Prof. William Spataro Parallel Algorithms and Distributed Systems Number of ECTS credits: 6 (of which 2 of laboratory activity)

- Objectives of the course

The course aims to provide students of the "Triennale" (Bachelor) Degree in Computer Science:

- Knowledge of the fundamentals and practical aspects of parallel computing;

- Knowledge of techniques and methods for the design and implementation of parallel algorithms;

- Thorough knowledge of the principles, structures and use of parallel processing systems and, in particular, of techniques for programming parallel computers using the shared-memory and message passing paradigms;

- Acquaintance of different fields of application of parallel computing and, in particular, of HPC (High Performance Computing).

Course Contents

Introduction to Parallel Computing

Aims, Concepts and Terminology Flynn's taxonomy

Parallel Architectures

Overview of parallel machines Shared Memory machines (Multiprocessors) Distributed Memory machines (Multicomputers) Multi-core architectures Cache Coherence Hybrid Architectures

Parallel Programming Models

Thread Model Shared Memory Model Distributed Memory Model Parallel Data Models Other Models

Design of Parallel Programs

Automatic and manual parallelization Partitioning Communication Synchronization Load Balancing Granularity Parallel I / O

Overview of OpenMP - The reference language for programming environments in shared memory / data parallel models

General Concepts Parallel loop Private and shared type variables Critical Sections Functional parallelism

MPI - The reference language for programming distributed memory environments

General Concepts Environment Management Routines Point-to-point communications: MPI_Recv and MPI_Send Non-blocking communications Collective Communications Derived data-types Communicators and Groups Virtual topologies

GPGPU programming - The new frontier of Parallel Computing CUDA C - The reference language for programming of graphics cards

General concepts, limits CUDA, CUDA C Thread and Memory Hierarchy Concepts of threads, blocks and grid kernels Optimization strategy: use of shared memory, coalescing

Performance Analysis

Parallel Overhead Speedup and Efficiency Superlinear speedup Effect of Granularity on Performance Scalability Amdahl's Law Iso-efficiency

Parallel Algorithms

Matrix calculation Numerical integration Searching and sorting algorithms Performance analysis of parallel algorithms

Laboratory

Parallel software development in OpenMP and MPI on parallel computers Development of GPGPU parallel software components in CUDA-C on NVIDIA graphics cards Performance measurements

Recommended reading, books

- Ananth Grama et al., Introduction to Parallel Computing, 2/E, Addison-Wesley.

- Peter Pacheco, Parallel Programming with MPI. Morgan Kaufmann, 1997

- G. Spezzano, D. Talia "Calcolo parallelo, automi cellulari e modelli per sistemi complessi", Franco Angeli, Milano, 1999.

- I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995, online version <u>http://www-unix.mcs.anl.gov/dbpp</u>

- David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors, Second Edition: A Hands-on Approach 2nd Edition

NVIDIA CUDA C Programming Guide. http://developer.download.nvidia.com/compute/cuda

NVIDIA CUDA C Best Practices Guide.

http://developer.download.nvidia.com/compute/cuda

- Online material (also available from the teacher's personal website)

Assessment methods

The final exam consists in a written test regarding all studied topics and development of a MPI/OpenMP/CUDA project chosen among proposed .