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Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
! i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
! you can write programs
Knowledge of the evaluation process
!you can write programs more efficiently
Knowledge of an ASP System
! you can actually implement applications
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Evaluation of ASP Programs (1)

Computationally expensive
Traditionally a two-step process:

1 Instantiation (or grounding)
! Variable elimination

2 Propositional search
! Model Generation: “generate models”

! (Stable) Model Checking: “verify that models are answer sets”
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About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

! Not viable in practice

Intelligent instantiation
! Keep the size of the instantiation as small as possible

! Equivalent to the full one

! Intelligent Instantiators can solve problems in P

! Deductive Databases as a subcase!
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Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: ! equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation:

! is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1).

 OK!

. . .
:- edge(1, 2), col(1, 1), col(2, 1).

 redundant!

. . .
:- edge(1, 2), col(1, red), col(2, red).

 OK!

. . .

Intelligent Instantiation: ! equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation: ! is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1). OK!
. . .
:- edge(1, 2), col(1, 1), col(2, 1). redundant!
. . .
:- edge(1, 2), col(1, red), col(2, red). OK!
. . .

Intelligent Instantiation: ! equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: ! equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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Instantiation of a Rule: like a join in a DB
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Instantiation of a Program

Substitutions:
generate rules
derive knowledge

Advanced Techniques:
Join ordering
Backjumping

Instantiating a Program
Handle recursion
Handle negation
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Dependency & Component Graphs

a(1). t(X ,Y ) :- p(X ,Y ), a(Y ).

p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).

r(X ) :- a(X ), not t(X ,X ).
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Subprograms

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).
p(X ,Y ) :- r(X ), t(X ,Y ).}
t(X ,Y ) :- p(X ,Y ), a(Y ).}

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).}
P{r} = {r(X ) :- a(X ), not t(X ,X ).}
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Component Ordering

Exit and Recursive Rules
Given a component C ,a rule r in PC

is recursive if there is a predicate p 2 C s.t. p occurs in the
positive body of r
otherwise, r is said to be an exit rule.

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).( exit
p(X ,Y ) :- r(X ), t(X ,Y ).}( recursive
t(X ,Y ) :- p(X ,Y ), a(Y ).}( recursive

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).}( exit
P{r} = {r(X ) :- a(X ), not t(X ,X ).}( exit
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Component Ordering

Component Ordering:
A �+ B If there is a path in Gc

P from A to B in which all arcs
are labeled with "+"
A �� B If there is a path in Gc

P from A to B in which at least
one arc is labeled with "-"

Admissible Component Sequence
Sequence C1, . . . ,Cn is admissible if for each i < j :

(i) Ci 6�+ Cj , and
(ii) if Ci 6�� Cj there is a cycle in Gc

P .
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Admissible Sequence: Example

Admissible Component Sequence: {r}, {p, t}, {s}
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Instantiation of a Program: follow dependencies
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Instantiation of a Program: semi-naïve
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Program Simplification (intuition)

Remove redundant literals/rules
If a positive body literal Q is in B(r) and Q 2 S, then
delete Q from B(r).
If a solved negative body literal not Q is in B(r) and
Q 62 S, then delete not Q from B(r).
If a negative body literal not Q is in B(r) and Q 62 S,
then remove the ground instance of r .
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Intelligent Instantiator

The instantiation process
outputs a ground program equivalent to the input
...often much smaller than ground instantiation
Performs “deterministic” inferences
Computes the unique answer set if the input is
stratified and non disjunctive
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Model Generation & Checking

Model Generation ! produces candidate models

Similar to a SAT solver
Davis-Putnam-Logeman-Loveland method

Propagate Deterministic Consequences
! Unit Propagation
! Support Propagation
!Well-founded Negation

Assume a literal l (heuristically) until a model is generated
Upon inconsistency Backtrack (assume not l)

Model Checker ! checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances
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Model Generation ! produces candidate models

Similar to a SAT solver
Davis-Putnam-Logeman-Loveland method

Propagate Deterministic Consequences
! Unit Propagation
! Support Propagation
!Well-founded Negation

Assume a literal l (heuristically) until a model is generated
Upon inconsistency Backtrack (assume not l)

Model Checker ! checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances
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Model Generator

Algorithm 1: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Model Generator

Algorithm 3: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Model Generator

Algorithm 4: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Model Generator

Algorithm 5: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Model Generator

Algorithm 6: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Model Generator

Algorithm 7: Compute Answer Set
Input : An interpretation I for a program ⇧
Output: True if ⇧ admits answer set, false otherwise

1 begin
2 if ! Propagate(I) then
3 return false ;

4 if I is total then
5 return CheckModel(I)

6 ` := ChooseUndefinedLiteral();
7 if ComputeAnswerSet(I [ {`}) then
8 return true;

9 if ComputeAnswerSet(I [ {not `}) then
10 return true;

11 else
12 return false;
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Unit Propagation

Infer a literal if it is the only one which can satisfy a rule
Forward Inference + Contraposition
Same as unit propagation in SAT

Example (Unit propagation)
a | b :- c.
If b is false and c is true infer a to be true.
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Support Propagation

Based on the supportedness property
“Each atom in an answer set has to be supported”

Example (Support propagation)
a | b :- c.
a | d :- not b.
If b and c are false and d is true infer a false.
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Well-founded Propagation

Self-supporting truth is not admitted in answer sets
Unfounded sets are sets of atoms violating this property

Definition (Unfounded set)
A set U is an unfounded set for program ⇧ w.r.t. I if, for each
a 2 U, for each rule r 2 ⇧ such that a 2 H(r) at least one of
these holds:

(i) B(r) \ ¬I 6= ; (ii) B+(r) \ U 6= ; (iii) H(r) \ U \ I 6= ;

Detected unfounded sets are propagated as false
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Model Generation Example: 3-Colorability

Model Generation step:

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {}
False: {}
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Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {} col(1, red)
False: {}
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Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).  1-support propagation
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).  2-unit propagation
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red)}
False: { col(1, yellow), col(1, green), col(2, red) }
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Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red) col(2, yellow) }
False: { col(1, yellow), col(1, green), col(2, red) }
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Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).  1-support propagation
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).  2-unit propagation

True: {col(1, red), col(2, yellow) }
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) }
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Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow)} col(3, red)
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) }
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Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green). support propagation

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow), col(3, red)
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) col(3, green) }
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Model Generation Example: 3-Colorability

Model Generation step: Answer set found!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Answer Set: {col(1, red), col(2, yellow), col(3, red) }
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Model Checking

Model Checker ! checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances

Implementation
Generate SAT formula
Call SAT solver
...do it only if necessary!
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Model Checking: build SAT Formula
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Example: build SAT Formula

Step:

Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c..
a :- c.

a :- c.
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Example: build SAT Formula

Step:(1)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c..
a :- c.
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Example: build SAT Formula

Step:(2)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c.

a :- c.
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Example: build SAT Formula

Step:(3)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a.

a :- c.
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Example: build SAT Formula

Step: (6-9)

Consider: M = {a, b}

=) a _ b

a | b.

=) a ^ b

a :-b.

=) b  a

b :-a.

=) a b

Unsatisfiable! Answer Set!
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Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b}

=) a _ b

a | b. =) a ^ b
a :-b.

=) b  a

b :-a.

=) a b

Unsatisfiable! Answer Set!
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Step: (6-9)
Consider: M = {a, b}

=) a _ b

a | b. =) a ^ b
a :-b. =) b  a
b :-a.

=) a b

Unsatisfiable! Answer Set!

Francesco Ricca Datalog



Introduction
Instantiation

Model Generation & Checking
Programming Hints

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b}

=) a _ b

a | b. =) a ^ b
a :-b. =) b  a
b :-a. =) a b

Unsatisfiable! Answer Set!
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Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b} =) a _ b  

a | b. =) a ^ b
a :-b. =) b  a
b :-a. =) a b

Unsatisfiable! Answer Set!
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Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b} =) a _ b

a | b. =) a ^ b =) ¬a _ ¬b
a :-b. =) b  a =) ¬a _ b
b :-a. =) a b =) ¬b _ a

Unsatisfiable! Answer Set!
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Example: build SAT Formula

Step: (6-9)

Consider: M = {a, b} =) a _ b

a | b. =) a ^ b

=) ¬a _ ¬b

a :-b. =) b  a

=) ¬a _ b

b :-a. =) a b

=) ¬b _ a

Unsatisfiable! Answer Set!
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Example: build SAT Formula

Consider: M = {a, c}

a | b | c
a :-b.
b :-a, not c.
a :- c.

Satisfied by {c}! not an answer set!
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Example: build SAT Formula

Consider: M = {a, c} =) a _ c  

a | b | c =) a _ c
a :-b. =)
b :-a, not c. =)
a :- c.=) c  a.

Satisfied by {c}! not an answer set!
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Example: build SAT Formula

Consider: M = {a, c} =) a _ c  

a | b | c

a _ c

a :-b.
b :-a, not c.
a :- c.

c  a.
Satisfied by {c}! not an answer set!
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Programming for performance: basic idea

Programming
for Performance

(hints)
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Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X ) | outClique(X ) :- node(X ). % Guess
:- inClique(X ), inClique(Y ), not edge(X ,Y ),X <> Y . % Check
:⇠ outClique(X ).[1,X ] % Optimize

Optimized Encoding:
inClique(X ) | outClique(X ) :- node(X ).
:- inClique(X ), inClique(Y ), not edge(X ,Y ),X < Y .  less constraints!
:⇠ outClique(X ).[1,X ]
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Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).
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Optimized Encoding:
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Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X ) | outClique(X ) :- node(X ). % Guess
:- inClique(X ), inClique(Y ), not edge(X ,Y ),X <> Y . % Check
:⇠ outClique(X ).[1,X ] % Optimize

Optimized Encoding:
inClique(X ) | outClique(X ) :- node(X ).
:- inClique(X ), inClique(Y ), not edge(X ,Y ),X < Y .  less constraints!
:⇠ outClique(X ).[1,X ]
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Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% check condition :- edge(X ,Y ), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal! only one color per node

Example (3-col- encoding 2 )
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X ).
col(X , yellow) | ncol(X , yellow) :- node(X ).
col(X , green) | ncol(X , green) :- node(X ).

% check condition
:- edge(X ,Y ), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.
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Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% check condition :- edge(X ,Y ), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal! only one color per node

Example (3-col- encoding 2 )
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X ).
col(X , yellow) | ncol(X , yellow) :- node(X ).
col(X , green) | ncol(X , green) :- node(X ).

% check condition
:- edge(X ,Y ), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.  additional constraint
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Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% check condition :- edge(X ,Y ), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal! only one color per node

Example (3-col- encoding 2 - Larger grounding! )
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X ).  three times
col(X , yellow) | ncol(X , yellow) :- node(X ). more
col(X , green) | ncol(X , green) :- node(X ).  ground rules

% check condition
:- edge(X ,Y ), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2. additional ground constraints
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Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% check condition :- edge(X ,Y ), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal! only one color per node

Example (3-col- encoding 2 - Larger Search Space! )
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X ).  additional
col(X , yellow) | ncol(X , yellow) :- node(X ). ground
col(X , green) | ncol(X , green) :- node(X ). atoms

% check condition
:- edge(X ,Y ), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.
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Programming for performance: lesson learned

Prefer an encoding if:

Easier to ground

! precomputes as much as possible

Smaller instantiation

! use e.g., minimality, aggregates, ...

Produces less ground disjunctive rules and less “guessed atoms”

! smaller search space

! exponential gain
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Exercises

Minumim Spanning Tree
Given a weighted graph by means of

edge(Node1,Node2,Cost), and node(N), compute a tree
that starts at a root node, spans that graph, and has

minimum cost.

Seating
A gala dinner has to be organized and table composition

must satisfy a number of requirements:
Each table has nc chairs.
Each guest must be assigned one and only one table.
People liking each other should sit at the same table.
People disliking each other should not sit at the same
table.
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Solution
Example (Minimum Spanning Tree)
Problem: Given a Weighted Graph compute a tree that starts at a root node,
spans that graph, and has minimum cost
Input: node(_) and edge(_, _, _), and root(_).

% Guess the edges that are part of the tree:
inTree(X ,Y ) | outTree(X ,Y ) :- edge(X ,Y ).

% Check that this is a tree!
:- root(X ), inTree(_,X ). % root in-degree is 0
:- inTree(X ,Y ), inTree(X1,Y ),X <> X1. % nodes in-degree is 1
:- node(X ), not reached(X ). % a tree is connected

reached(X ) :- reached(Y ), inTree(Y ,X ).

reached(X ) :- root(X ).

% Minimize the sum of distances
:⇠ inTree(X ,Y ), edge(X ,Y ,C). [C,X ,Y ,C]

| Guess

| Check
|
|

| Aux.
| Rules

| Opt.
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Problem: Given a Weighted Graph compute a tree that starts at a root node,
spans that graph, and has minimum cost
Input: node(_) and edge(_, _, _), and root(_).
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:- node(X ), not reached(X ). % a tree is connected
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reached(X ) :- root(X ).

% Minimize the sum of distances
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Solution
Example (Minimum Spanning Tree)
Problem: Given a Weighted Graph compute a tree that starts at a root node,
spans that graph, and has minimum cost
Input: node(_) and edge(_, _, _), and root(_).

% Guess the edges that are part of the tree:
inTree(X ,Y ) | outTree(X ,Y ) :- edge(X ,Y ).

% Check that this is a tree!
:- root(X ), inTree(_,X ). % root in-degree is 0
:- inTree(X ,Y ), inTree(X1,Y ),X <> X1. % nodes in-degree is 1
:- node(X ), not reached(X ). % a tree is connected

reached(X ) :- reached(Y ), inTree(Y ,X ).

reached(X ) :- root(X ).

% Minimize the sum of distances
:⇠ inTree(X ,Y ), edge(X ,Y ,C). [C,X ,Y ,C]

| Guess

| Check
|
|

| Aux.
| Rules

| Opt.
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Solution
Example (Seating Problem)
Problem: Organize table composition such that:
(i) Each table has nc chairs; (ii) Only one table per guest;
(iii) People liking each other should sit at the same table;
(iv) People disliking each other should not sit at the same table.
Input: guest(P), table(T ), like(P1,P2), dislike(P1,P2), guestPerTable(N)

% Generate a sitting arrangement for guests.
at(P,T )|nat(P,T ) :- guest(P), table(T ).

% Each table must not host more than nc guests.
:- table(T ), not #count{P : at(P,T )} <= N, guestPerTable(N).

% Each guest must be assigned one and only one table.
:- guest(P), not #count{T : at(P,T )} = 1.

% People liking each other should sit at the same table.
:- like(P1,P2), at(P1,T ), not at(P2,T ).

% People disliking each other should not sit at the same table.
:- dislike(P1,P2), at(P1,T ), at(P2,T ).

| Guess

| Check
|
|
|
|
|
|
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Exercises

Minumim Node Cover

Given a graph G modeled by edge(Node1,Node2), and
node(N), find a minimum node cover, that is, a subset

MNC of nodes of minimum cardinality such that for each
edge (u, v) in G at least one of u and v belongs to MNC.
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