Introduction

Processing of Declarative Knowledge
—Datalog-

Francesco Ricca

Computational Intelligence Curriculum
Institute of Information Systems

Francesco Ricca Datalog

Datalog:

()

e Overcomes some limits of Relational Algebra and
SQL

—Recursive definitions

Why Datalog?
@ The basic fragment of ASP

— Deductive database applications, query answering

Datalog:
e A logic language for querying databases

@ Overcomes some limits of Relational Algebra and
SQL

—Recursive definitions

Why Datalog?
@ The basic fragment of ASP

— Deductive database applications, query answering

Introduction

What is Datalog?

Datalog:
e A logic language for querying databases

e Overcomes some limits of Relational Algebra and
SQL

Francesco Ricca Datalog

Introduction

What is Datalog?

Datalog:
e A logic language for querying databases

e Overcomes some limits of Relational Algebra and
SQL

—Recursive definitions

Francesco Ricca Datalog

Introduction

What is Datalog?

Datalog:
e A logic language for querying databases

e Overcomes some limits of Relational Algebra and
SQL

—Recursive definitions

Why Datalog?

Francesco Ricca Datalog

Introduction

What is Datalog?

Datalog:
e A logic language for querying databases

e Overcomes some limits of Relational Algebra and
SQL

—Recursive definitions

Why Datalog?
e The basic fragment of ASP

— Deductive database applications, query answering

Francesco Ricca Datalog

Introduction

Datalog Syntax

Rule:

head(H) — body;(X;),...,body,(X,).
Intuitively:

infer head(h) if body;(X7), ..., bodya(X,) is true.

Fact:
A rule with empty body (- symbol is omitted)

— Facts are true and model the input database «+
Variables:

are allowed in atom’s arguments, Prolog-like syntax
Safety:

all variables must occur in the body

Francesco Ricca Datalog

Introduction

Datalog Syntax

Program and query:
father(X) - parent(X, Y), male(X).
Database:

male(rob).
parent(rob, ann).
parent(rob, ann).
parent(mary, ann).

Query Result:
father(rob).

Francesco Ricca Datalog

Introduction

Recursive Example Datalog

Example (Reachable airports)

Input: A set of direct connections between some cities
represented by connected(_, _).

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

...can you write an SQL query?

Francesco Ricca Datalog

Introduction

Recursive Example Datalog

Example (Reachable airports)

Input: A set of direct connections between some cities
represented by connected(_, _).

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

Datalog:
reaches(vienna, B) - connected(vienna, B).
reaches(vienna, C) - reaches(vienna, B), connected(B, C).

Francesco Ricca Datalog

Datalog Program:
@ A set of rules
e EDB: predicates appearing only in bodies or in facts
e IDB : predicates defined (also) by rules

Introduction

Datalog Programs (1)

Datalog Program:
o A set of rules
o EDB: predicates appearing only in bodies or in facts
o IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation edge(_,).
Problem: Find all pairs of reachable nodes.

% if there is an edge from Xto Y
% then X is reachable from Y
reachable(X,Y) - edge(X, Y).

% Reachability is transitive
reachable(X, Y) - reachable(X,Z),edge(Z,Y).

Francesco Ricca Datalog

Introduction

Datalog Programs (1)

Datalog Program:
o A set of rules
o EDB: predicates appearing only in bodies or in facts
o IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation edge(_,).
Problem: Find all pairs of reachable nodes.

% if there is an edge from Xto Y
% then X is reachable from Y
reachable(X,Y) - edge(X,Y). < EDB

% Reachability is transitive
reachable(X, Y) - reachable(X,Z),edge(Z,Y).

Francesco Ricca Datalog

Introduction

Datalog Programs (1)

Datalog Program:
o A set of rules
o EDB: predicates appearing only in bodies or in facts
o IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation edge(_,).
Problem: Find all pairs of reachable nodes.

% if there is an edge from Xto Y
% then X is reachable from Y
reachable(X,Y) - edge(X, Y). + IDB

% Reachability is transitive
reachable(X, Y) - reachable(X,Z),edge(Z,Y).

Francesco Ricca Datalog

Introduction

Datalog Programs

Example (Reachability)

Input: a graph encoded by relation edge(_,).
Problem: Find all pairs of reachable nodes.

% if there is an edge from Xto Y
% then X is reachable from Y
reachable(X,Y) - edge(X,Y).

% Reachability is transitive
reachable(X,Y) - reachable(X, Z), edge(Z,Y).

Intuitive meaning: (bottom-up evaluation)

“Start with the facts in the EDB and iteratively derive facts
for IDBs until no new fact is derived.”

Francesco Ricca Datalog

Introduction

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A, B) - parent(A, B).
ancestor(A, C) :- ancestor(A, B), ancestor(B, C).

Francesco Ricca Datalog

Introduction

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A, B) - parent(A, B).
ancestor(A, C) - ancestor(A, B), ancestor(B, C).

Solution 2:
ancestor(A, B) :- parent(A, B).
ancestor(A, C) - ancestor (A, B), parent(B, C).

Francesco Ricca Datalog

Introduction

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A, B) - parent(A, B).
ancestor(A, C) :- ancestor(A, B), ancestor(B, C).

Solution 3: Declarative: Atoms’ and Rules’ order is immaterial!

ancestor(A, C) :- ancestor(A, B), parent(B, C). < No LOOP!
ancestor(A, B) - parent(A, B).

Francesco Ricca Datalog

Introduction

Arithmetic Expressions and Builtins

Arithmetic and comparison operators
0 <, > <=,>==
° +7 —, %, /

Example (Fibonacci numbers)

fib(0, 1).
fib(1,1).

fib(N + 2, Y1 + Y2) — fib(N, Y1), fib(N + 1, Y2).

For recursive definitions an upper bound for integers (system
setting) or a domain has to be specified.

Francesco Ricca Datalog

Introduction

Example pure Datalog limits

Example (No Peroni here!)

Input: Information about bars and beers represented by
facts of the form
beers(name, manufacturer). sells(bar, beer)

Query: Retrieve all bars that do not sell Peroni
...can you write an Datalog query?

Francesco Ricca Datalog

Introduction

Example pure Datalog limits

Example (No Peroni here!)

Input: Information about bars and beers represented by
facts of the form
beers(name, manufacturer). sells(bar, beer)

Query: Retrieve all bars that do not sell Peroni
Datalog:
noPeroni(Bar) - sells(Bar, Beer),

not sellsPeroni(Bar).

sellsPeroni(Bar) - sells(Bar, Beer), beer(Beer, peroni).

v

Francesco Ricca Datalog

Introduction

Datalog with Negation

Rule:

head(H) =~ body;(X1),..., body,(Xy), o
not bodyn1(Xni1), . .., notbodym(Xnm).

Positive and Negative Body:
body:(X1), ..., body,(x,) < positive body

body,.1(Xpi1), .., bodym(Xn,). < negative body
Intuitively:

infer head(h) if all atoms in the positive body are true
and all atoms in the negative body are false
Safety:
all variables must occur in a positive body literal
Stratification (intuitive):
negation must not be involved in recursive definitions!

Francesco Ricca Datalog

Introduction

Stratification (i.e., no recursion trough negation)

Example (Unstratified Program)

p(X) = I(X), not g(X).
g(X) = I(X), not p(X)

N

Example (Stratified Program)

P(X) =~ p(X), not g(X).
q(X) = I(X), not m(b).

Francesco Ricca Datalog

Introduction

Needed Restrictions

Safety:
s(X) =r(Y).
s(X) = notr(X).
s(X)=r(Y),X<Y.

Intuitively:

In each of these cases the result is infinite!?!

Stratification:

Negation wrapped inside recursion is not that obvious
a—-notb. b - not a.

Francesco Ricca Datalog

Introduction

Needed Restrictions

Safety:
s(X) =r(Y).
s(X) = notr(X).
s(X)=r(Y),X<Y.
Intuitively:
In each of these cases the result is infinite!?!
Stratification:
Negation wrapped inside recursion is not that obvious
a—-notb. b - not a.
More on this later...

Francesco Ricca Datalog

Introduction

Practice

Practice

Download a Datalog implementation
http://www.dlvsystem.com

Download a GUI

http://www.mat.unical.it/ricca/aspide

Francesco Ricca Datalog

http://www.dlvsystem.com
http://www.mat.unical.it/ricca/aspide

Introduction

Syntax & Notation

Terms: Constants and Variables

Atoms: of the form predicate(t;, ..., t,)

Literals: atoms a (pos.) and negated atoms not a (neg.)
Rules: h - py,...,pn, 00t Ny, ...00t Ny

Head: H(r)=h

Body: B(r) = {p1,...,Ppn,n0t Ny,...n0t Ny.}

Positive Body: B*(r) = {p1,...,pn}

Negative Body: B (r) = {not ny,...not n,}

Program: A set of rules

Safety: All variables occur in some positive body atom
Ground: no variable occurs in it

Positive Program: all rules are such that B=(r) = ()

Francesco Ricca Datalog

Introduction

Semantics Positive Programs

Interpretation: a set / of ground atoms
e atom ais true w.r.t. /if a € [, it is false otherwise, and

@ negative literal not ais true w.r.t. lif a¢ [, it is false
otherwise.

Satisfaction: a rule r is satisfied w.r.t. /if H(r) € /
whenever all literals ¢ € B(r) are true w.r.t. /

Model: an interpretation / is a model for program P if all
rules in P are satisfied by /

Least Model: an interpretation / is the least or minimal
model for program P if every I' C | is not a model for P

Francesco Ricca Datalog

Introduction

Example Models

Given:
a:—b,c.
c:—d.
d.

Interpretations and Models:
L ={b,c,d}, Lh={ab,c,d} h={c,d}

— only kL and /; are models!

Francesco Ricca Datalog

Introduction

Example Models

Given:
a:—b,c.
c:—d.
d.

Interpretations and Models:
L ={b,c,d}, Lb={ab,c,d} = {c,d}

— only kL and /; are models!
— k3 is minimal!

Francesco Ricca Datalog

Introduction

Semantics Positive Programs

Rule Instantiation: /(r) is the set ground rules that can
be obtained by replacing every variable in r by a constant
occurring in P

Instantiation: G(P) = U,cpl(r)

Model: an interpretation M is a model for program P if M
is a model of G(P)

Least Model: an interpretation M is the least model of
program P if M is the least model of G(P)

Francesco Ricca Datalog

Introduction

Operational Semantics Positive Programs (Ground
case)

Immediate Consequence Operator: Given ground
program P, and Interpretation /

To(l) = {a|3r € Ps.t. H(r)=avVl e B(r) are true in [/}
Example: a:-b. c:-d. e-a. | ={b} Tp(l) = {a}.

Francesco Ricca Datalog

Introduction
Operational Semantics Positive Programs (Ground
case)

Immediate Consequence Operator: Given ground
program P, and Interpretation /

To(l) = {a|3r € Ps.t. H(r)=avVl e B(r) are true in [/}
Example: a:-b. c:-d. e-a. | ={b} Tp(l) = {a}.

Fixpoint procedure:
o Start with / =0
o Repeatedly apply T, until a fixpoint T,(/) = I'is
reached.

Francesco Ricca Datalog

Introduction

Operational Semantics Positive Programs (Ground
case)

Immediate Consequence Operator: Given ground
program P, and Interpretation /

To(l) = {a|3r € Ps.t. H(r)=avVl e B(r) are true in [/}
Example: a:-b. c:-d. e-a. | ={b} Tp(l) = {a}.

Fixpoint procedure:
o Start with / =0
o Repeatedly apply T, until a fixpoint T,(/) = I'is
reached.

Least Model: The least fixpoint 7.

Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.

Francesco Ricca Datalog

Introduction

Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
Tap) (M) =M

Francesco Ricca Datalog

Introduction

Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
Tap) (M) =M

Consider:
a(X) : —=b(X), c(X).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : —b(a), c(a).

a(b) : —b(b), c(b).
a(c) : —b(c), c(c).

Francesco Ricca Datalog

Introduction

Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
Tap) (M) =M

Consider:
a(X) : —b(X), c(X).

b(a). b(b). c(a). c(c).

Instantiation:
ala) : —b(a), c(a).
a(b) : —b(b), c(b).
a(c) : —b(c), c(c)

... Do we need all ground rules?

Francesco Ricca Datalog

Introduction

Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
Tap) (M) =M

Consider:
a(X): —b(X), c(X).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : —b(a), c(a).
a(b) : —b(b), c(b).

a(c) : —b(c), c(c).
... Do they have any chance to be satisfied?

Francesco Ricca Datalog

Introduction

Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
Tap) (M) =M

Consider:
a(X) : —b(X), c(X).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : —b(a), c(a).
a(b) : —b(b), c(b).
ale) : —b(c), c(c).

... Start from facts, match bodies, apply ... fixpoint!

Francesco Ricca Datalog

Introduction

Example Semantics

Consider:
grandParent(X,Y) — parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).
Evaluation:
@ /= {parent(a, b), parent(b, c)}

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Francesco Ricca Datalog

Introduction

Example Semantics

Consider:
grandParent(X,Y) - parent(X, Z), parent(Z,Y).
parent(a, b). parent(b, c).
Evaluation:
@ /= {parent(a, b), parent(b, c)}
@ the body can be instantiated

(parent(a, b), parent(b, c))
I := U {grandParent(a, c)}

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Francesco Ricca Datalog

Introduction

Example Semantics

Consider:
grandParent(X,Y) — parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).
Evaluation:
@ /= {parent(a, b), parent(b, c)}
@ the body can be instantiated

(parent(a, b), parent(b, c))
I := U {grandParent(a, c)}

© no body can be matched with atoms in /... STOP!

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Francesco Ricca Datalog

Introduction

Semantics c.t.d.

Immediate Consequence Operator:
Given ground program P, and Interpretation /

To(l) = {H(ry)|3rq instantiating r € P s.t.
the body of ry is true w.r.t. /}

Operational Semantics:

Compute M = T,(M) by repeatedly applying T, starting
from EDB.

Francesco Ricca Datalog

Introduction

Stratified Programs

Dependency Graph: Given program P, graph DG(P) is
as follows:
@ anode pin V for each predicate in p occurring in P
@ positive edge p + q if there is rule r s.t. p occurs in
H(r) and q occurs in B*(r)
@ negative edge p <, q if there is rule r s.t. p occurs in
H(r) and q occurs in B~(r)
Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P)
contains a negative edge.

Francesco Ricca Datalog

Introduction

Negation and Recursion

Consider:

p(X) = g(X), not p(X).

q(1)- q(2).
Evaluation:
Qg={(1).2)}p=1{}
Q g={(1).2)}p={(1).(2)}
Qg={(1).@}p=1{
o ..

Francesco Ricca Datalog

Introduction

Stratified Program

Consider:
ry : reach(X) : —source(X).

r> : reach(X) : —reach(Y),arc(Y, X).
r3 : noReach(X) : —target(X), notreach(X).

Francesco Ricca Datalog

Introduction

Stratified Program

Consider:
ry : reach(X) : —source(X).
ry : reach(X) : —reach(Y),arc(Y, X).
r3 : noReach(X) : —target(X), notreach(X).
Dependency Graph:
e V = {reach,source,target,noReach,arc}

e E ={(reach,source), (reach,reach), (reach,arc),
(noReach,target), (hoReach,reach),}

e cyclic, but stratified!

Francesco Ricca Datalog

Introduction

Stratified Program - components and modules

Components and Subprograms:
o Let Comp(DG) be the set of the strongly connected
components of DG
e Given C € Comp(DG) the subprogram associated to
Cis Sub(P,C) = {re Ps.t. H(r) € C}
e Given C’' depends on C” if there is some (negative)
arc in DG from a node in C” to a node in C’

| reach l

L

| NmnoReach |

Example ctd:
e Comp(DG) = {{reach},{noReach}}
@ Sub(P,{reach}) ={n,r}
@ Sub(P,{noReach}) = {rs3}

Francesco Ricca Datalog

Introduction

Stratified Program - Evaluation

Evaluation:

e Start from the components that do not depend on
other components

e Evaluate subprograms associated to components as
for positive programs

@ Remove evaluated components
e repeat until all components are evaluated

Example ctd:
@ Evaluate {{reach}}
@ Evaluate {{noReach}}

Francesco Ricca Datalog

Introduction

Example Stratified Program

Consider:
ry : reach(X) : —source(X).

r» : reach(X) : —reach(Y),arc(Y, X).
r; : noReach(X) : —target(X), notreach(X).

EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Francesco Ricca Datalog

Introduction

Example Stratified Program

Consider:
ry : reach(X) : —source(X).
r» : reach(X) : —reach(Y),arc(Y, X).
r; : noReach(X) : —target(X), notreach(X).
EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).
Evaluate Sub(P, {reach}) = {r, r}:
@ /= {source(1), target(2), target(3), ...}
@ /:=1U{reach(1)}
@ /:=1U{reach(2)}...STOP!

Francesco Ricca Datalog

Introduction

Example Stratified Program

Consider:
ry : reach(X) : —source(X).
r» : reach(X) : —reach(Y),arc(Y, X).
r; : noReach(X) : —target(X), notreach(X).
EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).
Evaluate Sub(P, {reach}) = {r, r}:
@ /= {source(1), target(2), target(3), ...}
@ /:=1U{reach(1)}
@ /:=1U{reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
@ /:=/uU{noReach(3)}...STOP!

Francesco Ricca Datalog

Introduction

Exercise... limits

Given the following relational database schema
(* indicates primary keys):
e beers(namex, manufacturer)
e sells(barx, beerx, price)
@ associate(bar, bar)

Write the following (if possible) in SQL, and Datalog

@ find the manufacturers of the beers "John’s bar" sells

@ find the number of beers that "John’s bar" sells at a
price higher than "Anns’s bar"

© find the bars that sell exactly two beers

@ find the bars that sell more than three beers

@ find the bars that are associated, directly or indirectly,
trough a chain of bar associations to "John’s bar"

© find the most expensive beer

@ find the bars that sell more beers

Francesco Ricca Datalog

	Introduction

