 120 120 120 120 120 120 3 57 120 38 41
2-3-80-0.6 91 102 99 103 83 101 96 4 62 120 25 32
2-3-80-0.8 88 99 99 99 79 97 92 5 73 120 21 29
2-3-80-1.0 81 95 96 106 80 95 95 10 81 120 21 26
2-3-80-1.2 84 99 101 109 85 101 102 6 93 120 22 27

3-3-70-0.6 159 174 168 172 157 164 166 4 76 210 49 66
3-3-70-0.8 128 138 135 150 123 132 140 2 82 210 37 53
3-3-70-1.0 114 128 127 149 112 128 125 7 96 205 34 50
3-3-70-1.2 123 131 133 156 115 129 140 9 117 209 34 47
3-3-70-1.4 124 139 142 161 117 142 141 9 131 210 34 43

#Total 1111 1225 1220 1325 1071 1209 1217 59 868 1644 315 414

Fig. 4. Number of solved instances by all DLV versions.

sKizzo, quantor and all the DLV versions solve all instances not reported. Figs. 4 and 6 contain the cumulative number
of solved instances for all DLV versions while Figs. 5 and 7 contain the respective data for GnT, CModels3, ssolve,
sKizzo, quantor and the best version of DLV. Overall, on these particular sets, we can see that all the “look-back”
versions of DLV scaled much better than GnT and CModels3, with dlv.mf.bj being able to solve some of the bigger
instances not solved by other DLV versions, GnT and Cmodels3. ssolve managed to solve all instances (but one in
Fig. 6), and in shorter time (not reported), while sKizzo and quantor showed comparatively poor performances.

In Tables 2–4, we report the results, in terms of execution time for finding one answer set, and/or number of
instances solved within 20 minutes, about the groups: Narizzano-Robot, Ayari-MutexP and Letz-Tree, respectively.
The last columns (AS?) indicate whether the instance has an answer set (Y), or not (N): only in Table 2 it indicates
how many instances have answer sets. A “–” in these tables indicates a timeout or a memory out.

In Table 2 we report only the instances from the QBF Evaluation 2004 and 2005, respectively, which were solved
within the time limit by at least one of the compared methods. In Table 2, dlv.mf.bj was, among the ASP and QBF
solvers, the system which solved the highest number of instances among the 67 reported (24 for QBF Evaluation 2004
and 40 for QBF Evaluation 2005) instances, followed by ssolve (60), CModels3 and sKizzo (58), and dlv.lf.bj (50).
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Fig. 5. Number of solved instances by dlv.mf.bj, GnT, CModels3, ssolve, sKizzo and quantor.

Fig. 6. Number of solved instances by all DLV versions.

Table 2
Number of solved instances on Narizzano-Robot instances as selected in the QBF Evaluation 2004 and 2005

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

QBFEval.2004 10 10 11 24 15 18 13 5 18 20 22 10 5
QBFEval.2005 0 0 10 40 34 32 22 0 40 40 36 0 0

#Total 10 10 21 64 49 50 35 5 58 60 58 10 5
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Fig. 7. Number of solved instances by dlv.mf.bj, GnT, CModels3, ssolve, sKizzo and quantor.

Table 3
Execution time (seconds) and number of solved instances on Ayari-MutexP instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.89 0.65 0.03 0.01 0.01 N
mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – 0.04 0.01 0.01 N
mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – 0.07 0.01 0.7 N
mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – 0.13 0.01 – N
mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – 0.3 0.03 – N
mutex-64-s 15.38 16.08 17.64 14.97 15.04 18.08 16.97 – – 0.81 0.07 – N
mutex-128-s 69.07 79.39 90.92 62.97 62.97 92.92 93.05 – – 2.83 0.13 – N

#Solved 7 7 7 7 7 7 7 1 1 7 7 3

Moreover, dlv.mf.bj solved a superset of the instances solved by ssolve, while the timeouts of dlv.mf.bj showed up on
different instances w.r.t. the timeouts of sKizzo. Further, dlv.mf.bj was always the fastest ASP system on each instance
(sometimes drastically, even if for the sake of presentation we do not report CPU time) if we consider the instances
on which it took more than 1 second, and often faster than ssolve and sKizzo, especially on the QBF Evaluation
2004 instances. All of the QBF Evaluation 2005 instances were solved by dlv.mf.bj, Cmodels3 and ssolve, with
mean execution times of 228.07s, 189.74s and 76.91s, respectively. The “traditional” DLV versions could solve 10
instances, while dlv.ds.bj solved 21 instances, and took less execution time. This indicates the advantages of using a
backjumping technique on these robot instances.

In Table 3, we then report the results for Ayari-MutexP. In that domain all the versions of DLV and the QBF
solvers ssolve and quantor were able to solve all 7 instances, outperforming both CModels3 and GnT which solved
only one instance. Comparing the execution times required by all the variants of DLV we note that, also in this case,
dlv.mf.bj is the best-performing version, while QBF solvers scaled up much better, but for quantor that quickly run
out of memory.

About the Letz-Tree domain reported in Table 4, the DLV versions equipped with look-back heuristics solved a
higher number of instances and required less CPU time (up to two orders of magnitude less) than all ASP competitors.
In particular, the look-ahead based versions of DLV, GnT and CModels3 could solve only 3 instances, while dlv.mf.bj
and dlv.lf.bj solved 4 and 5 instances, respectively. Interestingly, here the “lf” variant is very effective, in particular
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Table 4
Execution time (seconds) and number of solved instances on Letz-Tree instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 0.01 0.01 0.01 N
exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 0.01 0.01 0.01 N
exa10-20 278.01 264.53 275.1 12.31 17.24 5.43 2.86 325.26 67.56 0.02 0.01 0.01 N
exa10-25 – – – 303.67 432.32 44.13 19.15 – – 0.02 0.02 0.01 N
exa10-30 – – – – – 166.93 129.54 – – 0.05 0.02 0.02 N

#Solved 3 3 3 4 4 5 5 3 3 5 5 5

when combined with the “af” option, like in the random instances for testing scalability. It could solve the same
number of instances as ssolve, sKizzo and quantor, which, however, scale better.

4.4. Strategic companies

We also run native disjunctive ASP benchmarks for the Strategic Companies problem, as defined in [29]. The
goal here is to understand how the new look-back based DLV versions perform on these instances. We have also
transformed the ASP input into QBFs for having a complete picture also in this case. A similar analysis in [13],
however, showed that QBF solvers generally do not perform very well on this kind of input.

Here, we generated tests as in [15] with 20 instances each size for m companies (5 � m � 100), 3m products, 10
uniform randomly chosen contr_by relations per company (up to four controlling companies), and uniform randomly
chosen prod_by relations (up to four producers per product), for a total of 400 instances. The problem is deciding
whether two fixed companies (1 and 2, without loss of generality) are strategic.

For the QBF solvers we have produced the following formula:

∃c1, . . . , cn: ∀c′
1, . . . , c

′
n : ((I ∧ NE) → (R ∧ R′) ∧ c1 ∧ c2

)
where I stands for(

c′
1 → c1

) ∧ · · · ∧ (
c′
n → cn

)
,

NE for

¬((
c′

1 ↔ c1
) ∧ · · · ∧ (

c′
n ↔ cn

))
,

R for
m∧

i=1

(( ∧
cj ∈Oi

cj

)
→ ci

)
∧

n∧
i=1

( ∨
gi∈Cj

cj

)
,

and Oi contains the controlling companies of ci , while Cj contains the companies producing good j . R′ is defined
analogous to R on the primed variables.

Unfortunately this formula is not in CNF, as required by the qDimacs format. In order to avoid a substantial blowup
of the formula by a trivial normalization, we have used the tool qst of the traquasto suite [30], which transforms a
formula into qDimacs by introducing additional “label variables” to avoid exponential formula growth. However,
these additional variables are existentially quantified at the inner level and thus would turn the formula above into a
3QBF. To avoid this, we consider the negated formula

∀c1, . . . , cn: ∃c′
1, . . . , c

′
n : ¬(

(I ∧ NE) → (R ∧ R′) ∧ c1 ∧ c2
)

which stays on the second level after the transformation.
In Table 5 we report the total number of solved instances. We can see that all DLV versions (but dlv.lf.af.bj), GnT

and Cmodels3 are able to solve all the generated instances, while ssolve, sKizzo and quantor can just solve a very
limited portion, i.e., the smallest instances in the set.

Summarizing, in all of the test cases presented, both random and structured, DLV equipped with look-back heuris-
tics obtained good results both in terms of number of solved instances and execution time compared to traditional
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Table 5
Number of solved instances on Strategic Companies

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor

#Solved 400 400 400 400 400 400 396 400 400 195 91 119

DLV, GnT and CModels3. Variant dlv.mf.bj, the “classic” look-back heuristic, performed best in most cases, but
good performance was obtained also by dlv.lf.bj. The results of dlv.lf.af.bj on the some random and Letz-Tree in-
stances show that this option can be fruitfully exploited in some particular domains. The QBF solvers ssolve and
sKizzo in general performed very well, but on some domains (notably Narizzano-Robot for both solvers, and also ran-
dom benchmarks for sKizzo) they were outperformed by dlv.mf.bj, both in terms of number of instances solved and
CPU execution time. On the other hand, quantor performed well on some domains, but in others, i.e., Narizzano-Robot
and Ayari-Mutex, it could solve very few instances, often because it run out of memory. Moreover, ASP systems did
much better than QBF solvers in the Strategic Companies benchmarks. Overall we can observe that look-back based
ASP systems, in particular dlv.mf.bj, are competitive with QBF solvers. It should be also noted that the vast majority
of the structured instances presented do not have answer sets, while the bigger advantages of dlv.mf.bj over ssolve on
the Narizzano-Robot instances are obtained on the instances with answer sets.

5. Related work

In this section we provide an overview about related work, especially with respect to backjumping and look-back
heuristics, and outline the main differences to our approach.

Look-back techniques, including backjumping notions, first studied for constraint solving [7,8,31], have been ap-
plied successfully for SAT [9,32–34] and QBF solving [35–38]. More recently, they have been ported to ASP, resulting
in the non-disjunctive systems Smodelscc [19,39] and Clasp [20], and ultimately also disjunctive ones, like CMod-
els3 [5] and DLV [6]. In this paper, we have extended the latter work, which provided a backjumping-enabled DLV,
by a variety of look-back heuristics, resulting in the system DLVLB.

We will discuss the differences of our work with respect to related computational engines by considering the
following groups of systems:

(1) CSP and SAT solvers,
(2) non-disjunctive ASP systems,
(3) disjunctive ASP systems,
(4) QBF solvers.

About group (1), in which the use of look-back techniques originated, we observe that the formalism for determin-
ing reasons for inconsistencies is quite different from the one presented in [6], and thus to the one in DLVLB.

First of all, we note that DLVLB makes use of reasons for concepts that do not have any counterpart in formalisms
and systems of group (1), like the notion of unfounded sets, and stability check failures. Moreover, unlike CSP and
SAT solvers, DLVLB does not use an implication graph, which has a similar role as the reason table of DLVLB.
In practice, in both CSP and SAT solvers, the implication relationships of variable assignments made during the
computation is stored in a directed graph (the implication graph), which contains a node for each variable assignment.
Two nodes, say a and b, are connected by an arc from a to b whenever b is implied by a during a propagation step.
A crucial difference between the implication graph and the reason table is that the first one stores also the dependencies
between “implied” assignments, while in the latter only branching literals are taken into account. Moreover, reasons
of conflicts are computed in a different way in DLVLB and systems in group (1). In particular, most SAT solvers
build that reason from a clause which corresponds to a “vertex cut” [9] in the implication graph. This cut partitions
the implication graph in two sets of nodes, the first containing all the branching variables (called reason side), and
the latter containing the conflicting variable conflict side. In general, there are many possible “cuts,” and the reason
computed in DLVLB basically coincides with the particular one which contains only the branching assignments in the
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reason side. However, many SAT solvers employ the so-called 1UIP (First Unique Implication Point) cut [9], which,
in general, is very different from the one corresponding to DLVLB inconsistency reasons.5

As a consequence of all these differences, both reasons and heuristic values are quite different in DLVLB with
respect to the standard methods in SAT and CSP solvers. One can argue that the heuristics in those systems are
somewhat more “informed,” since also implied atoms can occur in the reason of a conflict. This additional information
is obtained by (i) maintaining the implication graph, which can be done efficiently,6 but in a more involved way than
the reason table of DLVLB, and (ii) exploiting a process (determining the 1UIP cut) quite more intricate than the one
implemented in DLVLB. Indeed, reasons are computed by performing the union of two sets of integers in DLVLB,
compared to a more entangled transversal of the implication graph.

It is worth noting that, for systems in group (1), look-back techniques are virtually always combined with other
two techniques that DLVLB does not employ. The first one, called clause-learning, heavily relies on the implication
graph, and allows for pruning the search space by adding new clauses representing conflicts. The second one, which
is always used in combination with clause learning, requires to periodically restart the search from the beginning by
retaining the newly added clauses.

As the experiments clearly demonstrate, DLV equipped with backjumping and look-back heuristics behaves very
well, even without learning and restart. However, we plan to add learning and restart capabilities to DLV in order to
further enhance its performance. Doing so requires rather fundamental changes inside DLV, which currently heavily
relies on the assumption that the ground program does not change during the computation.

Concerning the systems in group (2), such as Smodelscc [19] or Clasp [20], almost all arguments as for those in
group (1) apply, apart from the fact that the concept of unfounded sets indeed exists and is considered in the reason
calculus of those systems.

The only system (apart from DLV and DLVLB) in group (3) that uses look-back techniques is CModels3 [5,40].
However, this system relies on a SAT solver internally, and the look-back techniques are confined to the SAT subsys-
tem, so the respective comments for SAT apply. Nevertheless, CModels3 tries to bias the SAT heuristics by adding
clauses in the event of model check failures, which is loosely related to recording the reasons in case of a model check
failure in DLVLB.

Finally, about group (4), given the nature of the problem, two types of backjumping are applicable: conflict- and
solution-directed backjumping, following the terminology of [37] (cumulatively called dependency-directed back-
tracking in [38]). The first type allows search to skip over existentially quantified literals while backtracking, while
the second allows the same behavior on universally quantified literals. Both types of conflicts can be used in order to
update the heuristic values. The conflict-directed backjumping is a direct extension of the method used in SAT, and
thus most of the discussions for group (1) apply also in this case.

6. Conclusions

We have described a general framework for employing look-back techniques in disjunctive ASP, based on the
reason calculus described in [6], which allows for the design of a variety of look-back based heuristics. In this work, we
have defined a basic heuristics hLB, which together with two different initialization strategies yields the heuristics hMF

LB
and hLF

LB . In addition, we have also defined a criterion in which the negative literal is always chosen first, regardless of

the polarity of the best literal according to the heuristics, arriving at variants h
MF,AF
LB and h

LF,AF
LB . We have implemented

all proposed techniques in the DLV system, and carried out a broad experimental analysis on hard instances encoding
2QBFs, comprising both randomly generated instances, generated according to the method proposed in [25], and
structured instances from the QBFLIB archive.

It turned out that the proposed heuristics outperform the traditional (disjunctive) ASP systems DLV, GnT and
CModels3 in most cases, and a rather simple approach (“dlv.mf.bj”) works particularly well, being performance-
wise competitive with respect to “native” QBF solvers. A possible topic for future research is to further expand the

5 The 1UIP cut is preferred since it plays a central role in the clause learning technique, which is usually combined with backjumping in SAT
solvers.

6 Note that the implication graph can be implemented by associating each implied variable with a pointer to the clause from which it has been
derived.
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range of look-back techniques in DLV by employing learning (the ability to record reasons in order to further avoid
inconsistencies already encountered).
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