Processes

A RUNNING INSTANCE OF A PROGRAM IS CALLED A PROCESS. If you have two
terminal windows showing on your screen, then you are probably running the

same terminal program twice—you have two terminal processes. Each terminal
window is probably running a shell; each running shell is another process. When you
invoke a command from a shell, the corresponding program is executed in a new
process; the shell process resumes when that process completes.

Advanced programmers often use multiple cooperating processes in a single appli-
cation to enable the application to do more than one thing at once, to increase
application robustness, and to make use of already-existing programs.

Most of the process manipulation functions described in this chapter are similar to
those on other UNIX systems. Most are declared in the header file <unistd.h>; check
the man page for each function to be sure.

3.1 Looking at Processes

Even as you sit down at your computer, there are processes running. Every executing
program uses one or more processes. Let’s start by taking a look at the processes
already on your computer.

46

Chapter 3 Processes

3.1.1 Process IDs

Each process in a Linux system is identified by its unique process ID, sometimes
referred to as pid. Process IDs are 16-bit numbers that are assigned sequentially by
Linux as new processes are created.

Every process also has a parent process (except the special init process, described in
Section 3.4.3,“Zombie Processes”). Thus, you can think of the processes on a Linux
system as arranged in a tree, with the init process at its root. The parent process ID, or
ppid, is simply the process ID of the process’s parent.

When referring to process IDs in a C or C++ program, always use the pid_t
typedef, which is defined in <sys/types.h>. A program can obtain the process ID of
the process it’s running in with the getpid() system call, and it can obtain the process
ID of its parent process with the getppid() system call. For instance, the program in
Listing 3.1 prints its process ID and its parent’s process ID.

Listing 3.1 (print-pid.c) Printing the Process ID

#include <stdio.h>
#include <unistd.h>

int main ()

{
printf ("The process ID is %d\n", (int) getpid ());
printf ("The parent process ID is %d\n", (int) getppid ());
return 0

)

Observe that if you invoke this program several times, a different process ID is
reported because each invocation is in a new process. However, if you invoke it every
time from the same shell, the parent process ID (that is, the process ID of the shell
process) is the same.

3.1.2 Viewing Active Processes

The ps command displays the processes that are running on your system. The
GNU/Linux version of ps has lots of options because it tries to be compatible with
versions of ps on several other UNIX variants. These options control which processes
are listed and what information about each is shown.

By default, invoking ps displays the processes controlled by the terminal or terminal
window in which ps is invoked. For example:

% ps

PID TTY TIME CMD

21693 pts/8 00:00:00 bash
21694 pts/8 00:00:00 ps

3.1 Looking at Processes

This invocation of ps shows two processes. The first, bash, is the shell running on this
terminal. The second is the running instance of the ps program itself. The first col-
umn, labeled PID, displays the process ID of each.

For a more detailed look at what’s running on your GNU/Linux system, invoke
this:

% ps -e -0 pid,ppid,command

The -e option instructs ps to display all processes running on the system. The

-0 pid,ppid,command option tells ps what information to show about each process—
in this case, the process ID, the parent process ID, and the command running in this
process.

ps Output Formats

With the -0 option to the ps command, you specify the information about processes that you want in
the output as a comma-separated list. For example, ps -0 pid,user,start_time,command displays
the process ID, the name of the user owning the process, the wall clock time at which the process
started, and the command running in the process. See the man page for ps for the full list of field codes.
You can use the - (full listing), -1 (long listing), or - j (jobs listing) options instead to get three differ-
ent preset listing formats.

Here are the first few lines and last few lines of output from this command on my
system. You may see different output, depending on what’s running on your system.

% ps -e -0 pid,ppid,command
PID PPID COMMAND

1 0 init [5]
2 1 [kflushd]
3 1 [kupdate]

21725 21693 xterm

21727 21725 bash

21728 21727 ps -e -o pid,ppid,command
Note that the parent process ID of the ps command, 21727, is the process ID of bash,
the shell from which I invoked ps.The parent process ID of bash is in turn 21725, the
process ID of the xterm program in which the shell is running.

3.1.3 Killing a Process

You can kill a running process with the kill command. Simply specify on the com-
mand line the process ID of the process to be killed.

The kill command works by sending the process a SIGTERM, or termination,
signal.! This causes the process to terminate, unless the executing program explicitly
handles or masks the SIGTERM signal. Signals are described in Section 3.3, “Signals.”

1.You can also use the kill command to send other signals to a process. This is described in

Section 3.4, “Process Termination.”

47

48

Chapter 3 Processes

3.2 Creating Processes

Two common techniques are used for creating a new process. The first is relatively
simple but should be used sparingly because it is inefficient and has considerably
security risks. The second technique is more complex but provides greater flexibility,
speed, and security.

3.2.1 Using system

The system function in the standard C library provides an easy way to execute a
command from within a program, much as if the command had been typed into a
shell. In fact, system creates a subprocess running the standard Bourne shell (/bin/sh)
and hands the command to that shell for execution. For example, this program in
Listing 3.2 invokes the 1s command to display the contents of the root directory, as if
you typed 1s -1 / into a shell.

Listing 3.2 (system.c) Using the system Call

#include <stdlib.h>

int main ()

{
int return_value;
return_value = system ("ls -1 /");
return return_value;

}

The system function returns the exit status of the shell command. If the shell itself
cannot be run, system returns 127; if another error occurs, system returns —1.

Because the system function uses a shell to invoke your command, it’s subject to
the features, limitations, and security flaws of the system’s shell. You can’t rely on the
availability of any particular version of the Bourne shell. On many UNIX systems,
/bin/sh is a symbolic link to another shell. For instance, on most GNU/Linux sys-
tems, /bin/sh points to bash (the Bourne-Again SHell), and different GNU/Linux
distributions use different versions of bash. Invoking a program with root privilege
with the system function, for instance, can have different results on different
GNU/Linux systems. Therefore, it’s preferable to use the fork and exec method for
creating processes.

3.2.2 Using fork and exec

The DOS and Windows API contains the spawn family of functions. These functions
take as an argument the name of a program to run and create a new process instance
of that program. Linux doesn’t contain a single function that does all this in one step.
Instead, Linux provides one function, fork, that makes a child process that is an exact

3.2 Creating Processes

copy of its parent process. Linux provides another set of functions, the exec family, that
causes a particular process to cease being an instance of one program and to instead
become an instance of another program.To spawn a new process, you first use fork to
make a copy of the current process. Then you use exec to transform one of these
processes into an instance of the program you want to spawn.

Calling fork

When a program calls fork, a duplicate process, called the child process, is created. The
parent process continues executing the program from the point that fork was called.
The child process, too, executes the same program from the same place.

So how do the two processes differ? First, the child process is a new process and
therefore has a new process ID, distinct from its parent’s process ID. One way for a
program to distinguish whether it’s in the parent process or the child process is to call
getpid. However, the fork function provides different return values to the parent and
child processes—one process “goes in” to the fork call, and two processes “come out,”
with different return values. The return value in the parent process is the process ID of
the child. The return value in the child process is zero. Because no process ever has a
process ID of zero, this makes it easy for the program whether it is now running as the
parent or the child process.

Listing 3.3 is an example of using fork to duplicate a program’s process. Note that
the first block of the if statement is executed only in the parent process, while the
else clause is executed in the child process.

Listing 3.3 (fork.c) Using fork to Duplicate a Program’ Process

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main ()

{
pid t child pid;

printf ("the main program process ID is %d\n", (int) getpid ());

child_pid = fork ();

if (child_pid != 0) {
printf ("this is the parent process, with id %d\n", (int) getpid ());
printf ("the child's process ID is %d\n", (int) child_pid);

}

else
printf ("this is the child process, with id %d\n", (int) getpid ());

return 0;

49

50

Chapter 3 Processes

Using the exec Family

The exec functions replace the program running in a process with another program.
When a program calls an exec function, that process immediately ceases executing that
program and begins executing a new program from the beginning, assuming that the
exec call doesn’t encounter an error.

Within the exec family, there are functions that vary slightly in their capabilities
and how they are called.

= Functions that contain the letter p in their names (execvp and execlp) accept a
program name and search for a program by that name in the current execution
path; functions that don’t contain the p must be given the full path of the pro-
gram to be executed.

= Functions that contain the letter v in their names (execv, execvp, and execve)
accept the argument list for the new program as a NULL-terminated array of
pointers to strings. Functions that contain the letter / (execl, execlp, and
execle) accept the argument list using the C language’s varargs mechanism.

= Functions that contain the letter e in their names (execve and execle) accept an
additional argument, an array of environment variables. The argument should be
a NULL-terminated array of pointers to character strings. Each character string
should be of the form “VARIABLE=value”.

Because exec replaces the calling program with another one, it never returns unless an
error occurs.

The argument list passed to the program is analogous to the command-line argu-
ments that you specify to a program when you run it from the shell. They are available
through the argc and argv parameters to main. Remember, when a program is
invoked from the shell, the shell sets the first element of the argument list argv[0]) to
the name of the program, the second element of the argument list (argv[1]) to the
first command-line argument, and so on. When you use an exec function in your pro-
grams, you, too, should pass the name of the function as the first element of the argu-
ment list.

Using fork and exec Together

A common pattern to run a subprogram within a program is first to fork the process
and then exec the subprogram. This allows the calling program to continue execution
in the parent process while the calling program is replaced by the subprogram in the
child process.

The program in Listing 3.4, like Listing 3.2, lists the contents of the root directory
using the 1s command. Unlike the previous example, though, it invokes the 1s com-
mand directly, passing it the command-line arguments -1 and / rather than invoking it
through a shell.

3.2 Creating Processes

Listing 3.4 (fork-exec.c) Using fork and exec Together

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Spawn a child process running a new program. PROGRAM is the name

of the program to run; the path will be searched for this program.
ARG_LIST is a NULL-terminated list of character strings to be
passed as the program's argument list. Returns the process ID of
the spawned process. */

int spawn (char* program, char** arg_list)

{

pid_t child pid;

/* Duplicate this process. */

child_pid = fork ();

if (child_pid != 0)
/* This is the parent process. */
return child_pid;

else {
/* Now execute PROGRAM, searching for it in the path. */
execvp (program, arg_list);
/* The execvp function returns only if an error occurs. */
fprintf (stderr, "an error occurred in execvp\n");

abort ();
}
}
int main ()
{

/* The argument list to pass to the "1s" command. */

char* arg_list[] = {

"1s", /* argv[@], the name of the program. */

1,

e

NULL /* The argument list must end with a NULL. */
H

/* Spawn a child process running the "ls" command. Ignore the
returned child process ID. */

spawn ("ls", arg_list);

printf ("done with main program\n");

return 0;

51

52

Chapter 3 Processes

3.2.3 Process Scheduling

Linux schedules the parent and child processes independently; there’s no guarantee of
which one will run first, or how long it will run before Linux interrupts it and lets the
other process (or some other process on the system) run. In particular, none, part, or all
of the 1s command may run in the child process before the parent completes.” Linux
promises that each process will run eventually—no process will be completely starved
of execution resources.

You may specify that a process is less important—and should be given a lower priority
—Dby assigning it a higher niceness value. By default, every process has a niceness of zero.
A higher niceness value means that the process is given a lesser execution priority;
conversely, a process with a lower (that is, negative) niceness gets more execution time.

To run a program with a nonzero niceness, use the nice command, specifying the
niceness value with the -n option. For example, this is how you might invoke the
command “sort input.txt > output.txt”, a long sorting operation, with a reduced
priority so that it doesn’t slow down the system too much:

% nice -n 10 sort input.txt > output.txt

You can use the renice command to change the niceness of a running process from
the command line.

To change the niceness of a running process programmatically, use the nice func-
tion. Its argument is an increment value, which is added to the niceness value of the
process that calls it. Remember that a positive value raises the niceness value and thus
reduces the process’s execution priority.

Note that only a process with root privilege can run a process with a negative nice-
ness value or reduce the niceness value of a running process. This means that you may
specify negative values to the nice and renice commands only when logged in as
root, and only a process running as root can pass a negative value to the nice function.
This prevents ordinary users from grabbing execution priority away from others using
the system.

3.3 Signals

Signals are mechanisms for communicating with and manipulating processes in Linux.
The topic of signals is a large one; here we discuss some of the most important signals
and techniques that are used for controlling processes.

A signal is a special message sent to a process. Signals are asynchronous; when a
process receives a signal, it processes the signal immediately, without finishing the cur-
rent function or even the current line of code. There are several dozen difterent sig-
nals, each with a different meaning. Each signal type is specified by its signal number,
but in programs, you usually refer to a signal by its name. In Linux, these are defined
in /usr/include/bits/signum.h. (You shouldn’t include this header file directly in
your programs; instead, use <signal.h>.)

2. A method for serializing the two processes is presented in Section 3.4.1, “Waiting for

Process Termination.”

3.3 Signals

When a process receives a signal, it may do one of several things, depending on the
signal’s disposition. For each signal, there is a default disposition, which determines what
happens to the process if the program does not specify some other behavior. For most
signal types, a program may specify some other behavior—either to ignore the signal
or to call a special signal-handler function to respond to the signal. If a signal handler is
used, the currently executing program is paused, the signal handler is executed, and,
when the signal handler returns, the program resumes.

The Linux system sends signals to processes in response to specific conditions. For
instance, SIGBUS (bus error), SIGSEGV (segmentation violation), and SIGFPE (floating
point exception) may be sent to a process that attempts to perform an illegal opera-
tion. The default disposition for these signals it to terminate the process and produce a
core file.

A process may also send a signal to another process. One common use of this
mechanism is to end another process by sending it a SIGTERM or SIGKILL signal.’
Another common use is to send a command to a running program. Two “user-
defined” signals are reserved for this purpose: SIGUSR1 and SIGUSR2. The SIGHUP signal
is sometimes used for this purpose as well, commonly to wake up an idling program
or cause a program to reread its configuration files.

The sigaction function can be used to set a signal disposition. The first parameter
is the signal number. The next two parameters are pointers to sigaction structures; the
first of these contains the desired disposition for that signal number, while the second
receives the previous disposition. The most important field in the first or second
sigaction structure is sa_handler. It can take one of three values:

= SIG_DFL, which specifies the default disposition for the signal.
= SIG_IGN, which specifies that the signal should be ignored.

= A pointer to a signal-handler function. The function should take one parameter,
the signal number, and return void.

Because signals are asynchronous, the main program may be in a very fragile state
when a signal is processed and thus while a signal handler function executes.
Therefore, you should avoid performing any 1/O operations or calling most library
and system functions from signal handlers.

A signal handler should perform the minimum work necessary to respond to the
signal, and then return control to the main program (or terminate the program). In
most cases, this consists simply of recording the fact that a signal occurred. The main
program then checks periodically whether a signal has occurred and reacts accordingly.

It 1s possible for a signal handler to be interrupted by the delivery of another signal.
‘While this may sound like a rare occurrence, if it does occur, it will be very difficult to
diagnose and debug the problem. (This is an example of a race condition, discussed in
Chapter 4, “Threads,” Section 4.4, “Synchronization and Critical Sections.”) Therefore,
you should be very careful about what your program does in a signal handler.

3.What’ the difference? The SIGTERM signal asks a process to terminate; the process may
ignore the request by masking or ignoring the signal. The SIGKILL signal always kills the process

immediately because the process may not mask or ignore SIGKILL.

53

54

Chapter 3 Processes

Even assigning a value to a global variable can be dangerous because the assignment
may actually be carried out in two or more machine instructions, and a second signal
may occur between them, leaving the variable in a corrupted state. If you use a global
variable to flag a signal from a signal-handler function, it should be of the special type
sig_atomic_t. Linux guarantees that assignments to variables of this type are per-
formed in a single instruction and therefore cannot be interrupted midway. In Linux,
sig_atomic_t is an ordinary int;in fact, assignments to integer types the size of int or
smaller, or to pointers, are atomic. If you want to write a program that’s portable to
any standard UNIX system, though, use sig_atomic_t for these global variables.

This program skeleton in Listing 3.5, for instance, uses a signal-handler function to
count the number of times that the program receives SIGUSR1, one of the signals
reserved for application use.

Listing 3.5 (sigusrl.c) Using a Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

sig_atomic_t sigusri_count = 0;

void handler (int signal_number)
{
++sigusri_count;

}

int main ()

{
struct sigaction sa;
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &handler;
sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */
/* o0 %/

printf ("SIGUSR1 was raised %d times\n", sigusri_count);
return 0;

3.4 Process Termination

3.4 Process Termination

Normally, a process terminates in one of two ways. Either the executing program calls
the exit function, or the program’s main function returns. Each process has an exit
code: a number that the process returns to its parent. The exit code is the argument
passed to the exit function, or the value returned from main.

A process may also terminate abnormally, in response to a signal. For instance, the
SIGBUS, SIGSEGV, and SIGFPE signals mentioned previously cause the process to termi-
nate. Other signals are used to terminate a process explicitly. The SIGINT signal is sent
to a process when the user attempts to end it by typing Ctrl+C in its terminal. The
SIGTERM signal is sent by the kill command. The default disposition for both of these
is to terminate the process. By calling the abort function, a process sends itself the
SIGABRT signal, which terminates the process and produces a core file. The most pow-
erful termination signal is SIGKILL, which ends a process immediately and cannot be
blocked or handled by a program.

Any of these signals can be sent using the kill command by specifying an extra
command-line flag; for instance, to end a troublesome process by sending it a SIGKILL,
invoke the following, where pid is its process ID:

% kill -KILL pid

To send a signal from a program, use the kill function. The first parameter is the tar-
get process ID. The second parameter is the signal number; use SIGTERM to simulate the
default behavior of the kill command. For instance, where child pid contains the
process ID of the child process, you can use the kill function to terminate a child
process from the parent by calling it like this:

kill (child_pid, SIGTERM);

Include the <sys/types.h> and <signal.h> headers if you use the kill function.

By convention, the exit code is used to indicate whether the program executed
correctly. An exit code of zero indicates correct execution, while a nonzero exit code
indicates that an error occurred. In the latter case, the particular value returned may
give some indication of the nature of the error. It’s a good idea to stick with this con-
vention in your programs because other components of the GNU/Linux system
assume this behavior. For instance, shells assume this convention when you connect
multiple programs with the && (logical and) and || (logical or) operators. Therefore,
you should explicitly return zero from your main function, unless an error occurs.

55

56

Chapter 3 Processes

With most shells, it’s possible to obtain the exit code of the most recently executed
program using the special $? variable. Here’s an example in which the 1s command is
invoked twice and its exit code is displayed after each invocation. In the first case, 1s
executes correctly and returns the exit code zero. In the second case, 1s encounters an
error (because the filename specified on the command line does not exist) and thus
returns a nonzero exit code.

% 1s /

bin coda etc 1lib misc nfs proc shin usr
boot dev home lost+found mnt opt root tmp var
% echo $?

0

% 1s bogusfile
Is: bogusfile: No such file or directory
% echo $?

—_

Note that even though the parameter type of the exit function is int and the main
function returns an int, Linux does not preserve the full 32 bits of the return code. In
fact, you should use exit codes only between zero and 127. Exit codes above 128 have
a special meaning—when a process 1s terminated by a signal, its exit code 1s 128 plus
the signal number.

3.4.1 Waiting for Process Termination

If you typed in and ran the fork and exec example in Listing 3.4, you may have
noticed that the output from the 1s program often appears after the “main program”
has already completed. That’s because the child process, in which 1s is run, is sched-
uled independently of the parent process. Because Linux is a multitasking operating
system, both processes appear to execute simultaneously, and you can’t predict whether
the 1s program will have a chance to run before or after the parent process runs.

In some situations, though, it is desirable for the parent process to wait until one or
more child processes have completed. This can be done with the wait family of system
calls. These functions allow you to wait for a process to finish executing, and enable
the parent process to retrieve information about its child’s termination. There are four
different system calls in the wait family; you can choose to get a little or a lot of infor-
mation about the process that exited, and you can choose whether you care about
which child process terminated.

3.4.2 The wait System Calls

The simplest such function is called simply wait. It blocks the calling process until one
of its child processes exits (or an error occurs). It returns a status code via an integer
pointer argument, from which you can extract information about how the child process
exited. For instance, the WEXITSTATUS macro extracts the child process’s exit code.

3.4 Process Termination

You can use the WIFEXITED macro to determine from a child process’s exit status
whether that process exited normally (via the exit function or returning from main)
or died from an unhandled signal. In the latter case, use the WTERMSIG macro to extract
from its exit status the signal number by which it died.

Here is the main function from the fork and exec example again. This time, the
parent process calls wait to wait until the child process, in which the 1s command
executes, is finished.

int main ()

{

int child_status;

/* The argument list to pass to the "1s" command. */

char* arg_list[] = {

"1s", /* argv[@], the name of the program. */

1,

s

NULL /* The argument list must end with a NULL. */
b

/* Spawn a child process running the "ls" command. Ignore the
returned child process ID. */
spawn ("ls", arg_list);

/* Wait for the child process to complete. */
wait (&child_status);
if (WIFEXITED (child_status))
printf ("the child process exited normally, with exit code %d\n",
WEXITSTATUS (child_status));
else
printf ("the child process exited abnormally\n");

return 0;
}
Several similar system calls are available in Linux, which are more flexible or provide
more information about the exiting child process. The waitpid function can be used
to wait for a specific child process to exit instead of any child process. The wait3 func-
tion returns CPU usage statistics about the exiting child process, and the wait4
function allows you to specify additional options about which processes to wait for.

3.4.3 Zombie Processes

If a child process terminates while its parent is calling a wait function, the child
process vanishes and its termination status is passed to its parent via the wait call. But
what happens when a child process terminates and the parent is not calling wait?
Does it simply vanish? No, because then information about its termination—such as
whether it exited normally and, if so, what its exit status is—would be lost. Instead,
when a child process terminates, is becomes a zombie process.

57

58

Chapter 3 Processes

A zombie process 1s a process that has terminated but has not been cleaned up yet. It
is the responsibility of the parent process to clean up its zombie children. The wait
functions do this, too, so it’s not necessary to track whether your child process is still
executing before waiting for it. Suppose, for instance, that a program forks a child
process, performs some other computations, and then calls wait. If the child process
has not terminated at that point, the parent process will block in the wait call until the
child process finishes. If the child process finishes before the parent process calls wait,
the child process becomes a zombie. When the parent process calls wait, the zombie
child’s termination status is extracted, the child process is deleted, and the wait call
returns immediately.

‘What happens if the parent does not clean up its children? They stay around in the
system, as zombie processes. The program in Listing 3.6 forks a child process, which
terminates immediately and then goes to sleep for a minute, without ever cleaning up

the child process.

Listing 3.6 (zombie.c) Making a Zombie Process
#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main ()

{
pid_t child_pid;

/* Create a child process. */

child_pid = fork ();

if (child_pid > 0) {
/* This is the parent process. Sleep for a minute. */
sleep (60);

}

else {
/* This is the child process. Exit immediately. */
exit (0);

}

return 0;

Try compiling this file to an executable named make -zombie. Run it, and while it’s still
running, list the processes on the system by invoking the following command in
another window:

% ps -e -o pid,ppid,stat,cmd

3.4 Process Termination

This lists the process ID, parent process ID, process status, and process command
line. Observe that, in addition to the parent make-zombie process, there is another
make -zombie process listed. It’s the child process; note that its parent process ID is
the process ID of the main make-zombie process. The child process is marked as
<defunct>, and its status code is Z, for zombie.

What happens when the main make-zombie program ends when the parent process
exits, without ever calling wait? Does the zombie process stay around? No—try
running ps again, and note that both of the make-zombie processes are gone. When a
program exits, its children are inherited by a special process, the init program, which
always runs with process ID of 1 (it’s the first process started when Linux boots). The
init process automatically cleans up any zombie child processes that it inherits.

3.4.4 Cleaning Up Children Asynchronously

If you’re using a child process simply to exec another program, it’s fine to call wait
immediately in the parent process, which will block until the child process completes.
But often, you’ll want the parent process to continue running, as one or more children
execute synchronously. How can you be sure that you clean up child processes that
have completed so that you don’t leave zombie processes, which consume system
resources, lying around?

One approach would be for the parent process to call wait3 or wait4 periodically,
to clean up zombie children. Calling wait for this purpose doesn’t work well because,
if no children have terminated, the call will block until one does. However, wait3 and
wait4 take an additional flag parameter, to which you can pass the flag value WNOHANG.
With this flag, the function runs in nonblocking mode—it will clean up a terminated
child process if there is one, or simply return if there isn’t. The return value of the call
is the process ID of the terminated child in the former case, or zero in the latter case.

A more elegant solution is to notify the parent process when a child terminates.
There are several ways to do this using the methods discussed in Chapter 5,
“Interprocess Communication,” but fortunately Linux does this for you, using signals.
When a child process terminates, Linux sends the parent process the SIGCHLD signal.
The default disposition of this signal is to do nothing, which is why you might not
have noticed it before.

Thus, an easy way to clean up child processes is by handling SIGCHLD. Of course,
when cleaning up the child process, it’s important to store its termination status if this
information is needed, because once the process is cleaned up using wait, that infor-
mation is no longer available. Listing 3.7 is what it looks like for a program to use a
SIGCHLD handler to clean up its child processes.

59

60 Chapter 3 Processes

Listing 3.7 (sigchld.c) Cleaning Up Children by Handling SIGCHLD

#include <signal.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)
{
/* Clean up the child process. */
int status;
wait (&status);
/* Store its exit status in a global variable. */
child_exit_status = status;

}

int main ()

{
/* Handle SIGCHLD by calling clean_up_child_process. */
struct sigaction sigchld_action;
memset (&sigchld_action, 0, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);

/* Now do things, including forking a child process. */
[* o0 %]

return 0;

Note how the signal handler stores the child process’s exit status in a global variable,
from which the main program can access it. Because the variable is assigned in a signal
handler, its type is sig_atomic_t.

