
���������	
���
��������������		��� ������

UNIX Tutorial for Beginners

Introduction to the UNIX Operating System

What is UNIX?
Files and processes
The Directory Structure
Starting an UNIX terminal

Tutorial One

Listing files and directories
Making Directories
Changing to a different Directory
The directories . and ..
Pathnames
More about home directories and pathnames

Tutorial Two

Copying Files
Moving Files
Removing Files and directories
Displaying the contents of a file on the screen
Searching the contents of a file

Tutorial Three

Redirection
Redirecting the Output
Redirecting the Input
Pipes

Tutorial Four

Wildcards
Filename Conventions
Getting Help

Tutorial Five

File system security (access rights)
Changing access rights
Processes and Jobs
Listing suspended and background processes
Killing a process

Tutorial Six

Other Useful UNIX commands

��������	
������ ��	���

UNIX Tutorial One
1.1 Listing files and directories

ls (list)

When you first login, your current working directory is your home directory. Your home directory has the
same name as your user-name, for example, ee91ab, and it is where your personal files and subdirectories
are saved.

To find out what is in your home directory, type

% ls

The ls command lists the contents of your current working directory.

There may be no files visible in your home directory, in which case, the UNIX prompt will be returned.
Alternatively, there may already be some files inserted by the System Administrator when your account was
created.

ls does not, in fact, cause all the files in your home directory to be listed, but only those ones whose name

does not begin with a dot (.) Files beginning with a dot (.) are known as hidden files and usually contain
important program configuration information. They are hidden because you should not change them unless
you are very familiar with UNIX!!!

To list all files in your home directory including those whose names begin with a dot, type

% ls -a

As you can see, ls -a lists files that are normally hidden.

��������	
������ ��	���

ls is an example of a command which can take options: -a is an example of an option. The options change

the behaviour of the command. There are online manual pages that tell you which options a particular
command can take, and how each option modifies the behaviour of the command. (See later in this tutorial)

1.2 Making Directories

mkdir (make directory)

We will now make a subdirectory in your home directory to hold the files you will be creating and using in the
course of this tutorial. To make a subdirectory called unixstuff in your current working directory type

% mkdir unixstuff

To see the directory you have just created, type

% ls

1.3 Changing to a different directory

cd (change directory)

The command cd directory means change the current working directory to 'directory'. The current

working directory may be thought of as the directory you are in, i.e. your current position in the file-system
tree.

To change to the directory you have just made, type

% cd unixstuff

Type ls to see the contents (which should be empty)

Exercise 1a

Make another directory inside the unixstuff directory called backups

��������	
������ ��	���

1.4 The directories . and ..

Still in the unixstuff directory, type

% ls -a

As you can see, in the unixstuff directory (and in all other directories), there are two special directories
called (.) and (..)

The current directory (.)

In UNIX, (.) means the current directory, so typing

% cd .

NOTE: there is a space between cd and the dot

means stay where you are (the unixstuff directory).

This may not seem very useful at first, but using (.) as the name of the current directory will save a lot of
typing, as we shall see later in the tutorial.

The parent directory (..)

(..) means the parent of the current directory, so typing

% cd ..

will take you one directory up the hierarchy (back to your home directory). Try it now.

Note: typing cd with no argument always returns you to your home directory. This is very useful if you are

lost in the file system.

1.5 Pathnames

pwd (print working directory)

Pathnames enable you to work out where you are in relation to the whole file-system. For example, to find
out the absolute pathname of your home-directory, type cd to get back to your home-directory and then type

% pwd

The full pathname will look something like this -

/home/its/ug1/ee51vn

which means that ee51vn (your home directory) is in the sub-directory ug1 (the group directory),which in
turn is located in the its sub-directory, which is in the home sub-directory, which is in the top-level root
directory called " / " .

��������	
������ ��	���

Exercise 1b

Use the commands cd, ls and pwd to explore the file system.

(Remember, if you get lost, type cd by itself to return to your home-directory)

1.6 More about home directories and pathnames

Understanding pathnames

First type cd to get back to your home-directory, then type

% ls unixstuff

to list the conents of your unixstuff directory.

Now type

% ls backups

You will get a message like this -

backups: No such file or directory

The reason is, backups is not in your current working directory. To use a command on a file (or directory)
not in the current working directory (the directory you are currently in), you must either cd to the correct

directory, or specify its full pathname. To list the contents of your backups directory, you must type

% ls unixstuff/backups

��������	
������ ��	���

~ (your home directory)

Home directories can also be referred to by the tilde ~ character. It can be used to specify paths starting at
your home directory. So typing

% ls ~/unixstuff

will list the contents of your unixstuff directory, no matter where you currently are in the file system.

What do you think

% ls ~

would list?

What do you think

% ls ~/..

would list?

Summary

Command Meaning

ls list files and directories

ls -a list all files and directories

mkdir make a directory

cd directory change to named directory

cd change to home-directory

cd ~ change to home-directory

cd .. change to parent directory

pwd display the path of the current directory

��������	
�����	 ��	���

UNIX Tutorial Two
2.1 Copying Files

cp (copy)

cp file1 file2 is the command which makes a copy of file1 in the current working directory and calls it

file2

What we are going to do now, is to take a file stored in an open access area of the file system, and use the
cp command to copy it to your unixstuff directory.

First, cd to your unixstuff directory.

% cd ~/unixstuff

Then at the UNIX prompt, type,

% cp /vol/examples/tutorial/science.txt .

Note: Don't forget the dot . at the end. Remember, in UNIX, the dot means the current directory.

The above command means copy the file science.txt to the current directory, keeping the name the same.

(Note: The directory /vol/examples/tutorial/ is an area to which everyone in the school has read and
copy access. If you are from outside the University, you can grab a copy of the file here. Use 'File/Save
As..' from the menu bar to save it into your unixstuff directory.)

Exercise 2a

Create a backup of your science.txt file by copying it to a file called science.bak

2.2 Moving files

mv (move)

mv file1 file2 moves (or renames) file1 to file2

To move a file from one place to another, use the mv command. This has the effect of moving rather than
copying the file, so you end up with only one file rather than two.

It can also be used to rename a file, by moving the file to the same directory, but giving it a different name.

We are now going to move the file science.bak to your backup directory.

First, change directories to your unixstuff directory (can you remember how?). Then, inside the unixstuff
directory, type

% mv science.bak backups/.

Type ls and ls backups to see if it has worked.

��������	
�����	 ��	���

2.3 Removing files and directories

rm (remove), rmdir (remove directory)

To delete (remove) a file, use the rm command. As an example, we are going to create a copy of the

science.txt file then delete it.

Inside your unixstuff directory, type

% cp science.txt tempfile.txt
% ls
% rm tempfile.txt
% ls

You can use the rmdir command to remove a directory (make sure it is empty first). Try to remove the

backups directory. You will not be able to since UNIX will not let you remove a non-empty directory.

Exercise 2b

Create a directory called tempstuff using mkdir , then remove it using the rmdir command.

2.4 Displaying the contents of a file on the screen

clear (clear screen)

Before you start the next section, you may like to clear the terminal window of the previous commands so
the output of the following commands can be clearly understood.

At the prompt, type

% clear

This will clear all text and leave you with the % prompt at the top of the window.

cat (concatenate)

The command cat can be used to display the contents of a file on the screen. Type:

% cat science.txt

As you can see, the file is longer than than the size of the window, so it scrolls past making it unreadable.

less

The command less writes the contents of a file onto the screen a page at a time. Type

% less science.txt

��������	
�����	 ��	���

Press the [space-bar] if you want to see another page, and type [q] if you want to quit reading. As you can
see, less is used in preference to cat for long files.

head

The head command writes the first ten lines of a file to the screen.

First clear the screen then type

% head science.txt

Then type

% head -5 science.txt

What difference did the -5 do to the head command?

tail

The tail command writes the last ten lines of a file to the screen.

Clear the screen and type

% tail science.txt

Q. How can you view the last 15 lines of the file?

2.5 Searching the contents of a file

Simple searching using less

Using less, you can search though a text file for a keyword (pattern). For example, to search through

science.txt for the word 'science', type

% less science.txt

then, still in less, type a forward slash [/] followed by the word to search

/science

As you can see, less finds and highlights the keyword. Type [n] to search for the next occurrence of the

word.

��������	
�����	 ��	���

grep (don't ask why it is called grep)

grep is one of many standard UNIX utilities. It searches files for specified words or patterns. First clear the

screen, then type

% grep science science.txt

As you can see, grep has printed out each line containg the word science.

Or has it ????

Try typing

% grep Science science.txt

The grep command is case sensitive; it distinguishes between Science and science.

To ignore upper/lower case distinctions, use the -i option, i.e. type

% grep -i science science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol). For
example to search for spinning top, type

% grep -i 'spinning top' science.txt

Some of the other options of grep are:

-v display those lines that do NOT match
-n precede each matching line with the line number
-c print only the total count of matched lines

Try some of them and see the different results. Don't forget, you can use more than one option at a time.
For example, the number of lines without the words science or Science is

% grep -ivc science science.txt

wc (word count)

A handy little utility is the wc command, short for word count. To do a word count on science.txt, type

% wc -w science.txt

To find out how many lines the file has, type

% wc -l science.txt

��������	
�����	 ��	���

Summary

Command Meaning

cp file1 file2 copy file1 and call it file2

mv file1 file2 move or rename file1 to file2

rm file remove a file

rmdir directory remove a directory

cat file display a file

less file display a file a page at a time

head file display the first few lines of a file

tail file display the last few lines of a file

grep 'keyword' file search a file for keywords

wc file count number of lines/words/characters in file

��������	
�����
�� ��	���

UNIX Tutorial Three
3.1 Redirection

Most processes initiated by UNIX commands write to the standard output (that is, they write to the terminal
screen), and many take their input from the standard input (that is, they read it from the keyboard). There is
also the standard error, where processes write their error messages, by default, to the terminal screen.

We have already seen one use of the cat command to write the contents of a file to the screen.

Now type cat without specifing a file to read

% cat

Then type a few words on the keyboard and press the [Return] key.

Finally hold the [Ctrl] key down and press [d] (written as ^D for short) to end the input.

What has happened?

If you run the cat command without specifing a file to read, it reads the standard input (the keyboard), and

on receiving the 'end of file' (^D), copies it to the standard output (the screen).

In UNIX, we can redirect both the input and the output of commands.

3.2 Redirecting the Output

We use the > symbol to redirect the output of a command. For example, to create a file called list1
containing a list of fruit, type

% cat > list1

Then type in the names of some fruit. Press [Return] after each one.

pear
banana
apple
^D {this means press [Ctrl] and [d] to stop}

What happens is the cat command reads the standard input (the keyboard) and the > redirects the output,
which normally goes to the screen, into a file called list1

To read the contents of the file, type

% cat list1

Exercise 3a

Using the above method, create another file called list2 containing the following fruit: orange, plum, mango,
grapefruit. Read the contents of list2

��������	
�����
�� ��	���

3.2.1 Appending to a file

The form >> appends standard output to a file. So to add more items to the file list1, type

% cat >> list1

Then type in the names of more fruit

peach
grape
orange
^D (Control D to stop)

To read the contents of the file, type

% cat list1

You should now have two files. One contains six fruit, the other contains four fruit.

We will now use the cat command to join (concatenate) list1 and list2 into a new file called biglist. Type

% cat list1 list2 > biglist

What this is doing is reading the contents of list1 and list2 in turn, then outputing the text to the file biglist

To read the contents of the new file, type

% cat biglist

3.3 Redirecting the Input

We use the < symbol to redirect the input of a command.

The command sort alphabetically or numerically sorts a list. Type

% sort

Then type in the names of some animals. Press [Return] after each one.

dog
cat
bird
ape
^D (control d to stop)

The output will be

ape

��������	
�����
�� ��	���

bird
cat
dog

Using < you can redirect the input to come from a file rather than the keyboard. For example, to sort the list
of fruit, type

% sort < biglist

and the sorted list will be output to the screen.

To output the sorted list to a file, type,

% sort < biglist > slist

Use cat to read the contents of the file slist

3.4 Pipes

To see who is on the system with you, type

% who

One method to get a sorted list of names is to type,

% who > names.txt
% sort < names.txt

This is a bit slow and you have to remember to remove the temporary file called names when you have
finished. What you really want to do is connect the output of the who command directly to the input of the
sort command. This is exactly what pipes do. The symbol for a pipe is the vertical bar |

For example, typing

% who | sort

will give the same result as above, but quicker and cleaner.

To find out how many users are logged on, type

% who | wc -l

Exercise 3b

Using pipes, display all lines of list1 and list2 containing the letter 'p', and sort the result.

Answer available here

��������	
�����
�� ��	���

Summary

Command Meaning

command > file redirect standard output to a file

command >> file append standard output to a file

command < file redirect standard input from a file

command1 | command2 pipe the output of command1 to the input of command2

cat file1 file2 > file0 concatenate file1 and file2 to file0

sort sort data

who list users currently logged in

��������	
�����
�� ��	���

Answer 3.4
3.4 Using Pipes

Exercise 3b

Using pipes, display all lines of list1 and list2 containing the letter 'p', and sort the result.

Answer

% cat list1 list2 | grep p | sort

��������	
������� ��	���

UNIX Tutorial Five
5.1 File system security (access rights)

In your unixstuff directory, type

% ls -l (l for long listing!)

You will see that you now get lots of details about the contents of your directory, similar to the example
below.

Each file (and directory) has associated access rights, which may be found by typing ls -l. Also, ls -lg

gives additional information as to which group owns the file (beng95 in the following example):

-rwxrw-r-- 1 ee51ab beng95 2450 Sept29 11:52 file1

In the left-hand column is a 10 symbol string consisting of the symbols d, r, w, x, -, and, occasionally, s or S.
If d is present, it will be at the left hand end of the string, and indicates a directory: otherwise - will be the
starting symbol of the string.

The 9 remaining symbols indicate the permissions, or access rights, and are taken as three groups of 3.

The left group of 3 gives the file permissions for the user that owns the file (or directory) (ee51ab in the
above example);
the middle group gives the permissions for the group of people to whom the file (or directory) belongs
(eebeng95 in the above example);
the rightmost group gives the permissions for all others.

The symbols r, w, etc., have slightly different meanings depending on whether they refer to a simple file or
to a directory.

Access rights on files.

r (or -), indicates read permission (or otherwise), that is, the presence or absence of permission to read
and copy the file
w (or -), indicates write permission (or otherwise), that is, the permission (or otherwise) to change a file
x (or -), indicates execution permission (or otherwise), that is, the permission to execute a file, where
appropriate

��������	
������� ��	���

Access rights on directories.

r allows users to list files in the directory;
w means that users may delete files from the directory or move files into it;
x means the right to access files in the directory. This implies that you may read files in the directory
provided you have read permission on the individual files.

So, in order to read a file, you must have execute permission on the directory containing that file, and hence
on any directory containing that directory as a subdirectory, and so on, up the tree.

Some examples

-rwxrwxrwx a file that everyone can read, write and execute (and delete).

-rw-------

a file that only the owner can read and write - no-one else

can read or write and no-one has execution rights (e.g. your

mailbox file).

5.2 Changing access rights

chmod (changing a file mode)

Only the owner of a file can use chmod to change the permissions of a file. The options of chmod are as
follows

Symbol Meaning

u user

g group

o other

a all

r read

w write (and delete)

x execute (and access directory)

+ add permission

- take away permission

For example, to remove read write and execute permissions on the file biglist for the group and others, type

% chmod go-rwx biglist

This will leave the other permissions unaffected.

To give read and write permissions on the file biglist to all,

% chmod a+rw biglist

��������	
������� ��	���

Exercise 5a

Try changing access permissions on the file science.txt and on the directory backups

Use ls -l to check that the permissions have changed.

5.3 Processes and Jobs

A process is an executing program identified by a unique PID (process identifier). To see information about
your processes, with their associated PID and status, type

% ps

A process may be in the foreground, in the background, or be suspended. In general the shell does not
return the UNIX prompt until the current process has finished executing.

Some processes take a long time to run and hold up the terminal. Backgrounding a long process has the
effect that the UNIX prompt is returned immediately, and other tasks can be carried out while the original
process continues executing.

Running background processes

To background a process, type an & at the end of the command line. For example, the command sleep

waits a given number of seconds before continuing. Type

% sleep 10

This will wait 10 seconds before returning the command prompt %. Until the command prompt is returned,
you can do nothing except wait.

To run sleep in the background, type

% sleep 10 &

[1] 6259

The & runs the job in the background and returns the prompt straight away, allowing you do run other
programs while waiting for that one to finish.

The first line in the above example is typed in by the user; the next line, indicating job number and PID, is
returned by the machine. The user is be notified of a job number (numbered from 1) enclosed in square
brackets, together with a PID and is notified when a background process is finished. Backgrounding is
useful for jobs which will take a long time to complete.

Backgrounding a current foreground process

At the prompt, type

% sleep 1000

You can suspend the process running in the foreground by typing ^Z, i.e.hold down the [Ctrl] key and type
[z]. Then to put it in the background, type

��������	
������� ��	���

% bg

Note: do not background programs that require user interaction e.g. vi

5.4 Listing suspended and background processes

When a process is running, backgrounded or suspended, it will be entered onto a list along with a job
number. To examine this list, type

% jobs

An example of a job list could be

[1] Suspended sleep 1000
[2] Running netscape
[3] Running matlab

To restart (foreground) a suspended processes, type

% fg %jobnumber

For example, to restart sleep 1000, type

% fg %1

Typing fg with no job number foregrounds the last suspended process.

5.5 Killing a process

kill (terminate or signal a process)

It is sometimes necessary to kill a process (for example, when an executing program is in an infinite loop)

To kill a job running in the foreground, type ^C (control c). For example, run

% sleep 100
^C

To kill a suspended or background process, type

% kill %jobnumber

For example, run

% sleep 100 &
% jobs

If it is job number 4, type

��������	
������� ��	���

% kill %4

To check whether this has worked, examine the job list again to see if the process has been removed.

ps (process status)

Alternatively, processes can be killed by finding their process numbers (PIDs) and using kill PID_number

% sleep 1000 &
% ps

PID TT S TIME COMMAND
20077 pts/5 S 0:05 sleep 1000
21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit

To kill off the process sleep 1000, type

% kill 20077

and then type ps again to see if it has been removed from the list.

If a process refuses to be killed, uses the -9 option, i.e. type

% kill -9 20077

Note: It is not possible to kill off other users' processes !!!

Summary

Command Meaning

ls -lag list access rights for all files

chmod [options] file change access rights for named file

command & run command in background

^C kill the job running in the foreground

^Z suspend the job running in the foreground

bg background the suspended job

jobs list current jobs

fg %1 foreground job number 1

kill %1 kill job number 1

ps list current processes

��������	
������� ��	���

kill 26152 kill process number 26152

��������	
������ ��	���

UNIX Tutorial Six
Other useful UNIX commands

quota

All students are allocated a certain amount of disk space on the file system for their personal files, usually
about 100Mb. If you go over your quota, you are given 7 days to remove excess files.

To check your current quota and how much of it you have used, type

% quota -v

df

The df command reports on the space left on the file system. For example, to find out how much space is

left on the fileserver, type

% df .

du

The du command outputs the number of kilobyes used by each subdirectory. Useful if you have gone over

quota and you want to find out which directory has the most files. In your home-directory, type

% du -s *

The -s flag will display only a summary (total size) and the * means all files and directories.

gzip

This reduces the size of a file, thus freeing valuable disk space. For example, type

% ls -l science.txt

and note the size of the file using ls -l . Then to compress science.txt, type

% gzip science.txt

This will compress the file and place it in a file called science.txt.gz

To see the change in size, type ls -l again.

To expand the file, use the gunzip command.

% gunzip science.txt.gz

zcat

zcat will read gzipped files without needing to uncompress them first.

��������	
������ ��	���

% zcat science.txt.gz

If the text scrolls too fast for you, pipe the output though less .

% zcat science.txt.gz | less

file

file classifies the named files according to the type of data they contain, for example ascii (text), pictures,

compressed data, etc.. To report on all files in your home directory, type

% file *

diff

This command compares the contents of two files and displays the differences. Suppose you have a file
called file1 and you edit some part of it and save it as file2. To see the differences type

% diff file1 file2

Lines beginning with a < denotes file1, while lines beginning with a > denotes file2.

find

This searches through the directories for files and directories with a given name, date, size, or any other
attribute you care to specify. It is a simple command but with many options - you can read the manual by
typing man find.

To search for all fies with the extention .txt, starting at the current directory (.) and working through all
sub-directories, then printing the name of the file to the screen, type

% find . -name "*.txt" -print

To find files over 1Mb in size, and display the result as a long listing, type

% find . -size +1M -ls

history

The C shell keeps an ordered list of all the commands that you have entered. Each command is given a
number according to the order it was entered.

% history (show command history list)

If you are using the C shell, you can use the exclamation character (!) to recall commands easily.

% !! (recall last command)

% !-3 (recall third most recent command)

��������	
������ ��	���

% !5 (recall 5th command in list)

% !grep (recall last command starting with grep)

You can increase the size of the history buffer by typing

% set history=100

��������� ��	���

Site reference: http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

