
[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 643 643–670

OntoDLV: An ASP-based System for
Enterprise Ontologies
FRANCESCO RICCA, Department of Mathematics, University of Calabria,
87036 Rende (CS), Italy.
E-mail: ricca@mat.unical.it

LORENZO GALLUCCI, ROMAN SCHINDLAUER and TINA DELL’ARMI,
Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy and
Exeura S.r.l., c/o University of Calabria, 87036 Rende (CS), Italy.
E-mail: gallucci@exeura.it, roman@mat.unical.it, dellarmi@exeura.it

GIOVANNI GRASSO and NICOLA LEONE, Department of Mathematics,
University of Calabria, 87036 Rende (CS), Italy.
E-mail: {grasso,leone}@mat.unical.it

Abstract
Enterprise/Corporate ontologies are widely adopted to conceptualize business enterprise information. In this area, the semantic
peculiarities of Answer Set Programming (ASP), like the Closed World Assumption (CWA) and the Unique Name Assumption
(UNA), are more appropriate than the Ontology Web Language (OWL) assumptions, also because such ontologies frequently
stem from relational databases, where both CWA and UNA are adopted. This article presents OntoDLV, a system based on
ASP for the specification and reasoning on enterprise ontologies. OntoDLV implements a powerful ontology representation
language, called OntoDLP, extending (disjunctive) ASP with all the main ontology features including classes, inheritance,
relations and axioms. OntoDLP is strongly typed, and includes also complex type constructors, like lists and sets. Importantly,
OntoDLV supports a powerful interoperability mechanism with OWL, allowing the user to retrieve information from OWL
ontologies, and build rule-based reasoning on top of OWL ontologies. The system is already used in a number of real-world
applications including agent-based systems, information extraction, and text classification.

Keywords: Logic programming, disjunctive logic programming, answer set programming, ontology languages, enterprise
ontologies, OWL.

1 Introduction

In the last few years, the need for knowledge-based technologies has emerged in several application
areas. Industries are now looking for semantic instruments for knowledge-representation and
reasoning. In this context, ontologies (i.e. abstract models of a complex domain) have been
recognized to be a fundamental tool; and the World Wide Web Consortium (W3C) [48] has
already provided recommendations and standards related to ontologies, like RDF(S) [49] and the
Ontology Web Language (OWL) [43]. OWL was conceived for the Semantic Web, with the goal
of enriching Web pages with machine-understandable descriptions of the presented contents. OWL
is based on expressive Description Logics (DL) [5]; distinguishing features of its semantics w.r.t.
Logic Programming languages are the adoption of the Open World Assumption (OWA) and the
non-uniqueness of names (different names can denote the same individual).

While the semantic assumptions of OWL make sense for the Web, they are unsuited for Enterprise
ontologies. Enterprise/Corporate ontologies are specifications of terms and definitions relevant to

Vol. 19 No. 4, © The Author, 2008. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 14 August 2008 doi:10.1093/logcom/exn042



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 644 643–670

644 OntoDLV: An ASP-based System for Enterprise Ontologies

Table 1. The supplier-branch table

Supplier Branch city Branch street

Barilla Rome Veneto
Barilla Naples Plebiscito
Voiello Naples Cavour

business enterprises; they are used to share/manipulate the information already present in a company.
Since an enterprise ontology describes the knowledge regarding specific aspects in the ‘closed
world’ of the enterprise, a Closed World Assumption (CWA) seems more appropriate than the
OWA (appropriate for the Web, which is an open domain). Moreover, the presence of naming
conventions, often adopted in enterprises, can guarantee name uniqueness, making also the Unique
Name Assumption (UNA) plausible. Importantly, enterprise ontologies often are the evolution of
relational databases, where both CWA and UNA are mandatory. To understand the suitability of
CWA and UNA for enterprise ontologies, consider the following example.

The enterprise ontology of a food-distribution company stores its pasta suppliers and their
respective production branches in the relation depicted in Table 1 (of the company database).

Consider the following query: ‘who are the pasta suppliers of the company having a branch only
in Naples?’ The expected answer is clearly ‘Voiello’. This answer is obtained whenever the CWA
is adopted (if the world is ‘closed’, then Voiello cannot have branches other than those specified),
and computed also in the query language SQL. OWL, instead, provides an empty answer; it cannot
entail that Voiello has only a branch in Naples, since, according to the OWA, Voiello could have also
a branch in Rome.

To understand the role of the UNA, consider an axiom stating that each supplier has a branch only
in one city. Then, a language adopting UNA derives that the ontology is inconsistent, while OWL,
missing the UNA, derives that Rome = Naples (actually, the names Rome and Naples denote the same
city). This, indeed, is the only way to satisfy the constraint, even if it is not the intended/expected
behaviour in this scenario.

Similar scenarios are frequent when enterprise ontologies are being dealt with. In these cases logic
programming languages likeASP, strongly relying on CWAand UNA, are definitely more appropriate
than OWL.

Answer Set Programming (ASP) [17], is a powerful logic programming language, which is very
expressive in a precise mathematical sense; in its general form, allowing for disjunction in rule heads
and nonmonotonic negation in rule bodies, ASP can represent every problem in the complexity class
�P

2 and �P
2 (under brave and cautious reasoning, respectively) [12]. However, traditional ASP is

not well-suited for ontology specifications, since it does not directly support features like classes,
taxonomies, individuals, etc. Moreover, ASP systems are a long way from comfortably enabling the
development of industry-level applications, mainly because they lack important tools for supporting
users and programmers. In particular, convenient user interfaces are missing, and there is a lack of
advanced Application Programming Interfaces (API) for implementing applications on top of ASP
systems. This article describes OntoDLV, an ASP-based system for enterprise ontologies, which
addresses all the above-mentioned issues.

Indeed, OntoDLV implements a powerful logic-based ontology representation language, called
OntoDLP, which is an extension of (disjunctive) ASP with all the main ontology constructs including
classes, inheritance, relations and axioms. OntoDLP is strongly typed, and includes also complex
type constructors, like lists and sets. Importantly, OntoDLV supports a powerful interoperability



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 645 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 645

mechanism with OWL, allowing the user to retrieve information from external OWL Ontologies
and to exploit this data in OntoDLP ontologies and queries.1 Moreover, OntoDLV facilitates the
development of complex applications in a user-friendly visual environment; it is endowed with a
robust persistency-layer for saving information transparently on a DBMS, and it seamlessly integrates
the DLV system [32] exploiting the power of a stable and efficient ASP solver.

Using OntoDLV, domain experts can create, modify, store, navigate and query ontologies thanks
to a user-friendly visual environment; at the same time, application developers can easily implement
knowledge-intensive applications embedding OntoDLP specifications using a complete API. Indeed,
OntoDLP is already used for the development of real-world applications including agent-based
systems, information extraction and text classification frameworks (Section 7).

Remark
OntoDLV has its roots in the previous DLP+ system [39]; but, compared to its predecessor,
OntoDLV includes many new major features. Among them, Complex types (like Sets and Lists),
Object reclassification support (Collection Classes), Intensional Relations, OWL interoperability
mechanisms, an API and a more advanced Graphical User Interface (GUI). All these together
with many optimization techniques make OntoDLV well-suited for the development of industrial
applications (Section 7). Importantly, the OntoDLP language has a direct model-theoretic semantics,
while the meaning of DLP+ programs was specified merely by a rewriting technique (See Section 6
for a comparison with DLP+). �

The remainder of the article is organized as follows: in Section 2, an informal overview of the
OntoDLP language by examples is provided; Section 3 gives a formal definition of OntoDLP;
Section 4 describes our mechanism for OWL interoperability; Section 5 overviews the architecture
and the implementation of the OntoDLV system; related work is discussed in Section 6 and Section 7
concludes the article and points out a couple of relevant applications of our system.

2 OntoDLP by example

This section describes OntoDLP, an ontology representation and reasoning language which provides
the most important ontological constructs, namely classes, attributes, relations, inheritance and
axioms, and combines them with the reasoning capabilities of ASP. To this end, an example (the
banking ontology) is esploited which will be specified throughout the whole section, thus illustrating
the features of the language. For a better understanding, each construct will be described in a separate
paragraph.

Hereafter, the reader is assumed to be familiar with ASP syntax and semantics, for further details
refer to [17, 32].

Classes. A (base) class2 can be thought of as a collection of individuals who belong together because
they share some properties. Classes can be defined in OntoDLP by using the keyword class followed
by its name. Class attributes can be specified by means of pairs (attribute-name : attribute-type), where
attribute-name is the name of the property and attribute-type is the class the attribute belongs to.

Suppose the aim is to model the domain of a banking enterprise, and some classes of
individuals have been identified, namely: banks, branches, accounts, persons, enterprises and places.

1It is acknowledged that rule-based inference systems are needed by OWL applications [19, 27]. OntoDLP can also be
exploited for rule-based reasoning on top of OWL ontologies.

2For simplicity, we often refer to base classes by omitting the base adjective, since it only distinguishes this construct
from another one called collection class that will be described later in this section.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 646 643–670

646 OntoDLV: An ASP-based System for Enterprise Ontologies

Suppose also that a number of relevant properties (or attributes) shared by all the individuals belonging
to these classes are recognized. For instance, it is known that: banks have a name and own an asset;
the branches of a given bank are located into a given place and also have an asset; accounts have a
balance; enterprises have a name and a country (which is a place); persons have name, age, residence
(which is also a place), father and mother (which are other persons); and finally, each place has a
name.

The above-listed classes and (related) attributes can be represented in OntoDLP as follows:
classbank(name : string,asset : integer).
classaccount(balance : integer).
classbranch(bank : bank,location : place,asset : integer).
classplace(name : string).
classenterprise(name : string,country : place).
classperson(name : string,age : integer,

father : person,mother : person,residence : place).
Note that OntoDLP permits user-defined classes as attribute types, thus allowing for objects made

of other objects (complex objects). Class attributes in OntoDLP model the properties that must be
present in all class instances; optional properties should be modelled by using other constructs such
as lists, sets and relations, that will be described later in this section. Moreover, class definitions can
be recursive (e.g. in class person both father and mother are of type person), and attribute types can
exploit the built-in classes string and integer (respectively, representing the class of all alphanumeric
strings and the class of non-negative integers).

Objects. Domains contain individuals which are called objects or instances. Each individual in
OntoDLP belongs to a class and is uniquely identified by a constant called object identifier (oid)
or surrogate. Objects are declared by asserting a special kind of logic facts (asserting that a given
instance belongs to a class). For example, with the facts

rome : place(name : “Rome”).
john : person(name : “John”,age : 34,father : jack,mother : ann,residence : rome).

it is declared that rome and john are instances of the class place and person, respectively. Note that,
when an instance is declared, an oid is immediately given to the instance (e.g. rome identifies a place
named “Rome”), which may be used to fill an attribute of another object. In the example above, the
attribute residence is filled with the oid rome modelling the fact that john lives in Rome; in the same
way, jack and ann are suitable oids, respectively, filling the attributes father, mother (both of type
person).

Referential integrity (Section 3) is guaranteed by the language (and our implementation), thus
jack, ann and rome have to exist in order to declare john. Moreover, in OntoDLP oids are proper of
a given base class, i.e. base classes cannot share individuals. However, an individual may belong to
different classes when other two modelling tools are employed (that will be described later), namely:
inheritance and collection classes.

Sets and lists. A feature of OntoDLP is the possibility of exploiting two types of container classes
(i.e. classes whose instances are groups of objects): sets and lists.

A set is a collection of instances (the order of which is not significant), while a list is an ordered
collection of instances that accepts multiple copies of the same instance. Given a class C, one can
define the class ‘set of C’ (resp. ‘list of C’), denoted by {C} (resp. [C]), having as instances all sets
(resp. lists) of individuals belonging to class C.

For instance, the class {string} (resp. [string]) represents the class having as instances all sets (resp.
lists) of strings. Analogously, {“This”, “That”} is the set containing two strings, namely “This” and
“That”; while [“This”, “That”] is the list containing the string “This” followed by “That”.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 647 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 647

Container classes are very useful for representing multi-valued attributes. Suppose that in our
banking domain an account has an associated set of services that can be bought from the bank, e.g. an
internet-banking access, an overdraft protection, a payroll payment, etc. Suppose also that account
services are represented as follows:

classaccountService(cost : integer).
internet : accountService(cost : 10).
payroll : accountService(cost : 1). …

The definition of class account is upgraded by adding a new attribute services of type ‘set of
accountService’:

classaccount(services : {accountService},balance : integer).
a0001 : account(services : {internet,payroll},balance :2000).

where the second one is an instance of account having associated the two services internet-banking
and payroll payment.

Clearly, it is not relevant for accounts to consider an ordering between account services, but there
are scenarios where a list is more appropriate than a set. Suppose that, of interest for each payment is
its amount and date of execution. Hence, the class account is modified by adding two new attributes,
namely withdrawals and deposit, both of which are of type ‘list of payments’:

classpayment(amount : integer,date : date).
classaccount(services : {accountService},balance : integer,

withdrawals : [payment],deposits : [payment]).
a0001 : account(services : {internet,payroll},balance : 2000,

withdrawals : [ ],deposits : [dp1]).
This means that, money has never been withdrawn from account a0001 ([ ] denotes the empty list),
whereas only once some money has been deposited in it.

Taxonomies. Concepts in an ontology are usually organized in taxonomies by using the
specialization/generalization mechanism (which is called inheritance in object-oriented languages).
This is done when a subset of individuals has some attributes that are not shared by all other individuals
in the same class. For instance, employees are a special category of persons having extra attributes,
like salary and company. OntoDLV supports inheritance by means of the special binary relation isa.
In particular, the above-mentioned employee class can be declared as follows:

classemployee isa {person}(salary : integer,company : enterprise).

In this case, person is a more generic concept or superclass and employee is a specialization (or
subclass) of person. Moreover, an instance of employee will have the local attributes salary and
company and name, age, father, mother and residence, which are defined in person. We say that the
latter are ‘inherited’ from the superclass person. Hence, each proper instance of employee will also
be automatically considered an instance of person (the opposite does not hold!). For example, the
instance:

bob : employee(name : “Robert”,age : 25, father : jack,mother : betty,
residence : rome,salary : 2000,company : microsoft).

is automatically considered an instance of person as follows:

bob : person(name : “Robert”,age : 25, father : jack,mother : betty,residence : rome).

Note that it is not necessary to assert the latter instance.
Inheritance can be further applied to refine the design of our banking ontology. For instance,

banks usually offer two different kinds of accounts, checking and savings. Moreover, inheritance can
be applied repeatedly, without limitation on the number of superclasses (i.e. multiple inheritance



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 648 643–670

648 OntoDLV: An ASP-based System for Enterprise Ontologies

is allowed). For instance, a bank may offer two special types of checking account: gold account
having a fixed minimum balance; and young account, which is reserved to customers aged up to 21
years, and is, at the same time, both a saving account and a checking account. This may be specified
in OntoDLP as follows:

classcheckingAccount isa {account}(overdraftAmount : integer).
classsavingsAccount isa {account}(interestRate : integer).
classgoldAccount isa {checkingAccount}(minimumBalance : integer).
classyoungAccount isa {savingsAccount,checkingAccount}().

Note that all set and list classes are part of the OntoDLV inheritance hierarchy. Basically, the
class [A] (resp. {A}) is a subclass of class [B] (resp. {B}) if A is a subclass of B. For example, the
class [savingsAccount] (resp. {savingsAccount}) is subclass of [account] (resp. {account}) since
savingsAccount is subclass of account. Finally, OntoDLP has a common built-in superclass called
object, which, apart from integer and string also includes individual, the superclass of all the user-
defined classes.

Relations. Another important feature of an ontology language is the ability to model relationships
among individuals. Relations are declared like classes: the keyword relation (instead of class)
precedes a list of attributes. The set of attributes of a relation is called schema as for classes, and the
cardinality of the schema is called arity. As an example, we model a relationship between persons
and their bank account as follows:

relationcustomerHoldsAccount(customer : person,account : account).

The instances of a relation are called tuples, and they can be declared by using logic facts. For
instance, it can be asserted that john holds account acc001 by writing a logic fact. Moreover, (since
an account may be held by one more customer) two facts can be specified that assign the ownership
of account acc012 to both ann and john:

customerHoldsAccount(customer : john,account : acc001).
customerHoldsAccount(customer : ann,account : acc012).
customerHoldsAccount(customer : john,account : acc012).

Contrary to class instances, tuples are not equipped with an oid.
The description of relations is completed observing that OntoDLP allows one also to organize them

in taxonomies. Basically, attributes and tuples are inherited by following the same criteria defined
above for classes. For instance, the relation holdsSavingsAccount may be exploited to represent the
relationship among persons and their saving account as follows:

relationholdsSavingsAccount isa {customerHoldsAccount}(account : savingsAccount).

Collection classes and intensional relations. The notions of base class and base relation introduced
above correspond, from a database point of view, to the extensional part of the OntoDLP language.
However, there are many cases in which some property or some class of individuals can be ‘derived’
(or inferred) from the information already stated in an ontology. In the database world, views allow
to specify this kind of knowledge, which is usually called ‘intensional’. In OntoDLP there are two
different intensional constructs: collection classes and intensional relations.

Collection classes are mainly intended for object reclassification (i.e. for classifying individuals
of an ontology repeatedly). Suppose the class richPerson should be modelled; a person is rich if he
owns more than one million in a savings account. The ‘intensional’ class rich-person can be defined
as follows:

collection classrichPerson(name : string).
P : richPerson(name : N) :− P : person(name : N),A : account(balance : B),

holdsSavingsAccount(customer : P,account : A),B>1000000.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 649 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 649

Note that in this case the instances of the class richPerson are ‘borrowed’ from the (base) class
person, and are inferred by using a logic rule. Basically, this class collects instances defined by another
class (i.e. person) and performs a re-classification based on some information which is already present
in the ontology. Importantly, the programs (set of rules) defining collection classes must be normal
and stratified (see e.g. [4, 38]). Like base classes, collection classes also support inheritance.

Intensional relations allow the definition of ‘derived’ relations via rules. Instances are declared by
a set of logic rules. For example, the binary relation relative (modelling the common ancestry among
persons) can be easily derived from the information already present in the class person as follows:

intensional relationrelative(sub :person,obj :person)
relative(sub :X,obj :Y ) :− X :person(father :Y ).
relative(sub :X,obj :Y ) :− X :person(mother :Y ).
relative(sub :X,obj :Y ) :− relative(sub :X,obj :Z),relative(sub :Z,obj :Y ).

Here, the first two rules populate the new intensional relation relative with the information about
parents (X is relative of Y if X is parent of Y ); the third rule infers all the other connections (X is a
relative of Y if exists a third relative Z of X and Y ). Note that this definition is recursive, implying
that intensional relations (as well as collection classes) are strictly more powerful than relational
database views.

Intensional relations and collection classes can be organized in taxonomies by using the isa
relation. The inheritance hierarchy of intensional relations and collection classes are distinct from
the inheritance of base relations and base classes.

Axioms and consistency. Axioms are a consistency-control construct modelling sentences that are
always true. They can be used for several purposes, such as constraining the information contained
in the ontology and verifying its correctness. In our example ontology, we may enforce that the father
cannot be younger than his son as follows:

:− X : person(age : A1, father : person(age : A2)), A1>A2.

If an axiom is violated, it can be said that the ontology is inconsistent (i.e. it contains information
which is contradictory or not compliant with the domain’s intended perception).3

Reasoning modules. In addition to the ontology specification, reasoning modules are the language
components within OntoDLP that allow for reasoning about the ontological data by means of a
disjunctive logic program. Reasoning modules are identified by a name and are defined by a set
of (possibly disjunctive) logic rules and integrity constraints. Syntactically, the keyword module
precedes the name which is followed by a logic program enclosed in curly brackets. By collecting
rules in such a block, OntoDLP features a form of modular programming and allows the organization
of logic programs in libraries.

The rules of a module can access the information present in the ontology. The programmer may
also introduce a number of auxiliary predicates which do not require an explicit schema definition.

As an example consider the following module, which computes the number of payments
(withdrawals + deposits) performed on a bank account:

modulecomputePaymentsNumber {
paymentsNumber(A,PayN) :−

A :account(withdrawals : Withdrawals,deposits : Deposits),
#length(Withdrawals,Wnum),#length(Deposits,Dnum),
PayN =Wnum+Dnum.}

3Note that the notion of axiom in OntoDLP is very different from the one employed in other ontology languages like OWL
[43]. In fact, an axiom in OntoDLP is a consistency control construct and cannot be used to specify or infer knowledge.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 650 643–670

650 OntoDLV: An ASP-based System for Enterprise Ontologies

The auxiliary predicate paymentsNumber associates an account A with the overall number of
payments PayN performed on it. PayN is computed by summing the lengths of both the list of
deposits and withdrawals. Note that the length of a list is obtained by exploiting the built-in predicate
#length.

Reasoning modules isolate a set of rules and constraints conceptually related and exploit the
expressive power of ASP to perform complex reasoning tasks on the information encoded in an
ontology.

Querying. An important feature of the language is the possibility of asking queries in order to extract
knowledge implicitly contained in the ontology. As in ASP a query can be expressed by a conjunction
of atoms, which, in OntoDLP, can also contain complex terms. As an example, the list of persons
having a father who lives in Rome is requested as follows:

X : person(father : person(residence : place(name : “Rome”)))?

It is not obligatory to specify all attributes; rather we can indicate only the relevant ones for
querying.

3 Formal definition of the OntoDLP language

This section provides a formal definition of OntoDLP. First, it is shown how the structure of the
ontology (i.e. the entities schemes and their isa relationships) can be defined. Subsequently, it is
demonstrated how instances are specified in our logic-based language, formally defining the notion
of an OntoDLP program and its answer set semantics.

Hereafter, it is assumed that the reader is familiar with standard ASP [17].

3.1 Schema specification

An entity-schema specification is an expression of the form:

Entity-type e isa {e1,...,em} (n1 :c1,...,nn :cn).

where Entity-type is one of {collection class,class,relation,intensional relation}; the entity e is
called (user-defined) base class, collection class, base relation or intensional relation accordingly.
e1,...,em are called superentities of e; they are also called superclasses or superrelations of e,
according to whether e is a class or a relation. The pair α=ni :ci is called attribute; in particular, ni
and ci are called name and type of α.4

An ontology-schema specification � is a set of entity-schema specifications. An ontology-schema
specification fixes the structure of the instances of each ontology entity, and the way how the entities
are isa-related. Next the precise meaning of an ontology-schema specification is defined. To this end,
we assume that an ontology-schema specification � has been fixed.

The set of relation names (specified) in � is denoted by R. The set C of all class names of the
ontology (specified by �) is the union of the following disjoint sets:

– The set of user-defined class names.
– The set of built-in class names object, individual, string, integer.
– The set of container-class names containing both [c] and {c}, for each built-in or user-defined

class name c.

4The isa keyword can be omitted if the set of superentities is empty.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 651 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 651

The inheritance hierarchy isa extends to the entire set of classes and relations in C∪R as follows:

– e isa s, for each pair of user-defined entities e and s such that s is a superentity of e.
– c isa individual, for each user-defined base class c.
– c isa object, for each built-in class c in {integer,string,individual}.
– [c] isa [s] and {c} isa {s}, for each pair of user-defined classes c and s so that s is a superentity

of c.

The ontology-schema specification provides a minimal set of information on inheritance and
schemes, as the user specifies only the ‘direct’ superentities and indicates only the specific attributes
of an entity. In order to completely determine the entity schemes, also the attributes that are implicitly
inherited by indirect superentities (e.g. coming from the superentity of a superentity) have to be
considered. To this end, the reflexive-transitive closure of isa is considered, denoted by �, and, for
each entity e∈C∪R, the schema σ (e) of e is defined as follows. If e is either a built-in class or a
container class, then σ (e)={(self :e)}.5 If e is a relation or a user-defined class with a specification
of the form (I), then let A be union of the set of all attributes appearing in the specification of any
entity s such that e�s, and N be the set of the names of the attributes in A.6 Then, σ (e) contains
precisely one attribute n : t for each element n∈N ; the type t of n : t is the greatest lower bound in
C, according with the � relation, of the types of all attributes with name n in A.7 Moreover, if e is a
(user-defined) class, then σ (e) additionally contains also (self :e).

Classes always have an attribute named self in the schema which is conceived to be filled by the
object identifier of class instances. Attributes inheritance may cause some conflicts, when an entity
e inherits two attributes a : t1 and a : t2 with the same name but with different types t1 and t2. This
problem is dealt with by setting in the scheme of e only one attribute with name a, whose type is the
‘meet’ of the types t1 and t2 (formally, this is accomplished by taking the greatest lower bound of t1
and t2 in C).

Example 1
Consider the following entity-schema specifications:

(1) classperson(name : string,children : {person}).
(2) classemployee isa {person}(salary : integer).
(3) collection classrichPerson(name : string).

Statement (1) declares (the schema of) a base class named person which has two attributes, namely
name of type string and children of type {person}. Statement (2) declares a subclass employee
of person having attribute salary of type integer. Statement (3) declares a collection class named
richPerson with an attribute called name of type string. The complete � relation is as follows:

employee� person� individual� object; [employee]� [person]� [individual]� [object];
string� object; integer � object; {employee}� {person}� {individual}� {object};
and the resulting entity schemas are:

σ (person)={self : person,name : string,children : {person}}
σ (employee)={self : employee,name : string,salary : integer,children : {person}};
σ (richPerson)={self : person,name : string} �

5self is a special attribute name, denoting the object-identifier of a class.
6 Note that N might have a smaller cardinality than A, as the same name could have multiple occurrences in A.
7If such a greatest lower bound does not exist, then the ontology-schema is inadmissible, and our system issues an error.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 652 643–670

652 OntoDLV: An ASP-based System for Enterprise Ontologies

An ontology-schema specification � is required to satisfy three admissibility conditions:

(s1) for each entity e in C∪R, there is only one schema specification for e in �;
(s2) if e′ and e′′ are two entities defined in � such that e′ �e′′, then e′ and e′′ are of the same

type (i.e. they are both base classes, or both collection classes, or both base relations, or both
intensional relations);

(s3) � is a partial order.8

Basically, condition (s1) ensures that there is only one declaration for each entity; condition (s2)
imposes inheritance hierarchies of base classes, base relations, collection classes and intensional
relations to be distinct (e.g. only a base class can be a superclass of a base class, and so on).

In the following, it is assumed that the above-mentioned conditions are satisfied by �.

3.2 Instances specification: OntoDLV programs

Once the schema � of the ontology has been given, the instances are specified in OntoDLP by means
of a logic program on �. A term is either a variable or constant; constants are of five kinds: (positive)
integers —sequences of digits, strings— sequences of characters enclosed in double quotes, symbolic
constants —unquoted strings starting with a lower case letter, set constants— sets of either symbolic
constants, integers or strings surrounded by curly brackets, list constants —sequences of either
symbolic constants, integers or strings surrounded by brackets.9 A class atom is oid :c(a1 : t1,...,an :
tn), where oid,t1,...,tn are terms, c∈C is a class name whose schema is σ (c)={self :c,a1 :k1,...,an :
kn}. A relation atom is r(a1 : t1,...,an : tn), where t1,...,tn are terms, r ∈R is a relation name whose
schema is σ (r)={a1 :k1,...,an :kn}. An atom is either a class atom or a relation atom.10 An atom
is called base class, base relation, collection class or intensional relation atom according with the
type of the corresponding entity. As a syntactic sugar, we allow to omit some attributes in atoms; the
missing attributes are implicitly filled with fresh variables. That is, if σ (e)={a1 :k1,...,an :kn}, then
an atom e(a1 : t1,...,am : tm) with m<n is a shorthand for e(a1 : t1,...,am : tm,am+1 :Zm+1,...,an :Zn),
where Zm+1,...,Zn are fresh variables (not occurring elsewhere).

Example 2
Consider the schema of Example 1. Then, john : person(name : “john”,children : C) is a base class
atom; X : richPerson(name : X) is a collection class atom. �

A literal is either an atom A (positive literal) or its negation not A (negative literal), where not is
the default negation symbol. A rule r is a formula:

a :− b1,...,bk,not bk+1,...,not bm.

where a is either a class atom or a relation atom, b1,...,bm are atoms, and m≥k ≥0. The consequent
a of r is called the head of r; the antecedent b1,...,bk,not bk+1,..., not bm of r is called the body of r.
If the body is empty, r is called fact, and the :− symbol is omitted. If the head is missing, then r

8That is, � is reflexive, antisymmetric and transitive.
9Symbolic constants denote the oids of user-defined classes, integers and strings denote the oids of the respective built-in

classes, and sets and list constants denote the respective instances (sets and lists).
10Actually, OntoDLV offers built-in support also for the standard comparison predicates =,<,≤,>,≥, �=} and for

aggregates as in DLV [11, 32]. Since their treatment is precisely the same as in standard ASP, we omit their formal specification
here, for simplicity.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 653 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 653

is called integrity constraint or axiom. A rule r is safe if each variable of r appears in at least one
positive body literal of r.11 Terms, atoms, literals and rules are ground if no variables appear in them.

Example 3
Consider the following rule r:

P : richPerson(name : N) :− P : employee(name : N, salary : 100000).
The head of r is P : richPerson(name : N), while the body of r contains the base class atom P :
employee(name : N,salary : 100000). r is not ground but it is safe. �

As a syntactic sugar, nesting class atoms is also allowed for ‘navigating’ through objects, by
using the so called complex terms. A complex term is a class atom without the initial oid-term
and colon, which can occur in place of a regular term in the rule body, and represents a syntactic
shorthand for a more involved expression. Consider a relation atom containing a complex term
A=e(a :q(a1 : t1,...,an : tn)). Then A simply stands for the conjunction e(a :K),K :q(a1 : t1,...,an : tn).
This syntactic transformation trivially extends to any atom where complex terms fill more than one
attribute.

Example 4
Consider the following rules:

(1) hasFatherJohn(person : P) :− P : person(father : person(name : “john”)).
(2) hasFatherJohn(person : P) :− P : person(father : F),F : person(name : “john”).

Then rule (1) is a shorthand for rule (2) where the complex term has been eliminated. �
In order to manipulate the content of list and set terms, a number of special built-in predicates is

allowed in rule bodies. Built-in predicates follow the approach described in [7]; a complete listing
of these predicates, together with a description of their behaviour and applicability conditions, is
available on the web at http://www.mat.unical.it/ricca/downloads/rt-ontodlp.zip.

An OntoDLP program P on � is a finite set of rules such that: (p1) every rule having either a base
class atom or a base relation atom in the head has an empty body; (p2) every rule is safe; (p3) P is
stratified w.r.t. negation [4, 38].12

Condition (p1) ensures that base classes and base relations are extensionally defined by using
ground facts (i.e. following the well-known database terminology, base class and base relation are
extensional constructs); condition (p2) guarantees the finiteness of the domains, by imposing that
variables are range-restricted; condition (p3) ensures that the OntoDLP program has (only) one
answer set and specifies an ontology unambiguously. Thus, base class and base relation instances
are extensionally specified by explicitly stating a number of facts. Collection classes and intensional
relations have an associated set of rules defining their instances. A program can contain also a number
of axioms checking the consistency of a specification (w.r.t. the intended model of the world).

Example 5
Given the schema specification of Example 1, the following is an OntoDLP program specifying its
instances:
Pex = {

(1) john :person(name :“John”,children : {ann}).
(2) ann :employee(name :“Ann”,children : {},salary :5000).
(3) P :richPerson(name :N) :− P :employee(name :N,salary :S),S >4000.}

11The motivation of safety comes from the field of databases, where it guarantees that queries (programs in our setting)
do not depend on the universe considered, see [1] for a detailed discussion.

12Stratification trivially extends fromASP to OntoDLP. The basic idea of stratification is that programs which are recursive
through negation are never stratified. Stratified programs have only one answer set.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 654 643–670

654 OntoDLV: An ASP-based System for Enterprise Ontologies

In particular, (1) and (2) are two facts declaring instances of person and employee, while (3) is a rule
defining the instances of richPerson. �

3.3 Program semantics

Given an OntoDLP program P on a schema �, it is shown how P determines the instances of the
classes and the relations in �. To this end we first define the notions of universe, base and instantiation
of an OntoDLP program; in turn, we then define the notion of interpretation, model and answer set
of an OntoDLP program. The answer set of P (which is unique for an admissible OntoDLP program)
allows one to completely determine the instances populating the ontology classes and relations.

Universe and base. Given an OntoDLP program P on a schema �, let UP– the Universe of P–
denote the set of constants (oid’s) appearing in P , and BP– the Base of P– be the set of ground (class
and relation) atoms constructible with the relation and class names (including built-in classes) in � as
the predicates, and the constants in UP as the terms.Aclass atom of the form o:c(a1:f1,··· ,an:fn)∈BP
is called an instance for c identified by o. Analogously, relation atom of the form r(a1:f1,··· ,an:fn)∈
BP is called an instance (or tuple) for r.

Example 6
Consider the program Pex of Example 5, the universe UPex is the set UPex =
{john,ann,“John”,“Ann”,{},{ann},5000,4000}; and the base is the following set:13

BPex = ⋃
x,y,z∈UPex

{x :person(name :y,children :z)}
⋃

x,y,z,t∈UPex
{x :employee(name :y,children :z,salary : t)}

⋃
x,y∈UPex

{x :richPerson(name :y)}
⋃

x∈UPex
{x : {person}()} ⋃

x∈UPex
{x : {employee}()}

⋃
x∈UPex

{x : {richPerson}()} ⋃
x∈UPex

{x : [person]()},
⋃

x∈UPex
{x : [employee]()} ⋃

x∈UPex
{x : [richPerson]()}

⋃
x∈UPex

{x :string()} ⋃
x∈UPex

{x : integer()} �

Instantiation. Given a rule r, Ground(r) denotes the set of ground rules obtained from r by
applying all possible substitutions from the variables in r to elements of UP . The ground instantiation
Ground(P) of an OntoDLP program P is the set

⋃
r∈P Ground(r).

Example 7
Consider the program Pex of Example 5, its instantiation Ground(Pex) is:

john : person(name : “John”,children : {ann}).
ann : employee(name : “Ann”,children : {},salary : 5000).
john : richPerson(name : “John”) :−

john : employee(name : “John”,salary : 4000),4000>4000.

john : richPerson(name : “John”) :−
john : employee(name : “John”,salary : 5000),5000>4000.

...

Note that the first two atoms were already ground, while the rules are obtained by replacing the
variables of rule (3) with constants in UPex . �

13We omit the atoms of the built-in classes for brevity.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 655 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 655

Well-typed interpretation. An interpretation for an OntoDLP program P is a set of ground atoms
I ⊆BP . A positive (negative) literal A (not A) is true w.r.t. I if A∈ I (A /∈ I); otherwise it is false. A rule
r ∈Ground(P) is satisfied w.r.t. I , if its head is true w.r.t. I or some body literal of r is false w.r.t. I .

An interpretation I for P is well-typed if it satisfies the following conditions:

– For each atom s : string()∈ I , s is a (quoted) string in UP ; (string)
– For each atom i : integer()∈ I , i is an integer in UP ; (integer)
– For each atom oid : c(a1 : f1,...,an : fn)∈ I , let σ (c)={self :c,a1 :k1,...,an :kn} be the schema

of c, then for all i∈[1,n] there exists an instance for ki identified by fi which is true w.r.t. I; (user
class)

– For each atom r(a1 : f1,...,an : fn)∈ I , let σ (r)={a1 :ki,...,an :kn} be the schema of r, then for
all i∈[1,n] there exists an instance for ki identified by fi which is true w.r.t. I; (relation)

– For each atom [L] : [c]()∈ I , L is a (possibly empty) sequence of constants such that for each
element t in L there exists an instance for c identified by t which is true with respect to I; (list)

– For each atom {S} : {c}()∈ I , S is a (possibly empty) set of constants such that for each element
t in S there exists an instance for c identified by t which is true with respect to I; (set)

Example 8
Given the ground program of Example 7, I ={ann : employee (name : “Ann”,children : {},salary :
5000),{} : {person}(),{ann} : {person}(),5000 : integer(), 4000 : integer(),“Ann” : string(),“John” :
string() }, is an interpretation, and we have that:

– 5000 : integer(), and 4000 : integer() are true w.r.t. I; (integer)
– “Ann”: string(), and “John”: string() are true w.r.t. I; (string)
– ann : employee(name : “Ann”,children : {},salary : 5000). is true w.r.t. I; (user class)
– john : person(name : “John”,children : {ann}) (which is not in I) is false w.r.t. I (user class);
– {} : {person}(), and {ann} : {person}() are true w.r.t. I; (set).
– [ann] : [person]() (which is not in I) is false w.r.t. I (list);
– ann : employee(name : “Ann”,children : {},salary : ann). is false w.r.t. I , since it is not well-typed

(violates correct typing on attribute salary), indeed ann is not an instance of integer.
– I is well-typed.

Basically, I gives a truth value for atoms (user-defined, as well as built-in, list and set atoms);
moreover, it guarantees correct typing. �

Model. A well-typed interpretation I for P is a model, if I satisfies every rule Ground(P) and
verifies the following conditions:

(1) If s�c, c is a class with schema σ (c)={self :c,a1 :k1,...,an :kn}, and oid:s(a1 :
f1,...,an:fn,...,az:fz)∈ I , then oid : c(a1 : f1,...,an : fn)∈ I . (A class gets also the instances
of its subclasses.)

(2) If s�r, r is a relation with schema σ (r)={a1 :k1,...,an :kn}, and s(a1 : f1,...,an:fn,...,az:fz)∈
I , then r(a1 : f1,...,an : fn)∈ I . (A relation gets also the tuples of its subrelations.)

(3) There are not two different class atoms in I oid :c(A) and oid :c(B) (both sharing the same
identifier and belonging to the same class), such that A=B (i.e. oid’s uniquely identify an
instance).

(4) If two different base class atoms in I oid :c(A) and oid :s(B) share the same identifier, then
either c�s and A⊇B, or vice versa.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 656 643–670

656 OntoDLV: An ASP-based System for Enterprise Ontologies

(5) If a collection class atom oid :c(A) is in I , then oid is the identifier also of a base class atom
in I .

A model I for P is an interpretation that satisfies all rules as in standard ASP, but it is endowed with
some additional properties. Intuitively, each instance respects the types specified in the respective
entity schema, each entity has also the instances if its subentities, object identifiers univocally
determine instances (apart from inheritance), collection classes do not have proper oids as they
re-classify existing class instances.

Example 9
Given the schema specification of Example 1, consider the program:

Pr
ex ={ john : person(name : “John”,children : {ann}).

ann : employee(name : “Ann”,children : {},salary : 5000).
ann : richPerson(name : “Ann”) :−

ann : employee(name : “Ann”,salary : 5000),5000>4000.}
and the following well-typed interpretations:
I0 ={ 5000 : integer(), 4000 : integer(),“Ann” : string(),“John” : string(),

{} : {person}(),{ann} : {person}() }
I1 = I0 ∪{ john : person(name : “John”,children : {ann}) }
I2 = I1 ∪{ ann : employee(name : “Ann”,children : {},salary : 5000) }
I3 = I2 ∪{ ann : person(name : “Ann”,children : {john}), {john} : {person}() }
I4 = I2 ∪{ ann : person(name : “Ann”,children : {}), ann : richPerson(name : “Ann”) }
I5 = I4 ∪{ john : employee(name : “John”,children : {ann},salary : 4000) }

Then, only the last two are models for Pr
ex , indeed: I1 does not contain an instance for ann (thus, the

second fact is not satisfied); I2 violates condition (1), since employee � person holds, ann must be also
instance of person; I3 violates condition (4), since attribute children is not properly ‘inherited’and, in
addition, it does not satisfy the last rule (having true body and false head w.r.t. I3); while, both I4 and I5
satisfy all the above-listed conditions. It is worth noting that, mistyped programs, where either object
identity [i.e. conditions (3), (4)] or object origin [i.e. condition (5)] are violated, have no model. As
an example, consider, the program P ′

ex =Pex ∪{john : person(name : “Jonny”,children : {annette})},
where john identifies two different instances. P ′

ex has no model, indeed there exist no interpretation
satisfying condition (3). �

Answer set. A model M for P is minimal if no model N for P exists such that N ⊂M.

Example 10
Consider program Pr

ex and the two models I4 and I5 of Pr
ex reported in Example 9. Then, I5 is

not minimal (I4 ⊂ I5); while, I4 is minimal; indeed there is no smaller subset of BP that is a model
for Pr

ex .
It is worth noting that, minimality ensures the correctness of object inheritance. Indeed, an

additional fact claiming that john is also an employee is true w.r.t. I5; while, there is only one
fact stating that john is an instance of person in Pex . �

Given a ground OntoDLP program P and a total interpretation I , let P I denote the transformed
program obtained from P by deleting all rules in which a body literal is false w.r.t. I , P I is called
reduct of P . I is an answer set of a program P if it is a minimal model of Ground(P)I .

An OntoDLP program P admits at most one answer set, because it contains only stratified rules
[4, 32, 38] and axioms. If there is no answer set it can be said that P (and, thus the entire ontology
specification) is inconsistent. This is the case when either the program is mistyped and contains some



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 657 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 657

statement that violates typing or object identity (Example 9), or some axiom cannot be satisfied (i.e.
some axiom is violated).

Example 11
Consider the program Pex of Example 5, then it can be verified that interpretation I4 of Example 10
is the answer set for Pex . Indeed, the reduct Ground(Pex)=Pr

ex , and I4 is a minimal model for it (see
Example 10). Note also that, if the axiom :− X : employee(salary : S) is added to P , then P becomes
inconsistent (since I4 violates it). �

Given a schema specification � and a consistent OntoDLP program on �, the instances specified
by P are exactly those contained in the answer set of P .

Querying. Given an OntoDLP program P , a query is a tuple Q=〈T ,Conj〉 where Conj is a
conjunction of atoms and T ={X1,...,Xn} (n≥0) is the set of distinct variables occurring in Conj.
We say that Q is ground when Conj is ground (and, hence T =∅). Syntactically, a query is specified
by writing Conj? (conjunction followed by question mark).

Let A be the answer set of P , a ground query Q is true when Conj is true w.r.t. A, i.e. when all
atoms in Conj are true w.r.t. I . If a query Q is non-ground, the answer to it is the set of all tuples
〈t1,...,tn〉 so that when Xi by ti is substituted in Conj the obtained ground conjunction is true w.r.t. A.

Example 12
Consider the program Pex of Example 11, the query P : person(name : N,children : C)? has answer
{〈john,“John”,{ann}〉,〈ann,“Ann”,{}〉}, indeed both john : person(name : “John”,children : {ann})
and ann : person(name : “Ann”,children : {}) are true w.r.t. the answer set of Pex . �

3.4 Reasoning on ontologies

An important construct of the language are reasoning modules, which allows one to reason on top of
OntoDLPontologies. Basically, reasoning modules are disjunctive programs. We now define auxiliary
atoms and disjunctive rules by extending the notion of atom and rule given in Section 3.2.

Let P be a set of auxiliary predicate symbols such that P∩E =∅.An auxiliary atom is an expression
p(t1,...,tn), where p∈P and t1,...,tn are terms. Auxiliary atoms are standard atoms that do not have
any typing constraint on attributes. Moreover, since attributes does not have names the order of terms
is meaningful, like in standard ASP. A disjunctive rule is an expression of the form:

a1 ∨ ...∨an :− b1,...,bk,not bk+1,...,not bm. n,m≥0

where, a set of auxiliary atoms a1,...,an is allowed in the head, and b1,...,bm are atoms, and m≥k ≥0.
Let � be a schema specification and let P be an OntoDLP program on �, a reasoning module �m is
a pair �m =〈m,Pm〉, where m is a reasoning module name, and Pm is a set of safe disjunctive rules
called the definition of �m. Syntactically, a reasoning module �m is specified as module m {Pm},
where the keyword module is followed by the name of the module, while the definition of �m
is enclosed in curly brackets. The semantics of a reasoning module �m =〈m,Pm〉 is given by the
answer sets of the program P ′ =P∪Pm obtained by the union of P with the definition �m. The
notion of answer set for P ′ is obtained by adopting the definitions of universe, base, instantiation,
interpretation, minimal model and answer set of Section 3.2, provided that, given an interpretation
I , a disjunctive rule r is satisfied if some head atom is true w.r.t. I whenever all body literals are true



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 658 643–670

658 OntoDLV: An ASP-based System for Enterprise Ontologies

w.r.t. I . It is worth noting that, in this case, like in standard ASP, P ′ may admit several answer sets,
each of which represents a possible solution for the problem solved by �m.

Example 13
Consider the OntoDLP program Pex of Example 5, and this module:

module friend {friend(X)∨notFriend(X) :− X : employee(). }.
Then, P ′

ex =Pex ∪Pfriend has two answer sets, namely: A∪{friend(“Ann”)} and A∪
{notFriend(“Ann”)}, where A is the answer set of Pex . �

4 OWL interoperability

As previously pointed out, OntoDLP is more suitable than OWL for Enterprise Ontologies, while
OWL has been conceived for describing and sharing information on the Web (i.e. to deal with
Web ontologies). However, it may happen that enterprise systems have to share or to obtain
information from the Web; thus, from inside an enterprise ontology, one may need to access and
query an external OWL ontology for specific purposes. At the same time, it is well known that
Semantic-Web applications may need to integrate rule-based inference systems, to enhance their
deductive capabilities [3]. Based on these observations, our system supports a mechanisms for OWL
interoperability. Actually, the approach of [14] was lifted to the OntoDLP framework, restricting the
semantics and reducing the computational effort.

To enable the interfacing and import of existing OWL ontologies into OntoDLP, the so-called OWL
atoms were introduced. OWL atoms can be used in rule bodies of OntoDLP’s reasoning components
and facilitate the evaluation of specific queries to an external OWL knowledge base. This allows
one to import ABox data, like concept and role extensions, but also TBox information, like concept
subsumption, ancestors and descendants. To comfortably handle the translation of names in this
interfacing process, a mapping component can be specified for each OWL atom.

OWL atoms can be used in OntoDLP constructs wherever ordinary atoms are allowed. They can
contain variables and are also subject to the grounding of the logic program. A ground OWL atom has
a truth value, depending on the evaluation of the respective query. The flow of information between
an OntoDLP program is strictly uni-directional, i.e. data from ontologies is imported to the OntoDLP
program. Moreover, the input parameters of OWL atoms are known at runtime, such that they can
be fully evaluated prior to any model computation procedure.

It is worth noting that, this choice (i.e. uni-directional flow of information) simplifies our approach
compared to related frameworks, such as dl-programs or hex-programs (Section 6). Indeed, there the
original semantics of the formalisms has been modified to take the bidirectionality of the interface into
account, resulting in more involved definition/implementation and more computationally expensive
systems (again, see Section 6). In our formalism, all OWLatoms can be fully replaced first by ordinary
OntoDLP atoms and then the semantics of OntoDLP can be applied as defined in Section 3.

OWL atoms. The types of queries that can be stated by an OWL atom is specified by the DL
Implementation Group (DIG) DL Interface [6]. The DIG is a self-selecting assembly of researchers
and developers associated with implementations of DL systems. The DIG Interface provides a
specification for accessing DL reasoner functionality. It allows for submitting DL axioms (via the
so-called TELL statement) as well as TBox and ABox queries (via the ASK statement), returning
either a truth value for boolean queries or a set of result tuples of values.

The set of constants that are imported by OWL atoms extends the set of object identifiers of the
OntoDLP program. In other words, OWL Atoms can intuitively be regarded as functional queries



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 659 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 659

that import new values into the OntoDLP program. Since these atoms can not occur in any recursion,
the entire set of objects stays strictly finite.

An OWL query atom is characterized by the identifier #OWL. It has three obligatory parameters,
the query type, the query itself, and the data source:

#OWL[querytype,query,source]
The query and source strings have to be double-quoted. The possible values for querytype are those
allowed in the DIG ASK directive, comprising queries such as instances of a concept, pairs of a role,
subsumption of concepts, all children concepts of a concept, all types of an individual, etc. A specific
query type determines the syntax of the actual query string. The third parameter, source, specifies the
source address of the ontology to be queried. This can be either a URI, such as ‘http://www.example.
org/data.owl’ or a local file, like: ‘/home/user/data.owl’

For example, the OWL atom #OWL[disjoint,“Truck SUV”,“/data/loans.owl”] is a purely boolean
query, evaluating to true if the concepts Truck and SUV are disjoint in the specified OWL KB about
loan data.

Moreover, the following rule imports all children classes of the concept car_loans of the specified
OWL-KB:

typesOfCarLoans(X) :− #OWL[children,“?X car_loans”,“http://ex.org/loans.owl”]
These children concept names instantiate the variable X in the respective rule. In order to be
distinguishable from uppercase concept or role identifiers, variable symbols within the query string
are prefixed with ‘?’. Variables in such queries act just like variables in ordinary body atoms, being
bound to a specific extension, with the difference that the extension is not determined within the
program itself, but by an external evaluation.

The next rule imports the extension of a class into the OntoDLP program:

trusted(P) :− #OWL[instances,“trusted_employers(?X)”,“http://ex.org/loans.owl”]
The difference to the previous example is the type of the return value. In previous example, concept
names were imported, being translated to OntoDLP names, whereas here we import OWL individuals
(members of a specific concept) into OntoDLP constants.

The following collection class gathers all trustable clients together with their credit score. Note
that, the information about employers and trustable companies stems from OntoDLP itself, while the
credit score information is derived from an external ontology.

collection classtrustableClient(creditScore : integer).
X : trustableClient(creditScore :S) :− X :client(creditScore :S),
#OWL[relatedIndividuals,“hasCreditScore(?X,?S)”,“credit.owl”],
employedBy(X,C),trustableCompany(C).

Name mappings. Mappings ease the syntactic translation of constant names when they are imported
into the OntoDLP program. A mapping is defined via the mapping keyword.

mapping stocks{ ‘Amazon’ ‘AMZ’
‘HewlettPackard’ ‘HPQ’ …

If this mapping is specified in a query atom, each occurrence of AMZ in the query answer (i.e. data
that comes from an OWL ontology) is translated to the name Amazon in the OntoDLP program. The
mapping specification itself is a list of pairs of strings. The first string in each pair is the local (i.e. in



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 660 643–670

660 OntoDLV: An ASP-based System for Enterprise Ontologies

Figure 1. The OntoDLV architecture

OntoDLP) name to be translated, the second string is the ontology name. The mapping-name is used
to refer to a name mapping within a query atom, where one or more mappings can be optionally
specified:

#OWL[relatedIndividuals,“performance(?X,?Y )”,“market.owl”]
Thus, mappings are always local to a specific query-atom. Mappings are not functional, hence they
can be seen as n :n relations. Consequently, one name can be mapped to multiple replacement names,
which will all be inserted, and multiple names can be mapped to the same single replacement name.
It is in the responsibility of the author of a mapping to consider the effect of such mappings on the
unique name assumption.

Optional mapping arguments can be used to refer to different namespaces in the OntoDLP part
and the ontology part. If an individual matches such a namespace, but does not occur in the list of
mapping-pairs, just its namespace-portion is replaced. Thus, namespace specifications simply are
syntactic sugar, simplifying the replacement of common substrings within names of the OntoDLP
universe and/or the ontology universe.

5 The OntoDLV system

OntoDLV is a complete framework that allows one to specify, navigate, query and perform reasoning
on OntoDLP ontologies.

The OntoDLV system is developed in Java by adopting industry-level development standards
and ensures the stability and performances required by real-world applications. Here, an in-depth
description is not given of all technical details underlying the implementation of OntoDLV, rather
the main features of the system are presented. Moreover, at the end of this section we report some
preliminary experiments for showing the efficiency of the implementation, and for outlining that
OntoDLV scales well even when compared with one of the most used DL-systems.

The system architecture of OntoDLV, depicted in Figure 1, can be divided into three abstraction
layers. The lowest layer, named OntoDLV core contains the components implementing the main
functionalities of the system; above it, the API act as a facade for supporting the development of
applications based on the core; while the GUI is the end-user interface of the system.

OntoDLV core. The OntoDLV system was conceived for efficiently handling real-world enterprise
ontologies. This kind of ontology usually contains a large number of instances that are distributed



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 661 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 661

across several machines. To deal with this, the kernel of the system is equipped with a flexible
persistency manager that is able to deal with large distributed ontologies. Indeed, ontologies can
be stored transparently in a number of text files and/or database management systems. Text files in
OntoDLP format are analyzed by the Parser module that builds in main memory an image of the
ontology components it recognizes; while, the DB Manager module is able to manipulate ontology
entities that are stored in mass-memory by exploiting relational databases. Transparency is obtained,
on the one hand by exploiting a common abstract interface for ontology language components (i.e.
classes, instances etc.); and, on the other hand, by exploiting the Hibernate framework [30] for
Object/Relational mapping. While main memory storage of ontology components is straightforwardly
obtained by implementing a library of concrete Java classes (compliant with the abstract interface), the
mass-memory storage has been implemented by mapping each concrete Java class to a corresponding
representation on a relational database. In this way, database tables are exploited for storing instances
and tuples (which in a real-world ontology represent the largest part of the information) in an efficient
way. The persistency manager builds a global view of the distributed ontology which can be then
exploited by the other components of the kernel, namely: Type Checker and Rewriter.

The Type Checker module verifies the admissibility (Section 3) of the loaded ontology. This
process is implemented efficiently by exploiting a number of indexing caching techniques which are
garbage-collector friendly (i.e. caches and indexes are retained in main-memory while the system
has sufficient space). It is important to say that, if the loaded ontology contains some admissibility
problem (e.g. a class is declared twice) the type checker builds a precise description of the problem.
This information can be exploited by external applications, and in particular the user interface of
OntoDLV relies on this feature for helping the ontology design during the development process.

Another important component of the OntoDLP core is the Rewriter module. The Rewriter is
responsible for the evaluation of both ontology and reasoning modules, which is carried out by
invoking the DLV system [32]. DLV is a state-of-the art ASP system that has been shown to perform
efficiently on both hard and ‘easy’ (having polynomial complexity) problems. Since DLV cannot
directly deal with ontologies, they must be rewritten in an ‘equivalent’ ASP program in order to
be evaluated. The rewriting algorithm works by exploiting an enhanced version of the algorithm
described in [39], which is able to deal with the broader set of constructs supported by OntoDLP.
In particular, in this process each class (resp. relation) of the ontology is transformed in a predicate
discarding attribute names, while suitable rules are added for handling instance inheritance, and
OntoDLP rules are flattened to remove complex terms. Importantly, ontologies are translated into an
equivalent (stratified)ASPprogram that is solved by DLV in polynomial time (under data complexity).
The import of OWL data is performed during the rewriting phase by the OWL Handler submodule
which exploits the DIG interface (a general interface towards DL [5] knowledge bases). We used an
existing DIG API [46], which is built on Java XMLBeans, providing a straightforward mapping from
Java classes to the native DIG XML format. The queries represented by the OWL import atoms are
translated into DIG and submitted to an external OWL reasoner, such as Racer Pro [21], Pellet [37]
or FaCT++ [45], all three of which are capable of being accessed via DIG. More specifically, the
ontologies specified in the import atoms are first translated into DIG themselves and then loaded
into the DL reasoner prior to the actual queries.14 The mapping of individual names (if applicable)
is carried out before the query submission and after retrieval of the reasoner reply. The OWL atoms
in the rule bodies are replaced by ordinary OntoDLP atoms, while the query result is translated into

14This step is necessary, since the currently available DIG version 1.1 does not support the import of an existing ontology
in another format, such as OWL/Resource Description Framework (RDF).



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 662 643–670

662 OntoDLV: An ASP-based System for Enterprise Ontologies

according ground atoms. Hence, after this stage, the OntoDLP program is augmented by the imported
OWL data and does not contain OWL import atoms anymore.

The rewriting is crucial for the efficiency of the OntoDLV system, and it has been implemented
by exploiting a number of optimization and caching techniques. More in detail, when a reasoning
task is requested the rewriter selects the minimum set of constructs to be translated and caches it (to
avoid multiple rewritings). For instance, if we query the ontology asking for the number of employees
named John the procedure rewrites only the employee class (thus avoiding to pass the whole ontology
to the reasoner).

OntoDLV API. In order to enable third parties to develop their own knowledge-based applications
on top of OntoDLV, we developed a complete application programming interface named OntoDLV
API [16]. Since OntoDLV is a Java application, the OntoDLV API has been written in this language.
In particular, all the operations the user can require (e.g. creation and browsing of ontology elements,
reasoner invocations etc.) are made available through a suitable set of Java interfaces.

OntoDLV GUI. The end user exploits the system through an easy-to-use and intuitive visual
development environment called GUI, which is built on top of the OntoDLV API. The OntoDLV
GUI was designed to be simple for a novice to understand and use, and powerful enough to support
experienced users. The GUI combines a number of specialized visual tools for authoring, browsing
and querying a OntoDLP ontology. Queries can be created by exploiting both a text and a graphical
‘QBE-like’ interface, and results are presented in an intuitive way.

Experiments. An experimental analysis was carried out in order to measure the performance of
OntoDLV, and in particular we assessed the efficiency of the rewriting process.

Two different kinds of ontologies were considered, the first set is made of four automatically
generated LUBM ontologies of increasing size (number of instances). Actually, LUBM is a
benchmark developed at the Lehigh University for testing performance of ontology management
and reasoning systems and has been already exploited for testing DL systems performance [20, 35].
Importantly, those LUBM ontologies could be encoded in OntoDLP by preserving the original
semantics by exploiting a tool described in [15].

The second set of instances, called HILEX, contains some real-world OntoDLP ontologies. Those
instances were courteously provided by the company Exeura s.r.l. and solve a text classification
problem with the Hilex system (Section 7).

The experiments were performed on a Centrino Duo 2 Ghz machine with 3GB of RAM, and 80GB
7200 rpm HD running the JDK 1.6.0_06 by Sun (with heap size up to 512 MB) on Windows XP.

The execution time spent by OntoDLV were measured for solving the ontology materialization
task, together with the time spent for rewriting the original ontology in standard ASP. In addition,
in order to have an idea about the scalability of OntoDLV when compared with with other ontology
systems based on DLs, we have run the LUBM instances on the DL system Pellet [37]15 performing
the realization task (which corresponds to ontology materialization in OntoDLV). In order to obtain
more reliable results each test was processed seven times and here is reported the average time spent
by the systems.

In Figure 2, the data collected during the experimental analysis are reported regarding both LUBM
and HILEX ontologies. It can be noticed that the rewriting procedure is very efficient, indeed it always
amounts to less than the 6% of the total time spent by OntoDLV [Figure 2(a)]. Indeed, if the most
significant instance (LUBM 4) is considered only 8.9 s over 198.2 s have been spent for rewriting the

15We could not run Pellet on HILEX instances since they contain logic rules.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 663 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 663

Figure 2. Average execution times on both LUBM and HILEX instances

ontology. Concerning the comparison with Pellet [Figure 2(b)], OntoDLV appears to scale well on
LUBM instances. Note that, OntoDLV always employed less time than the competitor. In particular,
on LUBM 3 OntoDLV took only 126.8 s while Pellet required up to 970.5 s, and the latter could not
‘realize’ LUBM4 in 1200 s, while our system took only 198.2 s.

It is worth pointing out that these results give us an idea of the performance of OntoDLV when
compared with other systems, and have to be considered only indicative; however, a comprehensive
comparison is outside of the aim of this article.

6 Related work

There are several languages and systems related to OntoDLP that have been proposed in the literature.
Those languages have different characteristics and can be grouped as follows: Datalog extensions,
Frame-based languages, Semantic Web languages. OntoDLV is compared with each family of related
works in a different paragraph. Finally, OntoDLV is compared with the most closely related system:
DLV+ [39].

Datalog extensions. In the field of databases there are several languages and systems similar
to OntoDLP which have been quite successful and positively accepted in the literature (see e.g.
[9, 18, 33, 34]), even if they were based on less powerful logic programming languages. Among
them, the COMPLEX system [18], which extends Datalog with object-oriented constructs, is the
most similar to OntoDLV. COMPLEX and OntoDLP share some similarities in the object-oriented
model (like, eg. the attribute inheritance mechanism). However, the latter features a more rich
set of modelling constructs, like collection classes, lists and sets. Moreover, COMPLEX supports
normal (non-disjunctive) stratified programs, which are a restricted fragment of the logic language of
OntoDLP (supporting also disjunction and aggregate functions), thus resulting less expressive than
the latter.

Frame-based languages. Apopular logic-based language supporting most aspects of object-oriented
and frame-based languages is F-Logic [31]. The idea behind F-logic is to exploit a logic programming
paradigm for developing intelligent information systems. A main implementation of F-logic is the
Flora-2 system [50] which is devoted to Semantic Web reasoning tasks. Flora-2 integrates F-Logic



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 664 643–670

664 OntoDLV: An ASP-based System for Enterprise Ontologies

with other novel formalisms such as HiLog [8] (a logical formalism that provides higher-order
and meta-programming features in a computationally tractable first-order setting) and Transaction
Logic [2] (that provides a logical foundation for state changes and side effects in a logic programming
language). Comparing OntoDLP with F-Logic, we note that the latter has a richer set of object
oriented features (e.g. class methods), but it misses some important constructs of OntoDLP like
disjunctive rules, which increase the knowledge modelling ability of the language. Concerning
system-related aspects, important advantages of OntoDLV (w.r.t. Flora-2) are: the presence of both
a tight integration with DL [5] systems and a graphical development environment. The first one
simplifies the development of application embedding OWLontologies while the second one simplifies
the interaction with OntoDLV for both the end user and the knowledge engineer.

Semantic web. A number of ontology languages has been proposed in the field of the Semantic
web, the most popular of which (RDF [49] and OWL [43]) have been already proposed as a
recommendation by the W3C.

RDF is a simple assertional logical language which allows for the specification of binary properties.
It has an extended version, called RDFS (RDF Schema), which supports the notions of class and
property, and provides mechanisms for specifying domains and ranges of properties, and taxonomies.
Compared with OntoDLP, RDF(S) features a richer data-type library, but, it does not provide any
way to extract new knowledge from the asserted one (there are no ‘inference rules’ in RDFS).

OWLis based on RDFS and, in general, allows one to express complex statements about the domain
of discourse (OWL is undecidable in general) [43]. The largest decidable subset of OWL, called
OWL-DL, coincides, basically, with SHOIN (D), an expressive DL [5]. Basically, OWL is based
on classical logic (there is a direct mapping from SHOIN to first order logic) and, consequently, it
adopts different semantic assumptions like the OWA, and Multiple Name Assumption. As previously
pointed out, those assumptions make OWL much more suitable than OntoDLP for the semantic web
(the web is an open environment), but, at the same time, they make OWL inappropriate for enterprise
ontologies. This is because an enterprise ontology describes the knowledge of specific aspects of
the ‘closed world’ of the enterprise. Thus, OntoDLP supporting both CWA and UNA results more
appropriate than OWL for representing enterprise ontologies. Moreover, OntoDLP, i.e. based on
ASP, natively supports ‘rules’ which are missing in OWL, and are considered an important tool for
ontology reasoning [19, 27, 43].

Our work is also related with the attempt of combining OWL with rules for the Semantic Web, since
OntoDLV natively supports an interoperability mechanism with OWL. In this field, a lot of effort
has been done for finding an appropriate solution (see [3] for an excellent survey). The proposals
range from the reduction of DL to logic programming [22, 29, 36, 40, 41, 44, 47], to the integration
of rules in a DL specification [19, 26, 27]. The major problems existing in the interaction of rules
and DLs with strict semantic integration is retaining decidability (which is, instead, ensured in our
framework) without loosing ease of use and expressivity.

Our approach is a modified version of the framework presented in [14], which falls is in the ‘middle’
of the range of proposals. Indeed, in [14] a novel type of logic programs, so-called dl-programs was
introduced, which allows for an information exchange between the program and an OWL ontology.
dl-programs combine ASP with the DLs. In this approach, ASP works at the ‘rule layer’, while
OWL/RDF Schema flavors would keep their purpose of description languages, in the underlying
‘ontology layer’. From the rule layer point of view, ontologies are dealt with as an external source of
information whose semantics is treated independently. Basically, information exchange is obtained
by allowing the so-called dl-atoms (which contain queries to the description logic knowledge base)
in the rules bodies. Non-monotonic reasoning and rules are allowed in a decidable setting, as well as



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 665 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 665

arbitrary mixing of closed and open world reasoning. In a subsequent proposal [13], this framework
has been extended to a more general type of external interface, allowing for a bidirectional flow
of information with any type of external source of computation (and, thus also description logics
reasoners). These so-called hex-programs were first presented in [13].

The OWL interface of OntoDLP extends the idea of dl-programs by allowing for querying multiple
ontologies within the same program. Moreover, it supplies a wide range of ontology queries instead
of the limited choice of queries in a dl-atom. On the other hand, it is more restricted than hex-atoms,
which have an arbitrary set of input and output terms. However, it differs from both dl-programs
as well as hex-programs by providing only unidirectional information flow, i.e. knowledge is only
imported into the OntoDLP program. This restriction significantly simplifies the semantics of the
interface. Due to the import-only type of the interface, the truth values of OWL import atoms can
be entirely determined before any OntoDLP model computation. Thus, no recursion between the
program and the external ontology is possible, which reduces the computational effort significantly
compared to the two related approaches.

DLV+. OntoDLV is rooted in the DLV+ system [39], but, compared to its predecessor, it brings
many relevant extensions, optimizations and enhancements.

As far as the language is concerned, OntoDLP supports a richer set of modelling constructs than
DLP+ (the language of DLV+):

– classes and relations in DLP+ are only extensional, while OntoDLP allows one to define entities
intentionally (i.e. by means of rules) by exploiting collection classes (which enable objects
reclassification) and intensional relations (allowing for a compact definition of relationships);

– inheritance in DLP+ is confined to (base) classes, while all OntoDLP entities (including relations
and intentional entities) support this useful modelling tool;

– OntoDLP supports lists ad sets which have no counterpart in DLP+;
– OntoDLP natively supports an interoperability mechanism with OWL, which makes it suitable

also for the development of Semantic Web applications.

Moreover, the OntoDLP language has a direct model-theoretic semantics, while the meaning of DLP+
programs was specified merely by a rewriting technique [39].

On the system side, OntoDLV, conceived for dealing with real-world applications, is more solid
and better engineered than DLV+, and it supports a number of features which have no counterpart
in DLV+, namely:

– a powerful persistency layer, which supports ontology storage in both filesystem and commercial
DBMS. This feature allows one to work also with large (real-world) enterprise ontologies, which
can be efficiently stored in relational databases;

– a richAPI, which allows one to develop third party applications embedding OntoDLP ontologies.
The OntoDLV API let the developer exploit all the features of the system in a comfortable way,
while DLV+ has a only limited input-output handling interface.

– OWL handling through the DIG interface which connects OntoDLV with the most popular DL
reasoners;

– a more advanced Graphical Interface, which extends the one of DLV+ with all the new features
of both language and system.

In summary, OntoDLV supports both a richer language and more useful functionalities than
DLV+; moreover, it has been implemented by following industry-level development standards.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 666 643–670

666 OntoDLV: An ASP-based System for Enterprise Ontologies

Those features makes OntoDLV much more stable, powerful, and suitable for developing real-world
applications than its predecessor DLV+.

7 Current applications and conclusion

This article has presented OntoDLP, an extension of (disjunctive) ASP with relevant object-oriented
constructs, including classes, objects, (multiple) inheritance, lists and sets. We have described the
syntax and semantics of OntoDLPand shown its usage for ontology representation and reasoning. The
semantic features of the language, like CWA and UNA, its rich set of tools for ontology specification,
combined with an expressive reasoning language, make OntoDLP very suitable for dealing with
Enterprise/Corporate ontologies. Moreover, it supports a powerful interoperability mechanism with
OWL, allowing one to simultaneously deal with both OWL and OntoDLP ontologies.

Importantly, a concrete implementation of the language has been provided: the OntoDLV system.
OntoDLV features both an advanced persistency-management system, an API, and a GUI. This way,
both the novice and the expert user can exploit the system for solving problems and developing
real-world applications based on OntoDLP. The system is built on top of DLV (a state-of-the art ASP
system), and it implements all features of OntoDLP.

OntoDLV is a powerful tool for the development of knowledge-based applications. Indeed,
even though OntoDLP has been released only very recently, it is already employed, playing a
central role, in advanced applications like: HiLex [42], an advanced tool for semantic information-
extraction from unstructured or semi-structured documents; OLEX (OntoLog Enterprise Categorizer
System) [10], a system developed by Exeura s.r.l. (http://www.exeura.it) for text classification
(roughly, sets of documents are automatically classified by the system w.r.t. a given ontology by using
suitable reasoning modules); and the RAP platform, developed by Orangee (http://www.orangee.
com) an agent-based system, implemented by using the JADE Framework, for the governance of the
distribution process of antiblastic medicines in hospitals. Basically, in this application, the ‘agent’s
brain’ is an OntoDLP program.

As far as future work is concerned, the language could be enriched with more powerful modelling
constructs, and the system extended in order to carry out the evaluation of large ontologies in mass
memory. Moreover, a comprehensive experimental evaluation is being set up for comparing the
performance of OntoDLV with other related systems, and in particular with DL reasoners.

Further details and documentation about OntoDLV are available on the web at http://www.mat.
unical.it/ricca/downloads/rt-ontodlp.zip.

Acknowledgements

This work has been supported by M.I.U.R. within projects ‘Potenziamento e Applicazioni della
Programmazione Logica Disgiuntiva’ and ‘Sistemi basati sulla logica per la rappresentazione di
conoscenza: estensioni e tecniche di ottimizzazione’, and by the EC NoE REWERSE (IST 506779)
and the Austrian Science Fund (FWF) project P17212-N04.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley Publishing

Company, Massachusetts, 1995.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 667 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 667

[2] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and C. Teodor Przymusinski. HiLog:
a foundation for higher-order logic programming. JLP, 15, 187–230, 1993.

[3] G. Antoniou, C. V. Damsio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and
P. F. Patel-Schneider. Combining rules and ontologies. Asian survey, 13-D3, 2005.

[4] K. R.Apt, H.A. Blair, andA. Walker. Towards a theory of declarative knowledge. In Proceedings
of the Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1988.

[5] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, eds.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge, 2003.

[6] S. Bechhofer, R. Möller, and P. Crowther. The dig description logic interface. In Proceedings
of the Description Logics, CEUR Workshop, pp. 21–29. CEUR-WS.org, 2003.

[7] F. Calimeri, S. Cozza, and G. Ianni. External sources of knowledge and value invention in logic
programming. Annals of Mathematics and Artificial Intelligence, 50, 333–361, 2007.

[8] W. Chen, M. Kifer, and D. S. Warren. Hilog: a foundation for higher-order logic programming.
JLP, 15,187–230, 1993.

[9] W. Chen and D. S. Warren. C-logic of complex objects. In Proceedings of the Eighth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 369–378.ACM
Press, 1989.

[10] R. Curia, M. Ettorre, S. Iiritano, and P. Rullo. Textual document per-processing and feature
extraction in OLEX. In Proceedings of Data Mining 2005, Skiathos, Greece, 2005.

[11] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive
logic programming: semantics, complexity, and implementation in DLV. In Proceedings of the
IJCAI 2003, pp. 847–852, Acapulco, Mexico, 2003.

[12] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM TODS, 22,364–418, 1997.
[13] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order

reasoning and external evaluations in answer set programming. In Proceedings of the IJCAI05,
pp. 90–96. Professional Book Center, 2005.

[14] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming
with description logics for the semantic web. In Proceedings of the KR2004, pp. 141–151.
AAAI Press, 2004.

[15] L. Gallucci, G. Grasso, N. Leone, and F. Ricca. Interoperability mechanisms for ontology
management systems. In Proceedings of CILC’07, S. Agata di Messina, 21–22 Giugno 2007,
2007. Informal Proceedings. Available at http://aleph.unime.it/cilc2007

[16] L. Gallucci and F. Ricca. Visual querying and application programming interface for an
ASP-based ontology language. In Proceedings of the SEA’07 Workshop, Arizona, USA, 2007,
pp. 56–70. CEUR-WS.org, 1998.

[17] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
NGC, 9, 365–385, 1991.

[18] S. Greco, N. Leone, and P. Rullo. COMPLEX: an object-oriented logic programming system.
IEEE TKDE, 4, 344–359, 1992.

[19] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining
logic programs with description logics. In Proceedings of the WWW2003, Budapest, Hungary,
pp. 48–57. ACM Press, 2003.

[20] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large OWL datasets.
In Third International SemanticWeb Conference (ISWC 2004). Springer-Verlag, NewYork, Inc.,
2004.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 668 643–670

668 OntoDLV: An ASP-based System for Enterprise Ontologies

[21] V. Haarslev and R. Möller. Racer: a core inference engine for the semantic web, In Proceedings
of the 2nd International Workshop on Evaluation of Ontology-based Tools, Y. Sure and
O. Corcho, eds, pp. 27–36. CEUR-WS.org, 2003.

[22] S. Heymans and D. Vermeir. Integrating semantic web reasoning and answer set programming.
In Answer Set Programming, Advances in Theory and Implementation, Proceedings of the 2nd
International ASP’03 Workshop. M. D. Vos and A. Provetti, eds, CEUR-WS.org, 2003.

[23] I. Horrocks. DAML+OIL: a description logic for the semantic web. IEEE Bulletin of the
Technical Committee on Data Engineering, 25, 4–9, 2002.

[24] I. Horrocks. DAML+OIL: a reason-able web ontology language. In Proceedings of the
8th International Conference on Extending Database Technology, Advances in Database
Technology (EDBT 2002), C. S. Jensen et al., eds, Vol. 2287 of Lecture Notes in Computer
Science, Springer, 2002.

[25] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. In Proceedings of the Second International Semantic Web Conference (ISWC
2003), D. Fensel et al., eds, Vol. 2870 of Lecture Notes in Computer Science, Springer,
2003.

[26] I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules language. In Proceedings of
the 13th international conference on World Wide Web, (WWW 2004), pp. 723–731. ACM Press,
2004.

[27] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. Swrl: a semantic
web rule language combining owl and ruleml, 2004. W3C Member Submission. Available at
http://www.w3.org/Submission/SWRL/ (Last accessed on 21 July 2008).

[28] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language. Journal of Web Semantics, 1, 7–26, 2003.

[29] U. Hustadt, B. Motik, and U. Sattler. Reducing shiq-description logic to disjunctive datalog
programs. In Proceedings of the KR2004, pp. 152–162, Canada, 2004.

[30] Inc. Red Hat. The hibernate framework for object/relational persistence. 2007.Available at http:
//www.hibernate.org/ (Last accessed on 21 July 2008).

[31] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. JACM, 42,741–843, 1995.

[32] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system
for knowledge representation and reasoning. ACM TOCL, 7, 499–562, 2006.

[33] M. Liu, G. Dobbie, and T. W. Ling. Logical foundation for deductive object-oriented databases.
Symposium on Principles of Database Systems, 27, 117–151, 2002.

[34] D. Maier. A logic for objects. In Proceedings of the Workshop on Foundations of Deductive
Databases and Logic Programming, pp. 6–26. ACM Press, 1986.

[35] Mindswap. Pellet performance, 2003. Available at http://www.mindswap.org/2003/pellet/
performance.shtml (Last accessed on 21 July 2008).

[36] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules. Journal of Web
Semantics, 3,41–60, 2005.

[37] B. Parsia and E. Sirin. Pellet: an OWL DL reasoner. In Third International Semantic Web
Conference (ISWC 2004) – Posters Track. Springer-Verlag, New York, Inc., 2004.

[38] T. C. Przymusinski. On the declarative semantics of deductive databases and logic programs. In
Proceedings of the Foundations of Deductive Databases and Logic Programming, pp. 193–216,
Morgan Kaufmann Publishers Inc., San Francisco, CA, 88.

[39] F. Ricca and N. Leone. Disjunctive logic programming with types and objects: the DLV+
system. Journal of Applied Logics, 5, 545–573, 2007.



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 669 643–670

OntoDLV: An ASP-based System for Enterprise Ontologies 669

[40] R. Rosati. Dl+log: tight integration of description logics and disjunctive datalog. In Proceedings
of the 10th International Conference on Principles of Knowledge Representation and Reasoning,
P. Doherty et al., eds, pp. 68–78. AAAI Press, 2006.

[41] R. Rosati. Integrating ontologies and rules: semantic and computational issues. In Proceedings
of the Reasoning Web, pp. 128–151. Springer-Verlag, New York, Inc., 2006.

[42] M. Ruffolo, N. Leone, M. Manna, D. Sacca’, and A. Zavatto. Exploiting ASP for semantic
information extraction. In Proceedings of the ASP05, Bath, UK, 2005.

[43] M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology language guide.
W3C candidate recommendation. 2003. Available at http://www.w3.org/TR/owl-guide/ (Last
accessed on 21 July 2008).

[44] T. Swift. Deduction in ontologies via asp. In LPNMR, pp. 275–288, 2004.
[45] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: system description. In

Proceedings of the Third International Joint Conference on Automated Reasoning (IJCAR
2006), U. Furbach and N. shankar, eds, Vol. 4130 of Lecture Notes in Computer Science,
Springer, 2006.

[46] D. Turi. The DIG interface project. 2007. http://dig.sourceforge.net/ (Last accessed on 21 July
2008).

[47] K. Van Belleghem, M. Denecker, and D. De Schreye. A strong correspondence between
description logics and open logic programming. In Proceedings of the ICLP, pp. 346–360,
MIT Press, Massachusetts, 1997.

[48] W3C. The word wide web consortium. 1994. Available at http://www.w3.org (Last accessed
on 21 July 2008).

[49] W3C. The resource description framework. 2006. Available at http://www.w3.org/RDF/ (Last
accessed on 21 July 2008).

[50] G. Yang, M. Kifer, and C. Zhao. ‘flora-2: A rule-based knowledge representation and inference
infrastructure for the semantic web.’In Proceedings of the CoopIS/DOA/ODBASE, pp. 671–688.
Springer-Verlag, New York, Inc., 2003.

Appendix A: The Ontology Web Language (OWL)

OWL [43] is an ontology language for the Semantic Web, developed by the W3C [48]
Web Ontology Working Group. It became a W3C Recommendation in February 2004 and
is understood by the industry and the web community as a web standard. Built on top
of XML and RDF(S), OWL further extends the ability of stating facts and class/property
hierarchies.

The logical underpinning of OWL are DLs [5], which can be seen as fragments of first-order
logic. A DL theory is commonly divided into the so-called TBox and ABox. The TBox contains
the terminological axioms of the theory (corresponding to FO formulas), constituting the ontology’s
schema. The extensional information is established by the ABox by assertions about concept and
role membership of individual instances. Query answering is defined as first-order entailment taking
into account all models of TBox ∪ ABox. The atomic building blocks of DLs are concepts (unary
relations) and roles (binary relations). They support inheritance and can be composed to express
more complex terms. Moreover, Value restrictions can be used to describe cardinality constraints
between concepts and roles. The semantics of DLs corresponds to a set-theoretic approach, where
concepts are interpreted as sets of individuals and roles as pairs of individuals. The domain of such



[13:25 21/7/2009 exn042.tex] LogCom: Journal of Logic and Computation Page: 670 643–670

670 OntoDLV: An ASP-based System for Enterprise Ontologies

an interpretation is possible infinite and adheres to the open-world assumption, in contrast to logic
programming formalisms.

The naming of specific DL languages usually corresponds to the constructors they provide (in
addition to the basic ones like concept union, concept disjunction, etc.). For example, in the case of
SHOIN (D) these are: S Role transitivity, H Role hierarchy, O Nominals (‘one-of’-constructor),
I Role inverses; N Unqualified number restrictions; D Datatypes.

The language OWL provides the three increasingly expressive sublanguages OWL Lite, OWL DL
and OWL Full, where OWL DL basically corresponds to DAML+OIL [23, 24]. The languages
OWL Lite and OWL DL are essentially very expressive DL with an RDF/XML syntax and
an abstract frame-like syntax [28].16 In fact, as shown by [25], ontology entailment in OWL
Lite and OWL DL reduces to knowledge base (un)satisfiability in the DL SHIF(D) and
SHOIN (D), respectively. The particular datatypes used in OWL are taken from RDF and
XML Schema Datatypes. OWL Lite, being closely related to SHIF(D), prohibits unions and
complements, restricts intersections to the implicit intersections in the frame-like class axioms,
limits all embedded descriptions to concept names, does not allow individuals to show up
in descriptions or class axioms, and limits cardinalities to 0 or 1. It therefore represents a
subset of OWL DL, reducing its expressivity and hence its complexity. SHOIN (D) has a time
complexity of NEXP for central reasoning problems, which is in SHIF(D) reduced to EXP in the
worst case.

Received 2 January 2008

16Since an OWL ontology is in principle just an RDF graph, it can also be represented by RDF triples and hence be written
in a variety of different syntactic forms.


	OntoDLV: An ASP-based System for Enterprise Ontologies
	1 Introduction
	2 OntoDLP by example
	3 Formal definition of the OntoDLP language
	4 OWL interoperability
	5 The OntoDLV system
	6 Related work
	7 Current applications and conclusion


