
1

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Winter School on High Performance and Grid Computing

Module 9.3 – Parallel Models for Simulation of
Acentric Complex Phenomena

Empedocles Research Group

Prof Salvatore Di Gregorio – Department of Mathematics - UNICAL
Prof Gino Mirocle Crisci – Department of Earth Sciences – UNICAL

Dr Giulio Iovine – CNR - IRPI
Dr Rocco Rongo– Department of Earth Sciences – UNICAL

Dr William Spataro – Department of Mathematics - UNICAL
Dr Donato D’Ambrosio – Department of Mathematics - UNICAL
Dr Maria Vittoria Avolio – Department of Mathematics - UNICAL

Dr Valeria Lupiano – CNR - IRPI

Prof Domenico Talia – DEIS - UNICAL

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia Cellular Automata

An empirical method for modelling macroscopic
complex

Cellular Automata Environments (CAMEL, CAMELot)
Load Balancing
Performance

Geological Applications
SCIARA: Etnean Crisis of 2001 e 2002
SCIDDICA: Sarno (Italy) - 1998
PYR: Mt. Pinatubo (The Philippines) 1991

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Everything should be made as simple as Everything should be made as simple as
possible, but not simpler !possible, but not simpler !

(Albert Einstein)(Albert Einstein)

Cellular Automata VS Differential EquationsCellular Automata VS Differential Equations

Cellular Automata is an Cellular Automata is an ““alternativealternative””, rather than , rather than
an an ““approximationapproximation””, to Differential Equations , to Differential Equations

((TommasoTommaso ToffoliToffoli))

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Complex Systems and Cellular AutomataComplex Systems and Cellular Automata

The main characteristics that are
associated with Complex Systems
regard the presence of an elevated of
interacting elements, interaction non-
linearity and appearance of emergent
behaviors, with no corresponding
microscopic analogous. Least but not
last, auto-organization capacities

Cellular Automata, together with Neural
Nets and Genetic Algorithms, represent
valid instruments for the description of
complex phenomena

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CellularCellular AutomataAutomata

Cellular Automata (CA) can be thought as abstract
dynamical systems which play a role in discrete
mathematics, such as that of partial differential
equations in continuous math

Studied and conceived by J. Von Neumann in the
1950s to study auto-reproducing phenomena

The Cellular Automata approach involves locality
(interactions between states) and uniformity (same
evolution for each cell)

Cellular Automata = Time and Space are discrete
(usually square or hexagonal tessellations in case of
2D CA)

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia Environmental: Lava flows, landslides,

pollution, bio-remediation, earthquakes,
forrest fires, soil erosion, etc

Bio-medicine: Immune system, cancer
cell growth

Industrial Applications: Coffee
percolation (ILLY), Tire mixture (Pirelli)

Fluid-dynamics, Traffic, ETC…

AC AC ApplicationsApplications

2

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CellularCellular AutomataAutomata and and ParallelParallel ComputingComputing

Traditional sequential computers do not offer
a practical support for the implementation of
CA, since the transition function should be
applied to each cell, one after the other.

The CA model represents a implicitly parallel
computational model which can be easily
implemented on parallel architectures due to
the inherent parallelism of the model

CA exploit data parallelism by partitioning
cells among processing elements (PE) of a
parallel computer.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CellularCellular AutomataAutomata and and ParallelParallel ComputingComputing

Data parallelism can be exploited on SIMD
machines, but implementations on MIMD
machines result more efficient

In fact, SIMD machines are suitable for CA
that have all active cells during simulation

However, in many natural phenomena, an
elevated number of cells are usually in a
passive or inert state, making the SIMD
approach not efficient (many PEs are not
effectively utilized!)

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CellularCellular AutomataAutomata and and ParallelParallel ComputingComputing

On MIMD machines, a CA can be implemented by
mapping on each PE a process which updates a
portion of cells.

Multiprocessor machines result appropriate and
efficient: each PE can individuate the stationary
region and don’t execute calculations for these cells

When dealing with shared memory, even if no
communications exists between borders of each
region of each PE, speedup results in being at most
10-12 (=BOTTLENECK!)

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

SolutionSolution

In order to avoid memory bus bottlenecks, a good
solution is devising a system formed by an adequate
number of cooperating PEs by means of Message
Passing (i.e. MPI)

This makes the system scalable, both if the number
of PEs are increased, or if the CA dimensions are
augmented (speed-up)

Data-parallelism, an intrinsic property of CA, can be
exploited by adopting a SPMD approach (Single
Program, Multiple Data), where N processes are
mapped on N PEs, which operates on a different set
of data

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CA programming environmentsCA programming environments

Many CA environments have been implemented on
sequential computers (PCs, Workstations)

Two approaches are individuated: Hardware and
Software

CAM (Cellular Automata Machine) (MIT, Boston,
1987) represents the most famous example of
dedicated hardware architecture for studying CA
(efficient, but few states …)

Software environments: P-CAM, PECANS, StarLogo,
CAPE, CAMEL, CAMELot

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CaratteristicsCaratteristics of Parallel CA Systemsof Parallel CA Systems

Main characteristics of a parallel software
environment should be:

High level Programming layer for the design of
computational models, independent of the underlying
parallel architecture (e.g. CARPET language)

Graphic User Interface (GUI) which permits a complete
visualzaion of the evolution of the phenomenon and the
diplay of numerical values connected with the simulation

Tuning and control instruments which permit steering
(global control) of the evolution of the phenomenon

Scalability to permit an efficient execution of the
phenomenon on parallel computers

3

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMEL CAMEL -- CAMELotCAMELot

Camel is a CA environment for parallel architectures
which exploit message passing

First version in 1991 on a Transputer Network
(Inmos Item-4000)

CAMELot is a portable (MPI) version of CAMEL,
developed under the COLOMBO Esprit project by ISI-
CNR, EPCC and ENEA

Parallelism is invisible to the user

The user has only to specify the transition function of
a single cell by means of a high level language, such
as C or CARPET)

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELotCAMELot ApplicationsApplications

CAMELot has been applied with success to
numerous scientific fields:

Modeling of macroscopic complex phenomena,
such as lava flows, landslides, soil erorion, et

Fish reproduciton

“Microscopic” Highway Traffic Modelling

Image recognition

Genetic Algoritms

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELotCAMELot -- ArchitectureArchitecture

Camelot exploits the CA approach by means of the
SPMD model (Single Program Multiple Data)

The run time system is composed of a set of
macrocell processes. Each macrocell implements a
partition of cells on a single processor of the parallel
computer (the user does not specify data addressing

All macrocell processes are executed in parallel in
order to update the state of cells that form the CA

The Graphical Interface permits the dynamic
visualization and on-line steering

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMEL CAMEL –– CAMELot CAMELot -- ArchitectureArchitecture

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Camelot Architecture

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

LoadLoad BalancingBalancing

In many phenomena (like lava flows, landslides, etc),
the area corresponding to the active cells is restricted
to one or few domains (active cells)

Thus, it is not efficient to compute the new state of
these cells, at least until they remain so

CAMEL adopts a compromise between a static and
dynamic load balancing (scatter-decomposition). The
partitioning of cells is static, while the number of cells
that are mapped on each partition is dynamic

4

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

LoadLoad BalancingBalancing (FoldingFolding -- StripwiseStripwise--scatterscatter)

Fold number =6 ; PE = 4 U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

LoadLoad BalancingBalancing ((FoldingFolding -- StripwiseStripwise--scatterscatter))

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

PerformancePerformance

CAMEL scalability is good

Several tests have been executed in order to
verify both speed-up measurements
(increasing the number of processors in order
to solve the problem in less time) and scale-
up measurements (increasing the number of
processors in order to solve bigger problems
in the same time)

For 32 PEs, speed-up is 28 U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Performance di CAMELPerformance di CAMEL - TransputersTransputers

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CRAY T3ECRAY T3E--900900

3222.5414.7712.4164

1613.6324.4120.4232

87.8242.5635.2916

44.0881.4667.788

22.02164.04136.314

11332.94280.312
OptimumOptimumSpeedupSpeedupTotal (sec)Total (sec)Sum (sec)Sum (sec)ProcessorsProcessors

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CRAY T3ECRAY T3E--900900

5

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot : Again!

CAMELot is an environment for the programming
and seamlessly parallel execution of Cellular
Automata.

The system supports CARPET, a purpose-built
language for CA programming. It offers a
programming environment and a Graphical User
Interface which enables the user to interact with the
system while running a simulation and to view
visualization of the simulated data.

Since its simulator is very flexible with regard to
cellular space sizes, cell structures, neighborhood
structures and cellular automata rules, CAMELot can
simulate almost all 1-, 2-D or 3-D cellular automata
models.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Starting CAMELot
Assuming the current working directory is the top directory of the
CAMELot binary distribution, CAMELot is invoked from a UNIX shell
using the command:

platform/camelot [X options] [filename]

Where
platform is the platform identifier (the supported platforms are sunos5,

linux, irix6 and tru64);
filename is a CARPET source file;
X options are the standard X application command line flags (-display,-

geometry,-iconic,-fn etc). These command line arguments are optional.

The CAMELot Development Window appears on the screen. It consists of
three sections:

A Menu Bar;
An Editor subwindow with a scroll bar in each

direction;
A three-Button bar.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Editing a program

A user may write a program using the editor
window. Alternatively, they may open a
previously saved program file using the Open
option of the File menu. After any
modifications the file must be saved using the
Save or Save As option of the File menu; if a
filename has been provided, this is done
automatically when pressing the Compile
button.
Program editing is facilitated with the use of
the Cut, Copy and Paste Options of the Edit
menu. Shortcuts are available for all these
functions.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Main Window - Editor

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Program Compilation
When the program (*.cpt) is ready, the user may
compile it by clicking the Compile button. A
successful compilation is followed by a pop-up
window dismissible by clicking its Dismiss button. An
erroneous compilation causes a beep and a pop-up
window provides information about the error.
This operation generates a standard *.c file that will
be linked with other libraries (MPI, etc)

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Building a Program
The Build operation generates a Unix (Linux!) executable file for CA
execution. In order to build a file the user must first set the
configuration parameters by using the Configure menu. These define:

1. The Dimensions of the CA Engine;
2. The number of Processes to handle the task;
3. The number of Folds into which the task is divided.

The user can then build the executable by pressing the Build button.
The output of the C compiler is shown to the user in a pop-up
window.

6

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Running a Program

The Configure menu of the Development Window
includes a menu by which the user can initialise the
collection of statistics for the basic functions of the
CA Engine. This should be enabled before clicking the
Run button. After successful compilation and building
the program, the user can invoke the executable by
clicking the Run button. This pops up the Simulation
Window which consists of three parts, a Menu bar, a
Display part and a Button bar.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Running a Program

The State menu contains an Initialise and a Save Option. The user
may initialise a substate or the whole state of a CA using an
existing file, or save the current status of the CA. The display part
of the window contains information about the configuration of the
CA and updates the current step when the CA is running.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Running a Program
The Go and Loop buttons initialise the CA execution, the former for a
number of steps defined from the Setup menu, the latter indefinitely.
The Pause button temporarily suspends CA execution and allows
visualisation window examination, state saving or editing etc. The user
may continue the CA execution by clicking on the Resume button or
restart the execution by clicking Go or Loop. The Visualise button
allows the visualisation of a substate in various formats. The statistics
for the functions of the system are output periodically during the run or
after stopping the CA Engine execution, according to the user’s
request.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot Functionality Overview
The CAMELot environment supports 3 different types of Windows.
We will examine them in order of appearance when using the
environment.
The Development Window pops up when running CAMELot and,
when it is closed, CAMELot exits

The Open and Save As options pop up a window which allows the user
to navigate through the filesystem and select the desired filename. For
a file to be visible by Open, its name must have the extension .cpt. The
Save option is only available if a filename has been specified for a file
being edited. The Exit button exits CAMELot; the Delete button usually
available on X Window titlebars is disabled for this window.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot Functionality Overview
The characteristics of the program which are
set under the Configure menu of the
Development Window are automatically
saved in a file named progname.cnf,
progname being the full pathname of the
CARPET file, every time the users saves the
CARPET file.
They are automatically retrieved when the
CARPET file is Opened. In addition to this
automatic facility, the Save and Load
Configuration options allow the user to
explicitly save and retrieve the configuration
of the model

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot Functionality Overview
Menu EDIT

Cut, Copy, Paste, Find, Find Next, Replace

7

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot Functionality Overview
The Configure menu is made available after a successful
compilation. It allows the user to modify the following
parameters:

1. The Dimensions of the CA (x-Length, y-Height, z-Width);
2. The number of Processes to handle the task;
3. The number of Folds to which the CA is divided in the Length

axis.
4. The C compiler pathname and flags;
5. The MPI run command;
6. The Timing output.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CAMELot Functionality Overview
It is worth noting that:

1. For best performance the Length of the CA must be
an exact multiple of the product of the number of
Processes with the number of Folds;

2. A 1-D CA has only the x axis available and a 2-D CA
has only the x and y axes available.

Controlling XDR Output
Starting from release 1.2 of CAMELot, XDR is used
for the file I/O, this allows CAMELot data files to be
portable between different machine architectures.
The user can control the use of XDR through the use
of the C compiler command line option of the
Configure menu

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

The Editor of the Development Window

The user may Open a file and use the
Editor to view and modify it.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

The Development Window
The available buttons are:

Compile
Build
Run

(Compile) This button compiles the current program
in the Editor. This compilation checks for CARPET
syntactic errors and generates the C source and
header files for the specified CA model. The compiler
handles both C (/* */) and C++ (//) style comments.
A failed compilation is accompanied by a beep; a
window is popped up containing the error messages
and the cursor in the Editor is positioned at the first
line reported to contain an error. If there is a beep
but no error message is displayed then the automatic
Save has failed.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

The Development Window

(Build) This button compiles and links the CA
Engine code with the generated C source and
header files for the CA. It invokes the C
compiler specified in the Configure menu and
redirects its output to the pop-up window
generated.
(Run) This button spawns the CA Engine
processes specified in the Configuration menu
using the MPI run command as it appears in
the respective option of the same menu. It
also spawns the Simulation Window discussed
next and makes the Build and Run buttons
unavailable.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Simulation Window
This allows the whole state or specific substates to be initialised or
saved. The Close option closes the Simulation Window as well as all
the Visualisation Windows and terminates the execution of the CA
Engine.

A Substate can be saved in a binary file using the State-Save-
Substate sequence of options. In order for the file to be
subsequently detected as a substate file, it must be saved with the
extension .cmt. Saving the Configuration involves saving status-
specific data in a file with the extension .cpj, as well as all the
substates in files with filenames constructed as follows: if the
Configuration filename is cfn.cpj the substates are saved in
filenames named cfn000.cmt, cfn001.cmt, etc.

8

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Configuration File *.cpj
The data contained in a configuration file are:

1. The number of Dimensions;
2. The per-dimension Sizes;
3. The current Generation of the CA Engine;
4. The number of States;
5. The number of Folds;
6. The number of Global Parameters;
7. The values of the Global Parameters.

Information stored in configuration or substate files
can be loaded into the CA Engine using the State-
Initialise options.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Setup Menu
The Setup Menu allows the following to be adjusted:

1. Steps to run the Engine;
2. Storage interval;
3. Substate editing (one cell);
4. Parameter editing;
5. Active Fold setting;
6. Manual setting of the per-substate minimum and maximum

values for colour mapping.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

State and Parameter Editing
State Setting: Allows the
user to view and set the
values of the substates of
one cell manually. The
possible substate names are
made available through a
menu.
Parameter Setting: Allows
the adjustment of a global
parameter. Parameters can
be adjusted using the names
they have in the program.
The possible names are
made available through a
menu similar to the one
shown in the figure

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Color Range settings
Manual setting of the per-substate minimum and maximum
values for colour mapping:

This option allows the user to override the automatic per-substate
minimum and maximum calculation executed as part of the
colour mapping strategy. Specifying the minimum and maximum
enables visualising parts of the data with greater detail. This
does not affect the evolution of the model, although it speeds
up the visualisation process. The system reverts to the
automatic mechanism if the users clicks on the Auto button of
the menu.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Display Screen
Displays the current values of the following:
The Dimensions;
The Current Step of the CA Engine;
The Periodic Storage Interval;
The number of Folds. N.B.: “Folds: 1” indicates that no
partitioning into multiple folds was done at compile time; i.e..
the CA is considered to consist of one single fold.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Button Bar
Go: Starts the CA Engine until the generation counter reaches

the number of iterations specified in the corresponding
Setup menu option.

Loop: Same as Go except that it starts an infinite (INT_MAX
iterations) CA evolution.

Pause: Temporarily suspends CA Engine execution. This can be
restarted with any of three buttons.
1. Go will restart the Engine until it reaches the specified

number of iterations;
2. Loop will restart the Engine for infinite iterations;
3. Resume will continue the operation of the Engine from

the step where it stopped. It will Loop if Loop was
selected before Pause was pressed, or continue until
the specified (possibly revised) finishing point is
reached otherwise.

Visualise: Allows the initialisation of a Visualisation window. The
user is prompted to set the visualisation period and select
the substate to be visualised.

9

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Visualization Modes
The possible types of visualisation depend on the number of
dimensions of the model:

1-D Models: The visualisation is drawn in horizontal lines from
left to right. The vertical dimension of the window corresponds
to time. The user can therefore see how the model changes
with time. When the vertical dimension of the screen is
exhausted, the visualisation restarts from the first line
overwriting the first visualisation.

2-D Models: They are represented in an orthogonal manner, x
running horizontally and y running vertically, the origin being
the bottom left corner of the window.

3-D Models: x-y, x-z or y-z planes of a 3-D model can be
displayed either as orthographic (as above) or isometric
projections. The coordinate of the plane (i.e.. z value for an x-y
plane, y value for a x-z plane etc) is specified by the user via a
dialog box with scale widgets.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

The CARPET programming language

CARPET is a programming language for the
definition of cellular automata-based models and
their transition functions, designed as an extension
to ANSI C. A CARPET program consists of the
following sections: a global declaration section,
known as the cadef (CA DEFinition) section; a
transition function; and an optional steering
function.
The user has only to specify the transition function
of one generic cell

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Steering
The steering function is an optional feature of a
CARPET program by which the user can affect the
flow of the program as a result of global reductions
on regions of the model

The steering function is defined in a separate section
of the CARPET program, similarly to the update
function. The main difference is that the update
function is applied separately in each cell, whereas
the steering function is global for the model. Any
code inside the steering statement is copied verbatim
to the generated file, with the exception of the
region_<op>() statements which are translated to

a global reduction function. U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Modifying the program flow

The user can modify the flow of the program inside the
steering section in either of the following two ways:

1. call the function cpt_set_param (float *old_p, float new_p),
which sets the global parameter pointed by old_p to the value
of new_p;

2. call the function cpt_abort(), which terminates the execution of
the program without exiting the CA Engine.

Inside the steering code, the user has access only to the
following CARPET defined variables:

1. DimX, DimY, DimZ;
2. step;
3. global parameter values.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Region definition

Syntax
region <region-name> (<min_x>:<max_x>,<min_y>:<max_y>,

<min_z>:<max_z>);

Remarks

The user specifies a region as part of the cadef block of
the program, using a declaration of the above
form. This is used to allow global reduction
operations within the steering block of the CARPET
program.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Global reduction
Syntax

region_<op> (<region-name>, <state>);

Remarks
The region_<op>() function is available inside the steering

function. It returns a value of the same type as its state
argument. It applies the reduction operation op to state state
all the cells in region region-name. The supported operations
are as follows:

1.max
2.min
3.sum
4.prod
5.land (logical and)
6.band (binary and)
7.lor (logical or)
8.bor (binary or)
9.lxor (logical exclusive or)
10.bxor (binary exclusive or)

10

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Steering
Example
cadef {

dimension 3;
region Inside (start+2:end-2,:,:);
...
state (float val);
parameter (pi 3.141);
}

...
steering {

float min = region_min (Inside, val);
if (min < 4.0) {

cpt_set_param (&pi, 3.14159);
} else if (min > 100.0) {

cpt_save (“aborted”);
cpt_abort ();
}

} // steering U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

General Layout
cadef
{

declarations
}
[transition function local variable
declarations and subroutine prototypes]
{

transition function code
}
[transition function subroutines]

[
steering
{

steering function code
}
]

where items in […] brackets are optional

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Transition Function
The transition function (and its subroutine functions,
if any) may contain the following CARPET
statements, in addition to C code :

cell_substate
DimX, DimY, DimZ
GetX, GetY, GetZ
NFolds
NProcs
random()
randomise()
srandom()
step
update()
parameter references

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CA Definition - Example
cadef
{

declaration;
declaration;

...
declaration;

}

where declaration can be:
deterministic // Deterministic CA!

dimension // AC Dimension

neighbour // neighborhood

parameter // parameter list

radius // neighborhood radius

region // …steering

state // states (char, int, float,
// array…)

Threshold // …steering

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

CA Definition - Example

cadef
{

dimension 3;
radius 1;
region Inside (start+1:end-2, :,:);
state (float val; int val2);
neighbour N[6] ([-1,0,0]left,[1,0,0]right,
[0,-1,0]down,[0,1,0]up,[0,0,-1]in, [0,0,1]out);
parameter (pi 3.14159);
deterministic;
threshold (cell_val == 3);

}

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Transition Function

cell_substate instruction

Es:

cadef

{

state (float temp);

}

float val;

val = cell_temp+3;

11

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Transition Function

update(cell_substate, value)

This is the only way to set the value of a cell
substate by means of the program. This is
done in order to ensure that the state of all
cells is set in lock step in the next generation
after the update has been issued

Es:

val=10;
update(cell_life, val);

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Conway’s Game of Life (1970)
The Rules

The Game of Life was invented by John Conway. The
game is played on a field of cells, each of which has
eight neighbors (adjacent cells). A cell is either
occupied (by an organism) or not. The rules for
deriving a generation from the previous one are
these:
Death: If an occupied cell has 0, 1, 4, 5, 6, 7, or 8
occupied neighbors, the organism dies (0, 1: of
loneliness; 4 thru 8: of overcrowding).
Survival: If an occupied cell has two or three
neighbors, the organism survives to the next
generation.
Birth: If an unoccupied cell has three occupied

neighbors, it becomes occupied.

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Game of Life – CA Definition
/* Conway's Game of Life implementation

*

*

*/

#define alive 1

#define dead 0

cadef

{

dimension 2;

radius 1;

state (int life);

neighbor Moore[] (N[0,-1], NW[-1,-1], W[-1, 0],

SW[-1,1],S[0, 1], SE[1, 1], E[1, 0], NE[1, -1]);

}

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Game of Life – Transition Function

int i;
int sum;
{
sum = 0;
for(i=0 ; i<8; i++)

sum = Moore[i]_life + sum;
if (sum == 3 || (sum == 2 && cell_life == 1))

update (cell_life, alive);
else

update (cell_life, dead);
}

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Initial Configurations

Once that the program is compiled, an
initial configuration can be executed in
the following manners:

1. Explicit setting pf parameters and
substates

2. States loaded from previously
generated binary files

3. Load an initial configuration
(parameter values and substates),
generated by a typical C program

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Example of Configurator generator for Conway's Game of Life

The program has to generrate two types of
files, a *.cpj and so many *.cmt for each CA
state (Es. Life (1 state!!!), thus a file
life.cpj and a file life.cmt)
life.cpj has to contain 7+1 int type
data in the following order:

1. AC Dimensions
2. Dim x
3. Dim y
4. Dim z
5. AC Generation (step)
6. Number of states
7. Number of folds (1)
8. (Number of global parameters + parameters list)

12

U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

life1.cpj

…

#define dimx 100

#define dimy 100

#define dimz 1

…

FILE *fid;

dimensions=2;

generation=0;

n_sottostati=1;

n_fold=1;

n_parametri=0;

…

fid=fopen(“life1.cpj”,"wb");

fwrite(&dimensions,sizeof(int),1,fid);

fwrite(&d_dimx,sizeof(int),1,fid);

fwrite(&d_dimy,sizeof(int),1,fid);

fwrite(&d_dimz,sizeof(int),1,fid);

fwrite(&generation,sizeof(int),1,fid);

fwrite(&n_sottostati,sizeof(int),1,fid);

fwrite(&n_fold,sizeof(int),1,fid);

fwrite(&n_parametri,sizeof(int),1,fid);

fclose(fid); U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

life1.cmt

…

int life[dimx][dimy];

…

FILE *fid;

…

for(i=0;i<dimx;i++)

for(j=0;j<dimy;j++)

life[i][j]=rand()%2 // inizializzazione random

…

fid=fopen(“life1.cmt”,"wb");

for(j=0;j<dimy;j++){

for(i=0;i<dimx;i++)

fwrite(&life[i][j],sizeof(int),1,fid); //stato di tipo int

}

fclose(fid);

