
Answer Set Programming: A tour from the basics to
advanced development tools and industrial applications

Nicola Leone and Francesco Ricca

Department of Mathematics and Computer Science, University of Calabria, Italy
{leone,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful rule-based language
for knowledge representation and reasoning that has been developed in the field of
logic programming and nonmonotonic reasoning. After more than twenty years
from the introduction of ASP, the theoretical properties of the language are well
understood and the solving technology has become mature for practical appli-
cations. In this paper, we first present the basics of the ASP language, and we
then concentrate on its usage for knowledge representation and reasoning in real-
world contexts. In particular, we report on the development of some industry-level
applications with the ASP system DLV, and we illustrate two advanced develop-
ment tools for ASP, namely ASPIDE and JDLV, which speed-up and simplify the
implementation of applications.

1 Introduction

Answer Set Programming (ASP) [11, 19, 30] is a powerful rule-based language for
knowledge representation and reasoning that has been developed in the field of logic
programming and nonmonotonic reasoning. ASP features disjunction in rule heads,
non monotonic negation in rule bodies [30], aggregate atoms [16] for concise mod-
eling of complex combinatorial problems, and weak constraints [12] for the declarative
encoding of optimization problems.

Computational problems, even of high complexity [19], can be solved in ASP by
specifying a logic program, i.e., a set of logic rules, such that its answer sets correspond
to solutions, and then, using an answer set solver to find such solutions [38, 34].

After more than twenty years from the introduction of ASP, the theoretical prop-
erties of the language are well understood and the solving technology has become
mature [13] for practical applications. The high knowledge-modeling power of ASP
made it suitable for solving a variety of complex problems arising in scientific applica-
tions [13] from several areas ranging from Artificial Intelligence [2, 4, 5, 25, 39, 10, 27],
to Knowledge Management [3, 6] and Databases [35, 9, 32, 7].

Recently, an ASP system, namely the DLV system [33], has undergone an industrial
exploitation by a spin-off company called DLVSYSTEM l.t.d., favouring the interest of
some industries in ASP and DLV, which has led to its successful usage in a number of
industry-level applications [31]. A key advantage of DLV for applications development
is its endowment with powerful development tools [24, 22], supporting the activities of
researchers and implementors.

In this paper, after a brief introduction to the ASP standard language, we illustrate its
usage for advanced Knowledge Representation and Reasoning by presenting a number
of industry-level real-world applications of ASP, that we have implemented by using
the DLV system and its accompanying tools. Namely:

– A platform employed by the call-centers of Italia Telecom, which automatically
classifies the incoming calls for optimal routing. The platform works in real-time
and deals with a very large number of parallel calls.

– A tool for the automatic generation of the teams of employees [42] that has been
employed in the sea port of Gioia Tauro for intelligent resource allocation.

– A mediator system for e-tourism [41], where ASP is used to single out, in a short
time, the travel solution that best matches the user profile.

– A tool for travel agents for the intelligent allotment of touristic packages. Basically,
the system selects from service-suppliers blocks of touristic packages to be pre-
booked for the next season in such a way that the expected earnings are maximized,
and a number of preference criteria are satisfied.

– An ASP-based platform for data cleaning [44] that is part of a business intelligence
suite developed for analyzing and cleaning-up the distributed archives of the Italian
Healthcare System storing data on tumor diseases.

Moreover, we illustrate two advanced development tools for ASP, namely ASPIDE [24]
and JDLV [22], that have played a crucial role for the successful usage of DLV in the
above mentioned applications. ASPIDE is an extensible integrated development en-
vironment for ASP, which integrates powerful editing tools with a collection of de-
velopment tools for program testing and rewriting, database access, solver execution
configuration and output-handling. JDLV is a plug-in for Eclipse, supporting a hybrid
language that transparently enables a bilateral interaction between ASP and Java. The
development tools support researchers and software developers and simplify the inte-
gration of ASP in mature widely-adopted development platforms based on imperative
and object-oriented programming languages.

2 Answer Set Programming

In this section we overview the language of ASP, and we recall a methodology for
solving complex problems with ASP. More detailed descriptions and a more formal
account of ASP, including the features of the language employed in this paper, can
be found in [30, 28, 21, 12], whereas a nice introduction to ASP can be found in [3].
Hereafter, we assume the reader is familiar with logic programming conventions.

2.1 Syntax

Following a convention dating back to Prolog, strings starting with uppercase letters
denote logical variables, while strings starting with lower case letters denote constants.
Also terms, atoms and literals are defined as usual.

A disjunctive rule (rule, for short) r is a construct

a1 | · · · | an :– b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are atoms and n � 0, m � k � 0. The disjunction
a1 | · · · | an is called the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm
is referred to as the body of r. Here not denotes default negation. A rule without head
(i.e. n = 0) is usually referred to as an integrity constraint. A rule having precisely one
head atom (i.e. n = 1) is called a normal rule. If the body is empty (i.e. k = m = 0), it
is called a fact, and in this case the “ :– ” sign is usually omitted. An ASP program P is
a finite set of rules.

In ASP, rules in programs are usually required to be safe. A rule is safe if each
variable in that rule also appears in at least one positive literal in the body of that rule.
An ASP program is safe, if each of its rules is safe, and in the following we will only
consider safe programs. A term (an atom, a rule, a program, etc.) is called ground, if no
variable appears in it.

Optimization problems are modeled in ASP using weak constraints [12]. A weak
constraint ! is of the form:

:⇠ b1, . . . , bk, not bk+1, . . . , not bm.[w@l]

where w and l are the weight and level of !. (Intuitively, [w@l] is read “as weight
w at level l”, where weight is the “cost” of violating the condition in the body of w,
whereas levels can be specified for defining a priority among preference criteria). An
ASP program with weak constraints is ⇧ = hP,W i, where P is a program and W is a
set of weak constraints.

2.2 Semantics

Let P be an ASP program. The Herbrand universe UP and the Herbrand base BP of
P are defined as usual (see e.g.,[3]). The ground instantiation GP of P is the set of all
the ground instances of rules of P that can be obtained by substituting variables with
constants from UP .

An interpretation I for P is a subset I of BP . A ground literal ` (resp., not `) is true
w.r.t. I if ` 2 I (resp., ` 62 I), and false (resp., true) otherwise. An aggregate atom is
true w.r.t. I if the evaluation of its aggregate function (i.e., the result of the application
of f on the multiset S) with respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I
whenever all conjuncts of the body of r are true w.r.t. I .

A model is an interpretation that satisfies all the rules of a program. Given a ground
program GP and an interpretation I , the reduct [20] of GP w.r.t. I is the subset GI

P of
GP obtained by deleting from GP the rules in which a body literal is false w.r.t. I . An
interpretation I for P is an answer set (or stable model [30]) for P if I is a minimal
model (under subset inclusion) of GI

P (i.e., I is a minimal model for GI
P) [20].

Given a program with weak constraints ⇧ = hP,W i, the semantics of ⇧ extends
from the basic case defined above. Thus, let G⇧ = hGP , GW i be the instantiation of
⇧; a constraint ! 2 GW is violated by an interpretation I if all the literals in ! are true
w.r.t. I . An optimum answer set O for ⇧ is an answer set of GP that minimizes the sum
of the weights of the violated weak constraints in GW as a prioritized way.

2.3 Programming Methodology

ASP has been exploited in several domains, ranging from classical deductive databases
to artificial intelligence. ASP can be used to encode problems in a declarative fashion;
indeed, the power of disjunctive rules allows for expressing problems which are more
complex than NP, and the (optional) separation of a fixed, non-ground program from an
input database allows one to obtain uniform solutions over varying instances. More in
detail, many problems of comparatively high computational complexity can be solved in
a natural manner by following a “Guess&Check” programming methodology, originally
introduced in [18] and refined in [33]. The idea behind this method can be summarized
as follows: a database of facts is used to specify an instance of the problem, while a set
of (usually disjunctive) rules, called “guessing part”, is used to define the search space;
solutions are then identified in the search space by another (optional) set of rules, called
“checking part”, which impose some admissibility constraint. To grasp the intuition
behind the role of both the guessing and checking parts, consider the well-known NP-
complete problem 3-COLORING: given an undirected graph G = (V,E), assign each
vertex one of three colors -say, red, green, or blue- such that adjacent vertices always
have distinct colors. 3-COLORING can be encoded in ASP as follows:

%Fact database specifying an instance
vertex(v). 8v 2 V ; edge(i,j). 8(i, j) 2 E

%Uniform non-ground program solving the problem
col(X,red) | col(X,green) | col(X,blue) :– vertex(X). % guessing part
:– edge(X,Y), col(X,C), col(Y,C). % checking part

The first two lines introduce suitable facts, representing the input graph G, the third
line contains a rule stating that each vertex needs to have exactly one color. The last line
contains a rule that acts as an integrity constraint since it disallows situations in which
two connected vertices are associated with the same color.

3 Applications

In this section we briefly describe a number of real-world applications based on ASP.
These applications were implemented by using the DLV system. DLV is the first ASP
system which is undergoing an industrial exploitation by a spin-off company called
DLVSYSTEM l.t.d. The usage of ASP in real context outlined several advantages from
a Software Engineering viewpoint of using such a powerful and expressive framework.
In particular the main qualities of ASP are flexibility, readability, extensibility, ease of
maintenance. A lesson learned by developing real world applications is that ASP allows
one to develop complex features at a lower (implementation) price than in traditional
imperative languages. Indeed, the possibility of modifying complex reasoning task by
editing text files, and testing it “on-site” together with the customer has been often a
great advantage of the ASP-based development.

3.1 Routing and classification of call-center customers

Contact centers are used by many organizations to provide remote assistance to a variety
of services. Their front-ends are flooded by a huge number of telephone calls every day.

Fig. 1. Example of call center customer’s class defined via the zLog user interface.

In this scenario the ability of routing automatically customers to the most appropriate
service brings a two-fold advantage: improved quality of service and reduction of costs.

Exeura s.r.l, a spin-off company of the University of Calabria, developed a platform
for customer profiling for phone calls routing based on ASP that is called zLog (http:
//www.exeura.eu/en/archives/solution/customer-profiling).

The key idea is to classify customer profiles and try to anticipate their actual needs
for creating a personalized experience of customer care service. Contact center opera-
tors can define customer categories, but it is very likely that these employees may not
have the competence for defining categories with a traditional programming language.
Thus, the definition of customer categories is done by using an user-friendly user inter-
face (see Figure 1) that allows to create and modify categories to be added to the call
routing system in real time. Categories definition criteria include customer behavioral
aspects, such as recent history of contacts (e.g., telephone calls to the contact center,
messages sent to customer assistance, etc.) or basic customer demographics (e.g., age,
residence, etc. the latter useful, for instance, in case of natural disasters), or type of
contract. When a customer calls the contact center, he/she is automatically assigned to
a category (based on his/her profile) and then routed to an appropriate human operator
or automatic responder. The customer categories specified trough the user interface are
then automatically translated into ASP rules and fed as input to DLV together with the
factual data extracted from the databases storing defined customer classes.

The zLog platform has been deployed in a production system handling Telecom
Italia contact centers. Every day, over one million telephone calls asking for diagnostic
services reach the contact centers of Telecom Italia. The needs are optimizing the opera-
tors assignment process, in order to reduce the average call response times, and improve
customer support quality. The zLog platform can detect customer category in less than
100 ms (starting from his/her telephone number) and manage over 400 calls/sec. As a
result, zLog enables huge time savings for over one million daily calls.

We now report an example of ASP program defining a customer class extracted
from a real-world scenario that is also depicted in Figure 1. The (simplified) set of rules
generated by zLog corresponding to the specification of Figure 1 is the following:

varTipoAbbonato(CLI) :– OR1(CLI).

OR1(CLI) :– AND1(CLI). OR1(CLI) :– AND2(CLI).
OR1(CLI) :– Abbonati on line1(CLI).

AND1(CLI) :– Clienti Linee(CLI, ...), not Abbonati on line2(CLI).
AND2(CLI) :– Clienti Linee1(CLI), not Abbonati on line2(CLI).

Abbonati on line1(CLI) :– Abbonati on line(CLI, ..., ESITO OPSC, ESITO TGDS, ...),
ESITO OPSC=”2”, ESITO TGDS=”0”.

Abbonati on line2(CLI) :– Abbonati on line(CLI, ..., ESITO OPSC, ESITO TGDS, ...),
DatiOPSC(ESITO OPSC).

DatiOPSC(codifica: ”11”). DatiOPSC(codifica: ”12”). DatiOPSC(codifica: ”13”).

Clienti Linee1(CLI) :– Clienti Linee(CLI, ..., TIPO CLIENTE, STATO, ...),
TIPO CLIENTE=”ABB”, STATO=”A”.

Here it is easy to recognize that the above rules mimic the structure of the expression
composed by using AND, OR, NOT operands in the graphical user interface. In partic-
ular it is defined the customer class labeled “varTipoAbbonato” (translated in English
“kind of customer”) outlined in blue in Figure 1. In this specification data is extracted
from other customer classes, namely “Clienti Linee”, and “Abbonati Online” repre-
senting customers that own a traditional telephone line and subscribed a contract via the
Internet portal of the company, respectively. These are filtered according to some crite-
ria on class attributes (only the relevant ones are reported shown in the program snippet)
that are specified trough a specific panel of the user interface. In this case it corresponds
to those that have a permanent contract (they are called “clienti in abbonamento” in Ital-
ian), but the device they are using is not known. The new class “varTipoAbbonato” is
then computed applying the rules generated according to the graphical representation.
zLog then exploits DLV in order to quickly compute the new class of customers.

3.2 Workforce-management in the international seaport of Gioia Tauro

The problem we dealt with in this application is a form of workforce management prob-
lem [37]. It amounts to computing a suitable allocation of the available personnel of the
seaport such that cargo ships mooring in the port are properly handled. To accomplish
this task several constraints have to be satisfied. An appropriate number of employ-
ees, providing several different skills, is required depending on the size and the load of
cargo ships. Moreover, the way an employee is selected and the specific role she will
play in the team (each employee is able to cover several roles according to her skills)
are subject to many conditions (e.g., fair distribution of the working load, turnover of
the heavy/dangerous roles, employees’ contract rules, etc.). To cope with this crucial
problem DLV has been exploited for developing a team builder. First of all we modeled
the input as follows:The employees and their skills by predicate hasSkill(employee,
skillName). The specification of a shift for which a team needs to be allocated, by

predicate shift(id, date, duration). The number of employees necessary for a certain
skill on the shift, by neededEmployee (shift, skill, num). Weekly statistics specifying,
for each employee, both the number of worked hours per skill and the last allocation
date by predicate wstat(employee, skill, hours, lastTime). Employees excluded due to
a management decision by excluded(shift, employee). Absent employees by predicate
absent(day, employee), and total amount of working hours in the week per employees
by predicate workedHours(employee,weekHours). A simplified version of the program
computing teams is the following:

(r) assign(E,Sh,Sk) | nAssign(E,Sh,Sk) :– hasSkill(E,Sk),
employee(E,),shift(Sh,Day,Dur), not absent(Day,E),
not excluded(Sh,E), neededEmployee(Sh,Sk,),
workedHours(E,Wh), Wh + Dur  36.

(c1) :– shift(Sh, ,), neededEmployee(Sh,Sk,EmpNum),
#count{E : assign(E,Sh,Sk)} 6= EmpNum.

(c2) :– assign(E,Sh,Sk1), assign(E,Sh,Sk2), Sk1 6= Sk2.

(c3) :– wstats(E1,Sk, ,LastTime1), wstats(E2,Sk, ,LastTime2),
LastTime1 > LastTime2, assign(E1,Sh,Sk),
not assign(E2,Sh,Sk).

(c4) :– workedHours(E1,Wh1), workedHours(E2,Wh2), threshold(Tr),
Wh1 + Tr < Wh2, assign(E1,Sh,Sk),
not assign(E2,Sh,Sk).

(r0) workedHours(E,Wh) :– hasSkill(E,),
#count{H,E : wstats(E, ,H,)} = Wh.

The disjunctive rule r generates the search space by guessing the assignment of a
number of available employees to the shift in the appropriate roles. Absent or excluded
employees, together with employees exceeding the maximum number of weekly work-
ing hours are automatically discarded. Then, admissible solutions are selected by means
of constraints: c1 discards assignments with a wrong number of employees for some
skill; c2 avoids that an employee covers two roles in the same shift; c3 implements the
turnover of roles; and c4 guarantees a fair distribution of the workload. Finally, rule r0

computes the total number of worked hours per employee. Note that, only the kernel
part of the employed logic program is reported here (in a simplified form), and many
other constraints were developed, tuned and tested.

The final user interface allows to modify manually computed teams, and the system
is able to verify whether the manually-modified team still satisfies the constraints. In
case of errors, causes are outlined and suggestions for fixing a problem are proposed.
E.g., if no plan can be generated, then the system suggests the user to relax some con-
straints. In this application, the pure declarative nature of the language allowed for re-
fining and tuning both problem specifications and ASP programs while interacting with
the stakeholders of the seaport. The system, developed by Exeura s.r.l, has been adopted
by the company ICO BLG operating automobile logistics in the seaport of Gioia Tauro.

3.3 Advanced tools for the tourism industry

We now overview two applications of ASP to problems arising in the tourism industry.
The first application is an intelligent advisor that select the most promising offers for
customers of a travel agency. The second is a tool for the travel agent that helps in
selecting blocks of touristic packages to pre-book during the allotment phase.

Intelligent Touristic Advisor. In [41] it is described a service based on ASP that has
been integrated into an e-tourism portal. The idea is to devise a tool that helps both
employees and customers of a travel agency in finding the best possible travel solution
in a short time. It can be seen as a “mediator” system finding the best match between
the offers of the tour operators and the requests of the tourists. A knowledge base has
been specified by analyzing the touristic domain in cooperation with the staff of a real
touristic agency, which models the key entities that describe the process of organizing
and selling a complete holiday package. In particular, all the required information, such
as geographic information, kind of holiday, transportation means, etc is stored in the
knowledge base. Moreover, the mere geographic information is, then, enriched by other
information that is usually exploited by travel agency employees for selecting a travel
destination. For instance, one might suggest avoiding sea holidays in winter; whereas,
one should be recommended a visit to Sicily in summer. Also user preferences are
stored, so to exploit the knowledge about users to personalize holiday package search.
Then DLV has been used to develop several search modules that simplify the task of
selecting the holiday packages that best fit the customer needs. As an example we report
a (simplified) logic program that creates a selection of holiday packages:

%detect possible and suggested places
possiblePlace(Place) :– askFor(TripKind,), PlaceOffer(Place, TripKind).
suggestPlace(Place) :– possiblePlace(Place), askFor(,Period),

suggestedPeriod(Place, Period),
not BadPeriod(Place, Period).

%select packages that the user is possibly interested in
possibleOffer(O) :– TouristicOffer(O, Place), possiblePlace(Place).

The first two rules select: possible places (i.e., the ones that offer the kind of holiday as
input); and places to be suggested (because they offer the required kind of holiday in the
specified period). Finally, the remaining rule searches in the available holiday packages
the ones which offer an holiday that matches the original input (possible offer). This
is one of the several reasoning modules that have been devised for implementing the
intelligent search, for more details we refer the reader to [41].

Automatic Allotment. In the travel industry it is common for tour operators to pre-
book from service suppliers blocks of touristic packages, which are called allotments
in jargon. Basically, given a set of requirements on the properties of packages to be
bought, budget limits, and an offer of packages from several suppliers, the problem
from the perspective of the travel agent is to select a set of offers to be brought (or pre-
booked) for the next season so that the expected earnings are maximized [15]. Despite
allotment is one of the most commonly-used supplying practices in the tourism industry,
the final selection of packages offered by travel suppliers is often done in small travel

agencies more or less manually. Thus we developed an ASP-based tool for assisting tour
operators in the allotment process. We now illustrates a simplified version of the ASP
program which solves the allotment problem. In particular, the following disjunctive
rule guesses a quantity to buy for each required package limiting the search space to
available package tours which are requested and their selling price is in the requested
range as follows:

buy(P, Q) | nBuy(P, Q) :– availablePackages(P, , D, T, SP, PP, , AvQ),
requiredPackages(D, T, MinP, MaxP, ReqQ),
0  Q  ReqQ, Q  AvQ, MinP  SP  MaxP.

The following constraint ensures only one quantity the same package is selected:

:– #count{Q, P : buy(P, Q) } > 1, availablePackages(P, , , , , , ,).

Here a special aggregate atom count is used see [16]. An other constraint enforces a
critical requirement on the budget, i.e. the sum of prices of selected package tours must
not exceed a limited budget:

:– #sum{ PP*Q, P : buy(P, Q),
availablePackages(P, S, , , SP, PP, ,) } > B, budget(B).

then earnings are maximized by using a weak constraint [12]:

:⇠ discountPrices(P, SP, PP), buy(P, Q), E=(SP-PP)*Q. [-E]

Intuitively, when a stock of package tours is bought the violation of this constraint
is associated with a cost depending on the earnings obtained by buying those packages.
The weight of weak constraint is negative since weak constraints expresses the mini-
mization of the cost associated to a solution.Travel agencies might specify a number of
additional optional preference criteria that were encoded also by means of weak con-
straints. The ASP program is included as an advanced reasoning service of the e-tourism
platform developed under the iTravelPlus project by the Tour Operator Top Class s.r.l.
and the University of Calabria.

3.4 Business intelligence platform for cleaning medical archives

The approach described in the following addresses multi-source data cleaning for syn-
tactic and semantic anomaly detection with ASP [45]. The idea is to define of an au-
tomatic procedure for generating logic programs able to identify and, whenever pos-
sible, correct errors within the data. Then, an automatically-generated logic program
is embedded in a business intelligence work-flow (including data extraction, integra-
tion, manipulation and transformation) developed with Pentaho Kettle. The ASP-based
solution has been implemented in a Penthao plugin called DLVCleaner. The proposed
approach should be considered complementary to the existing ones, and capable to
provide simplified and flexible specification of the logic of the data cleaning task. In
the following we report a brief description of a real use case employing ASP for data
cleaning. We refer the reader to [45] for more details on the DLV Cleaner. ASP was
used to clean data from several tumor registries of the Calabria region. We first pro-
vide some background information about this scenario (from [45]). Currently no law

obliges hospitals and clinics in Italy to collect and archive data on diagnosis and treat-
ment of tumors. Then, various organizations autonomously collect such information in
tumor registries. Currently, 34 tumor registries are active in Italy, covering overall al-
most 25% of the population. The registry used in our use case considers information
related to several local healthcare centers from the Calabria Region. Data are collected
from many different sources, including public hospitals, healthcare centers, family doc-
tors, etc. Collected information include the kind of diagnosed cancer, personal data
of the patient, current clinical conditions, past and current treatments, disease evolu-
tion, etc. All such information are extremely important to analyze causes and evolu-
tions of cancer diseases, in order to study proper treatments, prevention policies, and
to schedule sanitary budgets. Overall, we considered more than 200 tables as sources
of data. Almost all of this information should be inter-linked by the identity of the pa-
tient. However, different registries used different schemas and standards to represent
data; and such an information is often imprecise in local sources, since in many cases
data are loaded manually. Thus these often contain errors or incomplete information.
As a consequence, the proper identification of each mentioned patient through a subset
of its attributes is a difficult and fundamental task. The entire dataset has been cleaned
applying several cleaning workflows embedding several instances of DLVCleaner (in
Figure 2) is reported a picture of a workflow configured for cleaning patient informa-
tion). Each data flow is sent to a specifically configured DLVCleaner instance which,
based on stream classifications rules specified in ASP outputs results onto one of four
tables, namely valid tuples, corrected tuples, suggested tuples, and anomalies. As an
example, the DLVCleaner 3digit birthplace instance in Figure 2 embedds a transfor-
mation in which the birthplace is mapped onto the nationality attribute of the reference
dictionary, whereas in DLVCleaner number birthplace the birthplace is mapped onto
the ISTAT code dictionary attribute. Analogously, in DLVCleaner birthplace the pair
(city - nation) is handled by a matching function that first tokenizes the string, sin-
gling out the city name, and then matches it to the city name dictionary attribute. In
order to detect potential corrections, the most proper comparison function is applied,
depending on data format; as an example, for the three-digit birthplaces, we used the
Hamming distance whereas for city names we used the Levenshtein distance. Setting
up the workflow shown in Figure 2 takes only few minutes and it is possible to follow
a try-and-error approach. Clearly, the cleaning step for birthplaces shown above is only
one small step in a more complete workflow dealing with the overall database.

To give an idea of the size of the data involved in the described use case, the in-
put table was composed of 1.000.000 tuples collecting records from 155 municipalities,
whereas the dictionary stored about 15.000 tuples. From the application of the transfor-
mation shown in Figure 2 it was obtained that almost 50% of input tuples were wrong.
72% of wrong tuples have been automatically corrected, whereas 24% had multiple
corrections. Only 2% of input tuples have been detected as wrong and not repairable.

3.5 Other Applications

The exploitation of DLV for developing applications is not limited to the examples
reported in this section. Actually, DLV is at the basis of several other advanced ap-
plications of which it is worth mentioning data integration systems [32, 35], web data

Fig. 2. Example of a Kettle workflow using the DLVCleaner plugin (from [45]).

extraction [26], and computation of minimum cardinality diagnoses [25]. Moreover,
the Polish company Rodan Systems S.A. has exploited DLV in a tool for the detec-
tion of price manipulations and unauthorized use of confidential information, which is
used by the Polish Securities and Exchange Commission. The company Exeura s.r.l. de-
veloped systems exploiting DLV for implementing specific modules in e-Government,
e-Medicine and tele-assistance systems.

4 Development Tools

The real-world applications of DLV that we described in previous sections have demon-
strated that ASP can be used to implement real-world applications. Nonetheless devel-
opers need specialized tools that make easier the development of applications, and that
support the integration of different tools in the same environment. DLV is well-suited
for applications development also thanks to the endowment of powerful development
tools [24, 22], supporting the activities of researchers and implementors. Indeed, we en-
dowed DLV with effective programming-tools, which are conceived to ease the usage
and the integration of ASP-based technologies in the existing environments tailored for
imperative/object-oriented programming languages. In the following we introduce two
advanced development tools for developing ASP-based applications, namely ASPIDE
and JDLV.

4.1 IDE for ASP

ASPIDE [24] is a complete IDE for ASP programs, which integrates an advanced edit-
ing tool with a collection of user-friendly graphical tools for program composition and
execution. The user interface of ASPIDE is depicted in Figure 3. In the upper part of
the interface a toolbar allows the user to quickly access some common operations. In
the center of the interface there is the main editing area where it is possible to open
several files organized in a tabbed panel. The left part of the interface is dedicated to

the workspace explorer, which list projects, and to the error console, which organizes
errors and warnings according to the project and files where they are localized. On
the right, there are the outline panel and the template panel. The layout of the IDE is
customizable, indeed the user can rearrange components the way he/she likes best.

In the following we overview the main features that are available in ASPIDE.

Advanced Editor. The system allows for organizing logic programs in projects à la
Eclipse, which are collected in a workspace. Projects collect either different parts of
an encoding or several equivalent encodings solving the same problem. ASPIDE sup-
ports a number of file editors and can be extended to support virtually any kind of
input files by user-defined plugins (which are described below). The main editor for
ASP programs offers, besides the basic functionalities, such as code line numbering,
find/replace, undo/redo, copy/paste, also:

– Text coloring. The editor performs keyword outlining (such as “ :– ’ and “not ”)
and dynamic highlighting of predicate names, variables, strings, and comments.

– Automatic completion. The system is able to complete (on request) predicate names,
as well as variable names. Predicate names are both learned while writing, and
extracted from the files belonging to the same project; variables are suggested by
taking into account the rule we are currently writing.

– Refactoring. The refactoring tool allows to modify programs in a guided way. For
instance, variable renaming in a rule is done by considering bindings of variables;
custom refactorings can applied by selecting rules and applying some functionality
offered by a user-defined plugin.

– Dynamic code checking and errors highlighting. Programs are parsed while writing,
and both errors or possible warnings are immediately outlined.

– Quick fixes. The editor suggests quick fixes to reported errors or warnings, and
applies them (on request) by automatically changing the affected part of code.

– Code templates. ASPIDE provides support for assisted writing of rules (guessing
patterns, etc.), as well as automated writing of entire subprograms (e.g., transitive
closure rules) by means of code templates, which can be instantiated while writing.

– Program Outline. ASPIDE creates an outline view which graphically represents
program elements. Each item in the outline can be used to quickly access the cor-
responding line of code (a very useful feature when dealing with long files).

– Visual editor. The users can draw logic programs by exploiting a full graphical
environment that offers a QBE-like tool for building logic rules. The user can
switch from the text editor to the visual one (and vice versa) thanks to a reverse-
rengineering mechanism from text to graphical format.

Dependency Graph. ASPIDE creates automatically a graphical representation of sev-
eral variants of the (non-ground) dependency graphs associated with a project, and can
be used for analyzing rule dependencies and browsing the program.

Debugger and Profiler. ASPIDE embeds the debugging tool spock [8], and provides
a graphical user interface that wraps the above mentioned tool. Regarding the profiler,
ASPIDE fully embeds the graphical interface presented in [14].

Fig. 3. The user interface of ASPIDE.

Unit Testing. In software engineering, the task of testing and validating programs is a
crucial part of the life-cycle of software development process and a test conceived for
verifying the behavior of a specific part of a program is called unit testing. The testing
feature consists on a unit testing framework for logic programs in the style of JUnit.
The developer can specify rules by composing one or several units, specify one or more
inputs and assert a number of conditions on both expected outputs and the expected
behavior of sub-programs. For an exhaustive description the testing language and the
graphical tool we refer the reader to [23].

Interaction with Databases. ASPIDE simplifies access to external databases by a
graphical tool connecting to DBMSs via JDBC. The database management feature of
ASPIDE supports the creation of both #import/#export directives of DLV, and fully-
graphical composition of TYP files [43]. Imported sources are emphasized also in the
program editor by exploiting a specific color indicating the corresponding predicates.
Database oriented applications can be run by setting DLVDB as engine in a run con-
figuration. A data integration scenario [32] can be implemented by exploiting these
features.

Configuration of the execution. The execution of ASP programs is fully customizable
by using the RunConfiguration Dialog that allows one to set the system executable,
setup invocation options and input files. A number of shortcuts and drop down menus
allows one for a quick execution of single files or selection of files within a project.

Results window. The results are presented to the user in a comfortable view combining
tabular representation of predicates and a tree-like representation of answer sets. Further
output extensions can be added by means of output plugins. Two examples are the
ARVis comparator of answer sets [1] and the answer set visualizer IDPDraw [46].

User-defined Plugins. An important feature of ASPIDE is the possibility to extend it
with user defined plugins. Developers can create libraries for extending ASPIDE with:
(i) new input formats, (ii) program rewritings, and even (iii) customizing the visu-
alization/format of results. An input plugin can take care of input files that appear in
ASPIDE as a logic program, and an output plugin can handle the external conversion of
the computed results. A rewriting plugin may encode a procedure that can be applied to

Fig. 4. The JDLVEclipse plugin.

rules in the editor (e.g., disjunctive rule shifting can be applied on the fly by selecting
rules in the editor and applying the mentioned rewriting). An SDK available from the
ASPIDE web site allows one to develop new plugins.

System Availability. ASPIDE is written in Java and is available for all the major oper-
ating systems, including Linux, Mac OS and Windows. It can be downloaded from the
system website http://www.mat.unical.it/ricca/aspide.

4.2 Combining Java and ASP

JDLVis a plug-in for the Eclipse platform [17], offering a seamless integration of ASP-
based technologies within the most popular development environment for Java. JDLVis
based on JASP [22], a hybrid language that transparently supports a bilateral interac-
tion between (disjunctive) ASP and Java. A key ingredient of JASP is the mapping be-
tween (collections of) Java objects and ASP facts. In JASP , Java Objects are mapped
to logic facts (and vice versa) by adopting a structural mapping strategy. JASP ex-
ploits the same ideas of modern Object-Relational Mapping (ORM) frameworks, such
as Hibernate and TopLink, where objects are saved/loaded from/to relational databases.
JASP supports both a default mapping strategy, which fits the most common pro-
grammers’ requirements, and custom ORM specifications that comply with the Java
Persistence API (JPA) [40] to suit enterprise application development standards. The

JASP code is very natural and intuitive for a programmer skilled in both ASP and
Java.

In Figure 4 is depicted the a simple JASP program open in the JDLV plugin that
will serve as a running example. A monolithic block of plain ASP code (called module)
is embedded in the Java method , which is executed ”in-place”, i.e., the solving process
is triggered at the end of the module specification. In particular the program in Figure
4 defines the method compute3Coloring(), that contains a module to computes a 3-
coloring of the given graph. Intuitively, the ASP program is enclosed within special tags
(< # . . .# >), and when compute3Coloring() is invoked, Java objects are transformed
into logic facts, by applying an ORM strategy as specified in the module parameters.
In the example Java variables arcs and nodes are mapped to corresponding predicates
arc and node, respectively, whereas the local variable res is mapped as output variable
to the predicate col. In this example, each string x in nodes is transformed in unary
facts node(x); similarly, each instance of Arc in the variable arcs produces a binary
fact, e.g., arc(from,to). These facts are input of the logic program, which is evaluated
”in-place”. If no 3-coloring exists, the variable res is set to null; otherwise, when the
first answer set is computed, for each fact col contained in the solution a new object
of the class Colored is created and added to res, which, in turn, is returned by the
method. Here the JASP’s default ORM strategy is applied to map one object per
logic fact, which compound keys, i.e., keys made of all basic attributes, and embedded
values for one to one associations, which naturally fits the usual way of representing
information in ASP, e.g., in the example, one fact models one node. Such a mapping
is inverted to obtain Java objects from logic facts, and ensures the safe creation of
new Java objects without requiring value invention in logic programs. Although this
strategy poses (very few) restrictions such as non-recursive type definition (e.g., tree-
like structures are not admitted in JASP-core), based on our experience, it is sufficient
to handle common use cases. On the other hand, as we show in the following, full
JASP language allows for custom ORM strategies specified by JPA [40] annotations.
It is now clear that, JASP directly extends the syntax of Java such that JASP module
statements are allowed in Java block statements. Concerning the syntax allowed within
modules, JASP is compliant with the language of DLV, and also supports a number of
advanced features that are mentioned in the following.

The language also features a number of additional features that further ease the
development of programs, such as incremental modules, non positional notation, and
database access. We refer the reader to [22] for a full account of the JASP language.

System Availability. JDLV is available in form of an Eclipse platform [17] plugin from
http://www.dlvsystem.com/dlvsystem/index.php/JDLV. JDLVincludes
Jdlvc, a compiler to generate plain Java classes from JASP files. The Jdlvc compiler
produces plain Java classes which manage the generation of logic programs and control
statements for the underlying solver DLV.

5 Conclusion

In this paper we have introduced ASP, and we have described some industry-level ap-
plications of the ASP system DLV. These applications confirmed the applicability of

ASP-based technologies for solving complex real-world applications. Moreover, it is
worth observing that the DLV system is well-suited for applications development also
thanks to the endowment of powerful development tools. In particular, we described
two of them conceived for developing ASP-based applications, namely ASPIDE and
JDLV . ASPIDE is an integrated development environment, supporting the entire life-
cycle of logic programs development; JDLV is an implementation of JASP , a new
programming framework integrating ASP with Java.

References

1. Ambroz, T., Charwat, G., Jusits, A., Wallner, J.P., Woltran, S.: Arvis: Visualizing relations
between answer sets. In: LPNMR 2013, LNCS, vol. 8148, pp. 73–78. (2013),

2. Balduccini, M., Gelfond, M., Watson, R., Nogeira, M.: The USA-Advisor: A Case Study in
Answer Set Planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR-01. LNCS,
vol. 2173, pp. 439–442. (2001)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

4. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Minker, J. (ed.) Logic-
Based Artificial Intelligence, pp. 257–279. Kluwer (2000)

5. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auctions Using
Logic Programming. In: LPNMR-01. LNAI, vol. 2173, pp. 186–199. (2001)

6. Bardadym, V.A.: Computer-Aided School and University Timetabling: The New Wave. In:
Burke, E., Ross, P. (eds.) PTAT’95. LNCS, vol. 1153, pp. 22–45. (1996)

7. Bertossi, L.E., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance, vol. 3300. (2005)
8. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: That is illogical

captain. the debugging support tool spock for answer-set programs: System description. In:
Vos, M.D., Schaub, T. (eds.) SEA 07

9. Bravo, L., Bertossi, L.: Logic programming for consistently querying data integration sys-
tems. In: IJCAI-03 . pp. 10–15 (2003)

10. Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.): ECAI 2006, 29 - September 1,
2006, Riva del Garda, Italy, Including PAIS 2006, FAIS, vol. 141. IOS Press (2006)

11. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

12. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5), 845–860 (2000)

13. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. TPLP
14(1), 117–135 (2014)

14. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A Visual Tracer for DLV. In: Proc. of SEA’09.
Potsdam, Germany (Sep 2009)

15. Castellani, M., Mussoni, M.: An economic analysis of tourism contracts: Allotment and free
sale*. In: Advances in Modern Tourism Research, pp. 51–85. (2007)

16. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: IJCAI
2003. pp. 847–852. Acapulco, Mexico (Aug 2003)

17. Eclipse: Eclipse (2001), http://www.eclipse.org/
18. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV

System. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer (2000)
19. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (Sep

1997)

20. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: JELIA 2004. (LNAI), vol. 3229, pp. 200–212. (Sep 2004)

21. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. AI 175(1), 278–298 (2011), special Issue: John McCarthy’s Legacy

22. Febbraro, O., iGiovanni Grasso, Leone, N., Ricca, F.: JASP: a framework for integrating
Answer Set Programming with Java. In: Proc. of KR2012. AAAI Press (2012)

23. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in aspide. CoRR abs/1108.5434
(2011)

24. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated Development Environment for An-
swer Set Programming. In: LPNMR 2011. (LNAI), vol. 6645, pp. 317–330. (2011)

25. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow ex-
ecutions. Tech. rep., Alpen Adria University, Applied Informatics, Klagen-
furt, Austria (2008), http://proserver3-iwas.uni-klu.ac.at/download area/Technical-
Reports/technical report 2008 02.pdf

26. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C.: Opal: Automated form
understanding for the deep web. In: WWW (2012)

27. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills management
context. AI Communications 19(2), 137–154 (2006)

28. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog
perspective . AI 138(1–2), 3–38 (2002)

29. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988. pp. 1070–1080. MIT Press, Cambridge, Mass. (1988)

30. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

31. Grasso, G., Leone, N., Manna, M., Ricca, F.: Logic Programming, Knowledge Represen-
tation, and Nonmonotonic Reasoning: Essays in Honor of M. Gelfond, (LNAI), vol. 6565.
(2011)

32. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005. pp. 915–917. ACM Press, (Jun 2005)

33. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV Sys-
tem for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (Jul 2006)

34. Lifschitz, V.: Answer Set Planning. In: Schreye, D.D. (ed.) ICLP’99. pp. 23–37. The MIT
Press)

35. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from different
perspectives: Theory and practice. TPLP 13(2), 277–252 (2013)

36. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. CoRR cs.LO/9809032 (1998)

37. Naveh, Y., Richter, Y., Altshuler, Y., Gresh, D.L., Connors, D.P.: Workforce optimization:
Identification and assignment of professional workers using constraint programming. IBM
Journal of Research and Development 51(3.4), 263–279 (2007)

38. Niemelä, I.: Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. In: Proceedings of the Workshop on Computational Aspects of Nonmonotonic
Reasoning. pp. 72–79. Trento, Italy (1998)

39. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: PADL 2001. vol. 1990, pp. 169–183. (2001)

40. Oracle: JSR 317: JavaTM Persistence 2.0 (2009), http://jcp.org/en/jsr/

detail?id=317

41. Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone, N.: A Logic-
Based System for e-Tourism. FI 105((1–2)), 35–55 (2010)

42. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the gioia-tauro seaport. TPLP. CUP 12(3), 361–381 (2012)

43. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. TPLP 8, 129–165 (2008)

44. Terracina, G., Martello, A., Leone, N.: Logic-based techniques for data cleaning: An appli-
cation to the italian national healthcare system. In: LPNMR 2013, Corunna, Spain, 15-19,
2013. Proceedings. LNCS, vol. 8148, pp. 524–529. (2013)

45. Terracina, G., Martello, A., Leone, N.: Logic-based techniques for data cleaning: An appli-
cation to the italian national healthcare system. In: LPNMR 2013, Corunna, Spain, 15-19,
2013. Proceedings. LNCS, vol. 8148, pp. 524–529. (2013)

46. Wittocx, J.: IDPDraw, a tool used for visualizing answer sets (since 2009), http://dtai.
cs.kuleuven.be/krr/software/visualisation

