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Search Algorithms

• Search Algorithms can be subdivided in two 
main categories:
– Exact (e.g. algorithms in Numerical Analysis)
– Heuristic (algorithms based on random search 

criteria) 
• A search problem is called “difficult” (e.g. the 

TSP - Traveller Salesman Problem) if does not 
exist an algorithm that solve it or, if such an 
algorithm exists, it doesn’t solve the problem in 
polynomial time



Heuristic Search Algorithms
• They start from a given (admissible) solution or 

from a set of such solutions
• In order to improve results, iteratively modifying 

current solutions by means of specific (random 
based) criteria



What is and how does work a 
genetic algorithm

• Genetic Algorithms (GAs) were proposed by 
John Holland (University of Michigan) between 
the end of the 60s and the beginning of the 70s

• GAs (Holland, 1975, Goldberg, 1989) are search 
algorithms inspired from the mechanisms of the 
Darwinian Natural Selection and from Genetics

• GAs simulate the evolution of a population of 
individuals, representing candidate solutions to a 
specific search problem, by favoring the 
surviving and the reproduction of the best



The original Holland’s model

• The model proposed by Holland operates over a 
popolation P of n bit-strings (called individuals or 
genotypes) of pre-fixed length l



Binary encoding
• Note that all problems can be represented, more 

or less naturally, using bit strings
• For example real variables, allowed to vary in a 

prefixed range, can be easily represented by bit 
strings of prefixed length



Fitness function, search space and 
fitness landscape

• The fitness function evaluates the goodness of the 
individuals gi of the popolation P in solving the given 
search problem:

f : P → (- ∞, +∞);   f(gi) = fi
• The set constituted by the binary strings of length l has 2l

elements; this set represents the  GA search space, i.e. 
the space that the GA must explore in order to solve (or 
at least approximate) the search problem (e.g. to find the 
maximum of a function)

• The graphical representation of the fitness values versus 
the points of the search space is called fitness landscape



Example of fitness landscape for a 
binary GA

• The number of binary strings having length 2 is 2l = 22 = 4
• Accordingly, the GA search space is:

S = {(0,0), (0,1), (1,0), (1,1)}
• The fitness values versus the points in S define the GA 

fitness landscape



Operators
• Once the fitness function has determined the 

goodness of each individual, a new population of 
individuals (or genotypes) is created by applying 
many operators inspired from Natural Selection 
and Genetics

• The operators proposed by Holland are:
– Selection (inspired to Natural Selection)
– Crossover (inspired to Genetics)
– Mutation (inspired to Genetics)

• Crossover and Mutation are called genetic
operators



The selection Operator

• The Darwinian Natural Selection asserts that the 
stronger individuals have higher probability to 
survive inside their living environment, thus 
higher probability to reproduce their selves

• In the Holland GA context, stronger individuals 
correspond to those having higher fitness, as 
they better solve the given search problem; as a 
consequence, they must be privileged during the 
selection of the individuals that will undergo 
reproduction to form new individuals



The proportional selection

• Holland suggested a selection method 
proportional to the individuals’ fitness

• let fi the fitness of the genotype gi, then the 
probability that gi is selected for the 
reproduction is:

ps,i = fi / Σfj

• Such probabilities are used to construct a 
kind of probability’s roulette



Example of probability’s roulette

• The individuals A1, A2, A3 e A4, with probability of 
selection 0.12, 0.18, 0.3 e 0.4 respectively, cover a 
roulette portion of width equal to the their probability of 
selection. In the example the selection operator 
generates a random number c = 0.78 and the individual 
A4 is selected



Mating pool
• Each time that an individual is selected, a 

perfect copy is created and inserted in the so-
called mating pool

• Once that the mating pool is filled with exactly n
copies of individuals of the GA population 
(where n is the population size), a new set of n
offspring are generated by applying the genetic 
operators (i.e. crossover and mutation)

• A selection operator that replaces all the 
population with new individuals, as the one 
proposed by Holland, is called generational



Crossover
• Two individuals are randomly chosen from the mating 

pool (i.e. the parents); moreover a cutting point (i.e. the 
crossover point) is randomly defined among one internal 
string position 

• The genotypes’ pieces so obtained  are swapped, thus 
generating two offspring

• The crossover operator is applied, accordingly to a 
prefixed probability pc, n/2 times in order to obtain n
offspring; if the crossover is not applied, the two offspring 
coincide with the two parents



Mutation
• Once two offspring have been generated 

through crossover, accordingly to a prefixed and 
usually small probability pm, the bit values are 
changed from 0 to 1 or viceversa

• As the crossover represents a metaphor of the 
sexual reproduction, the mutation operator 
models the genetic phenomenon of the rare 
variation of the genotypes’ elements during the 
reproduction



GA iterative schema
AG {

t=0
Initialize the population P(t) at random
Evaluate the fitness of the population P(t)
While (!stopping_criterion) {

t=t+1
Create P(t) by applying selection, crossover and mutation
Evaluate the fitness of the population P(t)

}
}



Example (from Goldberg, 1989)
• Search (easy!) problem: find the maximum of the 

function y=x2 in the range [0,31]
• GA approach:

– Genotypes’ representation: binary strings (e.g. 
00000↔0; 01101↔13; 11111↔31)

– Population size: 4
– Crossover and no mutation (just an example!)
– Roulette wheel selection (i.e. the proportional one)
– Random initialization

• One generational cycle with the hand shown



Example (from Goldberg, 1989)



Example (from Goldberg, 1989)



Crossover OR mutation?

• Decade long debate: which one is better / 
necessary?

• Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– mutation-only is possible, crossover-only 

would not work



Why GAs work
• Exploration: Discovering promising areas in the search 

space, i.e. gaining information on the problem
• Exploitation: Optimizing within a promising area, i.e. 

using information
• There is co-operation AND competition between them
• Crossover is explorative, it makes a big jump to an area 

somewhere “in between” two (parent) areas
• Mutation is exploitative, it creates random small 

diversions, thereby staying near (i.e., in the area of ) the 
parent



Theoretical foundation of GAs
• Implicit Parallelism (Holland, 1975): while the 

GA operates over a population of n genotypes, 
it explores a number between 2l and n2l sub-
regions of the search space, being l the 
genotype’s length

• Example: the individual 101 can be considered 
a representative genotype of the following sub-
regions of the search space:

101; *01; 1*1; 10*; **1; 1**; *0*; ***
where the symbol * stands for 0 or 1



Theoretical foundation of GAs

• Fundamental Theorem (Holland, 1975): after a 
first phase in which the GA explores almost in 
a random way the search space (sampling), 
subsequently it concentrates the search in the 
most promising region, i.e. in the region
characterized by individuals with higher fitness

• For a demonstration of the theorem see 
Goldberg (1989)



Other GA models (Encoding)

• Binary encoding:
– Classic Holland binary encoding 
– Grey code (see Mitchell 1996)



Other GA models (Encoding)
• Characters, integer and real values
• Tree encoding (Genetic Programming; see

Koza, 1992). The following example shows the 
tree representation of the algorithm that
calculates the function  √A3



Other GA models (Replacement)

• Generational replacement: all 
the population is replaced 
with new offspring. Note that 
the best individual is not 
preserved over the GA 
iterations

• Steady state replacement: 
only n’<n individuals is 
replaced; if the remaining not 
replaced n-n’ individuals are 
the best of the old population 
the GA is called elitistic



Other GA models (Selection)

• Proportional Selection or Roulette Wheel: 
individuals are selected proportionally to 
their fitness

• Boltzmann, Rank-based and Tournament 
selection: they guarantee a better 
sampling of the search space during the 
first steps of the GA (see Mitchell, 1996)



Other GA models (Selection)

• Pick k individuals randomly, with or without 
replacement, and select the best of these 
k comparing their fitness values with 
greater probability to select the best.



Other GA models (Crossover)



Other GA models (Crossover)



Other GA models (Mutation)
• For character, integer and real encoding, 

mutation works similarly to the schema of the 
classic Holland model.

• For Genetic Programming a piece of the tree is 
replaced with a new randomly generate one



Example
• Find the maximum of the function y=x2 in the 

range [0,216-1]

1. Chose the size (n) of the population P
2. Chose the genotype’s length (l)
3. Chose the selection and replacement schema 
4. Define a fitness function (f)
5. Chose crossover type and fix the probability pc
6. Chose mutation type and fix the probability pm 
7. Write a program that implements the GA or (better!) 

use a free open source GA library



PGAPack
• PGAPack is an open source GA library freely 

available at the url http://www-
fp.mcs.anl.gov/CCST/research/reports_pre199
8/comp_bio/stalk/pgapack.html

– It Implements the Holland GA model and many 
other models successively proposed

– It runs over many operating systems as different 
UNIX versions and GNU-Linux

– It also Implements a parallel GA model: the Master-
Slave GA, thus exploiting (almost transparently for 
the end user) more CPUs at the same time

http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html


The Master-Slave GA
Iterative schema of the MASTER-SLAVE GA

Master-Slave GA
{

[MASTER]
t=0
Initialize the population P(t)
send n’/S individuals to each slave 

[SLAVE]
receive n’/S individuals
evaluate n’/S individuals
send the n’/S computed fitness values to the MASTER 

while (NOT(stopping_criterion))
{

[MASTER] 
receive n’ computed fitness values from the SLAVEs
t=t+1
create P(t) by applying Selection, Crossover and Mutation
send n’/S individuals to each slave 

[SLAVE]
receive n’/S individuals 
evaluate n’/S individuals
send the n’/S computed fitness values to the MASTER 

}
}

• Many Parallel GAs
(PGAs) have been 
proposed in literature: 
Master-Slave GA, 
Multiple Demes GA, etc. 
(see Cantù-Paz, 2000)

• The simplest way to 
parallelize a GA consists 
in distributing the 
computational load on P 
processors.

• A processor (Master) 
executes the GA steps, 
while S=P-1 processors 
(Slaves) execute the 
evaluation of n’/S 
individuals of the 
population (where n’<n).



The Beowulf cluster at Department 
of Mathematics

• A Beowulf Cluster is a low-cost 
Parallel Machine built with 
common PC and other hardware 
components 

• The Beowulf Cluster at 
Department of Mathematics is 
composed by 16 1.4 GHz Pentium 
IV nodes, 512 MB of Ram per 
node, Red Hat Linux 7.2 OS, gcc
v2.96

• Nodes are connected by a normal 
Ethernet LAN with a 100 Mbs
switch

• Inter-nodes communications are 
committed through message 
exchanges by means of MPI 
(Message Passing Interface) 
(Pacheco, 1999; Gropp, 2001)



Performance (execution time)
• Performance have been measured by considering a generational GA, 

executing 100 generations,  n’=30, 60, 120 e 240 individuals, and ft =0.001, 
0.01, 0.1 and 1 seconds (fitness function execution time)
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Performance (speed-up)
• The same experiments can be seen in terms of speed-up, defined as:

speed-up = (sequential execution time) / (parallel execution time)
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Sequential Implementation (1/2)
#include <pgapack.h>
#define INDLEN 16
double EvaluationFunction(PGAContext *, int, int);

int main( int argc, char **argv ) {
PGAContext *ctx;    

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, INDLEN, 
PGA_MAXIMIZE);

PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, EvaluationFunction);
PGADestroy(ctx);

return(0);
}



Sequential Implementation (2/2)

/*******************************************************************
*   user defined evaluation function                            *
*   ctx - contex variable                                          *
*   p   - chromosome index in population                           *
*   pop - which population to refer to                             *
*******************************************************************/

double EvaluationFunction(PGAContext *ctx, int p, int pop) 
{

int int_val, stringlen;

stringlen = PGAGetStringLength(ctx);
int_val = PGAGetIntegerFromBinary(ctx, p, pop, 0, stringlen-1);

return((double) int_val*int_val);
}



Makefile
CC = cc
CCLINKER = cc
CCFLAGS = -I/usr/local/pga/include -I/usr/local/mpich/include/ -Dlinux -

DWL=32 -DFORTRANUNDERSCORE -DOPTIMIZE 
LDFLAGS = -s -L/usr/local/pga/lib/linux -lpgaO

/usr/local/mpich/lib/libmpich.a

default: sequential_pga

sequential_pga: sequential_pga.o
$(CCLINKER) -o sequential_pga sequential_pga.o \
$(CCFLAGS) \
$(LDFLAGS)

sequential_pga.o: sequential_pga.c
$(CC) -c sequential_pga.c \
$(CCFLAGS)

clean: 
@$(RM)  sequential_pga *.o 



Sequential Implementation 
(Holland Model)

#include <pgapack.h>

#define INDLEN  16
#define POPSIZE 20
double EvaluationFunction(PGAContext *, int, int);

int main( int argc, char **argv ) {
...
PGASetPopSize(ctx, POPSIZE);

PGASetSelectType(ctx, PGA_SELECT_PROPORTIONAL);
PGASetNumReplaceValue(ctx, POPSIZE);
PGASetCrossoverType(ctx, PGA_CROSSOVER_ONEPT);
PGASetCrossoverProb(ctx, 1.0);
PGASetMutationType(ctx, PGA_MUTATION_CONSTANT);
PGASetMutationProb(ctx, 1/INDLEN);

PGASetMaxGAIterValue(ctx, 100);
...

}



Explicit usage

int main( int argc, char **argv ) {
...
...
//PGARun(ctx, EvaluationFunction);

PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, 0);
PGAFitness(ctx, PGA_OLDPOP);
while(!PGADone(ctx, 0))
{

PGASelect (ctx, PGA_OLDPOP);
PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);
PGAEvaluate (ctx, PGA_NEWPOP, EvaluationFunction, 0);
PGAFitness (ctx, PGA_NEWPOP);
PGAUpdateGeneration (ctx, 0);
PGAPrintReport (ctx, stdout, PGA_OLDPOP);

}
PGADestroy(ctx);    
return(0);

}



Parallel implementation
int main( int argc, char **argv ) {

PGAContext *ctx;
int myid, indlen;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

printf("String length = ");
scanf("%d", &indlen);

}
MPI_Bcast(&indlen, 1, MPI_INT, 0, MPI_COMM_WORLD);
ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, indlen,  

PGA_MAXIMIZE);
PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, EvaluationFunction);
PGADestroy(ctx);
MPI_Finalize();
return(0);

}



Parallel explicit implementation 
(1/2)

int main( int argc, char **argv ) {
PGAContext *ctx;
int myid, indlen;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid == 0)
{

printf("String length = ");
scanf("%d", &indlen);

}
MPI_Bcast(&indlen, 1, MPI_INT, 0, MPI_COMM_WORLD);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, indlen, 
PGA_MAXIMIZE);

PGASetPopSize(ctx, 20);
PGASetMaxGAIterValue(ctx, 100);
PGASetPrintFrequencyValue(ctx, 1);
PGASetRandomSeed(ctx, 1);
PGASetUp(ctx);
...
...



Parallel explicit implementation 
(2/2)

//PGARun(ctx, EvaluationFunction);
PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, MPI_COMM_WORLD);
if (myid == 0)

PGAFitness(ctx, PGA_OLDPOP);
while (!PGADone(ctx, MPI_COMM_WORLD)){

if (myid == 0){
PGASelect(ctx, PGA_OLDPOP);
PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);

}
PGAEvaluate(ctx, PGA_OLDPOP, EvaluationFunction, MPI_COMM_WORLD);

if (myid == 0)
PGAFitness(ctx, PGA_NEWPOP);

PGAUpdateGeneration(ctx, MPI_COMM_WORLD);
if (myid == 0)

PGAPrintReport(ctx, stdout, PGA_OLDPOP);
}

PGADestroy(ctx);    
MPI_Finalize();

return(0);
}



Application to the Cellular 
Automata model SCIDDICA

• SCIDDICA  (Simulation through Computational 
Innovative methods for the Detection of Debris flow path 
using Interactive Cellular Automata) is a bi-dimensional 
model for the simulation of landslides and debris flows 
(D’Ambrosio et al., 2004; 2005), recently applied to the 
1998 Sarno (Italy) geological disaster



Application to the Cellular 
Automata model SCIDDICA

• The model SCIDDICA depends on a set of 
parameters that rule the dynamical behavior of 
the system

Parameter Brief description

prl Friction

padh Adherence

pr Minimization algorithm relaxation rate

pf Friction angle

pmt Threshold for erosion

ppef Progressive erosion factor

pltt Landslide thickness threshold

pif Inertial factor



Application to the Cellular 
Automata model SCIDDICA

• Parameters’ calibration is an essential phase of the development of 
a model as can supply information about the model reliability

• A possible method to measure the goodness of a simulation 
consists on the comparison between the areal extensions of one ore 
more real events, m(R), and the extensions of the simulated ones, 
m(S), by means of the following evaluation function:
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• e1 is a value in [0,1]:
– It is 0 when the two landslides are completely disjointed
– It is 1 when the two landslides overlap perfectly

• The goal for the GA is to find a set of SCIDDICA parameters that
maximize the function e1



Application to the Cellular 
Automata model SCIDDICA

• GA model
– binary encoding (8 bits for each parameter)
– Steady state replacement
– Tournament selection
– 200 generations
– Single point crossover with probability 0.8
– 2 bits mutated for each individual (i.e. mutation 

probability = 2/genotype_length)
• Search space

S= [0.001,10]×[0.1,1]×[0,10]×…×[0.001,10]⊂ 8



Application to the Cellular 
Automata model SCIDDICA
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Application to the Cellular 
Automata model SCIDDICA

• A pseudo real event (as obtained by adopting the set of parameters 
Popt) was considered in order to evaluate the dynamics of the GA 

• In the search space S⊥ (S reduced to the 8-dimensional hypercube 
having side size equal to 1) distances between points identified by 
the best individuals and Popt have been calculated
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• Even if the fitness converges to a good value, many oscillations
appear when high fitness values are achieved, meaning that many 
local optima could be present in the search space



Application to the Cellular 
Automata model SCIDDICA

• In order to reduce the problem related to local optima, a 
new fitness function has been defined by considering 
further information (i.e. the erosion) besides the areal
extent:
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Application to the Cellular 
Automata model SCIDDICA

• As before, a pseudo real event was considered in order to evaluate 
the dynamics of the GA 

• In the search space S⊥ (S reduced to the 8-dimensional hypercube 
having side size equal to 1) distances between points identified by 
the best individuals and Popt have been calculated
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• As in the previous case, the fitness converges to a good value, but 
the oscillations that appear when high fitness values are achieved, 
are less marked, as tendency line (in red) illustrates

• As a consequence, one can suppose that the number of local 
optima is diminished with respect the previous case



Application to the Cellular 
Automata model SCIARA

• SCIARA  (Simulation by Cellular Interactive Automata of the 
Rheology of Aetnean lava flows) is a bi-dimensional model for the 
lava flows simulation (Crisci et al., 2004; Spataro et al., 2004), 
recently applied to many cases recently occurred on Mount Etna 
(Italy)

• The model SCIARA depends on a set of parameters that rule the 
dynamical behavior of the system. The most important are:

Parameter Brief description
padh_v lava adhesion at the vents

padh_i lava intermediate adhesion

padh_s lava adhesion at the solidification

pTv lava temperature at the vents

pTi Lava intermediate temperature

pTs lava temperature at solidification

Pr relaxation rate

Pc cooling parameter 



Application to the Cellular 
Automata model SCIARA

• As for SCIDDICA, a possible method to measure the goodness of a 
simulation consists on the comparison between the areal extensions 
of one ore more real events, m(R), and the extensions of the 
simulated ones, m(S), by means of the following evaluation function:
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• e1 is a value in [0,1]:
– It is 0 when the two landslides are completely disjointed
– It is 1 when the two landslides overlap perfectly

• The goal for the GA is to find a set of SCIARA parameters that 
maximize the function e1



Application to the Cellular 
Automata model SCIARA

• GA model
– binary encoding (8 bits for each parameter)
– Steady state replacement
– Tournament selection
– 200 generations
– Single point crossover with probability 0.8
– 2 bits mutated for each individual (i.e. mutation probability = 

2/genotype_length)



Application to the Cellular 
Automata model SCIARA
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A simplified GA for a simplified 
SCIARA model (1/6)

#include <stdio.h>
#include <pgapack.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>

#define PAR_NUM 8
#define IND_LEN 64
#define POPSIZE 16
#define ITERATIONS 100

int nbits [PAR_NUM] = {8,    8,   8,    8,      8,      8,     8,       8};
float low [PAR_NUM] = {0.01, 0.4, 2.0,  1095.0, 1000.0, 800.0, 1.0e-16, 0.001};
float high[PAR_NUM] = {0.3,  1.0, 10.0, 1150.0, 1094.0, 900.0, 1.0e-11, 1.0};

/* prm[0] = prm_admin = 0.0,
prm[1] = prm_admid = 0.0,
prm[2] = prm_admax = 0.0,
prm[3] = prm_tcrat = 0.0,
prm[4] = prm_tmid = 0.0,
prm[5] = prm_tsolid = 0.0,
prm[6] = prm_cool = 0.0,
prm[7] = prm_rall = 0.0, */



A simplified GA for a simplified 
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int main( int argc, char **argv ) {
PGAContext *ctx; time_t start_t, end_t; double diff_t;

start_t = time(NULL);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, IND_LEN, PGA_MAXIMIZE);
PGASetRandomSeed(ctx, 1);

PGASetPopSize(ctx, POPSIZE);
PGASetMaxGAIterValue(ctx, ITERATIONS);
PGASetNumReplaceValue(ctx, POPSIZE / 2);
PGASetPopReplaceType(ctx, PGA_POPREPL_BEST);
PGASetPrintFrequencyValue(ctx, 1);

PGASetUp(ctx);
PGARun(ctx, sciaraEvaluationFunction);
PGADestroy(ctx);

end_t = time(NULL);
diff_t = difftime(end_t, start_t);
printf("Elapsed time = %f\n", diff_t);

return(0);
}
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• The flow-diagram of the fitness function 

Set SCIARA 
parameters 
from genotype

Launch SCIARA 
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and wait)
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from file and 
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file
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Calculate and save 
fitness to file
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double sciaraEvaluationFunction(PGAContext *ctx, int p, int pop) {
FILE *f;
char parameter_path[] = "../sciara/param.txt",

fitness_path[]   = "../sciara/fitness.txt",
*arg_list[] = {
"../sciara/sciara.sh",
NULL
},
str[256];

int child_status;
int i, start = -1, end;
float prm[PAR_NUM], e1;

//parametres setting
for (i=0; i<PAR_NUM; i++) {

start += 1;
end = start + nbits[i] - 1;
prm[i] = PGAGetRealFromBinary(ctx, p, pop, start, end, low[i], high[i]);

}
...
...
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...

...
//write parameters on file
f=fopen(parameter_path, "w");
for (i=0; i<PAR_NUM; i++)

if (i==6)
fprintf(f, "prm[%d]\t%e\n", i, prm[i]);

else
fprintf(f, "prm[%d]\t%f\n", i, prm[i]);

fclose(f);

//sciara batch execution
sciara_exec(arg_list[0], arg_list);
wait(&child_status);

//read fitnes from file
f=fopen(fitness_path,"r");
fscanf(f, "%s", str);
e1 = atof(str);

//return fitness
return(e1);

}
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int sciara_exec(char* program, char** arg_list)
{

pid_t child_pid;
child_pid = fork();
if (child_pid != 0)

return child_pid;
else
{

execvp(program, arg_list);
fprintf(stderr, "An error occurred. Program 

terminated.\n");
abort();

}
}



Makefile
CC = cc
PRECFLAGS = -O 
CPPFLAGS  = -I/usr/local/pga/include -I/usr/local/mpich/include

-Dlinux -DWL=32 -DFORTRANUNDERSCORE -DOPTIMIZE 
RM        = /bin/rm -f
LDFLAGS = -s -L/usr/local/pga/lib/linux –lpgaO

/usr/local/mpich/lib/libmpich.a -lm
CFLAGS = -o $@ $? $(PRECFLAGS)
LINK.c = @echo "  Compiling $@" ; $(CC) $(CFLAGS) $(CPPFLAGS) 

$(LDFLAGS)

default:
@make sciara_pga

sciara_pga: sciara_pga.c
$(LINK.c)

clean: 
@$(RM) sciara_pga *.o
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