
Modelli Computazionali per Sistemi Complessi
2003/2004

University of Calabria

Genetic Algorithms

Dr. Donato D’Ambrosio
Dr. William Spataro

Prof. Salvatore Di Gregorio

Search Algorithms

• Search Algorithms can be subdivided in two
main categories:
– Exact (e.g. algorithms in Numerical Analysis)
– Heuristic (algorithms based on random search

criteria)
• A search problem is called “difficult” (e.g. the

TSP - Traveller Salesman Problem) if does not
exist an algorithm that solve it or, if such an
algorithm exists, it doesn’t solve the problem in
polynomial time

Heuristic Search Algorithms
• They start from a given (admissible) solution or

from a set of such solutions
• In order to improve results, iteratively modifying

current solutions by means of specific (random
based) criteria

What is and how does work a
genetic algorithm

• Genetic Algorithms (GAs) were proposed by
John Holland (University of Michigan) between
the end of the 60s and the beginning of the 70s

• GAs (Holland, 1975, Goldberg, 1989) are search
algorithms inspired from the mechanisms of the
Darwinian Natural Selection and from Genetics

• GAs simulate the evolution of a population of
individuals, representing candidate solutions to a
specific search problem, by favoring the
surviving and the reproduction of the best

The original Holland’s model

• The model proposed by Holland operates over a
popolation P of n bit-strings (called individuals or
genotypes) of pre-fixed length l

Binary encoding
• Note that all problems can be represented, more

or less naturally, using bit strings
• For example real variables, allowed to vary in a

prefixed range, can be easily represented by bit
strings of prefixed length

Fitness function, search space and
fitness landscape

• The fitness function evaluates the goodness of the
individuals gi of the popolation P in solving the given
search problem:

f : P → (- ∞, +∞); f(gi) = fi
• The set constituted by the binary strings of length l has 2l

elements; this set represents the GA search space, i.e.
the space that the GA must explore in order to solve (or
at least approximate) the search problem (e.g. to find the
maximum of a function)

• The graphical representation of the fitness values versus
the points of the search space is called fitness landscape

Example of fitness landscape for a
binary GA

• The number of binary strings having length 2 is 2l = 22 = 4
• Accordingly, the GA search space is:

S = {(0,0), (0,1), (1,0), (1,1)}
• The fitness values versus the points in S define the GA

fitness landscape

Operators
• Once the fitness function has determined the

goodness of each individual, a new population of
individuals (or genotypes) is created by applying
many operators inspired from Natural Selection
and Genetics

• The operators proposed by Holland are:
– Selection (inspired to Natural Selection)
– Crossover (inspired to Genetics)
– Mutation (inspired to Genetics)

• Crossover and Mutation are called genetic
operators

The selection Operator

• The Darwinian Natural Selection asserts that the
stronger individuals have higher probability to
survive inside their living environment, thus
higher probability to reproduce their selves

• In the Holland GA context, stronger individuals
correspond to those having higher fitness, as
they better solve the given search problem; as a
consequence, they must be privileged during the
selection of the individuals that will undergo
reproduction to form new individuals

The proportional selection

• Holland suggested a selection method
proportional to the individuals’ fitness

• let fi the fitness of the genotype gi, then the
probability that gi is selected for the
reproduction is:

ps,i = fi / Σfj

• Such probabilities are used to construct a
kind of probability’s roulette

Example of probability’s roulette

• The individuals A1, A2, A3 e A4, with probability of
selection 0.12, 0.18, 0.3 e 0.4 respectively, cover a
roulette portion of width equal to the their probability of
selection. In the example the selection operator
generates a random number c = 0.78 and the individual
A4 is selected

Mating pool
• Each time that an individual is selected, a

perfect copy is created and inserted in the so-
called mating pool

• Once that the mating pool is filled with exactly n
copies of individuals of the GA population
(where n is the population size), a new set of n
offspring are generated by applying the genetic
operators (i.e. crossover and mutation)

• A selection operator that replaces all the
population with new individuals, as the one
proposed by Holland, is called generational

Crossover
• Two individuals are randomly chosen from the mating

pool (i.e. the parents); moreover a cutting point (i.e. the
crossover point) is randomly defined among one internal
string position

• The genotypes’ pieces so obtained are swapped, thus
generating two offspring

• The crossover operator is applied, accordingly to a
prefixed probability pc, n/2 times in order to obtain n
offspring; if the crossover is not applied, the two offspring
coincide with the two parents

Mutation
• Once two offspring have been generated

through crossover, accordingly to a prefixed and
usually small probability pm, the bit values are
changed from 0 to 1 or viceversa

• As the crossover represents a metaphor of the
sexual reproduction, the mutation operator
models the genetic phenomenon of the rare
variation of the genotypes’ elements during the
reproduction

GA iterative schema
AG {

t=0
Initialize the population P(t) at random
Evaluate the fitness of the population P(t)
While (!stopping_criterion) {

t=t+1
Create P(t) by applying selection, crossover and mutation
Evaluate the fitness of the population P(t)

}
}

Example (from Goldberg, 1989)
• Search (easy!) problem: find the maximum of the

function y=x2 in the range [0,31]
• GA approach:

– Genotypes’ representation: binary strings (e.g.
00000↔0; 01101↔13; 11111↔31)

– Population size: 4
– Crossover and no mutation (just an example!)
– Roulette wheel selection (i.e. the proportional one)
– Random initialization

• One generational cycle with the hand shown

Example (from Goldberg, 1989)

Example (from Goldberg, 1989)

Crossover OR mutation?

• Decade long debate: which one is better /
necessary?

• Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– mutation-only is possible, crossover-only

would not work

Why GAs work
• Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem
• Exploitation: Optimizing within a promising area, i.e.

using information
• There is co-operation AND competition between them
• Crossover is explorative, it makes a big jump to an area

somewhere “in between” two (parent) areas
• Mutation is exploitative, it creates random small

diversions, thereby staying near (i.e., in the area of) the
parent

Theoretical foundation of GAs
• Implicit Parallelism (Holland, 1975): while the

GA operates over a population of n genotypes,
it explores a number between 2l and n2l sub-
regions of the search space, being l the
genotype’s length

• Example: the individual 101 can be considered
a representative genotype of the following sub-
regions of the search space:

101; *01; 1*1; 10*; **1; 1**; *0*; ***
where the symbol * stands for 0 or 1

Theoretical foundation of GAs

• Fundamental Theorem (Holland, 1975): after a
first phase in which the GA explores almost in
a random way the search space (sampling),
subsequently it concentrates the search in the
most promising region, i.e. in the region
characterized by individuals with higher fitness

• For a demonstration of the theorem see
Goldberg (1989)

Other GA models (Encoding)

• Binary encoding:
– Classic Holland binary encoding
– Grey code (see Mitchell 1996)

Other GA models (Encoding)
• Characters, integer and real values
• Tree encoding (Genetic Programming; see

Koza, 1992). The following example shows the
tree representation of the algorithm that
calculates the function √A3

Other GA models (Replacement)

• Generational replacement: all
the population is replaced
with new offspring. Note that
the best individual is not
preserved over the GA
iterations

• Steady state replacement:
only n’<n individuals is
replaced; if the remaining not
replaced n-n’ individuals are
the best of the old population
the GA is called elitistic

Other GA models (Selection)

• Proportional Selection or Roulette Wheel:
individuals are selected proportionally to
their fitness

• Boltzmann, Rank-based and Tournament
selection: they guarantee a better
sampling of the search space during the
first steps of the GA (see Mitchell, 1996)

Other GA models (Selection)

• Pick k individuals randomly, with or without
replacement, and select the best of these
k comparing their fitness values with
greater probability to select the best.

Other GA models (Crossover)

Other GA models (Crossover)

Other GA models (Mutation)
• For character, integer and real encoding,

mutation works similarly to the schema of the
classic Holland model.

• For Genetic Programming a piece of the tree is
replaced with a new randomly generate one

Example
• Find the maximum of the function y=x2 in the

range [0,216-1]

1. Chose the size (n) of the population P
2. Chose the genotype’s length (l)
3. Chose the selection and replacement schema
4. Define a fitness function (f)
5. Chose crossover type and fix the probability pc
6. Chose mutation type and fix the probability pm
7. Write a program that implements the GA or (better!)

use a free open source GA library

PGAPack
• PGAPack is an open source GA library freely

available at the url http://www-
fp.mcs.anl.gov/CCST/research/reports_pre199
8/comp_bio/stalk/pgapack.html

– It Implements the Holland GA model and many
other models successively proposed

– It runs over many operating systems as different
UNIX versions and GNU-Linux

– It also Implements a parallel GA model: the Master-
Slave GA, thus exploiting (almost transparently for
the end user) more CPUs at the same time

http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html

The Master-Slave GA
Iterative schema of the MASTER-SLAVE GA

Master-Slave GA
{

[MASTER]
t=0
Initialize the population P(t)
send n’/S individuals to each slave

[SLAVE]
receive n’/S individuals
evaluate n’/S individuals
send the n’/S computed fitness values to the MASTER

while (NOT(stopping_criterion))
{

[MASTER]
receive n’ computed fitness values from the SLAVEs
t=t+1
create P(t) by applying Selection, Crossover and Mutation
send n’/S individuals to each slave

[SLAVE]
receive n’/S individuals
evaluate n’/S individuals
send the n’/S computed fitness values to the MASTER

}
}

• Many Parallel GAs
(PGAs) have been
proposed in literature:
Master-Slave GA,
Multiple Demes GA, etc.
(see Cantù-Paz, 2000)

• The simplest way to
parallelize a GA consists
in distributing the
computational load on P
processors.

• A processor (Master)
executes the GA steps,
while S=P-1 processors
(Slaves) execute the
evaluation of n’/S
individuals of the
population (where n’<n).

The Beowulf cluster at Department
of Mathematics

• A Beowulf Cluster is a low-cost
Parallel Machine built with
common PC and other hardware
components

• The Beowulf Cluster at
Department of Mathematics is
composed by 16 1.4 GHz Pentium
IV nodes, 512 MB of Ram per
node, Red Hat Linux 7.2 OS, gcc
v2.96

• Nodes are connected by a normal
Ethernet LAN with a 100 Mbs
switch

• Inter-nodes communications are
committed through message
exchanges by means of MPI
(Message Passing Interface)
(Pacheco, 1999; Gropp, 2001)

Performance (execution time)
• Performance have been measured by considering a generational GA,

executing 100 generations, n’=30, 60, 120 e 240 individuals, and ft =0.001,
0.01, 0.1 and 1 seconds (fitness function execution time)

1 2 5 10 15
30

60
120

240
0

50

100

150

200

250

exec time

slave procs

pop size

Tempi d'esecuzione (ft=0.01 secs)

1 2 5 10 15
30

60
120

240

0

5

10

15

20

25

30

exec time

slave procs

pop size

Tempi d'esecuzione (ft=0.001 secs)

1 2 5 10 15

30

120
0

5000

10000

15000

20000

25000

exec time

slave procs

pop size

Tempi d'esecuzione (ft=1 secs)

1 2 5 10 15
30

120
0

500

1000

1500

2000

2500

exec time

slave procs

pop size

Tempi d'esecuzione (ft=0.1 secs)

Performance (speed-up)
• The same experiments can be seen in terms of speed-up, defined as:

speed-up = (sequential execution time) / (parallel execution time)

Speed Up (ft=0.001 secs)

0

2

4

6

8

10

12

14

16

0 5 10 15

slave procs

sp
ee

d
up

ideal

30

60

120

240

Speed Up (ft=0.01 secs)

0

2

4

6
8

10

12

14

16

0 5 10 15

slave procs

sp
ee

d
up

ideal

30

60

120

240

Speed Up (ft=0.1 secs)

0

2

4

6

8

10

12

14

16

0 5 10 15

slave procs

sp
ee

d
up

ideal

30

60

120

240

Speed Up (ft=1 secs)

0

2

4

6

8

10

12

14

16

0 5 10 15

slave procs

sp
ee

d
up

ideal

30

60

120

240

Sequential Implementation (1/2)
#include <pgapack.h>
#define INDLEN 16
double EvaluationFunction(PGAContext *, int, int);

int main(int argc, char **argv) {
PGAContext *ctx;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, INDLEN,
PGA_MAXIMIZE);

PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, EvaluationFunction);
PGADestroy(ctx);

return(0);
}

Sequential Implementation (2/2)

/***
* user defined evaluation function *
* ctx - contex variable *
* p - chromosome index in population *
* pop - which population to refer to *
***/

double EvaluationFunction(PGAContext *ctx, int p, int pop)
{

int int_val, stringlen;

stringlen = PGAGetStringLength(ctx);
int_val = PGAGetIntegerFromBinary(ctx, p, pop, 0, stringlen-1);

return((double) int_val*int_val);
}

Makefile
CC = cc
CCLINKER = cc
CCFLAGS = -I/usr/local/pga/include -I/usr/local/mpich/include/ -Dlinux -

DWL=32 -DFORTRANUNDERSCORE -DOPTIMIZE
LDFLAGS = -s -L/usr/local/pga/lib/linux -lpgaO

/usr/local/mpich/lib/libmpich.a

default: sequential_pga

sequential_pga: sequential_pga.o
$(CCLINKER) -o sequential_pga sequential_pga.o \
$(CCFLAGS) \
$(LDFLAGS)

sequential_pga.o: sequential_pga.c
$(CC) -c sequential_pga.c \
$(CCFLAGS)

clean:
@$(RM) sequential_pga *.o

Sequential Implementation
(Holland Model)

#include <pgapack.h>

#define INDLEN 16
#define POPSIZE 20
double EvaluationFunction(PGAContext *, int, int);

int main(int argc, char **argv) {
...
PGASetPopSize(ctx, POPSIZE);

PGASetSelectType(ctx, PGA_SELECT_PROPORTIONAL);
PGASetNumReplaceValue(ctx, POPSIZE);
PGASetCrossoverType(ctx, PGA_CROSSOVER_ONEPT);
PGASetCrossoverProb(ctx, 1.0);
PGASetMutationType(ctx, PGA_MUTATION_CONSTANT);
PGASetMutationProb(ctx, 1/INDLEN);

PGASetMaxGAIterValue(ctx, 100);
...

}

Explicit usage

int main(int argc, char **argv) {
...
...
//PGARun(ctx, EvaluationFunction);

PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, 0);
PGAFitness(ctx, PGA_OLDPOP);
while(!PGADone(ctx, 0))
{

PGASelect (ctx, PGA_OLDPOP);
PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);
PGAEvaluate (ctx, PGA_NEWPOP, EvaluationFunction, 0);
PGAFitness (ctx, PGA_NEWPOP);
PGAUpdateGeneration (ctx, 0);
PGAPrintReport (ctx, stdout, PGA_OLDPOP);

}
PGADestroy(ctx);
return(0);

}

Parallel implementation
int main(int argc, char **argv) {

PGAContext *ctx;
int myid, indlen;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

printf("String length = ");
scanf("%d", &indlen);

}
MPI_Bcast(&indlen, 1, MPI_INT, 0, MPI_COMM_WORLD);
ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, indlen,

PGA_MAXIMIZE);
PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, EvaluationFunction);
PGADestroy(ctx);
MPI_Finalize();
return(0);

}

Parallel explicit implementation
(1/2)

int main(int argc, char **argv) {
PGAContext *ctx;
int myid, indlen;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid == 0)
{

printf("String length = ");
scanf("%d", &indlen);

}
MPI_Bcast(&indlen, 1, MPI_INT, 0, MPI_COMM_WORLD);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, indlen,
PGA_MAXIMIZE);

PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);
PGASetUp(ctx);
...
...

Parallel explicit implementation
(2/2)

//PGARun(ctx, EvaluationFunction);
PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, MPI_COMM_WORLD);
if (myid == 0)

PGAFitness(ctx, PGA_OLDPOP);
while (!PGADone(ctx, MPI_COMM_WORLD)){

if (myid == 0){
PGASelect(ctx, PGA_OLDPOP);
PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);

}
PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, MPI_COMM_WORLD);

if (myid == 0)
PGAFitness(ctx, PGA_NEWPOP);

PGAUpdateGeneration(ctx, MPI_COMM_WORLD);
if (myid == 0)

PGAPrintReport(ctx, stdout, PGA_OLDPOP);
}

PGADestroy(ctx);
MPI_Finalize();

return(0);
}

Application to the Cellular
Automata model SCIDDICA

• SCIDDICA (Simulation through Computational
Innovative methods for the Detection of Debris flow path
using Interactive Cellular Automata) is a bi-dimensional
model for the simulation of landslides and debris flows
(D’Ambrosio et al., 2004; 2005), recently applied to the
1998 Sarno (Italy) geological disaster

Application to the Cellular
Automata model SCIDDICA

• The model SCIDDICA depends on a set of
parameters that rule the dynamical behavior of
the system

Parameter Brief description

prl Friction

padh Adherence

pr Minimization algorithm relaxation rate

pf Friction angle

pmt Threshold for erosion

ppef Progressive erosion factor

pltt Landslide thickness threshold

pif Inertial factor

Application to the Cellular
Automata model SCIDDICA

• Parameters’ calibration is an essential phase of the development of
a model as can supply information about the model reliability

• A possible method to measure the goodness of a simulation
consists on the comparison between the areal extensions of one ore
more real events, m(R), and the extensions of the simulated ones,
m(S), by means of the following evaluation function:

)(
)(

1 SRm
SRme

∪
∩

=

• e1 is a value in [0,1]:
– It is 0 when the two landslides are completely disjointed
– It is 1 when the two landslides overlap perfectly

• The goal for the GA is to find a set of SCIDDICA parameters that
maximize the function e1

Application to the Cellular
Automata model SCIDDICA

• GA model
– binary encoding (8 bits for each parameter)
– Steady state replacement
– Tournament selection
– 200 generations
– Single point crossover with probability 0.8
– 2 bits mutated for each individual (i.e. mutation

probability = 2/genotype_length)
• Search space

S= [0.001,10]×[0.1,1]×[0,10]×…×[0.001,10]⊂ 8

Application to the Cellular
Automata model SCIDDICA

Fitness (media su 5 seeds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

generation

fit
ne

ss

Application to the Cellular
Automata model SCIDDICA

• A pseudo real event (as obtained by adopting the set of parameters
Popt) was considered in order to evaluate the dynamics of the GA

• In the search space S⊥ (S reduced to the 8-dimensional hypercube
having side size equal to 1) distances between points identified by
the best individuals and Popt have been calculated

f1 (media su 4 seed)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

generation

fit
ne

ss average
best

grafico fitness-distanza (4 seed)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.35 0.45 0.55 0.65 0.75 0.85 0.95

fitness

di
st

an
za

• Even if the fitness converges to a good value, many oscillations
appear when high fitness values are achieved, meaning that many
local optima could be present in the search space

Application to the Cellular
Automata model SCIDDICA

• In order to reduce the problem related to local optima, a
new fitness function has been defined by considering
further information (i.e. the erosion) besides the areal
extent:

() ()
() ()()

() ()
() ()()⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−⋅
∪
∩

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−⋅=
∑
∑

∑
∑

SrRr
SrRr

SRm
SRm

SrRr
SrRr

ff 1
)(
)(112

Application to the Cellular
Automata model SCIDDICA

• As before, a pseudo real event was considered in order to evaluate
the dynamics of the GA

• In the search space S⊥ (S reduced to the 8-dimensional hypercube
having side size equal to 1) distances between points identified by
the best individuals and Popt have been calculated

grafico fitness-distanza (4 seed)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3.50E-01 4.50E-01 5.50E-01 6.50E-01 7.50E-01 8.50E-01 9.50E-01

fitness

di
st

an
za

f2 (media su 4 seed)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

generation

fit
ne

ss average
best

• As in the previous case, the fitness converges to a good value, but
the oscillations that appear when high fitness values are achieved,
are less marked, as tendency line (in red) illustrates

• As a consequence, one can suppose that the number of local
optima is diminished with respect the previous case

Application to the Cellular
Automata model SCIARA

• SCIARA (Simulation by Cellular Interactive Automata of the
Rheology of Aetnean lava flows) is a bi-dimensional model for the
lava flows simulation (Crisci et al., 2004; Spataro et al., 2004),
recently applied to many cases recently occurred on Mount Etna
(Italy)

• The model SCIARA depends on a set of parameters that rule the
dynamical behavior of the system. The most important are:

Parameter Brief description
padh_v lava adhesion at the vents

padh_i lava intermediate adhesion

padh_s lava adhesion at the solidification

pTv lava temperature at the vents

pTi Lava intermediate temperature

pTs lava temperature at solidification

Pr relaxation rate

Pc cooling parameter

Application to the Cellular
Automata model SCIARA

• As for SCIDDICA, a possible method to measure the goodness of a
simulation consists on the comparison between the areal extensions
of one ore more real events, m(R), and the extensions of the
simulated ones, m(S), by means of the following evaluation function:

)(
)(

1 SRm
SRme

∪
∩

=

• e1 is a value in [0,1]:
– It is 0 when the two landslides are completely disjointed
– It is 1 when the two landslides overlap perfectly

• The goal for the GA is to find a set of SCIARA parameters that
maximize the function e1

Application to the Cellular
Automata model SCIARA

• GA model
– binary encoding (8 bits for each parameter)
– Steady state replacement
– Tournament selection
– 200 generations
– Single point crossover with probability 0.8
– 2 bits mutated for each individual (i.e. mutation probability =

2/genotype_length)

Application to the Cellular
Automata model SCIARA

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 50 100 150 200 250

Migliore Media

A simplified GA for a simplified
SCIARA model (1/6)

#include <stdio.h>
#include <pgapack.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>

#define PAR_NUM 8
#define IND_LEN 64
#define POPSIZE 16
#define ITERATIONS 100

int nbits [PAR_NUM] = {8, 8, 8, 8, 8, 8, 8, 8};
float low [PAR_NUM] = {0.01, 0.4, 2.0, 1095.0, 1000.0, 800.0, 1.0e-16, 0.001};
float high[PAR_NUM] = {0.3, 1.0, 10.0, 1150.0, 1094.0, 900.0, 1.0e-11, 1.0};

/* prm[0] = prm_admin = 0.0,
prm[1] = prm_admid = 0.0,
prm[2] = prm_admax = 0.0,
prm[3] = prm_tcrat = 0.0,
prm[4] = prm_tmid = 0.0,
prm[5] = prm_tsolid = 0.0,
prm[6] = prm_cool = 0.0,
prm[7] = prm_rall = 0.0, */

A simplified GA for a simplified
SCIARA model (2/6)

int main(int argc, char **argv) {
PGAContext *ctx; time_t start_t, end_t; double diff_t;

start_t = time(NULL);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, IND_LEN, PGA_MAXIMIZE);
PGASetRandomSeed(ctx, 1);

PGASetPopSize(ctx, POPSIZE);
PGASetMaxGAIterValue(ctx, ITERATIONS);
PGASetNumReplaceValue(ctx, POPSIZE / 2);
PGASetPopReplaceType(ctx, PGA_POPREPL_BEST);
PGASetPrintFrequencyValue(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, sciaraEvaluationFunction);
PGADestroy(ctx);

end_t = time(NULL);
diff_t = difftime(end_t, start_t);
printf("Elapsed time = %f\n", diff_t);

return(0);
}

A simplified GA for a simplified
SCIARA model (3/6)

• The flow-diagram of the fitness function

Set SCIARA
parameters
from genotype

Launch SCIARA
simulation (fork
and wait)

Read fitness
from file and
return it

Read parameters from
file

...

Execute sciara
simulation

...

Calculate and save
fitness to file

A simplified GA for a simplified
SCIARA model (4/6)

double sciaraEvaluationFunction(PGAContext *ctx, int p, int pop) {
FILE *f;
char parameter_path[] = "../sciara/param.txt",

fitness_path[] = "../sciara/fitness.txt",
*arg_list[] = {
"../sciara/sciara.sh",
NULL
},
str[256];

int child_status;
int i, start = -1, end;
float prm[PAR_NUM], e1;

//parametres setting
for (i=0; i<PAR_NUM; i++) {

start += 1;
end = start + nbits[i] - 1;
prm[i] = PGAGetRealFromBinary(ctx, p, pop, start, end, low[i], high[i]);

}
...
...

A simplified GA for a simplified
SCIARA model (5/6)

...

...
//write parameters on file
f=fopen(parameter_path, "w");
for (i=0; i<PAR_NUM; i++)

if (i==6)
fprintf(f, "prm[%d]\t%e\n", i, prm[i]);

else
fprintf(f, "prm[%d]\t%f\n", i, prm[i]);

fclose(f);

//sciara batch execution
sciara_exec(arg_list[0], arg_list);
wait(&child_status);

//read fitnes from file
f=fopen(fitness_path,"r");
fscanf(f, "%s", str);
e1 = atof(str);

//return fitness
return(e1);

}

A simplified GA for a simplified
SCIARA model (6/6)

int sciara_exec(char* program, char** arg_list)
{

pid_t child_pid;
child_pid = fork();
if (child_pid != 0)

return child_pid;
else
{

execvp(program, arg_list);
fprintf(stderr, "An error occurred. Program

terminated.\n");
abort();

}
}

Makefile
CC = cc
PRECFLAGS = -O
CPPFLAGS = -I/usr/local/pga/include -I/usr/local/mpich/include

-Dlinux -DWL=32 -DFORTRANUNDERSCORE -DOPTIMIZE
RM = /bin/rm -f
LDFLAGS = -s -L/usr/local/pga/lib/linux –lpgaO

/usr/local/mpich/lib/libmpich.a -lm
CFLAGS = -o $@ $? $(PRECFLAGS)
LINK.c = @echo " Compiling $@" ; $(CC) $(CFLAGS) $(CPPFLAGS)

$(LDFLAGS)

default:
@make sciara_pga

sciara_pga: sciara_pga.c
$(LINK.c)

clean:
@$(RM) sciara_pga *.o

References
• Crisci G. M., Di Gregorio S., Rongo R., Spataro, W., (2004). The simulation model

SCIARA: the 1991 and 2001 at Mount Etna. Journal of Vulcanogy and Geothermal
Research, Vol 132/2-3, pp 253-267, 2004.

• D. D'Ambrosio, W. Spataro, and G. Iovine, in press. Parallel genetic algorithms for
optimising cellular automata models of natural complex phenomena: an application to
debris-flows. Computer & Geosciences.

• D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

• J.H. Holland. Adaptation in Natural and Articial Systems. University of Michigan
Press, Ann Arbor, 1975.

• G. Iovine, D. D'Ambrosio, and S. Di Gregorio, 2005. Applying genetic algorithms for
calibrating a hexagonal cellular automata model for the simulation of debris flows
characterised by strong inertial effects. Geomorphology, 66, 287-303.

• J.R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

• M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
• W. Spataro, D. D'Ambrosio, R Rongo and G.A. Trunfio, 2004. An Evolutionary

Approach for Modelling Lava Flows through Cellular Automata. In P.M.A. Sloot, B.
Chopard and A.G.Hoekstra (Eds.), LNCS 3305, Proceedings ACRI 2004, University
of Amsterdam, Science Park Amsterdam, The Netherlands, pp. 725-734.

	Genetic Algorithms
	Search Algorithms
	Heuristic Search Algorithms
	What is and how does work a genetic algorithm
	The original Holland’s model
	Binary encoding
	Fitness function, search space and fitness landscape
	Example of fitness landscape for a binary GA
	Operators
	The selection Operator
	The proportional selection
	Example of probability’s roulette
	Mating pool
	Crossover
	Mutation
	GA iterative schema
	Example (from Goldberg, 1989)
	Example (from Goldberg, 1989)
	Example (from Goldberg, 1989)
	Crossover OR mutation?
	Why GAs work
	Theoretical foundation of GAs
	Theoretical foundation of GAs
	Other GA models (Encoding)
	Other GA models (Encoding)
	Other GA models (Replacement)
	Other GA models (Selection)
	Other GA models (Selection)
	Other GA models (Crossover)
	Other GA models (Crossover)
	Other GA models (Mutation)
	Example
	PGAPack
	The Master-Slave GA
	The Beowulf cluster at Department of Mathematics
	Performance (execution time)
	Performance (speed-up)
	Sequential Implementation (1/2)
	Sequential Implementation (2/2)
	Makefile
	Sequential Implementation (Holland Model)
	Explicit usage
	Parallel implementation
	Parallel explicit implementation (1/2)
	Parallel explicit implementation (2/2)
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIDDICA
	Application to the Cellular Automata model SCIARA
	Application to the Cellular Automata model SCIARA
	Application to the Cellular Automata model SCIARA
	Application to the Cellular Automata model SCIARA
	A simplified GA for a simplified SCIARA model (1/6)
	A simplified GA for a simplified SCIARA model (2/6)
	A simplified GA for a simplified SCIARA model (3/6)
	A simplified GA for a simplified SCIARA model (4/6)
	A simplified GA for a simplified SCIARA model (5/6)
	A simplified GA for a simplified SCIARA model (6/6)
	Makefile
	References

