

Workpackage: 3
Task: 3.6
Authors: K. Kavoussanakis, S. D. Telford, S. Booth, L. Clarke, A. Smith,
 A. Trew, A. Simpson, G. Spezzano, D. Talia.
Date of issue: 29 May 2000

camelot_man.doc

PROJECT COLOMBO

(Project No.: 24,907)

REPORT DI3.6.2:
CAMELot 1.3 Implementation and User Guide

(AVAILABILITY: Public)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 1

Table of contents
1. Introduction ... 6

1.1 CAMELot Components .. 6
1.2 Software Components... 6
1.3 Structure ... 8
1.4 Acknowledgements ... 8

2. User Manual... 9
2.1 CAMELot Sample Session ... 9

2.1.1 Starting CAMELot.. 9
2.1.2 Editing a program.. 9
2.1.3 Program Compilation .. 10
2.1.4 Building a Program.. 11
2.1.5 Running a Program.. 11
2.1.6 Exiting CAMELot ... 12

2.2 CAMELot Functionality Overview.. 13
2.2.1 Development Window... 13
2.2.2 Simulation Window .. 21
2.2.3 Visualisation Window... 28
2.2.4 Off-line CA Engine Execution.. 32

2.3 The CARPET Programming Language .. 33
2.3.1 The transition function ... 34
2.3.2 cadef ... 35
2.3.3 cell_<substate> ... 36
2.3.4 cpt_abort .. 37
2.3.5 cpt_save.. 37
2.3.6 cpt_set_param.. 37
2.3.7 deterministic (alias determin) .. 38
2.3.8 dimension ... 39
2.3.9 DimX, DimY, DimZ .. 39
2.3.10 GetX, GetY, GetZ.. 40
2.3.11 neighbour (alias neighbor) .. 40
2.3.12 NFolds .. 41
2.3.13 NProcs.. 41
2.3.14 parameter ... 42
2.3.15 radius.. 43
2.3.16 random ... 43
2.3.17 randomise (alias randomize).. 43
2.3.18 region ... 44

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 2

2.3.19 region_<op>.. 45
2.3.20 srandom.. 46
2.3.21 state .. 46
2.3.22 steering... 47
2.3.23 step ... 48
2.3.24 threshold... 48
2.3.25 update ... 49

3. GUI Implementation... 50
3.1 Overview.. 50
3.2 Communication with the CA Engine... 50
3.3 Visualisation Windows... 50
3.4 Source code files... 51
3.5 Libraries.. 52
3.6 X Shell Widgets... 52
3.7 Global variables and data structures ... 54

3.7.1 Major data structures... 54
3.7.2 Major global variables... 55
3.7.3 Callback context variables... 55

3.8 List of Functions .. 56
3.8.1 Functions in camelot_stubs.c... 56
3.8.2 Functions in camelot_viz.c ... 62

3.9 GUI-CA Engine Protocol Requests ... 63
4. Cellular Automata Engine Implementation ... 65

4.1 Program Structure.. 65
4.1.1 User-Defined Types.. 65
4.1.2 Functions in macrocell.c ... 68
4.1.3 External Function Prototypes .. 70
4.1.4 External Variables ... 70
4.1.5 Global Variables .. 71

4.2 Data Handling .. 72
4.2.1 Internal Representation.. 72
4.2.2 Data I/O ... 73

4.3 Process Placement.. 74
4.4 Data Decomposition ... 74

4.4.1 Uneven Decomposition .. 75
4.4.2 Notation.. 76

4.5 Boundary Replication... 77
4.5.1 Boundary Copy... 79

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 3

4.5.2 Boundary Swap .. 80
4.5.3 Function init_boundaries().. 81

4.6 Transition Function Execution ... 82
4.6.1 CA Engine States.. 82
4.6.2 Automatic Inactive Strip Detection .. 82
4.6.3 Function run() .. 82

4.7 Timing... 86
4.7.1 Strategy for Timing the Functions.. 87
4.7.2 Structures and Functions ... 89

5. CARPET Parser Implementation.. 93
5.1 Tokeniser .. 93
5.2 Parser .. 95

5.2.1 Interface to macrocell.c ... 95
5.2.2 Steering Code Generation.. 97

5.3 Parser library interface .. 100
6. GUI–CA Engine Communication .. 102

6.1 General Remarks.. 102
6.1.1 Communication Abstraction... 102
6.1.2 Socket Instances ... 102
6.1.3 Header Format... 103
6.1.4 Spatial Entities ... 103

6.2 Auxiliary Functions ... 103
6.2.1 Socket Functions .. 103
6.2.2 Acknowledgements ... 105

6.3 Requests .. 105
6.4 Implementation of GUI Functions .. 115

6.4.1 Substate related.. 115
6.4.2 Program Flow Management .. 116
6.4.3 Visualisation Functions.. 116
6.4.4 Configuration (Project) Related .. 117
6.4.5 Other functions... 117

6.5 Implementation of the CA Engine Functions... 117
6.5.1 General Remarks.. 117
6.5.2 Function rv()... 118
6.5.3 File and Socket I/O... 120
6.5.4 Substate Related Functions .. 139
6.5.5 Program Flow Management .. 141
6.5.6 Visualisation Functions.. 141

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 4

6.5.7 Configuration (Project) Related Functions ... 141
6.5.8 Auxiliary Functions.. 142

7. Visualisation... 147
7.1 Data Structures... 147

7.1.1 Plane Definition ... 147
7.1.2 Plane Classes ... 148
7.1.3 Plane Lists .. 149
7.1.4 Visualisation List.. 149

7.2 Global Variables ... 150
7.2.1 CA Engine Global Visualisation Variables.. 150
7.2.2 GUI Global Visualisation Variables.. 151

7.3 Relevant Files and Functions .. 152
7.3.1 File common.h ... 152
7.3.2 Files guicomms.h and guicomms.c... 152
7.3.3 File macrocell.c .. 153
7.3.4 File plane.c.. 154
7.3.5 File list.c .. 156
7.3.6 File buffer.c ... 157

7.4 Plane Addition .. 158
7.4.1 Addition Protocol ... 158
7.4.2 The Function add_plane() and Other Related Functions 158
7.4.3 GUI-Side Plane Addition ... 160
7.4.4 CA Engine-Side Plane Addition ... 161
7.4.5 Why is the Protocol Complicated?... 162

7.5 Plane Deletion .. 162
7.5.1 Deletion Protocol ... 162
7.5.2 The Function rem_plane() and Other Related Functions 162
7.5.3 GUI-Side Plane Deletion ... 163
7.5.4 CA Engine-Side Plane Deletion ... 163

7.6 Plane Visualisation .. 164
7.6.1 Visualisation Protocol.. 164
7.6.2 CA Side Visualisation... 164
7.6.3 GUI Side Visualisation... 167

8. Performance of the CA Engine .. 169
8.1 The Benchmark .. 169
8.2 Benchmark Results... 170

8.2.1 Scaling Curve ... 170
8.2.2 Homogeneous Optimisation ... 172

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 5

8.2.3 Discussion of the Results.. 174
9. Open Issues .. 176

9.1 Port to Windows NT ... 176
9.2 Single-Processor Optimisation .. 176
9.3 Inactive Strip Detection Enhancements .. 176

9.3.1 Automatic Fold Setting... 177
9.3.2 Switchable Fold Setting.. 177

9.4 Timing Function... 177
9.5 Quiescent Substates.. 177
9.6 Visual cell substate value enquiry ... 178

10. References .. 179
I. CAMELot Release History... 181
II. CAMELot MPI Configuration... 185

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 6

1. Introduction

CAMELot is an environment for the programming and seamlessly parallel execution of
Cellular Automata. The system supports CARPET, a purpose-built language for CA pro-
gramming. It offers a programming environment and a Graphical User Interface which
enables the user to interact with the system while running a simulation and to view visuali-
sations of the simulated data. It also includes a customisable facility to produce traces of
the simulation in a specified format thus allowing to post-process the output of the run by
means of an external tool. The system has been developed as part of the COLOMBO Pro-
ject. It is a follow-up to the CAMEL software, implemented for the CABOTO project
[Spezzano et al. 1995].

This document is the report on the implementation of CAMELot Release 1.3: Deliverable
D9, Internal Deliverable DI3.6.2.

1.1 CAMELot Components

CAMELot consists of three major components:

• The CA Engine, incorporating a compiled CARPET CA model. This comprises one or

more parallel processes called macrocells and uses an MPI-1-compliant message-
passing library;

• The X/Motif-based graphical user interface (GUI), including the GUI/CA Engine
communication library;

• The CARPET parser, which is integrated with the GUI.

An overview of the structure of CAMELot and the communication between its components
during a running simulation is shown in Figure 1.

1.2 Software Components

The CAMELot implementation includes the following software components:

• macrocell.c

The CA Engine module. Also contains code for the statistics output and random num-
ber generators.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 7

• libcmtguicomms.a

A library containing the GUI-related GUI-CA Engine communication functions. The
source files are:

− guicomms.h

− guicomms.c

• libcmtcommon.a

A library containing functions used in both the GUI and the CA Engine. The source
files are:

− common.h

− constants.h

− list.c

− plane.c

− buffer.c

− sock.c

• libcpt_parse.a

The library of CARPET parser-related functions. The source files are:

− parser.h

− parser.c

− cpt_parse.h

− cpt_parse.c

− yylex.l

− yyparser.y

• camelot

The main CAMELot executable, including the GUI and parser. It is linked with the
three libraries listed above, and is built from the following source files:

− camelot.h

− camelot.c

− camelot_stubs.c

− camelot_viz.c

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 8

− camelot_globals.c

1.3 Structure

The rest of this report discusses the components in turn. Section 2 contains the CAMELot
User Manual. In section 3 we discuss the GUI implementation. In section 4 we deal with
the CA Engine and in section 5 we give a brief description of the Parser. The communica-
tion protocol is discussed in section 6 and the Visualisation facility in section 7. Section 8
provides benchmarking results for the CA Engine and section 9 lists the open issues of
CAMELot. The release history is available from appendix I. The possibilities for MPI con-
figuration can be found in appendix II.

1.4 Acknowledgements

The authors would like to thank Dr Mark Bull and Mr John Fisher for their contribution in
this document. Dr Mark Bull has also contributed towards the testing and validation of the
software.

Figure 1: Overall structure of CAMELot

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 9

2. User Manual

In this section we describe the functionality of CAMELot. We first provide an example of
how CAMELot is run and use some of its basic features. We then give a detailed overview
of CAMELot and finally we list and discuss the CARPET directives.

2.1 CAMELot Sample Session

2.1.1 Starting CAMELot

Assuming the current working directory is the top directory of the CAMELot binary distri-
bution, CAMELot is invoked from a UNIX shell using the command:

platform/camelot [X options] [filename]

Where platform is the platform identifier (the supported platforms are sunos5, linux,
irix6 and tru64); filename is a CARPET source file; and X options are the standard X
application command line flags (-display,-geometry,-iconic,-fn etc). These
command line arguments are optional. The CAMELot Development Window appears on
the screen. It consists of three sections:

• A Menu Bar;
• An Editor subwindow with a scroll bar in each direction;
• A three-Button bar.

2.1.2 Editing a program

A user may write a program using the editor window. Alternatively, they may open a pre-
viously saved program file using the Open option of the File menu. After any modifica-
tions the file must be saved using the Save or Save As option of the File menu; if a file-
name has been provided, this is done automatically when pressing the Compile button.

Program editing is facilitated with the use of the Cut, Copy and Paste Options of the Edit
menu. Shortcuts are available for all these functions.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 10

Figure 2: The Development Window

2.1.3 Program Compilation

When the program is ready, the user may compile it by clicking the Compile button. A
successful compilation is followed by a pop-up window dismissible by clicking its Dismiss
button. An erroneous compilation causes a beep and a pop-up window provides informa-
tion about the error.

Figure 3: Successful Compilation Pop-Up Window

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 11

2.1.4 Building a Program

The Build operation generates a Unix executable file for CA execution. In order to build a
file the user must first set the configuration parameters by using the Configure menu.
These define:

• The Dimensions of the CA Engine;
• The number of Processes to handle the task;
• The number of Folds (see section 4.4 for more on folds) into which the task is divided.

The user can then build the executable by pressing the Build button. The output of the C
compiler is shown to the user in a pop-up window.

Figure 4: Successful Build Pop-Up Window

2.1.5 Running a Program

The Configure menu of the Development Window includes a menu by which the user can
initialise the collection of statistics for the basic functions of the CA Engine. This should
be enabled before clicking the Run button. After successful compilation and building the
program, the user can invoke the executable by clicking the Run button. This pops up the
Simulation Window which consists of three parts, a Menu bar, a Display part and a Button
bar.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 12

Figure 5: The Simulation Window

The State menu contains an Initialise and a Save Option. The user may initialise a substate
or the whole state of a CA using an existing file, or save the current status of the CA. The
Setup menu allows the definition of the number of CA evolutions to be run as well as other
more advanced features, which are described later in this section. The display part of the
window contains information about the configuration of the CA and updates the current
step when the CA is running.

There are 5 buttons on this window. The Go and Loop buttons initialise the CA execution,
the former for a number of steps defined from the Setup menu, the latter indefinitely (in
fact for INT_MAX1 steps). The Pause button temporarily suspends CA execution and al-
lows visualisation window examination, state saving or editing etc. The user may continue
the CA execution by clicking on the Resume button or restart the execution by clicking Go
or Loop. The Visualise button allows the visualisation of a substate in various formats. The
statistics for the functions of the system are output periodically during the run or after
stopping the CA Engine execution, according to the user’s request.

2.1.6 Exiting CAMELot

The user may close the Simulation Window and terminate the CA Engine execution by
selecting the Close Option of the State menu. In order to exit CAMELot the user must se-
lect the Exit option in the File menu of the Development window.

1 i.e 312 -1 on 32-bit systems

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 13

2.2 CAMELot Functionality Overview

The CAMELot environment supports 3 different types of Windows. We will examine them
in order of appearance when using the environment.

2.2.1 Development Window

The Development Window pops up when running CAMELot and, when it is closed,
CAMELot exits. It consists of three parts, a Menu Bar, the CAMELot Editor and a 3-
Button Bar.

2.2.1.1 Menu Bar

There are 4 pull-down menus.

Figure 6: The Development Window Menus. Note that the Configure Menu is greyed
out since the screenshot was taken before compiling the file in the Editor.

• File;
• Edit;
• Configure;
• Help.

2.2.1.1.1 File

The File menu offers the following options:

• Open a file;
• Save a file;
• Save a file As;
• Load configuration;
• Save Configuration;
• Exit CAMELot.

The Open and Save As options pop up a window which allows the user to navigate through
the filesystem and select the desired filename. For a file to be visible by Open, its name

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 14

must have the extension .cpt. The Save option is only available if a filename has been
specified for a file being edited. The Exit button exits CAMELot; the Delete button usually
available on X Window titlebars is disabled for this window.

Figure 7: The File Menu

The characteristics of the program which are set under the Configure menu of the Devel-
opment Window are automatically saved in a file named progname.cnf, progname
being the full pathname of the CARPET file, every time the users saves the CARPET file.
They are automatically retrieved when the CARPET file is Opened. In addition to this
automatic facility, the Save and Load Configuration options allow the user to explicitly
save and retrieve the configuration of the model2.

2.2.1.1.2 Edit

The Edit menu contains the usual options. Keyboard short-cuts or “accelerators” (in brack-
ets) are available for all options:

• Cut (Ctrl-X);
• Copy (Ctrl-C);
• Paste (Ctrl-V);
• Find (Ctrl-F);
• Find next (Ctrl-G);
• Replace (Ctrl-R).

Paste is only available after a Cut or Copy has been issued.

2 Note that the .cnf file format was extended in CAMELot 1.2. .cnf files saved by CAMELot 1.1 are not
compatible with CAMELot 1.2. When opening a CARPET file in CAMELot 1.2 which has a corresponding
.cnf file saved by CAMELot 1.1, immediately check the Configuration menu settings and use “Save
Configuration…” to overwrite the old .cnf file.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 15

Figure 8: The Edit Menu

2.2.1.1.3 Configure

The Configure menu is made available after a successful compilation. It allows the user to
modify the following parameters:

• The Dimensions of the CA (x-Length, y-Height, z-Width);
• The number of Processes to handle the task;
• The number of Folds to which the CA is divided in the Length axis.
• The C compiler pathname and flags;
• The MPI run command;
• The Timing output.

Figure 9: The Configure Menu

It is worth noting that:

• For best performance the Length of the CA must be an exact multiple of the product of

the number of Processes with the number of Folds;
• A 1-D CA has only the x axis available and a 2-D CA has only the x and y axes avail-

able.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 16

2.2.1.1.3.1 Controlling XDR Output

Starting from release 1.2 of CAMELot, XDR is used for the file I/O, this allows CAMELot
data files to be portable between different machine architectures. The user can control the
use of XDR through the use of the C compiler command line option of the Configure
menu, shown in Figure 10.

Figure 10: The C compiler command line option pop-up menu

• If the user wants to disable XDR for the operations related with reading from file, they
should define -DNO_XDR_READ in the C compiler flags of the C compiler command
line option pop-up menu;

• If the user wants to disable XDR for the operations related with writing to file, they
should define -DNO_XDR_WRITE.

The user can use this facility to translate native binary project or substate files to XDR by
applying the following:

• Load and compile the corresponding CARPET file;
• Specify the appropriate dimensions and define -DNO_XDR_READ in the C compiler

flags of the C compiler command line option pop-up menu, then build;
• Click the Run button, load the configuration or substate files in question and then save

them without running any iterations.

Please refer to the following sections for information about the steps mentioned in the
above discussion.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 17

2.2.1.1.3.2 Notes on Timing

Figure 11: The Timer Configuration Menu

The CA Engine times its basic functions, namely the execution of the update statement,
steering, visualisation, writing the system state on file and the total time spent excluding
the time spent paused or stopped. The user can use the menu shown in Figure 11, which
appears when the user clicks the Timing output option of the configure menu, to enable or
disable the output of such results, set the period for printing them and direct the output to a
file or the standard output of the terminal from which CAMELot was started. The format
of the output is shown in Table 1.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Process: 0                                              Generations:  
 
                         Calls            Time            Best            Worst 
-------------------------------------------------------------------------------- 
Update Function :        
Steering        :        
Boundary Comm   :        
Visualisation   :        
Periodic Save   :        
 
Sum             :        
Total Execution Time:    

Table 1: Output of Timing Statistics 

 
 
Setting the timing step to zero results in the output being printed once after the CA Engine 
has been terminated (not at the end of the run). If the timing step is set to a value greater 
than zero, then the statistics are generated in the specified period. The time is accounted 
using double precision real numbers and is printed in floating-point representation in the 
standard C format (6 decimal digits), the measuring unit being seconds. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  18 

The Generations field contains the number of generations the output concerns. The field 
Calls counts the number of calls to each of the functions. Time is the total time taken for 
the calls in the Calls field. Best and Worst give the best and worst times for the function in 
question. The functions accounted are obvious. One remark is that after each iteration of 
the CA Engine, the read copy of the CA is updated by means of a memcpy call. Note that 
the time taken by this call is not accounted for by the Update Function timer. Sum gives 
the sum of the above times, whereas Total Execution Time counts the time total time 
taken, excluding the time spent paused or serving user requests. The Time field of Total 
can be less than the time shown in Sum, if the number of iterations is small, in which case 
the time taken for the initial boundary exchange is significant compared with the total exe-
cution time. This time is part of the Sum time but not part of Total.  
 

2.2.1.1.3.3 Notes on Other Settings 

The following settings can be made using the -D pre-processor flag in the “C compiler 
command line” menu option: 
 
• PROFILING: This directive enables gprof profiling output. Its use is explained in 

[Kavoussanakis et al. 1999]. It should be noted that in order for this flag to be effec-
tive, the MPI libraries must be compiled with the gprof compiling enabled. The ap-
propriate flag must be set in the “C compiler command line” as well. 

• DEBUG: Provides assorted debugging messages 
• DEBUG_CALC_X_SIZES: Ditto for function calc_x_sizes() (section 4.4.1). 
• DEBUG_CMT_READ: Ditto for function cmt_read() (section 6.5.8.1). 
• DEBUG_CMT_WRITE: Ditto for function cmt_write() (section 6.5.8.1). 
• DEBUG_CMT_BOUNDARY_SWAP: Ditto for function cmt_boundary_swap() 

(section 4.5.2). 
• DEBUG_RUN: Ditto for function run() (section 4.6.3). 
• DEBUG_TX_VIS_PACK: Ditto for function tx_vis_pack() (section 7.6.2.1). 
• DEBUG_SERV_VIEW_STATE: Ditto for function serv_view_state() (section 

6.5.4). 
• DEBUG_SERV_SET_STATE: Ditto for function serv_set_state() (section 

6.5.4). 
• DEVELOP: More assorted messages; it was used in the initial stages of developing the 

program.  
• EVEN_DECOMP: Assumes that even decomposition of the model is possible. The ef-

fects of this are discussed extensively in sections 4.4 and 6.5.3 of this document.  



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  19 

• HOMOGENEOUS: A non-portable performance optimisation which is discussed in sec-
tion 5.2.1. 

 

2.2.1.1.4 Help 

The details of the product authors are available from the About CAMELot option of the 
Help menu. 
 

 

Figure 12: The Editor of the Development Window. Note the two errors, the dimension 
of the neighbor vector and the undefined Get directive which will be detected in the 
Compile and Build processes respectively. 

2.2.1.2 Editor Window 

The user may Open a file and use the Editor to view and modify it (Figure 12). If the file 
exceeds the length (80 characters) or the height (24 characters) of the window, the user 
may use the respective scrollbars or the keyboard arrow keys. 
 
2.2.1.3 Button Bar 

The available buttons are: 
 
• Compile; 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  20 

• Build;  
• Run. 
 
 

 

Figure 13: The Button Bar of the Development Window. The only available button is 
compile since the screenshot was taken before compiling the file in the Editor and there 
was no configuration file available for this program. 

 
Compile 
This button compiles the current program in the Editor. This compilation checks for 
CARPET syntactic errors and generates the C source and header files for the specified CA 
model. The compiler handles both C (/* */) and C++ (//) style comments. A failed 
compilation is accompanied by a beep; a window is popped up containing the error mes-
sages and the cursor in the Editor is positioned at the first line reported to contain an error. 
If there is a beep but no error message is displayed then the automatic Save has failed. 
 

 

Figure 14: Error Message on the CARPET Compiler Output Window 

 
If a compilation fails, the Build and Run buttons as well as the Configure menu are un-
available to the user. 
 
N.B.: Clicking the Compile button in CAMELot 1.0 implicitly saved the CARPET file. 
This feature has been disabled in release 1.1 of the software to meet the users’ request. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  21 

Build 
This button compiles and links the CA Engine code with the generated C source and 
header files for the CA. It invokes the C compiler specified in the Configure menu and 
redirects its output to the pop-up window generated. Starting from release 1.1 of the soft-
ware, the pop-up window contains an [OK] or [ERROR] line at the end of the message 
generated by the compiler, to provide feedback about the status of the finished compila-
tion. This is helpful, because if the compilation is successful, the UNIX C compiler cc(1) 
usually generates no messages. 
 
While the building of the program fails, the Run button is greyed out. 
 
Run 
This button spawns the CA Engine processes specified in the Configuration menu using 
the MPI run command as it appears in the respective option of the same menu. It also 
spawns the Simulation Window discussed next and makes the Build and Run buttons un-
available. 
 

 

Figure 15: Error Message on the Build (C compiler) Output Window 

 
2.2.2 Simulation Window 

The Simulation Window comprises  
 
• a Menu bar;  
• a Display subwindow;  
• a Button bar. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  22 

2.2.2.1 Menu Bar 

The Menu Bar contains three menus: 
 
• State; 
• Setup; 
• Help. 
 

 

Figure 16: The Menu Bar of the Simulation Window 

 

2.2.2.1.1 State Menu 

This allows the whole state or specific substates to be initialised or saved. The Close op-
tion closes the Simulation Window as well as all the Visualisation Windows and termi-
nates the execution of the CA Engine. 
 
A Substate can be saved in a binary file using the State-Save-Substate sequence of options. 
In order for the file to be subsequently detected as a substate file, it must be saved with the 
extension .cmt. Saving the Configuration involves saving status-specific data in a file 
with the extension .cpj, as well as all the substates in files with filenames constructed as 
follows: if the Configuration filename is cfn.cpj the substates are saved in filenames 
named cfn000.cmt, cfn001.cmt, etc.  

 

Figure 17: The State Menu 

The data contained in a configuration file are: 
 
• The number of Dimensions; 
• The per-dimension Sizes; 
• The current Generation of the CA Engine; 
• The number of States; 
• The number of Folds; 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  23 

• The number of Global Parameters; 
• The values of the Global Parameters. 
 
Information stored in configuration or substate files can be loaded into the CA Engine us-
ing the State-Initialise options. 
 

2.2.2.1.2 Setup Menu 

The Setup Menu allows the following to be adjusted: 
 
• Steps to run the Engine; 
• Storage interval; 
• Substate editing (one cell); 
• Parameter editing; 
• Active Fold setting; 
• Manual setting of the per-substate minimum and maximum values for colour mapping. 
 
Steps: Sets the number of CA Engine iterations to be run if the user presses the Go button. 
 

Figure 18: The Setup Menu 

 
Storage Interval: Enables automatic CA Configuration saving with the set period. This 
involves saving the global parameters and other state variables in a binary file with the 
extension .prj and saving the substate data in files following the convention described 
earlier in the State Menu discussion. In addition to what stated there, the filename is pre-
fixed with three characters denoting the sequence of the automatic save, starting with 000. 
If more than one thousand3 consecutive automatic saves take place, the system overwrites 
the first without warning. 
 
In addition to the above, an AVS field file is saved for each substate datatype, for each 
invocation of the macrocell executable (not each run, the file stops being updated when the 
                                                 
3 In CAMELot 1.0 this limit was set to 100 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  24 

Simulation Window is closed). These contain information to be used by the post-
processing tool which is based on AVS/Express. The format of the field files, based in the 
AVS description [AVS 1993] is shown in Table 2. 
 
To summarise the above, the following files are saved as a result of periodic configuration 
saves: 
 
• In each save, a project file with the extension .cpj; 
• In each save, a data file for each substate with the extension .cmt; 
• In each simulation, a field file for each substate datatype with the extension .fld. 
 
 
# AVS field file 
# CAMELot generated 
nstep = <number of expected4 saves> 
ndim = <model dimension> 
dim1 = <x-dimension> 
dim2 = <y-dimension> 
dim3 = <z-dimension> 
nspace = 3 
veclen = <number of associated substates> 
data = <datatype of associated substates> 
field = uniform 
label = <names of associated substates5> 
 
time value = 1 
variable 1 file = <filename> filetype = binary 
variable 2 file = <filename> filetype = binary 
 
... 
EOT6 
 
time value = 2 
... 

Table 2: Format of CAMELot Generated AVS Field Files 

 
For example, if the filename for the periodic configuration is fname and the system has 
three substates, two of which are of type char and one of type float, one periodic save 
will result to the following files being saved on disk: 
 

000fname.cpj 

                                                 
4 This could differ from the number of actual saves if the user ends the run prematurely 
5 The format of the label list is described in the discussion of function cmt_create_fld() in section 
6.5.8.1. 
6 Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to 
consecutive time steps 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  25 

000fname000.cmt 

000fname001.cmt 

000fname002.cmt 

fname_char.fld 

fname_float.fld 

 
It should be noted that after choosing the filename for the Project save, the CA Engine gen-
erates a warning if this choice will lead to files already on disk being overwritten. If the 
program is not running in Batch mode (see section 0 for details), this warning is also dis-
played in a pop-up window. The user can change their preference by repeating the opera-
tion described above; otherwise, the saves will occur. 
 
Substate Editing: Allows the user to view and set the values of the substates of one cell 
manually. The possible substate names are made available through a menu. 
 

Figure 19: The Substate Editing Menu 

 
Parameter Setting: Allows the adjustment of a global parameter. Parameters can be ad-
justed using the names they have in the program. The possible names are made available 
through a menu similar to the one shown in Figure 19.  
 
Active Fold Setting: Allows the definition of the first and last active fold. This implies that 
the active regions can only be considered contiguous. Folds are numbered from 0 to 
NFolds-1; illegal values are disallowed. Alternatively, the automatic inactive region de-
tection mechanism implemented in CAMELot allows non-contiguous active regions and 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  26 

offers finer granularity. The mechanism is automatically activated if the CARPET program 
contains the statement deterministic and the user has not set the folds manually. 
Once deactivated, the automatic inactive region detection mechanism can be reactivated if 
the active folds are set to maximum range under the condition that the deterministic 
keyword exists in the CARPET program.  
 

 

Figure 20: The Substate Selection Menu 

 
Manual setting of the per-substate minimum and maximum values for colour mapping: 
This option allows the user to override the automatic per-substate minimum and maximum 
calculation executed as part of the colour mapping strategy. Specifying the minimum and 
maximum enables visualising parts of the data with greater detail. This does not affect the 
evolution of the model, although it speeds up the visualisation process. The system reverts 
to the automatic mechanism if the users clicks on the Auto button of the menu (Figure 21). 
 

 

Figure 21: Manual Per-Substate Minimum and Maximum Value Setting Menu 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  27 

2.2.2.2 Display Screen 

Displays the current values of the following: 
 
• The Dimensions; 
• The Current Step of the CA Engine7; 
• The Periodic Storage Interval; 
• The number of Folds. N.B.: “Folds: 1” indicates that no partitioning into multiple folds 

was done at compile time; i.e.. the CA is considered to consist of one single fold. 
 

 

Figure 22: The Display Part of the Simulation Window 

 
2.2.2.3 Button Bar 

The available buttons are: 
 
• Go; 
• Loop; 
• Pause; 
• Resume; 
• Visualise. 
 

 

Figure 23: The Button Bar of the Simulation Window 

 
Go: Starts the CA Engine until the generation counter reaches the number of iterations 
specified in the corresponding Setup menu option. It can be interrupted by State or Setup 

                                                 
7 In the initial versions of the software this was available only if planes were visualised and only at the 
visualisation intervals. From release 1.1 this is available at all steps regardless of the existence of 
visualisation windows. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  28 

menu options as well as pressing any other buttons on the Button Bar not including Re-
sume. 
 
Loop: Same as Go except that it starts an infinite (INT_MAX iterations) CA evolution. 
 
Pause: Temporarily suspends CA Engine execution. This can be restarted with any of 
three buttons.  
 
• Go will restart the Engine until it reaches the specified number of iterations; 
• Loop will restart the Engine for infinite iterations;  
• Resume will continue the operation of the Engine from the step where it stopped. It 

will Loop if Loop was selected before Pause was pressed, or continue until the speci-
fied (possibly revised) finishing point is reached otherwise. 

 
Visualise: Allows the initialisation of a Visualisation window. The user is prompted to set 
the visualisation period and select the substate to be visualised. In the case of a 3-D model 
the user has to select one of the three available visualisation formats discussed in the Visu-
alisation Window Section. 
 
N.B.: As of the release 1.1 of the software, Go and Loop no longer zero the iteration coun-
ter. 
 
2.2.3 Visualisation Window 

The Visualisation Window comprises two basic parts:  
 
• the Visualisation Space; 
• the Button Bar. 
 
Important information is also displayed in the title bar of the X window, namely the 
CARPET program filename, the Visualisation Step, the name of the visualised Substate, 
and the entity Coordinates. 
 
2.2.3.1 Visualisation Space 

This occupies an area of 640x640 pixels (not including the colour palette bar area). The 
visualised entity is scaled so as to fit in the window. If the size (in cells) of the visualised 
entity is too big to represent each cell by at least one pixel, then the cells of the entity are 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  29 

sampled at regular spatial intervals. These sampled cells are drawn as single pixels. No 
averaging over the interval is performed.  
 
The user can resize the visualisation window. This is achieved by means of the corre-
sponding facility of the user’s Window Manager. If the user decreases the visualisation 
space, scroll bars appear at the right-hand and bottom sides of the window. The default 
size of the window is the maximum; increasing the size further does not make the visuali-
sation larger. However, it is meaningful for a decreased window to be enlarged at will, 
until it reaches its maximum size. This happens because resizing the window does not 
cause the visualised entity to be zoomed in or out, it only moves the borders of the win-
dow.  
 
The colour palette currently in use is shown as a horizontal bar at the bottom of the Visu-
alisation Space of the window. The minimum and maximum values for the visualised sub-
state are shown above this bar. 
 
The possible types of visualisation depend on the number of dimensions of the model: 
 
1-D Models: The visualisation is drawn in horizontal lines from left to right. The vertical 
dimension of the window corresponds to time. The user can therefore see how the model 
changes with time. When the vertical dimension of the screen is exhausted, the visualisa-
tion restarts from the first line overwriting the first visualisation. 
 
2-D Models: They are represented in an orthogonal manner, x running horizontally and y 
running vertically, the origin being the bottom left corner of the window. 
 

Figure 24: The Possible Types of Visualisation of a 3-D Model 

 
3-D Models: x-y, x-z or y-z planes of a 3-D model can be displayed either as orthographic 
(as above) or isometric projections. The coordinate of the plane (i.e.. z value for an x-y 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  30 

plane, y value for a x-z plane etc) is specified by the user via a dialog box with scale wid-
gets. 
 
In the orthographic case, x-y planes are displayed as above, x-z planes are displayed with a 
horizontal x-axis and vertical z-axis, and y-z planes are displayed with a vertical y-axis and 
horizontal z-axis. In the isometric case, the y-axis is oriented vertically, the x-axis is ori-
ented upper-left to lower-right and the z-axis lower-left to upper-right. 
 

Figure 25: Plane Coordinate Dialog Box 

 
A 3-plane isometric view is available for 3-D models. In this case, an x-y, x-z and a y-z 
plane are selected by the user. If the coordinates of these planes are denoted z1, y1, and x1 
respectively and the size of the CA in the z dimension is zmax then the x-y plane from x=0 to 
x=x1 and y=0 to y=y1, the x-z plane from x=0 to x=x1 and z=z1 to z=zmax and the y-z plane 
from y=0 to y=y1 and z=z1 to z=zmax are displayed as three faces of a cuboid with the axes 
oriented as for the 1-plane isometric case. The origin is thus the lower leftmost visible ver-
tex, i.e.. a “left-handed” coordinate system is used. 
 
From the above it can be deduced that in order to visualise a substate for the entire 3-D 
model, the user has to select the x and y coordinates to be equal to the maximum value for 
the x and y dimensions respectively and z=1 (x1=xmax, y1=ymax, z1=1), as shown in Figure 
25. 
 
2.2.3.2 Button Bar 

This contains two buttons: 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  31 

 
• Colours; 
• Close. 
 
Colours: Allows the user to set the 256-colour palette to match their preference. The de-
fault is coloured from blue (lowest value) to red (highest value), the intermediate values 
mapped to cyan, green and yellow in ascending order. A monochrome (greyscale) palette 
ranging from black to white is also available. The files specifying the palette are stored 
with the extension .pal and contain 256 lines with 3 space-separated unsigned 16-bit 
hexadecimal values for Red, Green and Blue respectively, in each line. The colour in the 
first line is used for background. The palette selected is shown in the colour palette bar. 
 
Close: Closes the Visualisation Window; this does not affect the CA Engine execution. 
The user may also close the Window from the Delete button of the Window Manager. 
 
A screenshot of the Visualisation Window for the model in Figure 12 is shown in Figure 
26. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  32 

 

Figure 26: The Visualisation Window. This is the output of the model in Figure 12 
after 10 iterations of the CA Engine. 

2.2.4 Off-line CA Engine Execution 

The CA Engine can be invoked outside the CAMELot environment. Limited functionality 
is supported. In the following discussion we assume that the user has built the CA executa-
ble either using the CAMELot environment or using the Makefile.batch makefile available 
with the distribution. 
 
The command-line arguments available to the user are as follows: 
 
-l8<no_of_state> <filename> 

 

                                                 
8 This is the letter “el”. No space exists between the “l” and the state index. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  33 

Initialise substate <no_of_substate> from <filename>. This suggests that the user 
knows the substate index allocation done transparently in the CARPET parser. These indi-
ces can be deduced from the state CARPET statement, as they are parsed sequentially, 
i.e. the first substate given is indexed 0, the second 1 etc. 
 
-0  

 
This initialises all substates to 0. 
 
-n<num_gens>  

 
Set the number of generations to be run to <num_gens>. 
 
-s<save_step> <filename> 

 
Enable periodic project save to files with basename <filename> (according to the con-
ventions for saving a project) with period <save_step>. See section 2.2.2.1 for more 
details. 
 
-t<time_step> <filename> 

 
Enable periodic timing statistics output to file <filename> with period <time_step>. 
If <time_step> equals zero, then the results are output at the end of the simulation. If 
<filename> is set to -, then the results are written to the standard output of the terminal 
window where CAMELot was started. See section 2.2.1.1 for more details. 
 
<filename> 

Initialise the project from <filename>. This has no parameter to identify it and it must 
be the last argument. If -l or -0 have been specified it is ignored. 
 
2.3 The CARPET Programming Language 

CARPET is a programming language for the definition of cellular automata-based models 
and their transition functions, designed as an extension to ANSI C. A CARPET program 
consists of the following sections: a global declaration section, known as the cadef (CA 
DEFinition) section; a transition function; and an optional steering function.  
 
The general layout of a CARPET program is as follows: 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  34 

 
cadef 

{ 

 declarations 
} 

 
[transition function local variable declarations and subroutine prototypes] 
 
{ 

 transition function code 
} 

 
[transition function subroutines] 
 
[ 
steering 

{ 

 steering function code 
} 

] 
 
where items in […] brackets are optional. Note that the steering function must be located 
after the transition function and any subroutine functions called by the transition function. 
 
The extensions to C defined in the CARPET language are described below. 
 
2.3.1 The transition function 

The transition function (and its subroutine functions, if any) may contain the following 
CARPET statements, in addition to C code: 
 
•  cell_substate 
•  DimX, DimY, DimZ 

•  GetX, GetY, GetZ 

•  NFolds 

•  NProcs 

•  random() 

•  randomise() 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  35 

•  srandom() 

•  step 

•  update() 

• parameter references 
 
 
2.3.2 cadef   

Syntax 
cadef 

{ 

declaration; 

declaration; 

     ... 

declaration; 

} 

 
Remarks 

This is the declaration section of the program; it must precede any statement except 
for C pre-processor ones. declaration can be any of the following statements: 

  
• deterministic 

• dimension 

• neighbour 

• parameter 

• radius 

• region 

• state 

• threshold 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  36 

Example 
 cadef 

 { 

  dimension 3; 

radius 1; 

region Inside (start+1:end-2, :,:); 

state (float val; int val2); 

neighbour N[6] ([-1,0,0]left,[1,0,0]right, 

[0,-1,0]down, [0,1,0]up,  

[0,0,-1]in, [0,0,1]out); 

parameter (pi 3.14159); 

deterministic; 

threshold (cell_val == 3); 

 } 

 
 

2.3.3 cell_<substate> 

Syntax 
 cell_<substate> 

 
Remarks 

A user may refer to a specific substate of a cell by using the string “cell_” fol-
lowed by the name of the substate.  
N.B.: A user may modify the value of a substate using the update function (sec-
tion 2.3.25). 

 
Example 
 cadef  

 { 

  state (float temp); 

 } 

 

 float val; 

 

 val = cell_val+3; 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  37 

2.3.4 cpt_abort 

Syntax 
 cpt_abort() 

 
Remarks 

Calling this function causes the program to stop. It is only available inside the 
steering block of the program. 

 
Example 

An example is available in section 2.3.22. 
 
2.3.5 cpt_save 

Syntax 
 cpt_save (char *fname) 

 
Remarks 

This function saves all the CA Engine data to project and substate files. It does not 
save the AVS/Express related files. It is only available for steering. It uses the 
fname argument as a root for the generated files, as described in section 2.2.2.1.2 
(omitting the AVS/Express related discussion). 

 
Example 

An example is available in section 2.3.22. 
 
2.3.6 cpt_set_param 

Syntax 
 cpt_set_param (float *par, float npar) 

 
Remarks 

This function alters the value of the global parameter pointed by par to that of 
npar. It is only available inside the steering statement. See section 2.3.14 for 
the definition of global parameters. 

 
Example 

An example is available in section 2.3.22. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  38 

2.3.7 deterministic (alias determin) 

Syntax 
 deterministic; 

 
Remarks 

This statement signifies the commitment of the programmer that the cell update 
function is deterministic [Telford et al. 1998].  A deterministic program is one 
where the state of a cell is guaranteeed to be unchanged if the state of its local 
neighbourhood is unchanged. This is one of the necessary conditions for automatic 
inactive region detection (the other being that the user has not set active folds 
manually). 
N.B.: A program whose update rule depends on step or random functions is non-
deterministic (except if this only happens in step 0). Starting with release 1.2 of the 
software, detection of the deterministic keyword and the keyword step or 
any random function in a program is flagged by the parser as a warning (non-fatal). 

 
Example 

The example below gives an example where the incorrect use of determinis-
tic leads to erroneous program execution.  
 

 cadef { 

  ... 

  state (float val); 

  deterministic; 

 } 

  

 float newval; 

 { 

  if (0 == step) {   // OK 

   newval = GetX+GetY+GetZ;  

  } else if (step < 20) {  // not deterministic! 

   newval = 0.51*cell_val; 

  } 

 ... 

update(cell_val, newval); 

 } 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  39 

 
2.3.8 dimension 

Syntax 
 dimension <n>; 

 
Remarks 

Defines the number of dimensions of the CA Engine. It ranges from 1-3.  
 
2.3.9 DimX, DimY, DimZ 

Syntax 
 DimX, DimY, DimZ 

 
Remarks 

These values are the CA Engine dimension of the x, y and z axis respectively. Note 
that for x, which is split according to the number of processes, this is the size of the 
whole model. 

 
Example 
 cadef { 

  ... 

  state (int st); 

  ... 

 } 

 

 { 

  DimX = 5;   // This is illegal! 

  

 if (DimX == cell_st) { 

update(cell_st, DimY); 

  } 

  ... 

 } 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  40 

2.3.10 GetX, GetY, GetZ 

Syntax 
 GetX, GetY, GetZ 

 
Remarks 

These values are the global x, y and z coordinates of the cell respectively. 
 
Example 
 cadef  

 { 

  ... 

  state (float dist); 

  ... 

 } 

 

 float val;  

 { 

 if (0 == step) { 

val = GetX+GetY+GetZ-3; 

update(cell_dist, val); 

 } 

  ... 

 } 
 
2.3.11 neighbour (alias neighbor) 

Syntax 
 neighbour <Nname>[<n>](<[x,y,z] alias>, ...,  

<[x,y,z] alias>); 

 
Remarks 

This statement defines a logical neighbourhood. The x,y,z values must remain 
within the [-radius, radius] interval defined in the cadef statement. The 
alias for each neighbour is not compulsory; a cell can refer to its neighbour using 
the Nname[i] notation. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  41 

Example 
 cadef { 

  dimension 2; 

  radius 1; 

  state (float dist); 

neighbour Neumann[4]([0,-1] North, [0,1], [-1,0], 

[1,0]); 

 } 

 

float v1, v2; 

{ 

v1 = North_dist; 

v2 = Neumann_dist[0]; // Should be the same! 

 ... 

} 
 
2.3.12 NFolds 

Syntax 
 NFolds 

 
Remarks 

Returns the number of folds. 
 
Example 
 cadef  

 { 

... 

 } 

 

NFolds = 3;   // illegal! 

if (1 == NFolds) { 

 ... 
 
2.3.13 NProcs 

Syntax 
 NProcs 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  42 

 
Remarks 

Returns the number of processes to which the CA is split in the x axis. 
 
Example 
 cadef  

 { 

... 

 } 

 

Nprocs = 2;   // illegal! 

int strip_length; 

 

strip_length = DimX/(NProcs * NFolds); 

 ... 
 
2.3.14 parameter 

Syntax 
 parameter (param_def_list) 
 

where param_def_list is a comma-separated list of parameter definitions, 
where each parameter definition has one of the following forms: 
 

• param_name 
• param_name value 

where value is a float, in any C float syntax. 
• param_array[dim] 
• param_array[dim] {array_list} 

where array_list is a comma-separated list of floats, in any C 
float syntax, and dim is an integer index greater than 1.  

 
Remarks 

Declares and defines global CA parameters. Their values can only be changed dur-
ing the run from the GUI, or by means of the cpt_set_param() primitive (sec-
tion 2.3.6), since they are global to all the cells. They are of type float. Parame-
ters are accessed in a CARPET program directly through their symbolic name. The 
maximum number of parameters (counting each element of parameter arrays) is 
500, as set by the MaxNumParam variable in the file parser.h of the parser. 
The same file contains the definition of the maximum length of a parameter name 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  43 

(30 characters, including the array indices) MaxLenParam. The array list may 
have fewer than dim elements, in which case the additional values default to zero 
(non-initialised parameters default to 0 in any case). 
 

Example 
 cadef { 

  ... 

  parameter (mypar 2.0, par_array[3] {1.0, 4.0}); 
... 

 } 

 
2.3.15 radius 

Syntax 
 radius n; 

 
Remarks 

Defines the radius of the neighbourhood of the cells. 
N.B.: radius is limited to 
 
• 60, if dimension is 1; 
• 2, if dimension is 2; 
• 1, if dimension is 3. 

 
2.3.16 random 

Syntax 
 random (n); 

 
Remarks 

Returns a pseudo random integer between 0 and n, n being a positive integer.  
N.B.: random() returns the same sequence of numbers every time it is called. To 
avoid this, the user may use the randomise() function. The use of this function 
could make a program non-deterministic (see section 2.3.7).  

 
2.3.17 randomise (alias randomize) 

Syntax 
 randomise(); 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  44 

 
Remarks 

Creates a new seed for the random number generator. 
 
2.3.18 region 

Syntax 
 region <region-name> (<min_x>:<max_x>,<min_y>:<max_y>, 

<min_z>:<max_z>); 

 
Remarks 

The user specifies a region as part of the cadef block of the program, using a dec-
laration of the above form. This is used to allow global reduction operations within 
the steering block of the CARPET program. There is no limit to the number of re-
gions that can be specified by the user. If the lower or upper bound of a co-efficient 
of the region is not defined, the specification defaults to the corresponding mini-
mum or maximum for the respective dimension. The bounds of the region range 
from 1 to the size of the corresponding dimension. The keywords start and end 
are defined to be the minimum and maximum of the dimension in which they are 
found, thus allowing flexible region specification. 
 
Because the dimensions of the model are specified at build time while the regions 
are declared at compile time, full error checking is not possible. Nonetheless, the 
following conditions are flagged as errors: 
 
• Specifying minimum and maximum values for dimensions not used by the 

model; 
• Specifying a negative integer as a range boundary; 
• Specifying a maximum value less than a minimum value (this check is possi-

ble if the region boundaries are explicitly defined). 
 
Example 
 cadef { 

  dimension 3; 

region myregion (start+2:end-2,:,3:); 
... 

 } 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  45 

2.3.19 region_<op> 

Syntax 
 region_<op> (<region-name>, <state>); 

 
Remarks 

The region_<op>() function is available inside the steering function. It returns 
a value of the same type as its state argument. It applies the reduction operation 
op to state state all the cells in region region-name. The supported opera-
tions are as follows: 
 
• max 

• min 

• sum 

• prod 

• land (logical and) 
• band (binary and) 
• lor (logical or) 
• bor (binary or) 
• lxor (logical exclusive or) 
• bxor (binary exclusive or) 
 
The user can supply a global reduction operation inside their CARPET program to 
cater for operations other than the ones above. The prototype of a global reduction 
function corresponding to the region_<op>() function must comply with the 
following: 
 
<datatype> cpt_<datatype>_<op> (int min_x, int max_x, 

int min_y, int max_y, int min_z, int max_z, int stateid, 

CptCell *cp) 
 
N.B.: The automatically generated functions assume that the co-efficients of the 
model are in the [0,DIMw-1] range, w ∈{X,Y,Z}, in other words, they range 
from 0 to the maximum dimension of the model minus 1.    

 
Note: the importance of the neutral element 

When developing a global reduction function the user should take into account that 
a region can be defined so that the data in it are outside the domain of one or more 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  46 

processes. The functions automatically generated provide an algorithm which pre-
vents erroneous calculation. However, because the operations are global, all the 
processes contribute to the global reduction of the result. In order to avoid incorrect 
global reduction of the data, the user can set the initial value of the variable con-
taining the per-process result of the function to be equal to the neutral element for 
the corresponding operation.  

 
Example 

Examples of such functions are the ones automatically generated by the parser. 
 
2.3.20 srandom 

Syntax 
 srandom (n); 

 
Remarks 

Same as randomise(), only that the programmer may choose the seed argument 
through n. 

 
2.3.21 state 

Syntax 
state(type substateA1, substateA2, …, substateAn,  

type substateB1, substateB2, …, substateBn, …); 

 
Remarks 

The state of a cell consists of various typed substates. The allowed types are: 
 
• (unsigned) char; 
• (unsigned) short; 
• (unsigned) int; 
• float; 
• double; 
• arrays of the above. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  47 

2.3.22 steering 

Syntax 
steering { 

statement; 

... 

statement; 

} 

 
Remarks 

The steering function is an optional feature of a CARPET program by which the 
user can affect the flow of the program as a result of global reductions on regions of 
the model (see section 2.3.18 for the definition of regions in a CARPET program). 
 
The steering function is defined in a separate section of the CARPET program, 
similarly to the update function. The main difference is that the update function is 
applied separately in each cell, whereas the steering function is global for the 
model. Any code inside the steering statement is copied verbatim to the gener-
ated file, with the exception of the region_<op>() statements which are trans-
lated to a global reduction function, as shown in section 2.3.19. The user can mod-
ify the flow of the program inside the steering section in either of the following two 
ways: 
 
• call the function cpt_set_param (float *old_p, float new_p), 

which sets the global parameter pointed by old_p to the value of new_p; 
• call the function cpt_abort(), which terminates the execution of the pro-

gram without exiting the CA Engine. 
 
Inside the steering code, the user has access only to the following CARPET defined 
variables: 
 
• DimX, DimY, DimZ;  
• step; 
• global parameter values. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  48 

Example 
cadef { 

dimension 3; 

region Inside (start+2:end-2,:,:); 

... 

state (float val); 

parameter (pi 3.141); 

} 

... 

steering { 

float min = region_min (Inside, val); 

 

if (min < 4.0) { 

cpt_set_param (&pi, 3.14159); 

} else if (min > 100.0) { 

cpt_save (“aborted”); 

cpt_abort (); 

} 

} 

 
2.3.23 step 

Syntax 
 step 

 
Remarks 

This denotes the current CA Engine iteration. The initial value is 0. Allows time-
dependent update function development. 

 
 
2.3.24 threshold 

Syntax 
threshold (expression); 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  49 

Remarks 
Defines a C expression, which, if satisfied, is equivalent to the cell being idle for 
the past CA Engine evolution. It is used in conjunction with deterministic for 
the inactive region detection. 

 

Example 
cadef 

{ 

... 

state (  float val;  int val2; ); 

threshold (cell_val == 3); 

... 

 } 
 
2.3.25 update 

Syntax  
 update (cell_substate, value); 

 
Remarks 

This is the only way to set the value of a cell substate by means of the program. 
This is done in order to ensure that the state of all cells is set in lock step in the next 
generation after the update has been issued, thus preventing race conditions. 

 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  50 

3.  GUI Implementation 

3.1 Overview 

The CAMELot GUI is a Motif application written using Imperial Software Technology's 
X-Designer 4.6 and 5.0 GUI builder tool, which is a tool for designing GUIs graphically. 
This tool generates (in this case) C code which implements a GUI using the Motif library. 
 
This approach was taken to allow rapid prototyping and development. Since X-Designer 
also has facilities for generating C++ (using Motif or Microsoft MFC libraries) or Java 
(using the AWT library), this may also ease any future porting of CAMELot to other plat-
forms. 
 
This tool has been used to generate code to implement the visual elements of the GUI 
(text-editing widget, menus, buttons, etc). The rest of the GUI functionality (CARPET file 
reading and writing, CARPET compilation and building, communication with the CA En-
gine, visualisation) was coded by hand and integrated with the X-Designer-generated code 
by means of X callback interfaces. The CARPET parser and the CA Engine communica-
tion module were written as separate libraries linked with the GUI. These are described 
elsewhere in this document. 
 
3.2 Communication with the CA Engine  

Communication with the CA Engine is via two Internet-domain sockets, prot_sockfd 
for CA Engine requests and acknowledgements and vis_sockfd for receiving visualisa-
tion data and the current generation number in each step. These are opened when the CA 
Engine is spawned and closed when it is terminated.  
 
The incoming visualisation data socket is multiplexed into the X event loop using the 
XtAppAddInput() X Toolkit function. 
 
3.3 Visualisation Windows 

The Visualisation window’s main graphics area is implemented in hand-coded Xlib pix-
map code (for efficiency) within an XmDrawingArea widget. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  51 

CAMELot uses the default X Visual for the X Screen it is displaying on. CAMELot sup-
ports the following types of Visuals: PseudoColor, DirectColor or TrueColor with colour 
depth of at least 8 bits. A separate colormap for each Visualisation window is set using 
XSetWindowColormap(); this allows different windows to use different colour palettes 
if desired. Hence, a display of a depth greater than 8 bits is recommended to avoid color-
map switching when changing window focus. 
 
The default colormap is a red/yellow/green/blue spectrum plus black for the background. 
 
3.4 Source code files 

The following source files comprise the GUI: 
 
• camelot.c (partly X-Designer generated) 

This contains the main() function. This file has been hand-edited to set a fallback X 
resource in order to override the CDE Motif default *FontList resource and to open 
a CARPET source file on startup if one is specified on the command line. 

 

• camelot.h 

This contains global cpp definitions and declarations. Some of the optional compile-
time cpp flags defined in this file are: 

DEBUG_CROAKS: Enables assorted debug trace statements to stderr 

DEV_CONFIG: Development configuration (e.g. no “Save CARPET file?” dialog box 
on exit) 

LOCALHOST_SOCKET: Hardwire front-end hostname to “localhost” (this is the host-
name passed to the CA Engine in order for it to initiate the connection to the GUI). 
This is a useful optimisation if the GUI and CA Engine run on the same IP host. 

 
• camelot_ext.h (X-Designer generated) 

Widget declarations. 

 
• camelot_globals.c 

Global variable definitions. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  52 

• camelot_gui.c (X-Designer generated) 
Widget creation/deletion code. 

 
• camelot_stubs.c (partly X-Designer generated) 

X-Designer-generated GUI callbacks plus all non-X-Designer-generated code, except 
for Visualisation window code. 

 
• camelot_viz.c     

Visualisation window code. 

 
• Makefile.{sunos5,irix6,linux,tru64} (partly X-Designer generated) 

Makefile for the CAMELot GUI for various platforms (SunOS 5.6, IRIX 6.2, Red Hat 
Linux 5.2 and Tru64 UNIX 4.0F respectively). 

 
3.5 Libraries 

The GUI is linked with the following libraries, which form part of the whole CAMELot 
system. These are described elsewhere in the document: 
 
• libcpt_parse  The CARPET parser 
• libcmtguicomms CA Engine communication interface 
• libcmtcommon  Code common to GUI and CA Engine 
 
3.6 X Shell Widgets 

The following X shell widgets are defined in the X-Designer design: 
 

• dev_shell 

Development window. 
 

• sim_shell 

Simulation window. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  53 

• viz_shell 

Visualisation window. A shell widget for each Visualisation window opened by the 
user is created by calling the X-Designer-generated function create_viz_shell() 
in viz_open(). 

 

• devdims_shell 

Development window Configure menu “Automata dimensions...” dialog box. 

 

• devcc_shell 

Development window Configure menu “C compiler command line...” dialog box. 

 

• devmpi_shell 

Development window Configure menu “MPI run command...” dialog box. 
 

• devreplace_shell 

Development window Edit menu “Replace…” dialog box.  
 

• devcomp_shell 

CARPET parser (compiler) output window. 

 

• devbuild_shell 

C compiler output window. 
 

• about_shell 

“About CAMELot...” message box. 

 

• filesel_shell 

File selector dialog box. 

 

• substate_shell 

CA substate selector dialog box. 

 

• cell_shell 

CA cell selector dialog box (x, y, z coordinate scales). 

 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  54 

• fold_shell 

CA active fold selector dialog box (Simulation window Setup menu “Folding...” dialog 
box). 

 

• disptype_shell 

Display type (orthographic, isometric 1-plane or isometric 3-plane) selector dialog box. 
 

• minmax_shell 

Simulation window “Min/max substate values…” dialog box. 
 

• timing_shell 

Development window Configure menu “Timing output…” dialog box. 
 

• simedit_shell 

Simulation window “Edit substate…” dialog box. 
 

• simparams_shell 

Simulation window “Parameters…” dialog box. 
 

• dialog1_shell 

Generic one-field dialog box. 
 

• msgbox_shell 

Generic message box with “Dismiss” button. 
 

• confirm_shell 

Generic confirmation dialog box with “Yes” and “No” buttons. 

 
3.7 Global variables and data structures 

3.7.1 Major data structures 

• VIZWIN 

For each Visualisation window opened, a VIZWIN structure is allocated. This holds all 
the attributes associated with a Visualisation window: Xlib data (pixmap, GC, color-
map, etc.), pointer to corresponding shell widget, display type, scaling factors, plane 
IDs of planes displayed in window, etc. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  55 

• VIZWINLISTNODE 

Structure used for plane-to-window mapping linked lists (see plane2win[] descrip-
tion). 

 
3.7.2 Major global variables 

• CptCADef cadef 

CA definition structure used by CARPET parser. Information on CA dimensions, sub-
states and parameters declared in CARPET source is entered into it by the parser dur-
ing CARPET compilation. 

 
• unsigned int xyzdims[3] 

Current dimensions of CA, as defined via the Development window menu item “Con-
figure->Automata Dimensions…”. 

 If the CA is 1-D or 2-D, then xyzdims[ZDIM]=1; if 1-D, xyzdims[YDIM]=1 also. 

 
• int nvizwins 

• VIZWIN *vizwins[] 

• VIZWINLISTNODE *plane2win[] 

• int planerefcnt[] 

• plane_list all_planes 

 
These are further discussed in the Visualisation section 7.2.2. 

 
3.7.3 Callback context variables 

In order to associate a single callback function with generic dialog boxes such as file-
sel_shell and dialog1_shell, global context variables are set before the dialog box 
is popped-up. These variables preserve state required for the callback function. The follow-
ing context variables are used: 
 

• Widget dialog_context 

Pointer to widget (menu item or button) responsible for popping-up dialog1_shell. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  56 

• int substate_context 

Saved CA substate ID when selecting substate and file. 

 

• int substatendx_context  

Saved CA substate index when selecting substate. 

 

• int disptype_context 

Saved display type (orthographic, isometric 1-plane, isometric 3-plane) when opening 
new Visualisation window. 

 

• int dispplane_context  

Saved display plane (x-y, x-z or y-z) when opening new Visualisation window. 

 

• int param_context 

Saved CA parameter ID when setting parameter. 

 

• int cell_context[3] 

Saved cell coordinates when selecting cell. 

 

• VIZWIN *vizwin_context 

Saved VIZWIN struct pointer when setting Visualisation window colormap. 

 

 
3.8 List of Functions 

3.8.1 Functions in camelot_stubs.c   

• void dev_file_open(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “File->Open...” menu item. 

 

• void dev_file_save(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “File->Save” menu item. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  57 

• void dev_quit(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “File->Exit” menu item. 

 

• void dev_save_and_quit(Widget w, XtPointer client_data,  

XtPointer xt_call_data) 

Callback for confirm_shell dialog “Yes" button. 

 

• void dev_quit_confirm(Widget w, XtPointer client_data,  

XtPointer xt_call_data) 

Callback for Development window “Exit” menu item. 

 

• void dev_edit_cut(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Edit->Cut” menu item. 

 

• void dev_edit_copy(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Edit->Copy" menu item. 

 

• void dev_edit_paste(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Edit->Paste” menu item. 

 

• void dev_config_popup(Widget w, XtPointer client_data,  

XtPointer xt_call_data) 

Callback for buttons which pop-up the 1-field dialog box (dialog1_shell). 

 

• void dev_config_set(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for dialogs popped-up by Development window “Configure” menu items and 
some Simulation window “Setup” menu items (devdims_shell, devcc_shell, 
devmpi_shell, fold_shell, timing_shell, minmax_shell or dia-

log1_shell). Uses dialog_context for dialog1_shell dialogs. 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  58 

• void dev_compile(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Compile” button - calls CARPET parser via 
cpt_init(), cpt_parse() and cpt_finalize() functions. 

Some support for an external CARPET parser, used in early development of CAMELot 
remains in the source code (#ifdef’d out), but has not been tested recently. 

 

• void dev_build(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Build” button - runs C compiler. 

 

• void dev_run(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window “Run” button - opens Simulation window, initial-
ises sockets, spawns CA Engine, initialises visualisation data. 

 

• void dev_spawn(Widget textwidget, char *cmdline) 

Spawn cmdline using popen(3) and feed stdout into XmText widget textwid-
get, keeping cursor at, and showing, end of text. Used by dev_build(). 

 

• void dev_compile_errhndlr(int code, int lineno) 

Error handler callback for CARPET parser. Calls cpt_error_message() to get error 
message string from CARPET parser, inserts this into a message box XmText widget; 
also calls XBell() and moves the cursor of the Development window XmText widget 
to the offending line for the first error of a parse only (when global variable 
cpt_err_occurred==FALSE). 

 

• void dev_set_wintitle(void) 

Sets window title on Development window, appending last_carpet_file. Called 
by file_save() and file_open(). 

 

• int file_open(char *filename, Widget textwidget) 

Opens file filename and reads contents into XmText widget textwidget. Also up-
dates global variable last_carpet_file and attempts to load configuration file from 
same directory with same base name as filename but with a .cnf extension, ignoring 
errors. Returns -1 on error, otherwise 0. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  59 

 

• int file_save(char *filename, Widget textwidget, int conf_flag) 

Writes contents of XmText widget textwidget to file filename. If conf_flag is 
TRUE, also calls conf_save() to save a configuration file to same directory with 
same base name as filename but with a .cnf extension. Returns -1 on error, other-
wise 0. 

 

• void sim_go(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Simulation window “Go” button. Sends EVOLVE request to CA Engine. 

 

• void sim_loop(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Simulation window “Loop” button. Sends LOOP request to CA Engine. 

 

• void sim_pause(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Simulation window “Pause” button. Sends PAUSE request to CA Engine. 

 

• void sim_resume(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Simulation window “Resume” button. Sends RESUME request to CA En-
gine. 

 

• void sim_exit(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Simulation window “Exit” button. Closes all Visualisation windows, 
sends EXITCODE to CA Engine and closes sockets. Also called from various places to 
terminate CA Engine. 

 

• void file_select(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for buttons which pop-up the file selector dialog (filesel_shell). 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  60 

• void file_selected(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for file selector dialog (filesel_shell). 

 

• void substate_select(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Pops up the substate selector dialog (substate_shell). 

 

• void substate_selected(Widget w, XtPointer client_data,  

XtPointer xt_call_data) 

Callback for substate selector dialog (substate_shell) and substate editor dialog 
(simedit_shell). 

 

• void cell_select(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Pops up cell selector dialog (cell_shell) with scales set from xyzdims[]. 

 

• void cell_selected(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for cell selector dialog (cell_shell). 

 

• void param_selected(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for parameter editor dialog (simparams_shell). 

 

• void disptype_selected(Widget w, XtPointer client_data,  

XtPointer xt_call_data) 

Callback for display type selector (disptype_shell).  
 

• void disptype_toggle(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Enable or disable plane selection radiobox according to disptype_iso3_toggle 
value. 

• void popup_msgbox(XmString string) 

Pops up message box dialog shell (msgbox_shell) with XmLabel text set to 
string. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  61 

 

• void viz_button(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Visualisation window buttons. 

 

• void sim_reset_gen_count(void) 

Set initial Simulation window step number label to “ - ”. 
 

• void simedit_init(void) 

Initialises substate editor dialog (simedit_shell) and pops it up. 
 

• void simparams_init(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Initialises parameter editor dialog (simparams_shell) and pops it up.  
 

• void eng_rx_callback(XtPointer xtp, int *source, XtInputId 

*xtinid) 

XtAppAddInput() callback for receiving messages from CA Engine. 
 

• req_code eng_rx_packet(void) 

Receives packet from CA Engine and handles it appropriately. Returns packet header 
(req_code) or IGNORED on error. 

 

• req_code eng_wait_vispack(void) 

Block until data received from the CA Engine (or timeout occurs). If packet received, 
call eng_rx_packet() and repeat until it is a VIS_PACK. Returns VIS_PACK on 
success or IGNORED on failure. Called from vis_open() to receive and display ini-
tial VIS_PACK. 

 

• void text_search(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

 Callback for Development window "Find next" button (also called from  
dev_config_set() after "Find" button selected). Searches XmText widget 
dev_shell->dev_text1 for text findtext (global variable). If called back from 
dev_find_button, start at beginning of text, else if called back from 
dev_findnext_button, start at cursor position. If found, moves cursor to start of 
text. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  62 

• void text_replace(Widget w, XtPointer client_data, XtPointer 

xt_call_data) 

Callback for Development window "Replace text" dialog. Searches XmText widget 
dev_shell->dev_text1 for text in XmText widget devreplace_text1 and 
replaces all occurrences with text in devreplace_text2. Also sets findtext to 
contents of devreplace_text1. 

 

• int conf_load(char *filename) 

Load Development window configuration data (xyzdims[], nprocs, nfolds, 
timing_flag, timing_step, ccname, cflags, clibs, mpicmd, tim-

ing_file) from file filename. Sets appropriate widgets to the new values. Returns -
1 on error, otherwise 0.  

 

• int conf_save(char *filename) 

Save Development window configuration data (xyzdims[], nprocs, nfolds, 
timing_flag, timing_step, ccname, cflags, clibs, mpicmd, tim-

ing_file) to file filename. Returns -1 on error, otherwise 0. 

 

3.8.2 Functions in camelot_viz.c   

• void viz_open(int x, int y, int z) 

Create a new Visualisation window and corresponding VIZWIN struct; tell CA Engine 
about new plane(s) to visualise. 

 

• void viz_exit(Widget widget, XtPointer closure, XtPointer 

call_data) 

Window manager Delete callback for Visualisation windows (also called from “Close” 
button callback). 

 

• void viz_render_plane(VIZWIN *vizwin, int id, unsigned char 

*data) 

Renders a plane with ID id in a Visualisation window which corresponds to vizwin 
from data pointed to by data. 

  



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  63 

• void viz_set_def_colmap(VIZWIN *vizwin) 

Set colormap of window vizwin to default palette (red-to-blue spectrum). Sets color-
map of both XmDrawingArea and shell widget. 

 

• void viz_load_colmap(char *filename) 

Opens palette file filename and sets colormap of Visualisation window pointed to by 
vizwin_context according to contents of file. 

Palette files are in ASCII format and consist of 256 lines each containing three space-
separated unsigned 16-bit hex numbers specifying the R, G and B values respectively 
of the palette entry corresponding to the line number (counting from 0). The first line 
specifies the colour to be used for the background. 

 

• void viz_draw_colscale(VIZWIN *vizwin) 

Draws horizontal colour palette bar of height VIZCOLSCALEHEIGHT across the bottom 
of Visualisation window pixmap. 

 

• void viz_draw_colscale_limits(VIZWIN *vizwin, double min, dou-

ble max) 

Draw numeric upper and lower limits above colour palette bar in Visualisation window 
pixmap using colour from middle of colormap. Store limit values, strings and string 
metrics in VIZWIN struct for next call. 

 

• void spectrum(int idx, XColor *color) 

Returns a colour in color corresponding to the value of idx compared to VIZCOLS 
(the number of colours to be used for visualisation). 0 ≤ idx < VIZCOLS. The colour 
range is a spectrum from blue to red. 

 
3.9 GUI-CA Engine Protocol Requests 

All requests to the CA Engine are sent using the macros in Table 3. They are defined in 
camelot.h. 
 
These macros send the request code, call consume_vis_pack() to discard outstanding 
visualisation packets (except for REQ_EXIT) and then call the corresponding req_*() 
function in libcmtguicomms if present. 
 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  64 

 
Macro    Request code 

 

REQ_SAVE_REQUEST  SAVE_REQUEST 

REQ_SET_FOLD  SET_FOLD 

REQ_SET_LOAD  SET_LOAD 

REQ_VIEW_STATE  VIEW_STATE 

REQ_SET_STATE  SET_STATE 

REQ_GET_PARAM   GET_PARAM 

REQ_SET_PARAM   SET_PARAM 

REQ_EVOLVE   EVOLVE 

REQ_LOOP   LOOP 

REQ_RESUME   RESUME 

REQ_TERMINATE  TERMINATE 

REQ_PAUSE   PAUSE 

REQ_ADD_PLANE  ADD_PLANE 

REQ_DEL_PLANE  DEL_PLANE 

REQ_PROJ_READ  READ_PROJECT 

REQ_PROJ_SAVE  SAVE_PROJECT 

REQ_PERIODIC_SAVE PERIODIC_SAVE 

REQ_SET_MINMAX  SET_MINMAX 

REQ_EXIT   EXITCODE 

Table 3: Correspondence between CAMELot GUI macros and req_codes 

 
 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  65 

4. Cellular Automata Engine Implementation 

The CA Engine component of the program performs the evolution of the model specified 
in the CARPET program. Because of the computational intensity of bioremediation models 
and the inherently parallel characteristics of Cellular Automata, the CA Engine is imple-
mented as a parallel program adhering to the Single Program Multiple Data paradigm. 
Each process thus created is called a macrocell and can apply the transition function of the 
model locally to a subset of the model, under the assumption that it holds locally all the 
data that it requires. This suggests the introduction of boundary data which are maintained 
in neighbouring macrocells and communicated to the process after each evolution. 
 
This communication is implemented using MPI-1 [MPIf 1995], a portable interface for 
parallel programming. The CA Engine also needs to communicate with the GUI. This 
communication is executed between one process and the GUI using a purpose-built proto-
col on top of sockets, as explained in section 6. The process communicating with the GUI 
is commonly called the root process and is selected as the one with rank 0 in the 
MPI_COMM_WORLD MPI Communicator. It coordinates the other processes in order to 
serve the GUI requests. In this section we discuss the macrocell process implementation 
and leave the protocol and MPI interaction to section 6.  
 
In addition to the application of the transition function, a steering function is available, by 
which global reductions are performed after each iteration. This is described in section 
4.6.3. The system also performs periodic state saves (section 6) and substate visualisations 
(section 7), as well as timing of the main functions (section 4.7).  
 
4.1 Program Structure 

The main CA program component is contained in the file macrocell.c. This references 
global variables, external function and variable declarations in the CARPET generated 
program and also contains shared and static function prototypes and their code and the 
main() function. The CA Engine functions which implement the communication protocol 
are also included in the same file but their discussion is deferred until section 6.4. The CA 
Engine also uses objects defined in the libcmtcommon library.  
 
4.1.1 User-Defined Types 

Apart from the predefined C types, the following types are used in macrocell.c. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  66 

4.1.1.1 CptCell  

The type depends on the definition of the cell in the CARPET program. The code for the 
struct is written by the parser into the generated header file. The generated type definition 
for the “Game of Life” example model, which has one substate life of  type char, is as 
follows. 
 
typedef struct _CptCell 

{ 

   char   life ; 

} 

CptCell; 
 
4.1.1.2 plane and plane_list  

These types are used for the visualisation facility on both the GUI and the CA Engine. 
They are included in plane.c. We discuss them in section 7.1. 
 
4.1.1.3 timer and stats  

These are used in conjunction with the statistics output of the CA Engine. Their definitions 
are included in macrocell.c; they are as follows. 
 
typedef struct { 

    double start; 

    double stop; 

    double sum; 

    double best; 

    double worst; 

    u_char started; 

    unsigned long called; 

    char title[TITLE_LENGTH]; 

} timer; 

 

typedef struct { 

    timer func; 

    timer vis; 

    timer prj; 

    timer bound; 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  67 

    timer steer; 

    timer total; 

    int rank; 

    unsigned long gens; 

    int start_gen; 

    u_int period; 

    u_char work; 

    FILE *outfile; 

} stats; 

 
The tmr_code type is also used in the context of the above structures. 
 
typedef enum { 

        FUNC = 9999, 

        VIS, 

        PRJ, 

        BOUND, 

        STEER, 

        TOTAL 

} tmr_code; 
 
4.1.1.4 state_dt and state_dt_list  

These types are used for the output of the AVS/Express field files, discussed in section 
6.5.8. Their definition follows: 
 
typedef struct { 

    MPI_Datatype data; 

    int states; 

    int state_ind[NumOfStates]; 

} state_dt; 

 

typedef struct { 

    state_dt statetypes[NumOfStates]; 

    int many; 

} state_dt_list; 

 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  68 

4.1.2 Functions in macrocell.c  

4.1.2.1 File I/O Related 

static int cmt_read (char *, int); 

static int cmt_read_global (char *); 

static int cmt_read_all (char *); 

static int cmt_write (char *, int); 

static int cmt_write_global (char *); 

static int cmt_write_all (char *, char *); 

static int cmt_create_fld (char *, char *); 

static int cmt_write_fld (char *, char *, int); 

static int check_fs (char *, char *); 

int cpt_save (char *); 

 
Function cpt_save() is used in conjunction with steering (see section 2.3.5 for more). 
 
4.1.2.2 state_dt and state_dt_list Related 

static void init_state_dt (state_dt *, MPI_Datatype); 

static int add_state (state_dt *, int); 

static void init_state_dt_list (state_dt_list *); 

static int add_state_dt (state_dt_list *, int); 

 
4.1.2.3 Boundary Exchange 

static int cmt_boundary_copy (CptCell *); 

static int cmt_boundary_swap (CptCell *); 

static void init_boundaries (void); 

 
4.1.2.4 Fold Related 

static void get_x_line (CptCell *, int, u_char *, int); 

static void set_x_line (CptCell *, int, u_char *, int); 

static void calc_x_sizes (void); 

static void line2fold (const u_char *, u_char *, size_t); 

static void fold2line (const u_char *, u_char *, size_t); 

static void get_write_ptr (u_char *, u_char *, int, int, int,  

 int, int, int, int); 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  69 

 

static void get_scatter_ptr (u_char **, u_char *, u_char *,  

 int , int); 
 
4.1.2.5 Visualisation Functions 

static int serv_add_plane (void); 

static int serv_del_plane (void); 

static int tx_vis_pack (cell *, char); 

static int serv_set_minmax (void); 

static void colour_map (const u_char *, u_char *, int, int,  

 double, double); 

static void check_plane (plane *); 

static void bcast_plane (plane *, MPI_Comm); 

 
4.1.2.6 Protocol Service 

static int rv (req_code); 

static int serv_save_request (void); 

static int serv_set_fold (void); 

static int serv_set_load (void); 

static int serv_view_state (void); 

static int serv_set_state (void); 

static int serv_set_param (void); 

static int serv_terminate (void); 

static int serv_proj_read (void); 

static int serv_proj_save (void); 

static int serv_periodic_save (void); 

static int send_ack (int); 

 
4.1.2.7 CA Execution Function 

static int run (void); 

 
4.1.2.8 Random Number Generators 

void cpt_randomize (void); 

void cpt_srandom (unsigned int); 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  70 

These functions provide pseudo-random number generators and are the only shared (pub-
lic) functions defined in macrocell.c. 
 
4.1.2.9 Statistics Output 

static void init_tmr (timer *, const char *); 

static int start_tmr (timer *); 

static int stop_tmr (timer *); 

static void print_tmr (const timer *, FILE *); 

 

static void init_sts (stats *, int, u_char, u_int, const char *); 

static void reset_stats (stats *); 

static int start_one_timer_sts (stats *, tmr_code, int); 

static int stop_one_timer_sts (stats *, tmr_code, int); 

static void print_sts (const stats *); 

static void close_file_sts (const stats *); 
 

4.1.2.10 Other Functions 

static void check_pos (int *); 

static int get_val_size (const int *); 

 
4.1.3 External Function Prototypes 

extern void cpt_hook_init (void); 

extern void cpt_func (CptCell *, CptCell *); 

extern void cpt_set_state (CptCell *, int, void *, int); 

extern void cpt_get_state (CptCell *, int, void *, int); 

extern void cpt_mpi_type_cell (MPI_Datatype *); 

extern void cpt_hook_finalize (void); 

extern int cpt_thresh (CptCell *); 
extern req_code cpt_steering (CptCell *); 

 
4.1.4 External Variables 

extern float cpt_globpar[NumOfGlobPar]; /* CARPET parameters */ 

extern const size_t cpt_state_size[NumOfStates];  

 /* Substate bytesizes */ 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  71 

extern MPI_Datatype cpt_state_mpidt[NumOfStates+1];  

 /* Substate MPI Dtypes */ 

extern bool_t (*cpt_state_XDRfn[NumOfStates])(); 

 /* Substate XDR function*/ 

extern const int cpt_determin; /* Deterministic flag */ 

extern const char *cpt_state_name[NumOfStates];     

 /* Names of states */ 

 
4.1.5 Global Variables 

CptCell *ca1;  /* 1st copy of Cellular Automata */ 

CptCell *ca2;  /* 2nd copy of Cellular Automata */ 

int cpt_dimx, cpt_dimy, cpt_dimz; /* Local CA dim sizes */ 

int cpt_x, cpt_y, cpt_z;      /* Current coordinates, X, Y, Z   

 Must be global for Get[XYZ] */ 

char *out_basename = NULL;  /* Root of periodic save filename */ 

char *out_dirname = NULL;  /* Path of periodic save filename */ 

int save_step = INT_MAX;  /* Period of saves */ 

int num_gens;  /* Remaining generations to run */ 

int cpt_generation = 0;  /* Must be initialised for vis_list */ 

char in_steering = 0; /* Flag for steering statement */ 

 

int cmtWorldSize, cmtWorldRank;  

 /* MPI world size and local rank */ 

int cmtPrevRank, cmtNextRank; /* Ranks of neighbour macrocells */ 

MPI_Comm cmtCommCommand, cmtCommBoundary;  

 /* MPI contexts: data & control */ 

MPI_Datatype cmtBoundaryType; /* MPI datatype for boundary data */ 

int prot_sockfd = 0, vis_sockfd = 0;  

 /* protocol and visualisation socket 

 fd, global for comm abstraction 

 independence */ 

 

list vis_list;  /* List of visualised planes */ 

plane_list all_planes;  /* List of all planes in the Engine */ 

int alt_intnl_bound[2][NFOLDS];  

 /* Left/Right internal boundary  

 altered flag for each strip */ 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  72 

int alt_strip[NFOLDS];  /* Internal cells altered flag */ 

int active_strip[NFOLDS];  /* Active Strip flag */ 

int manual_folds = 0;  /* Flag to examine (in)active folds */ 

double minmax[NumOfStates][2]; /* Minimum/Maximum value for  

 each state. */ 

 

char auto_map[NumOfStates]; /* Flags for automatic colour map */ 

stats statistics;  /* Statistics for timers */ 

state_dt_list *dt_list = 0; /* state_dt_list for AVS files */ 

 

#ifdef EVEN_DECOMP9 

#else 

int CPT_DIMX [CPT_NPROCS]; /* Actual x data in process */ 

int CPT_F_X [CPT_NPROCS][NFOLDS]; /* Actual x data per Strip */ 

int CPT_S_X [CPT_NPROCS][NFOLDS]; /* Total Strip x-size */ 

int first_small_strips_ind[CPT_NPROCS]; /* Index of first strip of  

 process to have smaller size */ 

#endif 

 
4.2 Data Handling 

4.2.1 Internal Representation 

Each cell can be thought of as a 3-D (x, y, z) triplet of co-ordinates with an associated set 
of substate values. In [Telford et al. 1998] it was decided that cells would be represented as 
C structs. The CA is represented as an array of such cells. If the program is run on more 
than one process, each process contains a fraction of the model data. The decomposition of 
the data to processing elements is discussed in section 4.4. Because of the way the CA 
execution function works, each process maintains two such arrays, one to contain the data 
of the previous iteration and another where the output of the transition function is written. 
After the transition function has been applied to all the cells of a macrocell, the read copy 
is updated. This is necessary for the correct execution of the program, despite the fact that 
the read and write copies are toggled after each step. A good example of a program that 
fails is one that updates the cells with odd x-coefficient on the odd generations and the 
even ones on the even generations. 
 

                                                 
9 The EVEN_DECOMP macro definition is explained in section 2.2.1.1.3.3. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  73 

The cells are accessed through the following macro, defined in the file cpt_ccdefs.h. 
 
#define CA_REF( ca, z, y, x ) ((ca) + (z)*CPT_Y*CPT_X + (y)*CPT_X + (x)) 

 
As we discuss later in the section, duplicate, boundary data are incorporated in the real CA 
data to allow the execution of the transition function. CPT_X and CPT_Y are the total di-
mensions across the x and y axis of each process respectively, including the real and repli-
cated data. The above macro implies that the x-axis is “moving” fastest when accessing the 
cells and because the decomposition is done across the x-axis, boundary data are located 
between two consecutive x-lines in the dataset of each process. Therefore, the data are 
fragmented thus reducing the expected benefit from processor read-ahead and caching op-
timisations when applying the transition function [Telford et al. 1998]. It should be noted 
that whether performance could be improved by running the z-axis fastest depends on the 
model size and the decomposition, since boundary data are replicated across all axes. 
Moreover, this approach effects non-contiguous boundaries, thus necessitating the intro-
duction of MPI boundary datatypes which contain non-contiguous data. This also possibly 
affects the performance of the CA Engine, as discussed in [Kavoussanakis et al. 1999], but 
no conclusive evidence has been found during the profiling of the software. 
 
4.2.2 Data I/O 

CAMELot supports state initialisation from files as well as saving the state to files. Files 
output to disk can be used for state initialisation at a later stage without any transformation. 
Data transfer occurs also between the CA Engine and the GUI both in order to control the 
execution and to provide visualisation of the states.  
 
Starting from release 1.2 of the software, the XDR data representation standard is sup-
ported for file I/O only. The use of XDR for read-related operations is discerned from that 
for write-related operations, as they are controlled by means of different C pre-processor 
definitions in macrocell.c (NO_XDR_READ and NO_XDR_WRITE respectively). This allows 
the user to use the system as a filter to translate old binary files to XDR-based ones by de-
fining the NO_XDR_READ flag, as shown in section 2.2.1.1.3.1. In order to achieve this, the 
cpt_state_XDRfn[] pointer-to-function array is generated from the parser and defined 
in the C file. This provides the appropriate XDR primitives to translate the substate ele-
ments to their corresponding external representation. 
 
File I/O is effected with one call, both when XDR is used and otherwise. The correspond-
ing functions (cmt_read() and cmt_write()) use adequately large buffers to fit the 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  74 

data, as discussed in section 6.5.3.1. Most of the times I/O to the socket is also done with 
one call. 
 
4.3 Process Placement 

The user defines the number of processes from the Configure Menu of the Development 
Window. These processes are then arranged in a 1-D, periodic Cartesian topology repre-
sented by MPI Communicator cmtCommBoundary, to enable boundary exchange. The 
physical allocation of processes to processing elements is hidden by the system. As far as 
the programmer is concerned, each process has a known couple of neighbours, cmtNex-
tRank and cmtPrevRank, identified by their rank (for process i in a n-process system, the 
previous has rank (i-1) mod n, the next has rank (i+1) mod n). An additional, unordered 
Communicator, cmtCommCommand, is also created for controlling the processes. The rank 
of each process, cmtWorldRank, as well as the total size of the system, cmtWorldSize, 
are stored as global variables in each process. They are acquired by means of standard MPI 
calls. The Cartesian arrangement of processes and the creation of the two Communicators 
are also achieved using MPI calls.  
 
4.4 Data Decomposition 

The CABOTO project introduced a form of block-cyclic decomposition aiming to reduce 
load imbalance [Spezzano et al. 1995]. The idea, which was also implemented in CAME-
Lot, was to split the model virtually in a number of folds and then assign equal parts (if this 
is possible) of each fold to each of the processes (Figure 27). This can lead to load balanc-
ing under the condition that the resulting granules (further referred to as strips) are fine 
enough to ensure that the uneven load distribution across folds statistically is insignificant 
across processes. It should be noted though, that the numbers of folds and processes should 
be chosen with caution during the executable build phase, since the more the strips, the 
bigger the communication overhead among the processing elements. 
 
The model is decomposed across the x-axis; this suggests that, in order to utilise the avail-
able resources, 1-D models should be considered as x lines and 2-D models should be 
viewed as x-y planes. The fold and process numbers are defined by the user through the 
Configure Menu of the Development Window and they are passed to the CA program as 
compiler line arguments using the -D option. The radius of the neighbouring cells is de-
fined in the CARPET program through the radius statement (see section 2.3.15).  
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  75 

 

Figure 27: Block-Cyclic Decomposition in CAMELot. The figure and the notation as-
sume even decomposition. 

 
4.4.1 Uneven Decomposition 

For CAMELot releases prior to 1.3 it was necessary for the product of the number of folds 
times the number of processes to divide the total x-size of the model. This condition was 
relaxed in CAMELot 1.3. It should be noted that the former implementation is more effi-
cient since it carries less overhead, whereas the latter is more general. As a result of un-
even decomposition, some processes may have their x-dimension larger than others by one. 
Similarly, some strips in a process may have their x-dimension larger by one.  
 
The definition of the x-sizes of the processes and strips takes place in function 
calc_x_sizes(). The strategy for processes is that the root process will have at most as 
many elements as the others, on the grounds that it has extra workload because of the 
communication duties. On the contrary, strips are allocated extra elements in their x-
dimension starting with strip 0. 
 
There are two useful corollaries from the above discussion: 
 
• In each process there is a strip which has the lowest index of those with less elements 

than the others and the index of small strips range from this lowest index to NFOLDS-1. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  76 

This index for each process is stored in the file macrocell.c in the global array 
first_small_strip_ind[CPT_NPROCS]. In the case of even decomposition, this 
index defaults to 0. 

• The size of the smallest strip is the size of strip indexed NFOLDS-1 in the root process. 
 
Example: Suppose that the total x-dimension of a 1-D model is 50, divided in 3 processes 
and 3 folds. Processes 1 and 2 will have 17 elements each, whereas process 0 will have 16. 
In processes 1 and 2 strips 0 and 1 will have 6 elements each, whereas strip 2 will have 5. 
In process 0 strip 0 will have 6 elements and strips 1 and 2 will have 5 each. Also, the fol-
lowing is true for the per-process array of indices to small strips. 
 

first_small_strip_ind[3] = {1, 2, 2} 
 
 

CPT_NPROCS 

 
Number of processes  

NFOLDS Number of folds 
DIMX Total number of data on the x-axis of the model 
DIMY Total number of data on the y-axis of the model 
DIMZ Total number of data on the z-axis of the model 
CPT_DIMX Number of actual data on the x-axis of a process 
CPT_F_X Number of actual data on the x-axis of a strip 
CPT_S_X Total number of data on the x-axis of a strip (including boundary 

duplicates) 
CPT_X Total number of data on the x-axis of a process 
CPT_Y Total number of data on the y-axis of a process 
CPT_Z Total number of data on the z-axis of a process 

 
Table 4: Model Definition Notation 

 
 
4.4.2 Notation 

CAMELot supports two implementations for the data decomposition depending on 
whether this is even or not. The code selected for each case is controlled by the C pre-
processor definition EVEN_DECOMP. If this is defined, then the program assumes that the 
product of the number of folds times the number of processes divides the total x-size of the 
model. However if the assumption is false, the program exits with a warning message re-



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  77 

turning -1. Otherwise, and this is the default behaviour, the program assumes uneven de-
composition of data to processes.  
 
The constants (or macros) in Table 4 define the model. The type of each of the definitions 
in this Table differs according to the definition of the EVEN_DECOMP macro. This is shown 
in Table 5 and Table 6 below. Note the difference in the definitions of CPT_DIMX, 
CPT_F_X and CPT_S_X, in the case of even decomposition they are straightforwardly cal-
culated and stored as macros in the cpt_ccdefs.h header file, otherwise they are defined 
as arrays stored in macrocell.c and  calculated by the function calc_x_sizes(). 
 
 

#define CPT_DIMX (DIMX/CPT_NPROCS) /* Actual x data in each process */ 

#define CPT_F_X (CPT_DIMX/NFOLDS) /* Actual x data in each Strip */ 

#define CPT_S_X (CPT_F_X+(2*Radius)) /* Total Strip x-size */ 

#define CPT_X (CPT_S_X*NFOLDS)  /* Total process x-size */ 

#define CPT_Y ((DIMY)+(2*Radius))  /* Total process y-size */ 

#define CPT_Z ((DIMZ)+(2*Radius))  /* Total process z-size */ 

Table 5: CA Engine Size Definitions (EVEN_DECOMP defined) 

 
 
 

int  CPT_DIMX[CPT_NPROCS];  /* Actual x data in process */ 

int  CPT_F_X[CPT_NPROCS][NFOLDS]; /* Actual x data per strip */ 

int  CPT_S_X[CPT_NPROCS][NFOLDS]; /* Total Strip x-sizes */ 

#define CPT_X (2*Radius*NFOLDS+CPT_DIMX[cmtWorldRank]) 

#define CPT_Y ((DIMY)+(2*Radius)) 

#define CPT_Z ((DIMZ)+(2*Radius)) 
 

Table 6: CA Engine Size Definitions (EVEN_DECOMP undefined) 

 
 
4.5 Boundary Replication  

Data decomposition effects the introduction of duplicate boundary data. The reason is that 
splitting the model into strips and allocating contiguous strips to different processes causes 
some cells to lose immediate neighbours. Given that the strips divide the model across the 
x-axis, the cells which are located in radius distance from the x-edges of the strips have 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  78 

lost their neighbours lying outside the strip and they are thus unable to execute the CA 
evolution rule. 
 
Moreover, all cells within Radius distance from any edge have no defined neighbours 
outside the model domain. In order to remedy this, we implement cyclic boundaries. This 
means that data are “wrapped round” in each dimension, so that cells at one edge are 
neighbours of cells at the opposite edge in the same dimension. This ensures cyclic interac-
tion and execution of cells. The effect to the topology of the model is the following. 
 
• 1-dimensional models are effectively circular; 
• 2-dimensional models have the shape of the surface of a torus; 
• 3-dimensional models are shaped as a 3-D torus. 
 
The above approach suggests four types of halo: 
 
• before the first and after the last real element (z-axis); 
• between planes (y-axis); 
• between lines (x-axis); 
• between strips (folded data). 
 
The first three haloes conceptually form a shell around the model, whereas the last in-
creases its x dimension. This is depicted in Figure 28. We will discuss the effect of the ha-
loes on the internal representation of the CA. 
 
The first type of halo consists of Radius planes of size CPT_X*CPT_Y on each z-side of 
the CA model. It is implemented by prefixing and postfixing the data with contiguous 
planes of halo data. The plane halo is Radius lines of size CPT_X on each y-side of the 
model. It is implemented by adding lines of haloes between planes of data. Similarly, there 
is a Radius sized halo introduced on either side of the model, corresponding to the line 
halo. 
 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  79 

 

Figure 28: Halo replication: A 2-fold, 2-process decomposition is shown. 

 
The above discussion suggests two different kinds of boundary replication. Across the y 
and z axes the data can be replicated internally in macrocells. We call this a boundary 
copy. Across strips (this effects x-axis halo replication as well) the data must be exchanged 
between consecutive processes using MPI. We call this boundary swap. Boundary data are 
copied across axes and swapped between strips after the execution of a step.  
 
4.5.1 Boundary Copy 

This is achieved with the following function: 
 
static int cmt_boundary_copy (CptCell *ca) 
 
This function replicates the local boundary data across the non-distributed dimensions. It is 
dependent on the cell access macro. It returns zero on completion. Note that this function 
only performs the boundary copy on one CA array copy. 
 
The z-axis (slowest) boundary exchange, is performed with two memcpy calls, each copy-
ing Radius*CPT_Y*CPT_Z elements, i.e. Radius x-planes. For the y-axis copy it loops 
over z with two memcpy calls in each iteration. Each memcpy handles Radius*CPT_X 
elements, i.e. Radius x-lines. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  80 

 
4.5.2 Boundary Swap 

This is done with the following function:  
 
static int cmt_boundary_swap (CptCell *ca) 
 
This function uses MPI to exchange x-axis boundary data between the strips. If the auto-
matic inactive strip detection mechanism is activated, it also exchanges information about 
the activity of the internal boundaries of its neighbouring cells so as to determine its own 
activity. The implementation depends on the cell access method (CA_REF) and only repli-
cates the data for one CA array copy passed to it as an argument. 
 
In order to define the receiver and the sender of messages we use the global variables 
cmtPrevRank and cmtNextRank returned from the call of the Cartesian Topology crea-
tion functions of MPI, MPI_Cart_create() and MPI_Cart_shift(). We thus define a 
global MPI Communicator, cmtCommBoundary, used for boundary swapping. We also 
define a derived datatype, cmtBoundaryType, for the boundaries to be exchanged. This is 
a vector datatype created using the MPI_Type_vector() function of MPI. It allows ref-
erence to the stridden boundary by specifying only the starting point of the data to be re-
ceived or sent. It consists of CPT_Z*CPT_Y blocks cells, each of which has length Ra-
dius; the stride between consecutive blocks is CPT_X. This communicator is global to our 
program. 
 
In order to exchange activity and boundary data, two similar blocks of communication 
primitives have been developed which differ only in the data they exchange. Each of the 
blocks contains two loops over the number of strips in the process, one to receive and one 
to send the data. The activity data received from the previous neighbour for strip i are 
stored in prev_active[i] and the data from the next in next_active[i]. The corre-
sponding tags for the messages are 2*i and 2*i+1. 
 
The definition of the index for the data to be sent is less straightforward. The general rule 
for sending data to the next process is to send the right internal boundary to the strip of the 
same rank on the right of the sender. From the above we see that the receiver strip i waits 
for a message tagged 2*i. This means that the message to the next process contains 
alt_intl_bound[1][i] and is tagged 2*i. The former does not hold for process 
cmtWorldSize-1 whose next neighbour is process 0, since this must send the data of the 
previous rank to process 0 (see Figure 27) in order to implement cyclic boundaries. Thus, 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  81 

the data sent to process 0 are alt_intnl_bound[1][(i-1)%NFOLDS]10. Similarly, the 
data sent to the previous process are stored in alt_intnl_bound[0][i] except for pro-
cess 0 which sends the data stored in alt_intnl_bound[0][(i+1)%NFOLDS]. In both 
cases the message is tagged 2*i+1. 
 
The above hold for the actual boundary swapping block as well. Reception from the previ-
ous strip starts from CA_REF(ca,0,0,i*CPT_S_X), and is tagged 2*i; reception from 
the next strip starts at CA_REF(ca,0,0,(i+1)*CPT_S_X-Radius), tagged 2*i+1. 
Data to the next process are tagged 2*i and start at 
CA_REF(ca,0,0,CPT_F_X+i*CPT_S_X) except if the sender is process cmtWorld-
Size-1 which sends data starting at CA_REF(ca,0,0,CPT_F_X+((i-

1)%NFOLDS)*CPT_S_X). Data to the previous process start at CA_REF(ca,0,0, 
i*CPT_S_X+Radius) except for process 0 which sends data that start at 
CA_REF(ca,0,0,((i+1)%NFOLDS)*CPT_S_X+Radius). The execution of this block 
does not start until all the activity data have been received from the previous process; when 
the receives from the previous and next neighbour are issued, active_strip[i] is up-
dated according to prev_active[i] and next_active[i]. 
 
Although immediate sends and receives have been used for the implementation of bound-
ary swaps, the current implementation does not execute the transition function for internal 
cells while boundaries are exchanged, as suggested in [Telford et al. 1998]. Efficient 
boundary swapping, taking into account whether each strip is active or not, has not been 
implemented either. 
 
4.5.3 Function init_boundaries()    

In order to facilitate boundary exchange when the system is restarted we implemented the 
following function. 
 
static void init_boundaries (void)   

 
This function assumes that the system has been brought to a new state and cancels all of 
the strip activity data previously defined by the automatic mechanism. It thus sets ac-
tive_strip[] and alt_intnl_bound[][] for all of the strips before calling 
cmt_boundary_copy() and cmt_boundary_swap() on both copies of the CA array. It 
then cancels alt_intnl_bound[][] and alt_strip[].  

                                                 
10 In fact the code reads alt_intnl_bound[1][(i-1+NFOLDS)%NFOLDS] to ensure correctness of the 
modulus operator. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  82 

 
N.B.: This function must only be used when the system is brought to a new state, as it af-
fects the strip activity variables. Nonetheless, if called at any point, it does not affect the 
correct execution of a deterministic program. 
 
4.6 Transition Function Execution 

4.6.1 CA Engine States 

The CA Engine can be in any of the following states: 
 
• Running; 
• Serving Protocol Requests; 
• Paused; 
• Stopped. 
 
Protocol requests (including PAUSE and TERMINATE which effect the two last states) can 
be received at any point, but they are only handled before a CA Engine iteration. These are 
implemented with static variables in the rv() function, discussed in section 6.5.2. 
 
4.6.2 Automatic Inactive Strip Detection 

CAMELot contains an automatic inactive strip detection mechanism, used to isolate inac-
tive regions and avoid applying the function to idle strips. The block cyclic decomposition 
suggests that load imbalance emanating from this strategy will be insignificant in the gen-
eral case, given that contiguous areas of the model are transparently distributed to proc-
esses. Automatic inactive strip detection can be disabled by manually choosing a set of 
active folds as described in section 2.2.2.1. The finest grain in this case is the fold, which is 
generally larger than the strip, and the strategy is error prone as it depends on the user's 
vigilance. Moreover, manual fold selection cannot isolate inactive regions located in the 
middle of the model even if the granularity suffices, because the active range defined is 
continuous. The implementers do not recommend manual fold selection. We will discuss 
the implementation of the automatic inactive strip detection mechanism in 4.6.3.1. 
 
4.6.3 Function run()  

The run() function of the program loops over the requested number of CA Engine gen-
erations and applies the update function to all the cells. It also executes the steering func-
tion, transmits the current generation number to the GUI and initialises the visualisation 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  83 

and periodic saves which are due in this iteration. Before each iteration the root process 
polls the socket for pending messages by means of a select(3C) call. If a message is 
present it broadcasts it to the other processes. The control at this point is passed to the 
rv() function, discussed in section 6.5.2. The processes synchronise loosely by means of 
this MPI_Bcast call as they exit this loop and enter running mode when all pending re-
quests have been served.  
 
At the end of the iteration the boundaries are replicated on the write copy of the CA array 
and this is then copied to the read copy by means of a memcpy call. The steering function 
is applied to one copy of the automaton only. This does not affect the execution of the 
model, because the steering function cannot alter the state of cells. Immediately before 
calling the external steering function cpt_steering() we set the global variable 
in_steering so as to enable the execution of the steering related functions. We also syn-
chronise the processes so as to avoid race conditions in the update of global parameters. 
The variable in_steering is cleared immediately after exiting the steering function to 
disable access to the steering related functions. We discuss the steering function later in 
this section.  
 
After the steering function has been executed, the visualisation list is checked for planes 
waiting to be visualised; if there are any, tx_vis_pack() is called with the force argu-
ment set to 0. After each visualisation, the generation member of the cell is set for the 
next visualisation, and the cell is inserted in the correct position in the visualisation list, 
using the function reorder(), discussed with the list functions, in section 7.3.5. Then 
the current generation number is written to vis_sockfd. Finally, periodic project saves 
are performed by means of the cmt_write_all() function if the incremented generation 
is divided by the save_step. If the generation run is the last one requested, and periodic 
saves are enabled, but no periodic save has occurred in the current step, then  
cmt_write_all() is called to save the final configuration of the CA. 
 
The implementation of function run() is shown in pseudocode in Table 7. 
 
for (num_gens) { 

 do { 

  get_request(); 

 } while (no_request || stop); 

 

 if (stop) 

  return; 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  84 

 

 cp = CA_REF (ca, Radius, Radius, 0); 

 

 for (cpt_z) { 

  for (cpt_y) { 

   for (strip) { 

    cp += Radius; 

    for (x) { 

     calculate (cpt_x); 

     update(cell); 

     if (x < l_bound) 

      check_l_intnl_bound() 

     else if (x > r_bound) 

      check_r_intnl_bound() 

     else  

      check_intnl_strip(); 

     cp++; 

    } /* End for (x) */ 

    cp += Radius; 

   } /* End for (strip) */ 

  } /* End for (cpt_y) */ 

  cp += 2*Radius*CPT_X; 

 }  /* End for (cpt_z) */ 

 

 update_boundaries(ca); 

 update_copies (ca);  

 

 synchronise_procs;  

     cpt_steering (ca); 

 

 if (visualisation_due) 

  tx_vis_pack(); 

 if (configuration_save_due) 

  cmt_write_all(); 

 

 write_gen_no(); 

 

}  /* End for (num_gens) */ 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  85 

 

 

if (configuration_not_just_saved) 

 cmt_write_all(); 

Table 7: Function run() in pseudocode 

 
 
4.6.3.1 Application of the Transition Function 

The transition function is applied to all the cells of a process without any interruption. The 
processes communicate again for the necessary interaction for boundary swapping. The 
next step is to identify which of the two pointers to the CA represents the read and write 
copy by means of the parity of the CA generation and then the function loops over the 
strips skipping the haloes and applies the transition function cpt_func() to its cells.  
 
During this phase the cells in strips are examined in order to decide their activity status. 
Initially, all the strips are considered active. The system attempts automatic inactive strip 
detection under the condition that the user has characterised the transition function as de-
terministic through the CARPET statement deterministic [Telford et al. 1998]. After 
the transition function has been applied to a cell, the cell is checked against 
cpt_thresh() and the previous values of all its substates. If a substate has changed and 
cpt_thresh() returns false, then the whole strip is characterised as active for the next 
generation and the check is not performed for any other cells of the strip. Even if all the 
cells of a strip are classed as inactive, the strip is not considered inactive unless the bound-
ary cells to be received by each of the neighbours are also inactive. 
 
In order to achieve the above we virtually split the strips in three components, a block of 
internal cells and two blocks of internal boundaries on either of its x sides. The internal 
boundaries are part of the strip's cells but they are of special interest as they are communi-
cated to the strips lying on their external sides. Their dimensions are the same as those of 
the boundary data. During the boundary swap the processes exchange information with 
their neighbours about the activity status of the incoming boundaries and combine the re-
sults with those emanating from the internal cell check to decide on the activity status of 
their strips. 
 
Haloes are skipped as follows: before the function enters the loop the first z and y haloes 
are skipped. In the first strip the x halo is skipped and then the application of the function 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  86 

begins. If the strip is idle, the pointers are advanced by CPT_F_X, which is the x-size of a 
strip; otherwise, for each of the CPT_F_X applications of the function the pointers are ad-
vanced by 1 position. At the end of the strip line traversal, the pointers are advanced again 
by an x halo. This leaves the pointers at the beginning of the first x halo of the next strip. 
After the end of the plane (and the y iteration of the loop) the pointers are incremented by 
2*Radius*CPT_X, which skips both the y halo at the end of the current plane and that of 
the next plane. 
 
In addition to the above, the position of the cell updated is recorded by means of the 
cpt_x, cpt_y and cpt_z global variables. This follows the convention that the co-
ordinate of the first cell in each dimension is 1. We also take into account the decomposi-
tion of cells in folds and processes so as to enable correct cpt_x calculation. The user can 
access the values of cpt_x, cpt_y and cpt_z in their program using respectively the 
Get_X, Get_Y and Get_Z CARPET statements (see section 2.3.10), thus enabling posi-
tion-dependent update functions. 
 
4.6.3.2 Calling the Steering Function 

After the two CA copies have been updated, the steering function is being called. This is 
external to macrocell.c. Nonetheless, it is important for the program to set the global 
variable in_steering before calling the steering function and clear it after exiting it. 
This is external to the CARPET-generated C file, and allows the global reduction functions 
to be executed. We chose to control this flag from macrocell.c, rather than the gener-
ated cpt_steering() function to avoid possible problems if the CARPET program con-
tains a return call inside the steering statement. The processes synchronise by means 
of the MPI MPI_Barrier call before executing the steering function, so as to avoid possi-
ble race conditions. 
 
4.7 Timing 

From release 1.1 of the software onwards, the basic functions of the CA Engine are timed. 
The functions timed are as follows: 
 
• Transition function; 
• Visualisation; 
• Project save; 
• Boundary replication; 
• Steering. 



Project COLOMBO (Project No.: 24,907)  Version 1.0 

29/05/2000  87 

 
The user can define how often the results are output (see section 2.2 for more details on 
this). Regardless of this setting, the execution is timed in each step. For each of the func-
tions timed, the following features are monitored and reported: 
 
• The number of calls; 
• The total time taken by this function; 
• The best and worst time recorded for this function. 
 
The sum of the above times is also reported. Additionally, a timer instance collects statis-
tics for the duration of the period of each run. The format of the output is seen in Table 8. 
 
4.7.1 Strategy for Timing the Functions 

There are several ways in which a function can be timed. In this section we describe the 
strategy used for each of the functions. 
 
 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Process: 0 Generations:

 Calls Time Best Worst
--
Update Function :
Steering :
Boundary Comm :
Visualisation :
Periodic Save :

Sum :
Total Execution Time:

Table 8: Output of Timing Statistics

4.7.1.1 Transition Function

The transition function is timed inside function run(). We start the corresponding timer
before entering the nested loop traversing the elements of the model and stop it immedi-
ately after exiting it. This provides a per-PE granularity. As mentioned in section 4.6.3,
after each iteration of the CA Engine, the read copy of the CA is updated by means of a
memcpy call. Note that the time taken by this call is not accounted for by the update func-
tion timer, yet it appears in the total timer discussed in section 4.7.1.6 below.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 88

Our initial implementation timed each call to function cpt_func(), but the overhead was
unacceptable. More specifically, removing the timing functions in a trivial 1000x1000
model running in 1 processor, 1 fold for 10 steps yielded a 70% performance benefit.

4.7.1.2 Visualisation

The visualisation timer is started when entering function tx_vis_pack() (see section
7.6.2.1) and stopped before exiting it.

4.7.1.3 Project Save

The project save timer is associated with function cmt_write_all(). This allows the
timing of the project saves even when the program is running in batch mode (see section
0). This function initialises the writing of all the configuration related files, as described in
section 6.5.8.1.

4.7.1.4 Boundary Replication

The start and stop calls for this timer enclose calls to cmt_boundary_copy() and
cmt_boundary_swap(). These two functions are always called together.

4.7.1.5 Steering

The timer is started after explicitly synchronising the processes for the execution of the
steering statement and stopped immediately after it has been executed. The time taken for
the synchronisation of the processes is not taken into account.

4.7.1.6 Total Time

This timer is started when entering the run() function and it is kept running while the CA
Engine is running. It stops when rv() is called to serve user requests (see section 6.5.2)
and it is restarted when rv() returns. The timer is running when print_all_stats(),
discussed in section 4.7.2.2, is called but it is stopped and restarted so as to allow for cor-
rect statistics gathering in process 0.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 89

4.7.2 Structures and Functions

4.7.2.1 Structure timer

We designed the structure timer which contains all the necessary data for each of the
timed functions.

typedef struct {

 double start;

 double stop;

 double sum;

 double best;

 double worst;

 u_char started;

 unsigned long called;

 char title[TITLE_LENGTH];

} timer;

The associated functions are as follows:

• static void init_tmr (timer *tp, const char *title)

This initialises a timer struct. It assumes that memory has previously been allocated
for it. All the members are set to 0, with the exception of title which takes the value
of the argument11 and best which is set to DBL_MAX.

• static int start_tmr (timer *tp)

This starts the timer pointed to by tp. It increments called, sets started and as-
signs to start the value returned by MPI_Wtime().

It returns 0 if the timer was already started, or 1 otherwise.

• static int stop_tmr (timer *tp)

This stops the timer pointed to by tp. It clears started and assigns to stop the
value returned by MPI_Wtime(). It also adds the time between stopped and
started to sum and checks if the current record is a best and/or worst time.

11 If the title argument equals NULL, the title member is not set. The function in this case is used to
reset the members of the structure.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 90

This returns 0 if the timer was already stopped, or 1 otherwise.

• static void print_tmr (timer *tp, FILE *f)

This checks if tp is started, in which case it prints a warning. It then prints the ti-
tle, followed by one tab and called followed by one or two tabs according to its
length. It then prints the sum, best and worst separated by a tab character and fin-
ishes with a newline character. All the output is in one line.

4.7.2.2 Structure stats

This structure is a collection of timers. It includes a pointer to a FILE variable which iden-
tifies the file where the data are written. It encapsulates various characteristics of the “in-
stance”, including a flag indicating whether statistics are taken (work), the period of out-
putting the statistics, the number of generations for which statistics are produced (gens)
and others, as seen below.

typedef struct {

 timer func;

 timer vis;

 timer prj;

 timer bound;

 timer steer;

 timer total;

 int rank;

 unsigned long gens;

 int start_gen;

 u_int period;

 u_char work;

 FILE *outfile;

} stats;

The associated functions are as follows:

• static void init_sts (stats *stp, int rank, u_char work,

char *fname)

This initialises a stats structure. The timer members are initialised with the titles as
set inside the function (not passed as a set of arguments). The outfile member is

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 91

opened in process 0 and set to NULL in all other processes. The rest are straightfor-
ward.

• static void reset_sts (stats *stp)

This is applied only to structures where the work flag is set. It is used by function
print_all_stats() discussed below. All the timer members are restarted with
the titles argument set to NULL (see function init_tmr() above) and gens is set to
0.

• static int start_one_timer_sts (stats *stp, tmr_code tmr,

int gen)

This starts the timer denoted by tmr. If tmr is not TOTAL, it calls the corresponding
start_tmr() call and returns what that returns. If it is TOTAL it also checks and sets
the start_gen member of the statistics structure to gen.

It returns 0 if the statistics entity does not work or if the request is ignored (see
the discussion of start_tmr() above), a negative value if the arguments are unac-
ceptable or 1 otherwise (successful termination).

• static int stop_one_timer_sts (stats *stp, tmr_code tmr,

int gen)

This starts the timer denoted by tmr. If tmr is not TOTAL, it calls the corresponding
stop_tmr() call and returns what that returns. If it is TOTAL it also checks and sets
its gens member to gen-stp->start_gen.

It returns 0 if the statistics entity does not work or if the request is ignored (see
the discussion of stop_tmr() above), a negative value if the arguments are unac-
ceptable or 1 otherwise (successful termination).

• static void print_sts (const stats *stp)

This prints all the members of the stats structure. It produces the output shown in
Table 8. The Sum field is the sum of the sum members of all the timers with the excep-
tion of TOTAL.

• static void close_file_sts (const stats *stp)

This closes the output file for the stats structure, except if the file is stdout.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 92

The following function is written using the above library of functions. It also makes use of
the associated global variable all_stats[].

• static void print_all_stats (void)

This collects and prints the statistics from all the processes at the root process. It cre-
ates a derived MPI_Datatype for the stats type, which requires a datatype for the
timer type as well, to gather the statistics instance at the root process. Requires care-
ful handling of the TOTAL timer because periodic saves mean that this timer is not
stopped when printing the data.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 93

5. CARPET Parser Implementation

CARPET programs are translated into C programs that define the global parameters and
transition function of the CA. This translator, usually referred to as the parser, is com-
posed of a tokeniser and a parser generated using the UNIX tools flex and yacc (or bi-
son). Note that the use of the standard UNIX lex tool results in a tokeniser which handles
comments incorrectly.

This parser is derived from the one used in the CAMEL software developed in the
CABOTO project [Smith 1998]. It has been enhanced with various features according to
the users’ requests [Telford et al. 1999].

5.1 Tokeniser

The tokeniser (yylex.l) reads in text from the CARPET source file. It uses eight Left
Context states to control the way it interprets text:

• <ZERO>

Default start state. Reverted to in body of transition function. When the keyword
“steering” is read, the state changes to <STEERSTATE>.

• <UNO>

After reading “cadef”, CARPET keywords are expected and are passed to the parser
as tokens. All other strings are interpreted as identifiers, integer values, or real values
and are passed as tokens, with the name or value being passed by global variables. A
“threshold” keyword changes the state to <CINQUE>. When the C block close sym-
bol “}” is read, indicating the end of the cadef block, the state changes to <TRE>.

• <DUE>

Once the string “update” has been read, this state handles the parameters, i.e. the fol-
lowing symbols are interpreted as two comma-separated C expressions enclosed by “(”
and “)”. The state is then reset to <ZERO>.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 94

• <TRE>

All symbols are ignored and passed through to the output file except:

− the state is changed back to <ZERO> after the C open block symbol “{” is read; to-
ken YSTARTCODE is generated;

− “struct”, “enum”, “union” or “=” change the state to <QUATTRO>.

• <QUATTRO>

Reads array initialisers, enum, struct and union declarations between the cadef
block and the transition function body (the transition function's local declarations). Re-
turns to <TRE> upon reading a “;”.

• <CINQUE>

Reads parameter of “threshold” directive in cadef block, similarly to state <DUE>.
Reverts to state <UNO> on reading a “;”.

• <STEERSTATE>

Reads the name of the defined region and changes to state <REDARG>.

• <REDARG>

Reads the limits of the defined region.

In addition, two exclusive start states are used to handle comments: <COMMENT> for C-
style “/* ... */” comments and <COMMENT2> for C++-style “// ...” comments.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 95

5.2 Parser

The parser (yyparser.y) is implemented as a combination of a grammar with embedded
C code.

After the cadef block is parsed, the functions cadef_check(), cadef_h_code(),
cadef_c_code() and cadef_desc() are called. Respectively, these check for missing
or inconsistent cadef declarations, generate the header file, generate the transition func-
tion code in the output C file and fill in the CptCADef state table returned by the parser.

At the start of the transition function body (marked by the token YSTARTCODE),
neigh_code() is called to generate the symbolic neighbourhood mapping code. The
parser also transforms the update() statements in the transition function body into the
appropriate C code.

After the update function, the steering code is generated by means of the function
cpt_steering_code().

5.2.1 Interface to macrocell.c

As mentioned in section 4.1.3, there is a number of functions defining the interface of the
parser-generated model to macrocell.c. Their description follows.

• extern void cpt_hook_init (void);

It defines the variables cpt_dimx, cpt_dimy and cpt_dimz which are equal to
CPT_X, CPT_Y and CPT_Z respectively. More importantly, in the case of uneven de-
composition, it defines the array of neighbours, cpt_N[]; in the even decomposition
case this array is defined on declaration, but this is not possible in the case of uneven
decomposition because its initialisation values depend on variables defined at run-time.

• extern void cpt_func (CptCell *, CptCell *);

This defines the update function code. Its first argument is a pointer to the read copy of
the cell to be updated, whereas the second argument is a pointer to the cell to be up-
dated in the write copy of the model.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 96

• extern void cpt_set_state (CptCell *, int, void *, int);

This function is used to set the values of a given substate on contiguous cells to speci-
fied values. The starting cell is pointed to by the first argument of the function, the
state id is the second argument, the void * pointer contains the new data and the last
argument defines the number of contiguous cells this operation affects.

• extern void cpt_get_state (CptCell *, int, void *, int);

Similarly to cpt_set_state(), this function returns the substate values of a set of
contiguous cells to the pointer defined in the third argument. Note that this pointer
must be suitably initialised by the caller function.

• extern void cpt_mpi_type_cell (MPI_Datatype *);

This function defines the derived datatype corresponding to a cell, which is in turn
used to define the boundary vector datatype. The obvious way to define the cell type is
by treating it as a struct, thus employing MPI_Type_struct. This approach is correct
and guarantees that the datatype is defined correctly even when the underlying archi-
tecture consists of CPUs with various datatype representations. Portability comes at a
price though. When memory for a C struct is allocated, there is a possibility that
holes are introduced between consecutive fields. This is reflected in the derived
datatype and causes MPI to call internal functions more times than it would in order to
communicate these derived datatypes. To avoid this performance deterioration, the user
can define the HOMOGENEOUS C pre-processor macro, which defines the derived
datatype as an appropriately sized contiguous block of memory. This definition is not
the default, because it is not portable; it assumes that the underlying architecture is
homogeneous.

• extern void cpt_hook_finalize (void);

Reserved function to be executed when exiting the program. It does nothing at the
moment.

• extern int cpt_thresh (CptCell *);

It returns the threshold condition defined by the user (see sections 4.6.3.1 and 2.3.24
for more on the threshold condition).

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 97

5.2.2 Steering Code Generation

5.2.2.1 Steering Related Types

The following structure types are defined in yyparser.y:

5.2.2.1.1 CptRegion

typedef struct _CptRegion {

 char *name;

 int bounds[6];

 struct _CptRegion *next;

} CptRegion;

This defines a single-link list containing the data for each of the defined regions. The asso-
ciated functions are as follows:

• static CptRegion *cpt_make_region (char *name, int bounds[6],

CptRegion *list)

This function adds a region to the list pointed by list, having the members pointed by
the first two arguments of the function. It returns a pointer to the head of the list.

• static void cpt_free_region (CptRegion *list)

This frees the dynamically allocated memory of the contents of the list pointed by
list.

• static CptRegion *cpt_find_region (char *name, CptRegion *list)

This makes a search in list for a region with the same name member as name. It re-
turns a pointer to such a CptRegion if found, or NULL otherwise.

• static void cpt_check_region (CptRegion *list, int dim)

This checks the regions in list to verify that if the model is 1-dimensional or 2-
dimensional. The bounds of the regions are not specified for unused dimensions.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 98

5.2.2.1.2 CptReduction

typedef struct _CptReduction {

 char name[BUFSIZ];

 int type;

 int unsign;

 char *neutral;

 struct _CptReduction *next;

} CptReduction;

This is a single-link unordered list, with descriptions of the reduction operations in the
CARPET program. The type member is a handle to the datatype of the arguments in the
reduction operation and unsign is a flag whether the datatype is unsigned or not. The
neutral member is the neutral element for the reduction. We briefly discuss the related
functions.

• static CptReduction *cpt_make_reduction (char *name, int type,

int unsign, CptReduction *list)

This function checks the reduction operations already in list for a reduction with the
same characteristics as the one to be inserted. All the details of the new reduction are
available from the argument list of the function with the exception of the neutral ele-
ment, provided by the get_neutral() function discussed below. Returns a pointer to
the head of the list.

• static void free_reduction_list(CptReduction *list)

This frees all the elements in list.

• static void emit_red_func (CptReduction *p)

This routine outputs the reduction function corresponding to the reduction pointed at
by p to the generated C file. Information about the prototype and how to write a reduc-
tion function is available from section 2.3.19.

• static char *get_neutral (CptReduction *p)

This function returns the neutral element for the reduction pointed at by p. The neutral
element depends on the type of data and the reduction operation. If the combination of
the two above members is not matched in the function code, NULL is returned. In this

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 99

case the user supplies the neutral element for the operation implicitly in the reduction
function that they provide. See section 2.3.19 for the importance of the neutral element.

• static int print_red_func (CptReduction *p)

This function prints only one line in the generated C file, containing the operator corre-
sponding to the reduction pointed by p. For example, if the function is max, it prints the
following:

res = MAX (res, tmp_data[i]);

The definitions of the macros MIN and MAX are emitted in the generated file when the
cpt_write_reductions() function is called. The function returns -1 if the opera-
tion is unknown, or 1 in the normal case.

• static void print_all_reduce (CptReduction *p)

This function also prints only one line in the generated C file. It outputs the MPI global
reduction statement.

5.2.2.2 Steering Related Global Variables

The following global variables in yyparser.y are related to the steering code generation:

• static CptRegion *cpt_region_list=NULL;

The list of all the regions, initialised by cpt_make_region().

• static CptRegion *current_region;

A pointer, used when outputting the steering function.

• static CptReduction *cpt_reduction_list=NULL;

The list of all the reductions, initialised by cpt_make_reduction().

• static char redop_name[BUFSIZ];

This is used to store the reduction operation name when outputting the reduction func-
tions.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 100

5.2.2.3 Steering Related Functions

The functions in yyparser.y associated with the generation of the steering code are as
follows:

• static void cpt_steering_code (void)

This function outputs the cpt_abort() and cpt_set_param() functions in the gen-
erated C file.

• static void cpt_write_reductions (void)

This function writes the following to the generated C file:

− a list of steering-related standard header files which should be included;
− a list of definitions used internally, such as MIN and MAX;
− the reduction functions, by calling emit_red_func() for all the members of

cpt_reduction_list.

It also writes the prototypes of the generated reduction functions to the generated
header file and frees the list by means of free_reduction_list().

5.3 Parser library interface

The parser is built as a library (libcpt_parse) with the following interface (declared in
cpt_parse.h):

• int cpt_init (const char *carpet_file, const char *c_file,

 const char *h_file,

 void (*error_handler)(int code, int line))

This function is called to start the parsing process. It opens the pathname car-
pet_file as the input CARPET source file, c_file as the output C file, and h_file
as the output C header file. The tokeniser and parser are initialised.

error_handler() is a pointer to user-supplied callback function which is called
when a parser error occurs. The parameters passed to error_handler() are the error
code and CARPET source file line number respectively. If line is 0, the error is of a
global nature (i.e. failed to open file); codes 900 and above are considered warnings
and do not prevent the output files from being generated.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 101

Returns -1 on error or 0 otherwise.

• int cpt_parse (CptCADef *cadef)

This function is called to perform the parsing process. The output files specified in the
cpt_init() call are written to and the state table pointed to by cadef is filled in
with information about the CARPET program. Note that the cadef->st and cadef-
>pt tables are allocated by the parser and must be freed by the user when no longer re-
quired.

Returns 0 on success or number of errors found.

• int cpt_finalize (void)

This function closes the three files given in the call to cpt_init().

Always returns 0.

• void cpt_error_message (int code, char *message, int length)

This function copies up to length characters of an error message corresponding to er-
ror code code into the user-supplied buffer pointed to by message. Error messages
are defined by the parser library.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 102

6. GUI–CA Engine Communication

This section presents the design of the protocol implemented for the communication be-
tween the GUI and the CA Engine of CAMELot. The implementation of the corresponding
functions is also discussed in detail.

6.1 General Remarks

6.1.1 Communication Abstraction

It was decided to implement the protocol using BSD sockets. The reason for choosing
sockets is that they provide a simple programming interface. This interface is more ad-
vanced and better documented than those of pipes or FIFOs. MPI-1 could not be used be-
cause its specification does not allow processes to start at different times, which is essen-
tial for the application since the GUI spawns the macrocell processes. The reason for
choosing Berkeley sockets instead of TLI is that they have been established over the past
years and are widely supported across platforms [Stevens 1990].

Our protocol was implemented over TCP, which provides a bi-directional, connection ori-
ented channel of communication. The connection is established at the beginning of the run
and is not terminated until a request to exit the program is received (EXITCODE).

The functions implemented are not socket dependent. Their prototypes do not contain the
sockets as arguments and are thus easily modifiable.

6.1.2 Socket Instances

There are two socket instances in each of the GUI and CA Engine, one for visualisation
and one for the other protocol requests, named vis_sockfd and prot_sockfd respec-
tively. In both cases, the GUI acts as a server, which is expected since the GUI process
spawns the CA Engine.

On the GUI side, the program calls socket, bind (with sin_port set to 0 so as to have
the system assign the port number), listen, then spawns the CA processes and calls ac-
cept twice on the initial socket to get prot_sockfd and vis_sockfd respectively. On
the CA Engine side, the program calls socket and connect twice, in order to initialise
prot_sockfd and vis_sockfd. This is done by calling the function start_client()
twice.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 103

The name of the host and the name of the port are passed to the master macrocell process
through the -H and -P command line arguments of the macrocell program, respectively.

6.1.3 Header Format

In order for the two sides to exchange messages, the communication initiator must send a
valid req_code as defined in the header file constants.h and shown in Table 9. Of
those, FINISHED and BATCH are reserved for internal use in macrocell.c and IGNORED
is used as an acknowledgement only. VIS_PACK is used by the CA Engine to communi-
cate visualisation data, and GEN_NO to send generation numbers. OVER_W is only transmit-
ted from the CA Engine in the special case described in the discussion of
serv_periodic_save() in section 6.5.7. All other codes are used only by the GUI. The
receiving side ignores messages which do not have a valid req_code.

6.1.4 Spatial Entities

The co-ordinates of a spatial entity (plane, line or cell) are uniformly passed to the function
by means of the integer array, pos[3]. The exception to this rule is function
req_add_plane(), which encapsulates the array to its plane argument, as explained in
section 7.4.3. This convention implies that an entity will always extend to its maximum
dimensions, thus leaving sub-entity display for the GUI. Since valid co-ordinates for each
dimension range from 1 to the maximum number of cells in the axis, in order to “free” a
dimension the appropriate element of the position array has to be set to 0.

6.2 Auxiliary Functions

6.2.1 Socket Functions

The following are the socket-related functions of the CAMELot software. They are imple-
mented in file sock.c, and their prototypes can be found in common.h.

• int readn (int fd, char *ptr, int nbytes)

Reads nbytes bytes from file descriptor fd into the supplied buffer ptr. It assumes
that the file descriptor has been opened and the pointer is appropriately initialised to
hold the data. This function is a wrapper for read(2). It returns the number of bytes
actually read.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 104

typedef enum {IGNORED = INT_MIN,

 EXITCODE = -13,

 FINISHED = 1,

 OVER_W = 333,

 SAVE_REQUEST = 1111,

 SET_FOLD,

 SET_LOAD,

 VIEW_STATE,

 SET_STATE,

 SET_PARAM,

 GET_PARAM,

 EVOLVE,

 LOOP,

 RESUME,

 TERMINATE,

 PAUSE,

 ADD_PLANE,

 DEL_PLANE,

 READ_PROJECT,

 SAVE_PROJECT,

 PERIODIC_SAVE,

 VIS_PACK,

 GEN_NO,

 SET_MINMAX,

 BATCH} req_code;

Table 9: Enumerated type req_code

• int writen (int fd, char *ptr, int nbytes)

Writes nbytes bytes to file descriptor fd from the supplied buffer ptr. It assumes
that the file descriptor has been opened. This function is a wrapper for write(2). It
returns the number of bytes written.

• int start_client (u_short port, char *hostname)

This function initialises a client by connecting to the process running on port port on
host hostname. It assumes that a TCP connection must be made and takes the address

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 105

of the host using the gethostbyname(3N) function. In the normal case it returns the
socket descriptor returned by socket(5), after achieving a connection using con-
nect(3N). In the case of our application, the client is the CA Engine. The function re-
turns a negative integer if any of the calls fails.

6.2.2 Acknowledgements

Depending on the function executed, the CA Engine should return an acknowledgement to
the GUI, regarding the success of the requested action.

Acknowledgements are handled by the following two functions.

• static int send_ack (req_code ack)

This function, local to macrocell.c, transmits the req_code that initiated the action
as an acknowledgement for a successfully executed task, or a negative error code if the
caller function failed. The function returns ack, except if writen() fails, in which
case it returns a negative value. The special negative req_code, IGNORED might also
be transmitted and thus returned. This does not indicate a failure of the function.

Acknowledgements are handled in the GUI-side by the get_ack() function, which
compares the received acknowledgement code with the one expected in each case.

• int get_ack (req_code request)

The function is implemented in file guicomms.c; its prototype is listed in gui-
comms.h. It returns:

− request, if this is the value of the message read;
− 0, if the message read is IGNORED;
− a negative integer, otherwise.

6.3 Requests

Here we describe protocols and the implementations of the functions on each side, with
respect to each of the values of req_code.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 106

SAVE_REQUEST

The GUI requests that the values for a certain substate be written to a file whose name is
transmitted. An acknowledgement is expected at the GUI side.

Sender Token Type

GUI SAVE_REQUEST req_code

GUI substate int

GUI strlen (fname) int

GUI fname char *

CA SAVE_REQUEST req_code

SET_FOLD

This is a request to set the active folds manually. An acknowledgement is expected after
completion of the action.

Sender Token Type

GUI SET_FOLD req_code

GUI start_fold int

GUI end_fold int

GUI fname char *

CA SET_FOLD /

IGNORED

req_code

SET_LOAD

The GUI requests that the specified substate values of all cells in the CA Engine be set to
those listed in the specified file. An acknowledgement is expected from the CA Engine.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 107

Sender Token Type

GUI SET_LOAD req_code

GUI substate int

GUI strlen (fname) int

GUI fname char *

CA SET_LOAD req_code

VIEW_STATE

The GUI transmits the co-ordinates of an entity and gets the data for the substate and the
generation that the data were collected. This request is used by the “Edit Substate” GUI
facility.

Sender Token Type

GUI VIEW_STATE req_code

GUI pos int[3]

GUI substate int

CA cpt_generation int

CA data char *

CA VIEW_STATE req_code

SET_STATE

The GUI transmits appropriate values and requests that the substate be set in the CA En-
gine. An acknowledgement finishes the communication. This request is used by the “Edit
Substate” GUI facility.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 108

Sender Token Type

GUI SET_STATE req_code

GUI pos int[3]

GUI substate int

GUI data char *

CA SET_STATE req_code

SET_PARAM

This request concerns the modification of cadef global CARPET parameters. More than
one parameter can be set, as their number is written to the socket. The reply from the CA
Engine is an acknowledgement.

Sender Token Type

GUI SET_PARAM req_code

GUI no_of_params int

for (i)

 GUI param_id[i] int

 GUI value[i] float

end for

CA SET_PARAM req_code

GET_PARAM

This request gets the value of one global CARPET parameter. There is no acknowledge-
ment in this case.

Sender Token Type

GUI GET_PARAM req_code

GUI param_id int

CA param[param_id] /

IGNORED

int /

req_code

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 109

EVOLVE

The GUI requests the evolution of the CA Engine for a given number of generations. No
reply is expected.

Sender Token Type

GUI EVOLVE req_code

GUI num_gens int

LOOP

This is a request for CA Engine execution until further notice. No reply is anticipated.

Sender Token Type

GUI LOOP req_code

TERMINATE

This request terminates CA Engine execution, but it does not cause the program to exit.
The user can instruct a new run of the Engine. Visualisation planes are removed from the
data structures and the generation is zeroed. An acknowledgement that execution has
stopped is returned to the GUI through the communication channel.

Sender Token Type

GUI TERMINATE req_code

CA TERMINATE /

IGNORED

req_code

PAUSE

This requests the CA Engine to pause execution. Its difference from TERMINATE is that in
this case the visualisation planes are not affected and the generation is not zeroed. When
paused, the CA Engine can accept requests and can then be restarted by:

• EVOLVE or LOOP, in which case the visualisation list will be reinitialised but not emp-

tied (unlike TERMINATE). This effects to the planes being displayed immediately;

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 110

• RESUME, in which case no changes to the lists are imposed, except those explicitly re-
quested while the Engine was paused.

No acknowledgement that the Engine is paused is transmitted to the GUI.

Sender Token Type

GUI PAUSE req_code

ADD_PLANE

This is a request to add a visualisation plane to the CA Engine. An acknowledgement is
expected at the GUI side except if the plane is IGNORED. The protocol for ADD_PLANE is
explained in Section 7.4.

Sender Token Type

GUI ADD_PLANE req_code

GUI pos int[3]

GUI substate int

GUI vis_step int

CA ID /

IGNORED

int /

req_code

CA ID_same /

(NOTHING)

req_code

CA ADD_PLANE /

(NOTHING)

req_code

GUI VIS_PACK req_code

DEL_PLANE

The GUI requests the deletion of a plane identified by its ID. An acknowledgement is sent
to the GUI.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 111

Sender Token Type

GUI DEL_PLANE req_code

GUI ID int

CA DEL_PLANE /

IGNORED

req_code

READ_PROJECT

Requests that the CA Engine initialise its state from the data in the file whose name is
transmitted. Communication is finished with an acknowledgement.

Sender Token Type

GUI READ_PROJECT req_code

GUI strlen (fname) int

GUI fname char[strlen(fname)]

CA READ_PROJECT req_code

SAVE_PROJECT

The GUI requests that the current state of the CA Engine be saved in a set of project files.
The resulting files can be used for the READ_PROJECT operation, as well as SET_STATE.

Sender Token Type

GUI SAVE_PROJECT req_code

GUI strlen (fname) int

GUI fname char[strlen(fname)]

CA SAVE_PROJECT req_code

PERIODIC_SAVE

The GUI initiates periodic saving of project data.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 112

Sender Token Type

GUI PERIODIC_SAVE req_code

GUI strlen(fname) int

GUI fname char[strlen(fname)]

GUI save_step int

CA OVER_W / 0 req_code

CA PERIODIC_SAVE req_code

SET_MINMAX

The GUI sets the minimum and maximum values for the colour mapping of a substate.

Sender Token Type

GUI SET_MINMAX req_code

GUI substate int

GUI l_minmax double[2]

CA SET_MINMAX /

IGNORED
req_code

IGNORED

According to the state of the Engine, the following requests are IGNORED:

• TERMINATE and PAUSE, if the Engine is Stopped;
• PAUSE, if the Engine is Paused;
• EVOLVE and LOOP, if the Engine is Running;
• RESUME, if the Engine is Running or Stopped;
• FINISHED, if the Engine is Paused or Stopped.

Sender Token Type

CA IGNORE req_code

Other reasons for the CA Engine to transmit IGNORED are as follows:

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 113

• if the plane to be added is already in the visualisation list;
• if the plane to be deleted does not exist;
• if the transmitted spatial entity is invalid;
• if the parameter id for the parameter to be transmitted is invalid;
• if the suggested minimum or maximum values for the colour mapping of a substate are

inadequate.

If in any of these cases an acknowledgement is expected, IGNORED is transmitted to the
GUI.

EXITCODE

This request causes the CA Engine program to exit.

Sender Token Type

GUI EXITCODE req_code

FINISHED

This is not available on the GUI side; it is used in the CA Engine after an EVOLVE request
has been completed so as to reset internal variables.

Sender Token Type

Not Transmitted

RESUME

This is one of three ways to restart the CA Engine after it has been Paused. Explained un-
der PAUSE.

Sender Token Type

GUI RESUME req_code

VIS_PACK

This is a visualisation packet identifier, sent as a header from the CA Engine to the GUI
before sending the visualisation data. This is one of the two protocol functions performed

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 114

through vis_sockfd, the other one being GEN_NO. These two are also the only ones to be
initiated by the CA Engine.

Sender Token Type

CA VIS_PACK req_code

CA ID int

CA valsize int

CA minmax[2] double[]

CA value[valsize] char[]

GEN_NO

This is a generation number identifier, sent from the CA Engine to the GUI after each gen-
eration has been executed. It is followed by the current generation number.

Sender Token Type

CA GEN_NO req_code

CA cpt_generation int

OVER_W

This is a special kind of acknowledgement sent by the CA Engine when files could be
overwritten as a result of the periodic save. See section 6.5.7 for more details.

BATCH

This is not available on the GUI side either. It is used in the CA Engine instead of EVOLVE
when the program is run in standalone mode so that rv() initialises the status of the CA
Engine and exchanges boundaries.

Sender Token Type

Not Transmitted

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 115

6.4 Implementation of GUI Functions

The following are the protocol-related functions contained in the libcmtguicomms li-
brary linked with the GUI. They are all implemented in file guicomms.c; their prototypes
are listed in guicomms.h. The function arguments for functions prefixed req_ are to be
transmitted to the other side, except if otherwise stated. All functions return the req_code
if finished successfully. Functions receiving an IGNORED acknowledgement return 0. We
discuss them with respect to their context.

6.4.1 Substate related

• int req_save_request (int substate, char *filename)

The GUI requests that the substate values for all cells in the CA Engine be written to
file filename. The function merely implements the protocol.

• int req_set_load (int substate, char *filename)

Set the substate values for all cells in the Engine to those listed in file filename.

• int req_view_state (int pos[3], int substate,

CptStateType st_type, int *gen, void *value)

The pos[] array contains the co-ordinates of the cell, line or plane whose substate
data are to be retrieved. The results are returned in the value array, which has to be
initialised by the caller function. The generation number of the state is returned in the
gen pointer; no memory allocated for it either. Only pos and substate are written to
the CA side. st_type is used to calculate the total size of the value argument and ac-
cordingly receive data.

• int req_set_state (int pos[3], int substate,

 CptStateType st_type, void *value)

This requests that the substate of the entity in pos[] be set to value. Symmetric to
req_view_state, but it does not affect the generation of the CA Engine.

• int req_set_param (int no_of_params, int *param_id,

 float *value)

This function is concerned with the modification of cadef global CARPET parame-
ters. Their value can only be of type float. If no_of_params parameters are to be
set, their ID is stored in the param_id array and the corresponding values can be

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 116

found in value. The size of both arrays is no_of_params. After sending
no_of_params, the function loops over an index no_of_params times and writes
the respective values of param_id and value to the socket.

• int req_get_param (int param_id, float *value_ptr)

This function reads the parameter indexed param_id from the CA Engine. The value
of the parameter read is stored in value_ptr. If the value read is IGNORED it returns
0, otherwise it returns GET_PARAM. The caller function must allocate memory for
value_ptr.

6.4.2 Program Flow Management

The PAUSE, LOOP, TERMINATE, EXITCODE and RESUME req_codes are implemented by
issuing a simple writen call; no special function has been developed for them. FINISHED
is not available to the GUI.

• int req_evolve (int num_gens)

The GUI requests the CA Engine evolution for num_gens generations. The imple-
mentation is trivial.

• int req_set_fold (int start_fold, int end_fold)

This is a function to set the starting and finishing active folds of the CA manually. The
implementation is straightforward.

• int req_set_minmax (int substate, double min, double max)

This function sets the minimum and maximum values for the given substate so as to be
used on the CA side for the colour-mapping. It implements the protocol.

6.4.3 Visualisation Functions

• int req_add_plane (plane *pl_ptr, int *ID_same)

This is a request to add a visualisation plane to the CA Engine. The plane definition
as well as the discussion of the function are deferred to section 7.4.

• int req_del_plane (int plane_id)

The GUI requests the deletion of the plane numbered plane_id. The function im-
plementation is detailed in section 7.5.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 117

6.4.4 Configuration (Project) Related

• int req_proj_read (char *filename)

The function only transmits the length of filename followed by the filename itself
and then blocks for the acknowledgement. filename is used as a root for the files to
be read. The filename construction as well as the CA Engine actions are detailed in the
discussion of serv_proj_read.

• int req_proj_save (char *filename)

Similar to req_proj_read.

• int req_periodic_save (char *filename, int period, int *cfs)

Requests the CA Engine to save the state of the system periodically in files whose
name has the given root filename. The argument is an integer passed by-reference
conveying the result of check_fs() on the macrocell side (see section 6.5.7 for more
details). The implementation of this function is trivial.

6.4.5 Other functions

The rest of the functions in file guicomms.h are as follows:

• int consume_vis_pack (void)

• void GUI_check_pos (int *)

• int GUI_get_val_size (const int *)

• int get_max_size (const unsigned int *)

These functions are discussed in section 7.3.

6.5 Implementation of the CA Engine Functions

6.5.1 General Remarks

The following functions are called to serve the corresponding GUI side requests. These
functions are asymmetric to their GUI-side counterparts, in that they are invoked immedi-
ately after the request has been received and read in the necessary data internally from the
communication channel. Thus they have a void argument list. They return the req_code
that initiated them if successful, IGNORE if they did not perform a change for the reason
explained previously or a negative error code in other cases. The acknowledgement, where
applicable, is sent by their caller function, rv() (see section 6.5.2).

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 118

The functions receiving a filename first read its length through the socket. In order to use
the filename as a character pointer we NULL terminate it. So, memory for an extra charac-
ter must be allocated.

Data which need to be known to all the processes are broadcast to them using the
MPI_Bcast function. Data are scattered or gathered from or to the root process using
MPI_Scatter and MPI_Gather respectively. The root process in all collective commu-
nications is process 0.

6.5.2 Function rv()

The function responsible for request handling on the CA Engine side is

static int rv (req_code request)

For each req_code, with the exceptions of EVOLVE, BATCH, LOOP, RESUME, PAUSE,
FINISHED, GEN_NO, OVER_W and EXITCODE there is a function on the CA Engine side to
handle the request. The function rv() consists of a switch statement each case of which
calls the appropriate function and then transmits the acknowledgement to the GUI (where
applicable).

The reason why there are specific requests which do not have corresponding functions is
that they only affect the state of the CA Engine and do not require significant computation
or process interaction. The state of the CA Engine is maintained within rv() with the use
of two local static variables, paused and started. In addition to these, another static
variable, init_gen, denotes whether cpt_generation has been explicitly set by any of
the initialisation functions (e.g. serv_proj_read() discussed in section 6.5.7) and
should thus be preserved. We will describe the implementation of the handling mechanism
for each of these requests. OVER_W is omitted as it is only used as an acknowledgement for
function serv_periodic_save(), see section 6.5.7. GEN_NO is not discussed here either
as it is only transmitted by the CA Engine, see section 6.3.

EVOLVE

This is IGNORED if already started and not paused. Otherwise, the number of genera-
tions to be run is read and broadcast to all the processes in the global variable num_gens.
When this is received:

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 119

• function set_gen() is called to reset the visualisation generation in all the planes in
the list (see section 7.3.5.2);

• init_boundaries() is called;
• started is set;
• paused is cleared;
• init_gen is cleared.

Returns EVOLVE or IGNORED as discussed above.

BATCH

The request is IGNORED if started or paused or if prot_sockfd is set. The number of
generations is passed to macrocell.c by means of the -n argument. Similarly to
EVOLVE:

• set_gen() is called;
• init_boundaries() is called;
• started is set;
• paused is cleared;
• init_gen is cleared.

BATCH or IGNORED may be returned as usual.

LOOP

The same as EVOLVE, only that there is no number of generations to be read, as this re-
quests an infinite loop.

RESUME

This is IGNORED if paused is not set. It simply clears paused and init_gen.

PAUSE

This is IGNORED if the Engine has not started or if it is already paused. It sets paused
and returns PAUSED.

FINISHED

This pseudo-req_code is used by run() to clear the started variable. It is IGNORED if
the Engine is not started.

EXITCODE

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 120

Just returns EXITCODE.

6.5.3 File and Socket I/O

6.5.3.1 Data Handling

Data communicated to the GUI or saved in a file follow the rule that the x dimension
changes fastest, followed by y, followed by z. In other words, if the data in question are of
size xextent*yextent*zextent, the CA Engine will write them looping zextent
times over yextent, sending xextent data each time. Technically, these loops are not
executed when writing, but the effect to the order of the written data is the one described
above. xextent, yextent and zextent are determined by means of an array, pos[3].
If a co-ordinate of this array is set to 0, then the corresponding extent may be
DIMX/DIMY/DIMZ, except if the dimension is not used, in which case the extent equals 1.
If the co-ordinate is greater than 0, then the corresponding extent is equal to 1. This as-
sumes that the GUI enumerates the cells in each dimension starting from 1, contrary to the
CA Engine which enumerates from 0.

6.5.3.2 Writing Data

Functions that write to a file or socket contain the temporary data storage variable
tmp_data of type unsigned char*. This is used to get the data from the CA Engine
part belonging to each process and gather them in the root process. In the general case its
size is CPT_DIMX12*DIMY*DIMZ*cpt_state_size[stateid] (the number of elements
in each process multiplied by the size of each element of a given substate). On the other
hand, the root process requires an extra variable tmp_data2 of the same datatype and ade-
quate size (generally DIMX*DIMY*DIMZ*cpt_state_size[stateid]) in which to col-
lect the data. All the arrays above contain actual data, stripped of boundary data. This is
achieved by means of function get_x_line() which skips the boundaries when travers-
ing the model.

The approach in gathering the data to the root process is very different depending on
whether even decomposition is assumed or not. We will describe these cases separately.

12 CPT_DIMX[cmtWorldRank] in the case of uneven decomposition

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 121

6.5.3.2.1 Even Decomposition Data Collection

The data are gathered into the root process using MPI_Gather. The data in tmp_data are
contiguous per process. It would be an error to gather them into the root process using a
simple MPI_Gather call. This would mean that the first NPROCS x-lines of process 0
would be considered as one x-line of the model. In order to interleave the process lines
while gathering, we create derived MPI_Datatypes, both for sending and for receiving
data. The process of creating these datatypes resembles the rationale of the data decompo-
sition to folds consisting of strips, as discussed in section 4.4. For the sending datatype, we
create first a vector datatype, send_strip_vec, packing DIMY*DIMZ blocks of CPT_F_X
contiguous elements. The distance between the first elements of two consecutive contigu-
ous blocks is set to CPT_DIMX elements. This is the MPI way to represent a strip on the
sender. We then create another datatype, send_strip_UB_type, using the
MPI_Type_struct call, to fix the extent of this datatype to CPT_F_X. This is a technical
requirement for MPI and it is achieved by setting the upper bound of the datatype to an
address CPT_F_X elements away from its beginning.

The receiver end creates a strip vector, recv_strip_vec, similarly to the sender, only
that the stride between the first elements of two consecutive contiguous blocks is set to
DIMX, i.e. the x-size of the receiving buffer. This is the building block of the
recv_fold_type derived datatype, naturally consisting of NFOLDS strips. Finally, we
create a fixed extent datatype recv_fold_UB_type, in the same manner as above and
with the same extent. MPI_Gather is called so that NFOLDS elements of type
send_strip_UB_type are sent from each process and process 0 receives one element of
type recv_fold_UB_type from each process. The implementation of this procedure is
shown in Table 10.

/* Type strip */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X, CPT_DIMX,
 cpt_state_mpidt[stateid],
 &send_strip_vec);
 MPI_Type_commit (&send_strip_vec);

/* Type strip with fixed extent for gather */
 types[0] = send_strip_vec;
 types[1] = MPI_UB;

 displacements[0] = 0;
 MPI_Address (&(tmp_data[0]), &start_address);
 MPI_Address (&(tmp_data[CPT_F_X*cpt_state_size[stateid]]), &address);
 displacements[1] = address-start_address;

 block_lengths[0] = 1;
 block_lengths[1] = 1;

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 122

 MPI_Type_struct (2, block_lengths, displacements, types,
 &send_strip_UB_type);
 MPI_Type_commit (&send_strip_UB_type);

/* Type strip. Different than send_ in stride since buffer is bigger */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X, DIMX, cpt_state_mpidt[stateid],
 &recv_strip_vec);
 MPI_Type_commit (&recv_strip_vec);

/* Type fold */
 for (i = 0; i < NFOLDS; i++) {
 types[i] = recv_strip_vec;
 }

 displacements[0] = 0;
 MPI_Address (&(tmp_data2[0]), &start_address);

 for (i = 1; i < NFOLDS; i++) {

 MPI_Address(&(tmp_data2[i*CPT_NPROCS*CPT_F_X*cpt_state_size[stateid
]]),
 &address);
 displacements[i] = address-start_address;
 }

 for (i = 0; i < NFOLDS; i++) {
 block_lengths[i] = 1;
 }

 MPI_Type_struct (NFOLDS, block_lengths, displacements, types,
 &recv_fold_type);
 MPI_Type_commit (&recv_fold_type);

/* Type fold with fixed extent for gather */
 types[0] = recv_fold_type;
 types[1] = MPI_UB;

 displacements[0] = 0;
 MPI_Address (&(tmp_data2[0]), &start_address);
 MPI_Address (&(tmp_data2[CPT_F_X*cpt_state_size[stateid]]),
 &address);
 displacements[1] = address-start_address;

 block_lengths[0] = 1;
 block_lengths[1] = 1;

 MPI_Type_struct (2, block_lengths, displacements, types,
 &recv_fold_UB_type);
 MPI_Type_commit (&recv_fold_UB_type);

 MPI_Gather (tmp_data, NFOLDS, send_strip_UB_type,
 tmp_data2, 1, recv_fold_UB_type, 0, cmtCommCommand);

Table 10: The code for the derived datatype used for interleaved gathering of data in
the root process. Taken from function cmt_write().

It should be noted that this non-trivial and costly procedure introduced in release 1.2 of
CAMELot eliminates the need for the root process to rearrange the data from folds to nor-

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 123

mal line representation. However, there are functions, namely tx_vis_pack() and
serv_view_state(), which do not employ this method. The reason is that these func-
tions may need to handle a subset of the substate data, which makes the implementation of
the strategy more complicated.

In order for the aforementioned functions to interleave the process lines while gathering,
we create a derived MPI_Datatype called recv_vec. This in turn contains another de-
rived datatype called send_vec. The latter is created using the MPI_Type_vector com-
mand and it generally contains DIMY*DIMZ blocks of elements of a specific datatype, each
having length equal to CPT_DIMX with stride DIMX. In other words, this is a vector which
leaves enough space for the whole x-line of the model (DIMX), yet carries the data of one
process (CPT_DIMX). The recv_vec is then created using the MPI_Type_struct func-
tion, as a two-element struct, the former being send_vec and the latter the pseudo
MPI_Datatype MPI_UB. The displacement for the upper bound is set to
CPT_DIMX*state_size, i.e. enough for the data of one process. The arguments of the
MPI_Gather call are set in such a way, so that the processes send contiguous data which
are rearranged in the receiver process, as shown in Table 11. It should be noted that these
structures are local to each function. A global datatype variable cannot be constructed,
since this depends on the datatype of the data to be transferred. This statement is true for
the other method of data transmission as well.

 MPI_Type_vector (my_y*my_z, my_x, my_x*work_size,
 cpt_state_mpidt[substate], &send_vec);
 MPI_Type_commit (&send_vec);

 displ[0] = 0;
 displ[1] = my_x;
 blocklengths[0] = 1;
 blocklengths[1] = 1;
 types[0] = send_vec;
 types[1] = MPI_UB;
 MPI_Type_struct (2, blocklengths, displ, types, &recv_vec);
 MPI_Type_commit (&recv_vec);

 MPI_Gather (tmp_data, my_x*my_y*my_z, cpt_state_mpidt[substate],
 tmp_data2, 1, recv_vec, 0, cmtCommWork);

Table 11: The code for the derived datatype used for interleaved gathering of data in
the root process. Taken from function serv_view_state(). This code implies the

need to rearrange the data from fold to normal representation before writing them.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 124

The data collected using the above process are fragmented across the x-axis in strip sized
portions because of the folded block-cyclic decomposition and need to be rearranged. We
use the tmp_data3 array of size equal to that of tmp_data2, as an argument to function
get_write_ptr() which returns data ready for transmission. It should be noted that
get_write_ptr() is only executed in the root process. The size of the temporary data
storage variables is of particular importance and is further discussed in section 6.5.3.6.
These data structures are allocated memory in every call of the functions according to the
requirements and are freed before exiting the function.

6.5.3.2.2 Uneven Decomposition Data Collection

In this case, point-to-point sends and receives are used to communicate the data. The rea-
son is that strips have different sizes and MPI_Gather and MPI_Gatherv are not flexible
enough to handle interleaving variable lengths of data from multiple processes.

For each process role (send-receive) two types of vectors are needed, a small and a large
one. Recall from the discussion of function calc_x_sizes() in section 4.4.1 that we
decided to distribute extraneous cells to the processes from last to first, and place them in
strips from first to last. As far as the senders are concerned, the x-size of the large strip can
be found in CPT_F_X[cmtWorldRank][0], whereas the small size will be found in
CPT_F_X[cmtWorldRank][first_small_strip_ind[cmtWorldRank]]. The proc-
ess may not have different sized strips, and this is easily tested by comparing
first_small_strip_ind[cmtWorldRank]] against its default value, NFOLDS. Note
that this is not a valid index for the first_small_strip_ind array. Similarly with the
above, for the receiver the x-size of the large one can be found in CPT_F_X[last][0],
and the smallest sized strip, is in CPT_F_X[0][first_small_strip_ind[0]].

All four vector types consist of DIMY*DIMZ blocks of contiguous data, with sizes as above.
Similarly to the even decomposition case, send vectors differ from receive vectors in the
stride, i.e. the distance between the start of two consecutive contiguous blocks. Send vec-
tors have a stride equal to the x-dimension of the process, CPT_DIMX[cmtWorldRank],
whereas receive vectors have a stride equal to the x-dimension of the model, DIMX.

Data exchange is achieved with immediate receives issued from the root process and stan-
dard sends issued from each process (including the root process for ease of implementa-
tion). The root process issues NFOLDS*CPT_NPROCS receives, and each process issues
NFOLDS sends, one for each strip, with the appropriate sizes. The tags are defined as a se-

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 125

quence starting with 0 and incrementing by 1 for each strip encountered when traversing
the original model (e.g. the second tag equals to 1 and corresponds to strip 0 of process 1).

A summary of the code used for the case of uneven decomposition is shown in Table 12.
An interesting technical issue has to do with the traversal of the data received on process 0.
This is accomplished with two nested for loops across strips and then across processes. It
should be noted that the order of these loops should not be swapped, otherwise the index,
calculated incrementally, in the receiving array will be miscalculated

/* Send types */
 MPI_Type_vector (DIMY*DIMZ,CPT_F_X[cmtWorldRank][0],
 CPT_DIMX[cmtWorldRank], cpt_state_mpidt[stateid],
 &send_strip_vec_large);
 MPI_Type_commit (&send_strip_vec_large);
 if (NFOLDS != first_small_strip_ind[cmtWorldRank]) {
 MPI_Type_vector (DIMY*DIMZ,
 CPT_F_X[cmtWorldRank][first_small_strip_ind[cmtWorldRank]],
 CPT_DIMX[cmtWorldRank], cpt_state_mpidt[stateid],
 &send_strip_vec_small);
 MPI_Type_commit (&send_strip_vec_small);
 } /* End if (first_small_strip_ind[cmtWorldRank]) */

/* Receive types. */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X[last][0], DIMX,
 cpt_state_mpidt[stateid], &recv_strip_vec_large);
 MPI_Type_commit (&recv_strip_vec_large);
 if (NFOLDS != first_small_strip_ind[0]) {
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X[0][first_small_strip_ind[0]],
 DIMX, cpt_state_mpidt[stateid],
 &recv_strip_vec_small);
 MPI_Type_commit (&recv_strip_vec_small);
 } /* End if (first_small_strip_ind[0]) */

/* Receive data */
 if (0 == cmtWorldRank) {
/* First run strip then run processor, so as to traverse tmp_data2
 linearly. tmp_data2 contains the data in physical order. Going down
 the x-axis one meets first strip 0 of process 1 and then strip 1 of
 process 0 */

 i = 0; /* Index to position in tmp_data2[] */
 tag = 0; /* Tag for comm and request[] index */

 for (strip = 0; strip < NFOLDS; strip++) {
 int advance; /* Bytes to advance arrays (calc taken out) */

 for (proc = 0; proc < CPT_NPROCS; proc++) {
 if (strip < first_small_strip_ind[proc]) {
 MPI_Irecv (&tmp_data2[I], 1, recv_strip_vec_large, proc,
 tag, cmtCommCommand, &request[tag]);
 } else {
 MPI_Irecv (&tmp_data2[I], 1, recv_strip_vec_small, proc,
 tag, cmtCommCommand, &request[tag]);
 } /* End if strip */
 i += CPT_F_X[proc][strip]*cpt_state_size[stateid];
 tag++;

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 126

 } /* End for (proc) */
 } /* End for (strip) */
 } /* End if (0 == cmtWorldRank) */

/* Send data */
 i = 0; /* Index to position in tmp_data[] */
 for (strip = 0; strip < NFOLDS; strip++) {
 tag = strip*CPT_NPROCS + cmtWorldRank;
 if (strip < first_small_strip_ind[cmtWorldRank]) {
 MPI_Send (&tmp_data[i], 1, send_strip_vec_large, 0,
 tag, cmtCommCommand);
 } else {
 MPI_Send (&tmp_data[i], 1, send_strip_vec_small, 0,
 tag, cmtCommCommand);
 } /* End if strip */
 i += CPT_F_X[cmtWorldRank][strip]*cpt_state_size[stateid];

 } /* End for (strip) */

 if (0 == cmtWorldRank) {
 if (MPI_SUCCESS != MPI_Waitall (CPT_NPROCS*NFOLDS, request,
status)) {
 fprintf (stderr, "cmt_write: MPI_Waitall failed\n");
 MPI_Abort (cmtCommCommand, -1);
 } /* End (MPI_Waitall) */
 } /* End if (0 == cmtWorldRank) */

Table 12: The code for the derived datatype and data gathering in the case of uneven
decomposition. Adapted from function cmt_write().

Similarly to the even decomposition case, the functions that may need to handle a subset of
the substate data, tx_vis_pack() and serv_view_state() require complicated im-
plementation. This time we discern between two cases. If the functions handle all of the
data, then we do exactly what we described earlier, as shown in Table 12. Otherwise, we
limit the point-to-point communication between the root process and the process holding
the data; see section 6.5.3.4 for the working process definition. Table 13 summarises the
datatype derivation.

/* Send types. */
 MPI_Type_vector (my_y*my_z, 1 , my_x,
 cpt_state_mpidt[substate], &send_strip_vec_large);
 MPI_Type_commit (&send_strip_vec_large);

/* Receive types. */
 MPI_Type_vector (my_y*my_z, 1, tmp_data2_size,
 cpt_state_mpidt[substate], &recv_strip_vec_large);
 MPI_Type_commit (&recv_strip_vec_large);

/* Receive data */
 if (0 == cmtWorldRank) {

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 127

 MPI_Irecv (tmp_data2, 1, recv_strip_vec_large, proc,
 0, cmtCommCommand, &request[0]);
 } /* End if (0 == cmtWorldRank) */

/* Send data */
 if (work) {
 MPI_Send (tmp_data, 1, send_strip_vec_large, 0,
 0, cmtCommCommand);
 } /* End if (work) */

 if (0 == cmtWorldRank) {
 MPI_Waitall (1, request, status);
 } /* End if (0 == cmtWorldRank) */

Table 13: The code for the derived datatype and gathering of a substate of the data in
the case of uneven decomposition. Adapted from function serv_view_state().

6.5.3.3 Reading Data

Similar operations as for writing are used when reading data. The same arrays for data
storage are created per process and on process 0, although what used to serve as a receiver
data store now serves as a sender and vice versa. Function in the even decomposition case
is an exception to the allocation rule, as it only allocates enough space to store data the size
of the x dimension. We will describe the even and uneven decomposition cases separately.

6.5.3.3.1 Even Decomposition Data Distribution

This time the sender (process 0) creates a fixed-extent fold type send_fold_UB_type
deriving it from a previously derived strip vector. The receivers need only a fixed extent
strip type, called recv_strip_UB_type, yet they receive NFOLDS of them and in the
right order. The code is shown in Table 14 below.

/* Type strip */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X, DIMX, cpt_state_mpidt[stateid],
 &send_strip_vec);
 MPI_Type_commit (&send_strip_vec);

/* Type fold */
 for (i = 0; i < NFOLDS; i++) {
 types[i] = send_strip_vec;
 }

 displacements[0] = 0;
 MPI_Address (&(tmp_data2[0]), &start_address);

 for (i = 1; i < NFOLDS; i++) {

 MPI_Address(&(tmp_data2[i*CPT_NPROCS*CPT_F_X*cpt_state_size[stateid

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 128

]]),
 &address);
 displacements[i] = address-start_address;
 }

 for (i = 0; i < NFOLDS; i++) {
 block_lengths[i] = 1;
 }

 MPI_Type_struct (NFOLDS, block_lengths, displacements, types,
 &send_fold_type);
 MPI_Type_commit (&send_fold_type);

/* Type fold with fixed extent for scatter */
 types[0] = send_fold_type;
 types[1] = MPI_UB;

 displacements[0] = 0;
 MPI_Address (&(tmp_data2[0]), &start_address);
 MPI_Address (&(tmp_data2[CPT_F_X*cpt_state_size[stateid]]),
 &address);
 displacements[1] = address-start_address;

 block_lengths[0] = 1;
 block_lengths[1] = 1;

 MPI_Type_struct (2, block_lengths, displacements, types,
 &send_fold_UB_type);
 MPI_Type_commit (&send_fold_UB_type);

/* Type strip. Different than send_ in stride since buffer is smaller */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X, CPT_DIMX,
 cpt_state_mpidt[stateid], &recv_strip_vec);
 MPI_Type_commit (&recv_strip_vec);

/* Type strip with fixed extent for scatter */
 types[0] = recv_strip_vec;
 types[1] = MPI_UB;

 displacements[0] = 0;
 MPI_Address (&(tmp_data[0]), &start_address);
 MPI_Address (&(tmp_data[CPT_F_X*cpt_state_size[stateid]]), &address);
 displacements[1] = address-start_address;
/* The rest are the same as above */

 MPI_Type_struct (2, block_lengths, displacements, types,
 &recv_strip_UB_type);
 MPI_Type_commit (&recv_strip_UB_type);

 MPI_Scatter (tmp_data2, 1, send_fold_UB_type,
 tmp_data, NFOLDS, recv_strip_UB_type,
 0, cmtCommCommand);

Table 14: The code for the derived datatype used for scattering data. Taken from func-
tion cmt_read().

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 129

Function serv_set_state() does not use derived datatypes for data scattering. This
function is only used when the user changes the value of one substate on one cell, despite
having been implemented to handle any number of elements. In this case, the size of the
allocated buffers is smaller by a factor of yextent*zextent because the function does
not involve one-off reads from the root-process, but rather loops over the zextent and
yextent to get all the data. As a result the data need to be rearranged on the receivers’
side after reception, using function set_x_line(). The code for scattering the data is
shown in Table 15.

for (z = z_start; z < z_end; z++) {

 for (y = y_start; y < y_end; y++) {

 cp1 = CA_REF (ca1, z_disp+z, y_disp+y, x_disp);
 cp2 = CA_REF (ca2, z_disp+z, y_disp+y, x_disp);

 if (0 == cmtWorldRank) {

 if (size != readn (prot_sockfd, (char *) tmp_data2, size)) {
 fprintf (stderr, "serv_set_state: readn error!\n");
 MPI_Abort (cmtCommCommand, -1);
 } /* End if readn */

 get_scatter_ptr (&scatter_ptr, tmp_data2, tmp_data3,
 tmp_data2_size, cpt_state_size[stateid]);

 } /* End if (0 == cmtWorldRank) */

 MPI_Scatter (scatter_ptr, my_x, cpt_state_mpidt[stateid],
 tmp_data, my_x, cpt_state_mpidt[stateid],
 0, cmtCommCommand);

 if (work) {
 set_x_line (cp1, stateid, tmp_data, my_x);
 set_x_line (cp2, stateid, tmp_data, my_x);
 } /* End if (work) */

 } /* End for(y) */

 } /* End for(z) */

Table 15: The code for scattering data without derived datatypes in the case of even
decomposition. Taken from function serv_set_state(). Note the need to rearrange
the data from normal to fold representation before reading them in the CA copies (call to

get_scatter_ptr()).

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 130

6.5.3.3.2 Uneven Decomposition Data Distribution

Similarly to the discussion in section 6.5.3.2.2, two sizes of vectors must be defined for the
sender and receivers. This operation is symmetric to the gathering, and the code reflects
this too. The sender’s sizes are calculated exactly like the receiver’s sizes in the case of the
collection and vice versa. The same symmetry appears for the strides of the datatypes. The
point-to-point data communication is effected with CPT_NPROCS*NFOLDS immediate
sends from the root process followed by NFOLDS standard receives from each process.

The summary of the code appears in Table 16.

/* Send types */
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X[last][0], DIMX,
 cpt_state_mpidt[stateid], &send_strip_vec_large);
 MPI_Type_commit (&send_strip_vec_large);
 if (NFOLDS != first_small_strip_ind[0]) {
 MPI_Type_vector (DIMY*DIMZ, CPT_F_X[0][first_small_strip_ind[0]],
 DIMX, cpt_state_mpidt[stateid],
 &send_strip_vec_small);
 MPI_Type_commit (&send_strip_vec_small);
 } /* End if (first_small_strip_ind[0]) */

/* Receive types. These are only important on the receiver side */
 MPI_Type_vector(DIMY*DIMZ, CPT_F_X[cmtWorldRank][0],
 CPT_DIMX[cmtWorldRank],
 cpt_state_mpidt[stateid], &recv_strip_vec_large);
 MPI_Type_commit (&recv_strip_vec_large);
 if (NFOLDS != first_small_strip_ind[cmtWorldRank]) {
 MPI_Type_vector (DIMY*DIMZ,

CPT_F_X[cmtWorldRank][first_small_strip_ind[cmtWorldRank]],
 CPT_DIMX[cmtWorldRank], cpt_state_mpidt[stateid],
 &recv_strip_vec_small);
 MPI_Type_commit (&recv_strip_vec_small);
 } /* End if (first_small_strip_ind[cmtWorldRank]) */

/* Send data */
 if (0 == cmtWorldRank) {
/* First run strip then run processor, so as to traverse tmp_data2
 linearly. tmp_data2 contains the data in physical order. Going down
 the x-axis one meets first strip 0 of process 1 and then strip 1 of
 process 0 */

 i = 0; /* Index to position in tmp_data2[] */
 tag = 0; /* Tag for comm and request[] index */

 for (strip = 0; strip < NFOLDS; strip++) {
 int advance; /* Bytes to advance arrays (calc taken out) */

 for (proc = 0; proc < CPT_NPROCS; proc++) {
 if (strip < first_small_strip_ind[proc]) {
 MPI_Isend (&tmp_data2[i], 1, send_strip_vec_large, proc,
 tag, cmtCommCommand, &request[tag]);
 } else {
 MPI_Isend (&tmp_data2[i], 1, send_strip_vec_small, proc,

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 131

 tag, cmtCommCommand, &request[tag]);
 } /* End if strip */
 i += CPT_F_X[proc][strip]*cpt_state_size[stateid];
 tag++;

 } /* End for (proc) */
 } /* End for (strip) */
 } /* End if (0 == cmtWorldRank) */

/* Receive data */
 i = 0; /* Index to position in tmp_data[] */
 for (strip = 0; strip < NFOLDS; strip++) {
 tag = strip*CPT_NPROCS + cmtWorldRank;
 if (strip < first_small_strip_ind[cmtWorldRank]) {
 MPI_Recv (&tmp_data[i], 1, recv_strip_vec_large, 0,
 tag, cmtCommCommand, &status[cmtWorldRank]);
 } else {
 MPI_Recv (&tmp_data[i], 1, recv_strip_vec_small, 0,
 tag, cmtCommCommand, &status[cmtWorldRank]);
 } /* End if strip */
 i += CPT_F_X[cmtWorldRank][strip]*cpt_state_size[stateid];

 } /* End for (strip) */

 if (0 == cmtWorldRank) {
 if (MPI_SUCCESS != MPI_Waitall (CPT_NPROCS*NFOLDS, request,
 status)) {
 fprintf (stderr, "cmt_read: MPI_Waitall failed\n");
 MPI_Abort (cmtCommCommand, -1);
 } /* End if (MPI_SUCCESS != MPI_Waitall) */
 } /* End if (0 == cmtWorldRank) */

Table 16: The code for the derived datatype used for scattering data in the case of
uneven decomposition. Taken from function cmt_read().

The function serv_set_state() may handle a subset of the data. In this case it is as-
sumed that only an x-plane will be distributed, and therefore one process will be reached,
so only one vector datatype is constructed for the sender and one for the receiver. Data is
communicated using and immediate send and a standard receive. The immediate send is
obligatory to avoid a deadlock in the case that the receiver is the root process (which is
also the sender). The sum of the corresponding code is shown in Table 17. In the case that
the whole of the model is distributed to the processes the same code as in Table 16 is used.
Note that up to release 1.3 of CAMELot this function is only used for a single cell.

/* Send types. */
 MPI_Type_vector (my_y*my_z, 1 , tmp_data2_size,
 cpt_state_mpidt[stateid], &send_strip_vec_large);
 MPI_Type_commit (&send_strip_vec_large);

/* Receive types. */
 MPI_Type_vector (my_y*my_z, 1, my_x,

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 132

 cpt_state_mpidt[stateid], &recv_strip_vec_large);
 MPI_Type_commit (&recv_strip_vec_large);

/* Send data */
 if (0 == cmtWorldRank) {
 MPI_Isend (tmp_data2, 1, send_strip_vec_large, proc,
 0, cmtCommCommand, &request[0]);
 } /* End if (0 == cmtWorldRank) */

/* Recv data */
 if (proc == cmtWorldRank) {
 MPI_Recv (tmp_data, 1, recv_strip_vec_large, 0,
 0, cmtCommCommand, &status[cmtWorldRank]);
 } /* End if (proc == cmtWorldRank) */

 if (0 == cmtWorldRank) {
 if (MPI_SUCCESS != MPI_Waitall (1, request, status)) {
 fprintf (stderr, "serv_set_state: MPI_Waitall failed\n");
 MPI_Abort (cmtCommCommand, -1);
 } /* End if (MPI_SUCCESS != MPI_Waitall) */
 } /* End if (0 == cmtWorldRank) */

Table 17: The code for the derived datatype used for scattering a substate of the data
in the case of uneven decomposition. Taken from function serv_set_state().

6.5.3.4 Working Macrocells and Buffer Sizes

In the case where the spatial entity concerned does not cover the full length of the x-axis,
only some of the processes need to work in order to collect all the necessary data. Given
that the CA Engine only deals with full extent entities, it is understood that these cases
concern set-x entities (e.g. the plane x=1). Therefore, the data belong only to one process.

The identification of the working process is different, depending on whether the even data
distribution code is enabled or not. We discuss the two cases separately.

6.5.3.4.1 Even Decomposition Working Process Identification and Buffer Allocation

This process is identified by the fact that its rank equals

((pos[0]-1)/CPT_F_X)%CPT_NPROCS),

pos[3] being the array denoting the position of the entity. The reason for subtracting 1
from the x co-ordinate is that the CA Engine enumerates the axes starting with 0, whereas
the GUI and thus the user perceive the axes to start with one. Dividing by CPT_F_X we get

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 133

the absolute number of the strip, as if the data were not spread among the processes; the
modulo operation maps this to the process where it is assigned.

We will first discuss the case when a subset of data are gathered to the root process. In this
case we introduce a new MPI Communicator, cmtCommWork, local to the function corre-
sponding to the request in question. This communicator consists of the root process so as
to do the I/O and, if the root process is not the working one, another process. If the root
process is the one, tmp_data, tmp_data2 and tmp_data3 all have size

yextent*zextend*el_size,

el_size being the natural size of the element; otherwise tmp_data2 has size 2 times as
much as the above. This is because tmp_data2 must hold the data in the MPI_Gather
call and since the root process participates in the communicator as a receiver, it also par-
ticipates as a sender. It is noted that in this case the data in the first half of tmp_data2
must be discarded. This is executed in function get_write_ptr(), discussed in section
6.5.3.6. This communicator is used to gather data to the root process; the size of data col-
lected from each participating process equals the size of tmp_data.

In the case that data are scattered to the processes we avoid the overhead of creating and
deleting the new communicator. All the processes receive the data, but each process has
already determined whether the change affects its data set, using the same rule as above,
and only they make the necessary changes to their CA copies.

6.5.3.4.2 Uneven Decomposition Working Process Identification and Buffer Alloca-
tion

Given that the strips have various x-lengths, the calculation of the working process is not
straightforward in this case. The processes traverse the strips in the model comparing the x
top end of each strip to the value of pos[0]. This calculation is inefficient, but it is com-
bined with the calculation of the x displacement, discussed in section 6.5.3.5.2. The code is
shown in Table 18.

 if (1 == my_x) {
 int top = 1;
 int found = 0;
 strip = 0;
 while (strip < NFOLDS) {

 proc = 0;

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 134

 while (proc < CPT_NPROCS) {
 top += CPT_F_X[proc][strip];
 if (pos[0] < top) {
 found = 1;
 } /* End if (pos[0] < top) */
 if (found) break;
 proc++;

 } /* End while (proc) */
 if (found) {
 x_disp += pos[0]-(top-CPT_F_X[proc][strip]);
 /* The distance from the current strip start */
 break;
 } /* End if (found) */
 x_disp += CPT_S_X[cmtWorldRank][strip];
 strip++; /* This *must* be the last command of the loop! */

 } /* End while (strip) */

 if (proc != cmtWorldRank) {
 work = 0;
 } /* End if (proc != cmtWorldRank) */

Table 18: The code for the identification of the working process in the case of uneven
decomposition.

Because in the case of uneven decomposition no collective communications are used there
is no longer a need for the cmtCommWork communicator setup; tx_vis_pack() is an
exception, because it uses the communicator so as to calculate the minimum and maximum
of the substate to be visualised (see section 7.6.2.1 for more).

Unlike the even decomposition case, tmp_data and tmp_data2 have size yex-
tent*zextend*el_size, el_size being the natural size of the element and the size of
tmp_data2 need not vary according to whether process 0 is a working process or not,
because the data are communicated point-to-point. Calling the functions
get_write_ptr(), and get_scatter_ptr() is not necessary either, as discussed in
section 6.5.3.2.2, so the pointer tmp_data3 is obsolete.

6.5.3.5 Data Access

Accessing the data in each of the processing elements requires knowledge of how they are
stored. In the current implementation data are stored with x fastest as mentioned in section
4.2. As discussed there, halo data are inserted in the following places in the dataset:

• before the first and after the last real element (z-axis);
• between planes (y-axis);

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 135

• between lines (x-axis);
• between strips (folded data).

In the general case, the displacement in the z-axis equals Radius. This means that in order
to access the first real piece of element we must skip Radius planes of size
CPT_Y*CPT_X each (i.e. planes including the per-line and per-plane haloes). If the entity
we want to access is not the whole model, then we must skip an extra pos[2]-1 planes;
thus, the displacement equals Radius+pos[2]-1. The displacement in the y-axis is calcu-
lated similarly.

Calculation of the x-axis displacement if we do not want to access the whole x-line is less
easy. The way to do that depends on whether even decomposition is assumed or not.

6.5.3.5.1 Even Decomposition x-Axis Displacement Calculation

Because of the per-strip haloes, the data in the process are not contiguous; and because of
the block-cyclic decomposition, they do not represent contiguous lines in the original
model. In the normal case where the whole of the model is assumed, the displacement
equals Radius, since only the initial halo in each strip must be skipped.

We will now consider the case where a subset of the data on the x-axis are concerned. Sup-
posing that the right process is already located from the cmtCommWork communicator
definition, and that the right plane and line are also located using the above rules, we have
to find the correct strip in the process and the correct column in the strip and access them
using a serial pointer. A Radius displacement will skip the line halo. In order to find the
right strip we add

(pos[0]-1)/(DIMX/NFOLDS)*CPT_S_X,

since DIMX/NFOLDS13 gives us the rank of the strip and multiplication by CPT_S_X takes
us there. In order to find the correct column we add (pos[0]-1)%CPT_F_X, which gives
the displacement from the beginning of the strip. In summary, if pos[0] is not equal to 0,
the x-axis displacement equals

Radius + (pos[0]-1)%CPT_F_X + (pos[0]-1)/(DIMX/NFOLDS)*CPT_S_X

13 We remind the reader that DIMX is the x size of the model before the decomposition, CPT_S_X is the
total strip x-size including the two per-strip haloes and CPT_F_X is the x-size of the strip’s real data.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 136

6.5.3.5.2 Uneven Decomposition x-Axis Displacement Calculation

As mentioned in section 6.5.3.4.2, this displacement is calculated at the same time as the
working processes are identified. As shown in Table 18, the corresponding variable
x_disp is initialised to Radius and then for each strip of the process traversed, it is in-
cremented by CPT_S_X[cmtWorldRank][strip], the total size of the strip (including
the halos). However, if the working cell is found, x_disp is instead incremented in that
process by the distance from the currently examined strip start (pos[0]-(top-
CPT_F_X[proc][strip])).

6.5.3.6 Data Mapping Functions

• void get_x_line (CptCell *cp, int substate,

 u_char *tmp_data, int my_x)

This function gets the data from the CA Engine, where they are fragmented because of
the folded representation, and coalesces them into the pointer tmp_data. This func-
tion assumes that the cell pointer has been initialised to the first element of interest. It
loops over the strips and places the data contiguously in the appropriately initialised
tmp_data pointer passed to the function as an argument. It is executed by all the pro-
cesses in the communicator when the objective is to gather substate data to the root
process. The argument substate is used to identify the size of the elements and is
also passed as an argument to cpt_get_state() so as to return the corresponding
values. The argument my_x is the number of substate elements and it is used to iden-
tify whether the loop over folds should occur or there is only one element to be re-
turned.
N.B.: This function only removes haloes, it does not re-organise the data so as to be
contiguous for the external, natural representation of the model (see function
fold2line() for more).

• void set_x_line (CptCell *cp, int substate,

 u_char *tmp_data, int my_x)

This function moves the data for substate substate from the pointer tmp_data to
the CA Engine copy cp, and at the same time it inserts haloes to the folded, yet with-
out haloes data of the tmp_data pointer. This function assumes that the cell pointer
has been initialised to the first byte to be written. It loops over the strips and places the
data from the tmp_data pointer to the appropriate position in cp taking into account
the fold-derived haloes in the latter. It is executed when substate data have been scat-
tered from the root process to all the processes in the communicator. The argument
substate, used to identify the size of the elements, is also passed as an argument to

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 137

cpt_set_state(). The argument my_x is the number of substate elements and it is
used to identify whether the loop over folds should occur or there is only one element
to be set in the CA Engine.
N.B.: This function assumes that the data in tmp_data have been appropriately or-
ganised in folds (see function line2fold()).

The following functions are only used when handling parts of the model in the case of
even decomposition code. Functions concerned with the whole model do not need these, as
the translation of data from normal lines to folded data and vice versa is incorporated to the
corresponding scatter and gather operations. See also sections 6.5.3.2 and 6.5.3.3.

• void fold2line (const u_char *source, u_char *target,

 size_t e_size)

This function turns the contiguous, yet folded x-line data into a representation suitable
for external presentation. The data are originally stored in the source unsigned char-
acter pointer and the resulting data are made available through the target pointer.
e_size is the size of each of the elements represented as characters. The function
traverses the source array in strides of length NFOLDS*strip_size and writes
strip_size chunks of data contiguously to the target array. This function is only
called by the root process.

• void line2fold (const u_char *source, u_char *target,

 size_t e_size)

This function turns the contiguous, x-line data into folded, internal representation data.
The data are originally stored in the source unsigned character pointer and the result-
ing data are made available through the target pointer. e_size is the size of each of
the elements represented as characters. The function traverses the source array in
strides of length CPT_NPROCS*strip_size and writes strip_size (i.e.
CPT_F_X*e_size) chunks of data contiguously to the target array, without leaving
gaps for the halo. This function is only called by the root process.

• void get_write_ptr (u_char *tmp_data2, u_char *tmp_data3,

 int tmp_data3_size, int x, int y, int z,

 int el_size, int work, int work_size)
This function is a wrapper14 for fold2line(). The argument tmp_data215 contains
the original data in internal CA Engine format, and tmp_data3 is the target buffer for

14 The implementation of this function has changed radically since release 1.0 of the software.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 138

fold2line(). It is assumed that the former has been appropriately initialised to con-
tain folded data, whereas the latter points to an appropriately allocated memory block
of sufficient size to hold data for the whole of the automaton. el_size is the natural
size of the elements stored as unsigned characters in tmp_data2. The variable
tmp_data3_size is the size of the array tmp_data3 in the x dimension. The func-
tion loops over z and y in that order and sets x elements of tmp_data3 each time.
There are two cases for tmp_data3_size:

− If tmp_data3_size equals DIMX then all the processes are working, therefore

fold2line(tmp_data2, tmp_data3, el_size) is called;
− If it equals 1, then there is no need for data rearrangement (they are just an ele-

ment) el_size bytes are copied from tmp_data2 to tmp_data3.

There is a slight complication though, which justifies the existence of the work and
worksize arguments. The former is a flag denoting whether the root process was the
only member or if there was another process in the communicator. In the latter case,
the size of tmp_data2 is 2 and the data in the first half of tmp_data2, originating
from the root process, must be discarded since the second process contributed the cor-
rect data. This is achieved by advancing the tmp_data2 pointer by el_size before
entering the loop.

After each iteration, the source and target pointers must be advanced. The argument
work_size contains the size (number of processes) of the communicator, and the ar-
gument x is the size of each strip. Therefore, after each iteration tmp_data2 is ad-
vanced by x*work_size*el_size bytes and tmp_data3 is advanced by
tmp_data3_size*el_size bytes.

When the function exits, the argument tmp_data3 points to the rearranged data, suit-
able for the external representation of the system.

• void get_scatter_ptr (u_char **scatter_ptr, u_char *tmp_data2,

 u_char *tmp_data3, int tmp_data2_size,

 int el_size)
Similarly to get_write_ptr(), this function is a wrapper for line2fold(). It re-
turns the pointer scatter_ptr (passed by reference) containing data in internal,
folded representation. The argument tmp_data2 contains the original data in internal

15 It may help the reader to note that we maintained the naming of the variables of the calling function (see
section 6.5.3.1).

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 139

CA Engine format, and tmp_data3 is the target buffer for line2fold(). el_size
is the natural size of the elements stored as unsigned characters in tmp_data2. Note
that we now use the variable tmp_data2_size which is the size of the array
tmp_data2. There are two cases for it, not three (DIMX or 2 or 1) as is the case when
writing data, since when reading data there is no reason to allocate extra space for the
root process, tmp_data2size is the number of data to be scattered to each process.

− If tmp_data2_size equals DIMX then all the processes are working and the func-

tion calls line2fold(tmp_data2, tmp_data3, el_size) and assigns
*scatter_ptr to point to tmp_data3.

− If it equals 1, then there is no reason for data rearrangement (they are just an ele-
ment); *scatter_ptr is set to point to tmp_data2.

N.B.: get_scatter_ptr() differs from get_write_ptr() in that the former con-
cerns the whole of the model, whereas the latter is only applied to one x-line only.

6.5.4 Substate Related Functions

• int serv_save_request (void)

This corresponds to the req_save_request() GUI function which requests that the
substate values for all cells in the CA Engine be written to file filename. After
reading substate and filename from the socket, the root process broadcasts the
state id to all the cells. The function cmt_write (section 6.5.8.1) is called then, to
perform the write to file.

• int serv_set_load (void)

Set the substate values for all cells in the Engine to those listed in file filename.
This is the inverse function of serv_save_request. The same procedures as above
are followed and then the function cmt_read (section 6.5.8.1) is called to read the
data from the file and update the CA copies.

• int serv_view_state (void)

This function writes the data of a subset of the model to the socket. The root process
on the CA side reads the pos[] array containing the co-ordinates of the entity to be
retrieved as well as the substate id through the socket. The array and substate are
broadcast to all the processes which calculate the loop extends as well as the tempo-
rary data storage size as described in section 6.5.3.2. Then the working cells are iden-
tified as described in section 6.5.3.4 and the participating processes allocate the tem-

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 140

porary memory buffers. After the displacement has been calculated the working proc-
esses loop over z and y and the root process gathers and rearranges the data as de-
scribed in section 6.5.3.2 using derived datatypes as shown in Table 11, Table 12 and
Table 13. The pointer is advanced by calling CA_REF after every y iteration, rather
than by advancing the pointer using pointer arithmetic, as is the case when the whole
model is being handled (e.g. in function cmt_write()). Process 0 then writes back to
the GUI the current generation and executes one writen call to write the data to the
socket. After completion of the task, the communicator, the derived datatypes and the
temporary memory buffers are freed.

• int serv_set_state (void)

This handles the request that a substate of the entity in a plane array pos[] be set to
the value transmitted through the socket. The root process reads and disseminates the
details of the entity in question from the socket. The flow of the program differentiates
with respect to whether even decomposition is chosen.

In the case of even decomposition the processes allocate temporary buffers on a per-
line basis. Each process also determines whether it needs to work and defines the loop
extends. In contrast with serv_view_state() which needs one in the case of even
decomposition, no communicator is necessary. Inside the nested loop two copies are
accessed. The root process reads the data in x-line portions from the socket and scat-
ters them as shown in Table 15, after calling get_scatter_ptr() to rearrange the
data on a per-line basis. All the processes that need to work call set_x_line() twice
to update their CA array copies. Note that this function calls get_scatter_ptr() as
many times as the loop iterations and set_x_line() twice as many times. The loops
are shown in Table 15.

In the case of uneven decomposition, memory for data storage is allocated, as de-
scribed in section 6.5.3.4 for the full extent of the data. This effects only one readn
call to read the data from the socket. The send and receive vectors are created as de-
scribed in section 6.5.3.2.2 and shown in Table 16 and Table 17. As shown in Table
15, the data are written to the CA copies line by line.

In both cases, the temporary buffers are freed in the end.

• int serv_set_param (void)

The root process reads the number of parameters to be set and aborts if the number is
illegal. It then loops over no_of_params reading the index and setting the value of

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 141

the corresponding parameter. After this is done, the internal parameter array is broad-
cast to all the cells.

6.5.5 Program Flow Management

The PAUSE, LOOP, EVOLVE, FINISHED, EXITCODE and RESUME req_codes are imple-
mented inside the rv() function (section 6.5.2).

• int serv_terminate (void)

When TERMINATE is called the visualisation and plane lists are deleted. This is dis-
cussed in the Visualisation section.

• int serv_set_fold (void)

The root process reads the starting and ending active fold index in an integer array
with two elements, which it broadcasts to the other processes. If the specified folds are
invalid (i.e. not in the correct order or not in the range [0, NFOLDS-1]) the function
returns IGNORED. If the start and end folds are 0 and NFOLDS-1 respectively, then the
manual folds are terminated and the automatic inactive strip detection mechanism is
set. Otherwise, the mechanism is deactivated and the active_strip[] internal array
is updated according to the active fold specification.

6.5.6 Visualisation Functions

• int serv_add_plane (void)

• int serv_del_plane (void)

• int serv_set_minmax (void)

The functions concerned with the visualisation are discussed in the Visualisation section.

6.5.7 Configuration (Project) Related Functions

• int serv_proj_read (void)

The filename read through the socket is used as a root for the files to be read. The
root process truncates the extension of the filename and does not broadcast it to the
other processes as they do not need it. They all call cmt_read_all() discussed in
section 6.5.8.1.

• int serv_proj_save (void)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 142

The root process reads the pathname of the files to be written. All processes call
cmt_write_global() and cmt_write(), emulating cmt_write_all() behav-
iour excluding the AVS field file functionality and index keeping. See section 6.5.8
for more details on the functions previously mentioned.

• int serv_periodic_save (void)

The root process reads the pathname of the files to be saved periodically, as well as
the period, save_step. The former is turned into a pathname and a filename stored
respectively in the global variables out_dirname and out_basename. The filename
is checked against the filesystem, by means of the function check_fs(), looking for
already existing files which could be overwritten. The result of this search is written
back to the GUI, and can be either OVER_W if there are such files, or 0 (zero) if there
are not. The save_step is broadcast to all the processes and used by the run func-
tion, unlike out_dirname and out_basename which are not needed in the other
processes. Periodic saving is handled by function run(), as mentioned in section
4.1.2.7.

6.5.8 Auxiliary Functions

6.5.8.1 File I/O related

The following functions return 0 if execution is correct; otherwise, a negative value is re-
turned.

• int cmt_read_global (char *filename)

The root process reads a binary file containing all global CA information for the cur-
rent generation. The binary file filename.cpj is needed for the function to work. It
contains data concerning the following:

− The dimension of the automaton;
− The x, y, z dimensions of the model;
− The current generation;
− The number of states;
− The number of folds;
− The number of global parameters and their values.

The data are collected in an eight element integer array with the exception of the pa-
rameter values which are stored in the appropriate array and are then broadcast to all

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 143

the processes. The function checks the correctness of the above values (except for the
generation and parameter values) against the ones already set and sets the generation
(the parameter values are set during the broadcast).

• int cmt_read_all (char *filename)

This function calls cmt_read_global(filename) in order to read the global pa-
rameters. It then calls cmt_read to handle the substate files. Let n be the number of
substates. The CA Engine expects the existence of n binary files named file-
name[TLC].cmt, [TLC] being a three-digit numerical identifier for each of the sub-
states. For example, the first substate will be associated with the file file-
name000.cmt.

• int cmt_read (char *filename, int substate)

Given that all of the CA Engine data on the substate are to be read from the file, the
temporary data storage structures are allocated maximum memory, as discussed in
section 6.5.3.2. The root process opens the file designated by filename and reads the
data using only one call of the appropriate function, depending on whether XDR is
used or not (see section 4.2.2 for the use of XDR in CAMELot). The data are then
scattered to the processes using as few MPI calls as possible, as described in section
6.5.3.3 and shown in Table 14. In order for the processes to update their local data two
CptCell pointers are used, pointing to each of the two CA array copies because the
changes should be applied to both of them. The original displacements are minimum
(Radius on each axis). The processes loop in parallel over z and y calling
set_x_line() for both copies. After each y loop the CA pointer is advanced by
CPT_X, which is a line including fold and line haloes, and after each z loop it is ad-
vanced by 2*Radius*CPT_X, which is a plane halo at the end of the current plane
and a plane halo at the beginning of the next plane. The temporary buffers and derived
datatypes are freed on exit from the function.

• int cmt_write_global (char *filename)

The root process writes a binary file containing all global CA information for the cur-
rent generation. The binary file filename.cpj is created. The data it contains are the
same as those that cmt_read_global() expects to read. Because the data written to
the file are global, this function performs no MPI communications.

• int cmt_write_all (char *dname, char *bname)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 144

Saves the global and substate data in files named using an index incremented every
time the function is called (static variable). It also updates the related AVS/Express
field file.

The global data are stored in a file named dname/[TLC]bname.cpj, [TLC] being a
three-digit numerical identifier for the index, thus allowing for 1000 consecutive saves
before overwriting the initial file. This is done without warning the user16. The func-
tion calls cmt_write_global() in order to write the global parameters.

The function then loops over the substate ids, calling cmt_write(), the filename fol-
lowing the above convention for prefixing the filename and the same convention as in
cmt_read() to handle substate files. For example, the first save of the first substate
will be associated with the file dirname/000filename000.cmt.

If the function is called for the first time, cmt_create_fld() is called to create the
necessary AVS/Express field files. The cmt_write_fld() function is then called to
update the contents of the field file. Both these functions are explained below.

• int cmt_write (char *filename, int substate)

The function writes to the file filename the data for state substate. Given that all
of the CA Engine data on the substate are to be written to the file, the temporary data
storage structures are allocated maximum memory. The data are accessed through a
pointer to the CA Engine. The original displacements are minimum (Radius on each
axis). All the processes then loop over z and y executing get_x_line(), collecting
the data in tmp_data. After each y loop the CA pointer is advanced by CPT_X, which
is a line including fold and line haloes, and after each z loop it is advanced by
2*Radius*CPT_X, which is a plane halo at the end of the current plane and a plane
halo at the beginning of the next plane. After the loop is finished the data are gathered
in the tmp_data2 pointer of process 0 (see section 6.5.3.2 for more details on the
gather strategy). The root process writes the data to the file with one call, using XDR
primitives if so selected by the user. The temporary buffers are freed on exit from the
function.

• int cmt_create_fld (char *dname, char *bname)

This function creates an AVS/Express field file for each datatype of the substates. It
also writes the initial data containing the specification of the simulation (i.e. all the

16 Warning against overwriting existing files is generated when assigning the filename for a periodic
operation. See section 6.5.7 for further details.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 145

data appearing before the first line tagged time). The format of these files appears in
Table 19. It uses the variable dt_list, of type state_dt_list (see section 4.1.1.4)
to loop over the various datatypes of the substates and create one field file for each of
them. The arguments of this function are used as described in the discussion of
cmt_write_all().

The label field lists the names of all the states of a given datatype, expanding array
states (so myarr[n] is expanded to myarr[0] myarr[1] ... myarr[n]). Be-
cause AVS does not accept the use of brackets ([and]), these are replaced bu under-
scores (the character ‘_’). Therefore for the example above the expanded list is
myarr_0_ myarr_1_ ... myarr_n_. In order to avoid matching the modified
names with those of scalar variables, scalar variable names are postfixed with the un-
derscore character.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 146

• int cmt_write_fld (char *dname, char *bname, int time)

This function loops over the statetypes members of dt_list and for each of them
it loops over their states. It thus accesses the state type and index for each of the sub-
states and adds the variable entries to the appropriate field files. Using the above
strategy, each field file is opened only once during a call to the function. The argu-
ments of this function are used as described in the discussion of cmt_write_all().

AVS field file
CAMELot generated
nstep = <number of expected17 saves>
ndim = <model dimension>
dim1 = <x-dimension>
dim2 = <y-dimension>
dim3 = <z-dimension>
nspace = 3
veclen = <number of associated substates>
data = <datatype of associated substates>
field = uniform
label = <names of associated substates>

time value = 1
variable 1 file = <filename> filetype = binary
variable 2 file = <filename> filetype = binary

...
EOT18

time value = 2
...

Table 19: Format of CAMELot Generated AVS Field Files

6.5.8.2 state_dt and state_dt_list Related

• void init_state_dt (state_dt *st_dt_ptr, MPI_Datatype data)

This initialises the states member of st_dt_ptr to 0 and the data member to
data.

17 This could differ from the number of actual saves if the user ends the run prematurely
18 Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to
consecutive time steps

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 147

• int add_state (state_dt *st_dt_ptr, int stateid)

This adds the substate stateid to st_dt_ptr and increments its states member.
It also performs checks to stateid and its datatype as well as to states. If the
checks fail it returns -1, else it returns 1.

• void init_state_dt_list (state_dt_list *st_dt_l_ptr)

This initialises the many member of st_dt_l_ptr to 0 and loops over the states of
the system calling add_state_dt().

• int add_state_dt (state_dt_list *st_dt_l_ptr, int stateid)

This first searches the statetypes[] member of st_dt_l_ptr for an element with
the same data field as stateid. If it does not find one, it calls init_state_dt()
augmenting the active range of statetypes and increments the many member. It
then calls add_state() to add the state to the state_dt found. It also performs
checks to stateid as well as to many and the return value of add_state(). If the
checks fail it returns -1; otherwise, it returns 1.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 148

7. Visualisation

The CA Engine transmits periodically substate data to the GUI. Although the GUI defines
the planes and visualisation steps, this and GEN_NO are the only situations in which the CA
Engine initiates the transmission of data. Although the transmission follows the same pro-
cedure as any output to a file or socket, the implementation of the visualisation functional-
ity required the introduction of various data structures on the GUI and the CA Engine. The
protocol for the maintenance of the visualisation entities is slightly complicated because of
the variety of possible events. Moreover, a colour mapping strategy was devised.

7.1 Data Structures

7.1.1 Plane Definition

A plane in the CA context is generally defined by:

• Two Cartesian triples defining points in the CA space;
• A substate to be visualised;
• A visualisation step;
• A plane ID, unique to the system (i.e. a plane should be referred to by the same ID in

both the GUI and the CA side).

The convention for the spatial extent of the plane above can denote anything from a cube
to a point in the CA space. We decided to consider 2-D planes as the finest granules of the
visualisation procedure19.

In the initial release of the engine we only implement full extent planes, i.e. 2-dimensional
spaces occupying maximum area. We thus use only one point in space, the co-ordinates of
which should be zero except for one co-ordinate which should be greater than zero and less
than the maximum dimension. For example, (0,3,0) denotes a y-plane in position 3 if the
dimension of y is 3 or more. On the other hand, (-1,0,0) and (1,2,1) are illegal (the latter
generally denotes a point).

After the above discussion we introduce the following type definitions.

19 With the exception of 1-D models.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 149

typedef struct {

 int pos[3];

 } point;

The pos[] array holds the co-ordinates of the point defining the plane. It represents a 3-D
triple and the first field holds the x co-ordinate, the second the y and the third the z.

typedef struct {

 point pt;

 int substate;

 int vis_step;

 int ID;

 plane_class *class_ptr;

 } plane;

The pt member holds the spatial identity of the entity; substate is the visualised sub-
state id; vis_step is the period of visualisation for the plane; ID is a unique identifier for
internal plane representation and handling; class_ptr is a pointer to the plane_class
structure holding the class information for the plane in question. Plane classes are dis-
cussed next.

7.1.2 Plane Classes

Because of the way the plane was defined, two planes extending in the same area visualis-
ing the same substate will be considered different if they differ in the visualisation step. As
a result, the data for the plane will be sent more than once to the GUI if the current CA
Engine generation is divided by the visualisation steps of more than one plane of the above
described kind.

We therefore introduced the idea of a plane class, linking such planes with the last visuali-
sation performed. To implement this we introduce this type definition:

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 150

typedef struct {

 int no_planes;

 int last_vis;

 } plane_class;

The member no_planes denotes the number of planes in the class; last_vis is the lat-
est CA Engine iteration when there has been a visualisation of a plane in the class. It
should be noted that plane classes are not maintained in the GUI side planes.

7.1.3 Plane Lists

Both sides of the system maintain a list of all the planes visualised. We introduced the fol-
lowing data structure for the purpose.

typedef struct {

 plane **planes;

 int no_planes;

 int max_index;

 int size_of_list;

 } plane_list;

The planes member is the array of plane pointers we want to maintain; no_planes is
the number of planes currently in the list; max_index is the number of planes added to the
list since its initialisation; size_of_list is the dimension of the planes array.

Plane lists play a most important role in the addition and deletion of planes.

7.1.4 Visualisation List

The CA Engine maintains a sorted list of visualisation generations containing exactly one
entry for each plane. This list is used to check whether the state of a plane must be trans-
mitted and to get a handle to this plane. The cells of this list have the following form:

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 151

typedef struct _cell_ {

 plane *data;

 int generation;

 struct _cell_ *next;

 struct _cell_ *prev;

 } cell;

The data member is a pointer to the plane; generation is the next visualisation genera-
tion of the plane; next and prev are links to the next and previous members in the list.
The list is then implemented as a type:

typedef struct {

 cell *head;

 cell *tail;

 int size;

 } list;

The first two members are pointers to the ends of the list; size is the number of elements
in the list. A plane enters this list when introduced to the CA Engine and it is removed
from it when a DEL_PLANE request is issued with its ID. This data structure plays a central
role in the visualisation process.

7.2 Global Variables

7.2.1 CA Engine Global Visualisation Variables

• list vis_list;
A list of all the visualisation planes, maintained in ascending order with respect to the
CA Engine iteration when each will be visualised next.

• plane_list all_planes;

A list of all the planes in the CA Engine.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 152

• double minmax[NumOfStates][2];
The minimum and maximum value for each substate (updated only if the substate is
visualised and only with the union of the data subsets visualised). minmax[][0]
holds the minima and minmax[][1] holds the maxima.

7.2.2 GUI Global Visualisation Variables

• int nvizwins

Number of currently-open Visualisation windows.

• VIZWIN *vizwins[]

A fixed-size array of pointers to all currently-open Visualisation windows' VIZWIN
structures. When a Visualisation window is closed, the memory for the VIZWIN struc-
ture is released and the corresponding vizwins[] pointer set to NULL, although the
array element is not reused until the Simulation window is exited.

• VIZWINLISTNODE *plane2win[]

 In order to map visualisation planes received from the CA Engine to Visualisation
windows, a linked list of pointers to VIZWIN structures is maintained for every cur-
rently-visualised plane. The head node of each list is pointed to by a fixed size array of
pointers (plane2win[]) indexed by plane ID.

• int planerefcnt[]

Used to keep a reference count of windows for each plane. When the reference count
for a plane reaches 0, i.e.., no window now shows this plane, a DEL_PLANE request is
sent to the CA Engine.

• plane_list all_planes

Similarly to the all_planes variable in the CA Engine this is a list to all the planes in
the GUI.

• buffer viz_buffer

The buffer for visualisation plane reception.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 153

7.3 Relevant Files and Functions

7.3.1 File common.h

Contains the declarations of the following (as well as others, not related to visualisation):

• point type and the respective functions (plane.c);
• plane type and the corresponding functions (plane.c);
• plane_list type and the related functions (plane.c);
• cell and list types and their functions (list.c);
• buffer type and functions (buffer.c).

7.3.2 Files guicomms.h and guicomms.c

Contain the declarations and implementations of the visualisation-related functions of the
protocol discussed next. Additionally, the following functions are contained in the files.

• int consume_vis_pack (void)

Consumes visualisation packets from the visualisation socket. It is used to remove ob-
solete visualisation packets when an event which stops normal execution occurs. It is
implemented by means of a loop over select(3C) on the visualisation socket. If
there is a visualisation message, rv_vis_pack() writes the data to a suitably initial-
ised buffer (see section 7.6.3.1 for more). This static buffer is allocated memory
once throughout the program life, when consume_vis_pack() is first called.

• void GUI_check_pos (int *pos)

Checks pos against xyzdims[] to correct unacceptable values. Correction is done by
setting the coordinate to 0. When the size of a dimension of the model is 1, it sets the
corresponding coefficient to 1 (rather than 0) to prevent identifying planes as cubes.
For example, (0,0,0) in a 2-D model will be turned to (0,0,1) which is a plane.

• int GUI_get_val_size (const int *pos)

Returns the number of elements specified by pos[]. This is done by multiplying the
assumed size (originally 1) by the size of the model's dimension if the corresponding
coefficient in pos[] is equal to 0.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 154

• int get_max_size (const unsigned int *pos)
Returns the maximum of the possible products of 3 choose 2 elements of the 3-
element array pos[]. It is used to derive the maximum possible number of elements
for the visualisation buffer, taking as its argument the array xyzdims[]. It calculates
the three possible sizes and returns the maximum.

7.3.3 File macrocell.c

Contains the declarations and implementations of the visualisation-related functions listed
in section 4.1.2.5 and further discussed in this section. It also contains the following func-
tions:

• static int tx_vis_pack (cell *, char)

• static void colour_map (const u_char *, u_char *, int, int,

 double, double)

These are discussed later in this section.

• static void check_pos (int *pos)

Same as GUI_check_pos(), only that it checks against DIMX, DIMY, DIMZ, instead
of xyzdims[].

• static void check_plane (plane *pl_ptr)

This function checks and corrects the plane for spatial, substate and visualisation step
consistency. Calls check_pos() for the array consistency and makes a separate
check if the model is 1-D. If the plane is found illegal it sets its ID member to
IGNORED, otherwise it sets it to -1.

• static void bcast_plane (plane *pl_ptr, MPI_Comm comm)

This function broadcasts the details of the plane as detailed in process 0 of the CA En-
gine to all the processes in the communicator. It does not set up a new datatype con-
taining the 5 integers which are broadcast (i.e., pl_ptr->pt.pos[3],
pl_ptr->substate, pl_ptr->vis_step).

• static int get_val_size (const int *)

Similar to GUI_get_val_size().

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 155

7.3.4 File plane.c

7.3.4.1 Related to point

• void init_point (point *pt_ptr, int x, int y, int z)
Initialises the point passed as an argument by reference with the given coefficients.

• int write_point (int sockfd, const point *pt_ptr)

Writes the point coefficients to the socket; calls writen() only once. Returns 0 if
writen() succeeds, -1 otherwise.

• int read_point (int sockfd, point *pt_ptr)

Similar to the above, only that it reads the point data.

• int ptcmp (const point *cp_ptr1, const point *cp_ptr2)

Loops over the coordinates and compares the coefficients of the two points. Returns 0
if they are equal, 1 otherwise.

7.3.4.2 Related to plane_class

• void init_pl_class (plane_class *cl_ptr)
Sets no_planes to 0, last_vis to -1.

• del_pl_class (plane_class **cl_ptr_ptr)

This decrements the no_planes member of the pointer to a plane_class to be de-
leted, and if this then equals zero, the pointer is freed; thus the reason for passing it by
reference.

7.3.4.3 Related to plane

• void init_plane (plane *pl_ptr, const point *pt, int substate,

 int vis_step)

Sets the corresponding members of the plane pointed by pl_ptr to those passed as
arguments. The ID is set to 0 and the class_ptr is set to NULL.

• void disc_plane (plane **pl_ptr_ptr)

This function first calls del_pl_class() to delete the class_ptr member of the
plane struct and then frees the memory for the plane pointer passed to the function
by reference.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 156

• int write_plane (int sockfd, const plane *pl_ptr)

Calls write_point() and then writes the substate and vis_step members of the
plane to the socket. It does not write the ID, or the class_ptr details, which are as-
signed separately on each side during the plane addition process.

• int read_plane (int sockfd, plane *pl_ptr)

Similar to write_plane() in action and behaviour.

• int plcmp (const plane *cp_ptr1, const plane *cp_ptr2,
 plane_class **pl_c_ptr)

The function checks the two planes pointed by the constant pointers for equality of the
substate, vis_step and pt20 members. Moreover, if the pl_c_ptr plane class
pointer-pointer argument passed to the function is not 0, then the function performs a
check to find which of the two planes already belongs to the plane list and returns a
handle to its plane class through pl_c_ptr. This suggests that the GUI-side caller
function must pass the argument as 0.

The function returns:

− 0, if the two planes are equal;
− 1, if the two planes are in the same class;
− -1, otherwise.

7.3.4.4 Related to plane_list

• void init_plane_list (plane_list *pl_l_ptr)
It allocates space for the MAXPLANES plane* elements of the planes array member
of the structure. Sets size_of_list to MAXPLANES, no_planes and max_index to
0 and zeroes the pointers in the planes member.

• void clear_plane_list (plane_list *pl_l_ptr)

Removes all planes from a plane_list, without deleting it. It calls disc_plane()
to discard each plane. It zeroes planes[i], max_index and no_planes, thus return-
ing the list to the state where init_plane_list() leaves it.

20 It uses the trivially implemented ptcmp() function to this end.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 157

• int add_plane (plane_list *pl_l_ptr, plane *pl_ptr,
 int *ID_same, int ch_class)
• int rem_plane (plane_list *pl_l_ptr, int ID)

These are discussed extensively in the paragraphs about plane addition (7.4.2) and deletion
(7.5.2).

7.3.5 File list.c

7.3.5.1 Related to cell

• void init_cell (cell *c_ptr, const plane *pl_ptr,
 int generation)

This function zeroes the forward and backward pointers (next and prev) and sets the
data and generation members to those passed as its arguments.

• static void del_cell (cell **c_ptr_ptr)

First calls disc_plane() to discard the plane in the data member and then frees the
memory occupied by the cell. This function is not publicly available.

7.3.5.2 Related to list

• void init_list (list *l_ptr)
Zeroes the head, tail and l_size members.

• void set_gen (list *l_ptr, int gen)

Resets the next visualisation generation of all the cells in the list to gen+1 and sets
last_vis in all the plane classes of the planes in the respective data members to -1.
These two actions cause the planes to be visualised immediately. It is used when re-
starting the CA Engine and it assumes that the CA Engine iteration index is set to gen.

• void clear_list (list *l_ptr)

This function deletes the cells of the list, but assumes that the plane members have al-
ready been deleted. It does not delete the list itself.

• cell *first (list *l)

This function provides a pointer to the head of the list, or NULL if the list is empty.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 158

• int del_ID (list *l_ptr, int ID)
This searches the doubly-linked list for the cell containing the plane with the given
ID. It removes this from the list and then calls del_cell() to discard the plane and
free the cell's memory. del_ID returns DEL_PLANE if the plane is found or IGNORED
else.

• void reorder (list *l_ptr, cell *c_ptr)

This function removes the cell pointed by its second argument and reinserts it in as-
cending order with respect to its generation member. After amending the next and
prev pointers of the cell's previous and next neighbours respectively, the function
calls insert() for the actual reinsertion.

• void insert (list *l_ptr, cell *c_ptr)

The function inserts a cell in the list so as to maintain ascending order of the cells with
respect to their generation member. It makes use of three trivial internal functions,
namely addhead(), addtail() and addmiddle().

7.3.6 File buffer.c

A datatype we have not previously discussed is the buffer. It is used by the visualisation
functions on the GUI side so as to enable one-off memory allocation for each of the planes
visualised. Its declaration is as follows:

typedef struct {

 u_char *data;

int size;

} buffer;

There are two functions associated with this structure:

• int init_buffer (buffer *buf_ptr, int size)

This function allocates size bytes of memory for the member data and sets the size
member. It returns -1 if malloc fails or size is less than 1; otherwise it returns 1.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 159

• int expand_buffer (buffer *buf_ptr, int size)
If the newly defined size is greater than the size member of the structure it uses
realloc to expand the data member and resets size. It returns -1 in case of failure,
1 otherwise.

7.4 Plane Addition

7.4.1 Addition Protocol

Plane addition is initiated by the GUI. It sends the point defining the location of the plane,
substate to be visualised and the visualisation step to the CA Engine (i.e. it transmits a
plane without an ID and a plane class pointer, using the write_plane() library function)
through the communication abstraction. This communication is performed through the
usual prot_sockfd socket. The CA Engine replies with the ID of the plane and acknowl-
edges addition. The normal case protocol is shown below:

Sender Token Type

GUI ADD_PLANE req_code

GUI pos[3] int *

GUI substate int

GUI vis_step int

CA ID int

CA ADD_PLANE req_code

GUI VIS_PACK req_code

As we discuss next, the protocol is more complicated in the cases of adding an already
existing plane.

7.4.2 The Function add_plane() and Other Related Functions

The desired effect is to add the plane pointed by pl_ptr to the plane list pointed by
pl_l_ptr. The prototype of the function is as follows:

int add_plane (plane_list *pl_l_ptr, plane *pl_ptr, int *ID_same,

int ch_class)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 160

The function is called from the plane addition functions of both the CA Engine and the
GUI. The last two arguments differentiate between the two cases. We note that the GUI-
side caller should pass zeroes (0) in the last two arguments, and defer the discussion for
later in this section. The behaviour of this function describes the plane addition strategy.

The function traverses the plane list searching for a plane which is exactly the same as the
one we want to add or belongs to the same class. In the case of the GUI, because the plane
classes are not maintained, the plane class check is not performed. This is denoted by
means of the ch_class flag which should be cancelled if the caller is on the GUI side.

The plane comparison is performed by the function plcmp. If it returns 0, then a NULL
plane pointer is added to the list, occupying the position and index. The ID member of the
plane pointer is updated with the negated value of the ID that the plane would have if it
had been added. Moreover, if the ID_same argument is not set to zero (i.e. the caller is the
CA Engine), then the ID of the plane that was found to be equal in the list is returned
through the argument. In this case the function returns IGNORED, exiting immediately.

If plcmp() returns 1 or -1, then the search in the list is continued. In the former case the
plane class pointer returned through the pl_c_ptr argument of plcmp() is stored. On
exiting the list traversal, the function adds the plane to the list and sets its ID field to the
value of the max_index member of the list. The max_index and no_planes members of
the list are then incremented. If the ch_class flag is set and no plane in the same class
has been found, a new plane class instance is created. Its no_planes member is set to 0,
but its last_vis member is set to –1 by means of the init_pl_class function. On the
other hand, if a plane class address has been stored during the traversal, the class_ptr
member of the plane being added to the list is set to what that address points to and the
corresponding no_planes member is incremented. The possible combinations of the re-
turn value with pl_ptr->ID are shown in Table 20.

Case Return ID

Successful addition
(in existing class or not)

ADD_PLANE

pl_l_ptr->max_index

pl_ptr already in list IGNORED -(pl_l_ptr-

>max_index)

malloc or other failure -1 <Undefined>

Table 20: Combinations of the return value of add_plane() and the ID of the plane

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 161

7.4.3 GUI-Side Plane Addition

Addition on the GUI side is handled by the following function:

int req_add_plane (plane *pl_ptr, int *ID_same)

The function implements the protocol, by sending the data of the plane pointed to by
pl_ptr. There are two possibilities for the ID it then reads. If it is IGNORED, then this
means that the plane has been discarded on the CA Engine side. In this case the function
immediately returns the value 0, emulating the behaviour of get_ack() when the latter
receives IGNORED. If the ID is not IGNORED, it can still be negative, in the case that the
plane already existed in the CA Engine. The function calls add_plane(), which contains
all the necessary data to see if the plane already exists. The difference is that the ID_same
and ch_class arguments of add_plane() must be passed zero, as discussed previously.
The id received through the socket is checked against pl_ptr->ID which is set inside
add_plane() to ensure consistency between the two sides. Finally, if add_plane()
returns IGNORED, ID_same is read from the socket and 0 is returned; otherwise,
get_ack() is called with (effectively) ADD_PLANE as an argument and its return value is
returned by req_add_plane().

The possible combination of the return value, the id assigned to the plane and the id of the
same plane found in the CA Engine (when applicable) are given in Table 21 below.

 Case Return ID read from socket ID_same (socket)
Successful addition get_ack(ADD_PLANE) >= 0 <not read>
pl_ptr illegal 0 IGNORED <not read>
pl_ptr already in
list

0 < 0 >=0

other failure -1 <Undefined> <not read>

Table 21: Combinations of the return value of req_add_plane(), the ID and ID_same
read from the socket

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 162

7.4.4 CA Engine-Side Plane Addition

This is handled by the following function:

int serv_add_plane (void)

The root process of the CA Engine reads through the socket the details of the plane to be
added and creates the plane without the ID. Function check_plane() uses the ID field of
the newly-defined plane to identify an illegal plane by setting it to IGNORED. The other
processes call bcast_plane() to get the details of the plane. The following, with the
exception of the communication with the GUI, happen to all the processes.

If the plane definition is acceptable, add_plane() inserts it in the list, sets its ID again,
and also sets ID_same if the plane already exists. The ID is written back to the GUI in all
the cases and interpreted as shown in the previous paragraph. If the plane already exists in
the CA Engine add_plane() returns IGNORED, and ID_same is also written to the GUI.
Then immediate visualisation of the plane is enforced by calling tx_vis_pack() with its
force argument set to 1 (see section 7.6.2.1 for more). Finally the CA Engine discards the
plane and the function returns IGNORED. If the plane did not exist in the CA Engine, it is
added to the visualisation list. The function calls send_ack() to acknowledge the addi-
tion and reads VIS_PACK from the socket. It causes immediate visualisation as above and
ADD_PLANE is returned.

N.B.: The acknowledgement in this case is not handled by the calling function rv().

The addition to the visualisation list requires the initialisation of the cell. This is
achieved by the following function:

void init_cell (cell *c_ptr, const plane *pl_ptr, int generation)

This sets the forward and backward links of the cell to zero, and assigns the data and
generation members of the cell to those passed to the function as arguments. This func-
tion assumes that the memory for the cell to be initialised has been allocated.

The generation argument is passed equal to the current generation. The cell is then in-
serted in the visualisation list by means of the function insert().

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 163

7.4.5 Why is the Protocol Complicated?

The developers realise that the above protocol is complicated. There are various reasons
for this. The ID_same token is necessary because the GUI may possibly visualise a plane
more than once, but there is no point in the CA Engine maintaining multiple copies of the
same plane.

The immediate visualisation feature was added to the system in response to a specific re-
quest from users who wanted to be able to visualise a plane even after the evolution of the
automaton had finished [Telford et al. 1999]. Instead of adding another option in the Simu-
lation Window menus we preferred to move the additional complexity to the underlying
protocol, which is invisible to the user. The reason why serv_add_plane() calls
send_ack() itself whereas no other function does that, is to ensure that the GUI exits
consume_vis_pack() (which it always calls when sending requests so as to prevent race
conditions). If this is not ensured, the immediate visualisation packet is consumed in the
GUI. To this end, VIS_PACK had to be added to the protocol as an acknowledgement that
consume_vis_pack() has been exited.

7.5 Plane Deletion

7.5.1 Deletion Protocol

Plane deletion is initiated by the GUI by sending the ID of the plane to be deleted through
the usual prot_sockfd socket. The CA Engine deletes the plane with the specified ID
from both its lists and acknowledges the deletion. The protocol is shown below:

Sender Token Type

GUI DEL_PLANE req_code

GUI ID int

CA DEL_PLANE req_code

7.5.2 The Function rem_plane() and Other Related Functions

The function removes the plane with the given ID from the plane list. The prototype of the
function is as follows:

int rem_plane (plane_list *pl_l_ptr, int ID)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 164

Given that the plane_list structure is implemented as an array, the plane to be removed
is trivially located. A removed plane is signified in the list by a NULL pointer. The function
checks if the ID is legally defined and if the corresponding pointer points to a plane. If this
is not true the function returns IGNORED. If the plane is found the pointer is set to NULL
and the no_plane member of the plane_list is decremented. DEL_PLANE is then re-
turned. Note that the function does not deallocate the memory space occupied by the plane.

This is done by the function disc_plane(), which, as explained previously in the dis-
cussion of the plane and plane_class functions, also calls del_pl_class() to free
the only dynamically allocated member of the struct, class_ptr.

7.5.3 GUI-Side Plane Deletion

Deletion on the GUI side is handled by the following function:

int req_del_plane (int ID)

This function writes the ID of the plane to be deleted to the GUI, then reads the acknowl-
edgement by means of the get_ack() function. If the acknowledgement is IGNORED,
then get_ack returns 0, in which case the function returns 0 as well. Otherwise, the func-
tion calls disc_plane() to free the memory and rem_plane() to remove its entry from
the all_planes list. These must be called in that sequence, because the only handle to
the plane is all_planes.planes[ID]; if we remove it from the list first, we can no
longer access it to free its memory. We then compare the return value of rem_plane()
with that of get_ack(). If they are not the same then there is an inconsistency between
the GUI and the CA side and the program exits. Otherwise, DEL_PLANE is returned.

7.5.4 CA Engine-Side Plane Deletion

This is handled by the function

int serv_del_plane (void)

The root process of the CA Engine reads through the socket the ID of the plane to be de-
leted and broadcasts it to the other processes. In addition to what the GUI has to do, the
CA Engine must remove the plane from the visualisation list as well.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 165

To do this, it calls the function del_ID(). As mentioned when discussing the list-related
functions, del_ID() returns DEL_PLANE if the plane is found; otherwise it returns
IGNORED. In the former case, rem_plane() is called to remove the plane from the plane
list and its returned value is returned by serv_del_plane().

7.6 Plane Visualisation

7.6.1 Visualisation Protocol

The visualisation data transmission is initialised by the CA Engine. The GUI, via X, polls
the dedicated socket vis_sockfd for the code indicating a visualisation packet
(VIS_PACK), then receives the plane ID and the actual data using eng_rx_callback()
and rv_vis_pack().

Sender Token Type

CA VIS_PACK req_code

CA ID int

CA val_size int

CA minmax[2] double[]

CA [data] u_char[]

7.6.2 CA Side Visualisation

Suppose that a plane has been added to the visualisation list of the CA Engine. After the
CA Engine runs a generation it checks the visualisation list for planes to be visualised in
this generation. When it is time for a plane to be visualised, it is popped from the visualisa-
tion list. Uniqueness of data transmitted is guaranteed by means of the plane class on the
CA Engine side. After the visualisation, the plane is reinserted with its cell’s generation
member altered to match its next visualisation generation.

7.6.2.1 Function tx_vis_pack()

The implementation of the visualisation protocol is handled by the function

int tx_vis_pack (cell *c_ptr, char force)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 166

The function verifies that the plane in the data member of the cell passed as its argu-
ment has not been visualised in the current step. If the last_vis member of the plane
class of the plane is equal to the current generation and force is not set, the function re-
turns immediately with VIS_PACK as its exit code.

In the general case when the plane is visualised, the processes execute the same steps we
have described in section 6.5.3.4, in order to determine which processes are working, as
well as the buffer and loop sizes and allocate memory accordingly. In addition, an un-
signed character array of size equal to the total extent of the data to be written to the socket
(i.e. the number of elements equals the number of cells in the model and the size of each of
them is that of an unsigned character) is allocated memory and is used for the colour map-
ping of the data as described in the next section (7.6.2.2). In order for the fourth item of the
protocol, namely minmax[2], to be written, this must be first calculated by traversing the
cells which are going to be visualised according to the plane specification seeking the
minimum and maximum values for the substate. Traversal is executed in the same way that
the local CA copies are traversed for writing data on file. After these limits have been cal-
culated in each process, the results are combined with those of the other processes so as to
acquire the global minimum and maximum values for the substate in question. This step is
skipped if the user defines the minimum and maximum values manually, as described in
section 7.6.2.3. The data are colour-mapped in the processes where they reside before be-
ing gathered in process 0, following the same strategy as serv_view_state() (see sec-
tion 6.5.4). The root process writes to the GUI the first four items of the protocol shown in
section 7.6.1, followed by the data which are transmitted using one writen call.

The function returns VIS_PACK on all cases, since all possible errors (failed write or
malloc, for example) are fatal and cause the program to abort.

7.6.2.2 Colour Mapping

As mentioned earlier, the minimum and maximum values for the visualised substates are
stored as double precision numbers globally in the processes. Their values are updated
every time the substate is visualised and their values are maintained throughout the life of
the program. By doing this we generally make the mapping consistent for the planes
throughout the life of the program and indicate how the substate changes with respect to
time. It is worth noting that, because the granule of visualisation is the plane, 3-D models
are broken down to planes on the GUI side in order to visualise them. Therefore, in the
first step of the visualisation the first plane of the cube visualised possibly sets the mini-
mum and maximum values to something different than the next planes and could be dis-

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 167

played erroneously; in the next visualisation the minimum and maximum values and there-
fore the colour mapping, are updated, “converging” to the correct values.

The colour mapping is performed in all the processes before gathering the data at the root
process so as to write them to the socket. It is done by means of the following function:

void colour_map (const u_char *orig_data, u_char *mapped_data,

 int stateid, int no_data,

 double gmin, double gmax)

The first argument contains the data and the second is an array initialised by the caller
function to contain the mapped data. The stateid argument of the function is used to
define the type of the data in orig_data and no_data is the number of elements in it.
The minimum value of the substate in orig_data is mapped to 1 and the maximum is
mapped to 255. The intermediate values are linearly projected to the 1-255 interval. This is
done using the obvious formula

In order to avoid multiple computations, we calculate 254/(gmax-gmin) at the beginning of
the function; nonetheless we need to compute this every time we call the function, i.e. once
for each process x-line. The above mapping leaves 0 as the background colour for 3-D
visualisations. In the palettes distributed with CAMELot, this corresponds to Black.

7.6.2.3 Manual Minimum and Maximum Definition

As described in [Telford et al. 1999], users of the system requested a facility to set the
minimum and maximum values of a substate manually, so as to be able to view a subset of
the visualised substate with greater detail.

To achieve this we introduced the character array auto_map[NumOfStates], each ele-
ment of which indicates if the user has manually set the limits of the corresponding sub-
state. This can be done using the appropriate menu of the Simulation Window. By means
of the same menu the user can revert to the automatic calculation of the limits, using the
corresponding button.







 ≠+
−

−

=

else. ,1

max;min if ,1
minmax

min][_254
][_

gg
gg

gidataorig

idatamapped

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 168

The protocol request SET_MINMAX on the GUI and the CA Engine is handled by the fol-
lowing functions respectively:

int req_set_minmax (int substate, double min, double max)

int serv_set_minmax (void)

The former writes its arguments to the CA Engine and then calls get_ack(), the value of
which it returns. The latter reads (on process 0) the data the GUI sends and broadcasts
them to the other processes. If the substate is acceptable and the minimum value received
is less than the maximum, the appropriate minmax[][] elements are updated and that of
automap[] is cancelled. The CA Engine reverts to the automatic mode if the limits read
are both equal to zero, in which case the corresponding element of auto_map[] is set. It
should be noted that setting the limits manually yields performance benefits because the
corresponding search taking place in each plane visualisation of the substate as part of
tx_vis_pack() is skipped.

7.6.3 GUI Side Visualisation

One global visualisation buffer, viz_buffer, is initialised by means of the
init_buffer() function, when dev_run() is called. This is done when the user presses
the “Run” button and starts the simulation window, and the same buffer is used for all the
planes received.

When a packet is received at the vis_sockfd socket, X calls eng_rx_callback()
which in turn calls eng_rx_packet() which, if the header is VIS_PACK calls
rv_vis_pack() to read the data. The plane2win[] list corresponding to the plane ID
of the visualisation packet is then traversed and viz_render_plane() called for all
windows currently displaying this plane. The “Current Step” field in the Simulation win-
dow is then updated with the generation number in the visualisation packet. The last action
is also taken when a packet with the GEN_NO header is received.

7.6.3.1 Function rv_vis_pack()

Another function contained in guicomms.c is

int rv_vis_pack (req_code request, int *ID_ptr, double *minmax,

 u_char *value_ptr)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 169

This function is called by the GUI when it detects that the visualisation socket contains a
message. This message is passed to the function as the request argument, and is tested
against GEN_NO21 or VIS_PACK, the only acceptable values. In the former case it con-
sumes the generation number following the GEN_NO req_code by placing it in the space
pointed by the ID_ptr argument and exits. In this case, the return values of the minmax
and value_ptr by-reference arguments is undefined. If on the other hand the request
equals VIS_PACK, the ID of the plane visualised and the visualisation data are passed in
the ID_ptr, minmax and value_ptr arguments respectively. As described in the proto-
col discussion earlier in this section, the size of the visualised entity is also passed through
the socket; this is used as the nbytes argument of the readn() call issued to read
value_ptr.

The function returns -1 if the request is not GEN_NO or VIS_PACK or if any of the
readn() calls issued fail; otherwise it returns request.

21 This is an addition from release 1.2 onwards to handle the introduction of the GEN_NO req_code.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 170

8. Performance of the CA Engine

In this section we will discuss the results from benchmarking the CA Engine. We will ex-
plain why parallel computing is necessary for COLOMBO and see how well the model
scales. We will also assess the impact of the homogeneous systems optimisation, discussed
in section 5.2.1. The automatic inactive strip detection optimisation (section 4.6.2) could
not be tested using the bioremediation problem, because the model is not deterministic.

8.1 The Benchmark

We decided to benchmark the performance of the CA Engine on as many power-of-two
processors as possible. Apart from the scaling curve, this test also gives an idea of the
time taken for one processor to carry out the job and can yield a conclusion about the ne-
cessity of parallel computers for the task in hand. Because the model is decomposed across
the x axis, the x size of the model defines the amount of parallelisation that can be applied.

The scenario we followed did not involve any visualisation or writing to disk, we were
only interested in testing the throughput of the program in a productive environment. The
system had to read in the initial configuration, and this time was accounted for in all cases.
We consider this normal, since state initialisation is inevitable overhead. In all cases we
ran 100 iterations starting from the initial configuration provided by UNICAL and CRA.
The timings were taken using the built-in timing facility of CAMELot. In the case of mul-
tiple processors, and therefore multiple readings, the comparisons were made using the
timing results of process 0.

For the benchmark we used the Cray T3E-900 based at EPCC. The system hosts 344 450
MHz processors, each with a peak performance of 900 MFlops. Most of these processors
have 128 MBytes of memory or more. It is worth bearing in mind that Cray is a distributed
memory machine and that it does not employ virtual memory; therefore the per element
total size of the executable and the memory dynamically allocated at run-time cannot ex-
ceed the physical memory size of the element.

We used two versions of the bioremediation code for the fluid dynamic layer, provided by
UNICAL and CRA. The first one is a 72x72x13 model with 60 states and 29 parameters.
The total size of the substates is approximately 32 Mbytes. The total size of the executable,
as estimated from the top command on a Sun running Solaris 2.6 is 83 MBytes. In this
case, 64 processors was the highest power of two that we could use. However, there is no

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 171

point in extending the benchmark beyond 16 processors, because then the size of the
boundary data is disproportionate to that of the actual data. For example, in the case of 32
processors, the x-size of the actual data in most processors will be 2, which equals the x-
size of the boundary data. The scaling curve was drawn using the homogeneous system
optimisation, but we also ran the same benchmarks without employing it, so as to judge its
impact.

UNICAL provided another model with dimension 256x128x13. This model allowed to
extend the benchmarking to 32 and 64 processors (again 128 would be overkill). However,
the model was now too large to be accommodated in 1 processor (just the two CA copies
for the 60 states require approximately 410 MBytes of memory).

8.2 Benchmark Results

8.2.1 Scaling Curve

8.2.1.1 Small Model

The timings follow in Table 22. The Sum field contains the time taken for the update func-
tion, the boundary replication and the steering. The Total field also includes the time for
the initialisation of the system (building of communicators, memory allocation etc), the
substate initialisation, the update of the read copy after the application of the transition
function etc. A discussion of the timing facility is available from section 2.2.1.1.3.2. Only
two decimal places are quoted in the tables. Speedup is the ratio of Total with 1 processor
over Total with the number of processors in question.

Processors Sum (sec) Total (sec) Speedup Optimum
1 85.86 102.90 1 1
2 42.06 50.88 2.02 2
4 21.44 26.07 3.94 4
8 12.63 15.10 6.81 8
16 8.22 9.59 10.72 14.40

Table 22: Benchmark results for 1-16 processors on the Cray T3E-900

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 172

Because the x dimension of the model (72) is not divided by 16, the speedup that can be
gained ideally is not 16, but 72/  16/72 =72/5=14.40. We used the Optimum column in
Table 22 to facilitate comparison with the ideal speedup. The scaling curve which yields
from Table 22 is shown in Figure 29.

Figure 29: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling
curves for the small bioremediation model

8.2.1.2 Large Model

The size of the model caused some difficulties. Apart from the fact that 1 processor could
not accommodate the problem, in order to test 2 and 4 processor decomposition it was nec-
essary to employ the large (256 Mbytes) memory elements of the system. The processing
element memory size factor was not controlled in the other tests to facilitate scheduling of
the batch jobs. Because running the model on 1 processor was not possible, the baseline
for the speedup was the performance on 2 processors. The results appear on Table 23 and
Figure 30 depicts these timings. Unlike Table 22, the Optimum column in this case simply
facilitates the comparison between the performance of each case with the 2-processor base-
line.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 173

Processors Sum (sec) Total (sec) Speedup Optimum

2 280.31 332.94 1 1
4 136.31 164.04 2.02 2
8 67.78 81.46 4.08 4
16 35.29 42.56 7.82 8
32 20.42 24.41 13.63 16
64 12.41 14.77 22.54 32

Table 23: Benchmark results of the large model for 2-64 processors on the Cray T3E

Figure 30: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling
curves for the large bioremediation model

8.2.2 Homogeneous Optimisation

In Table 24 we compare the times taken for the boundary copying with and without ena-
bling the homogenous optimisation for the small benchmark. Figure 31 depicts the results

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 174

for the boundary exchange. Similar figures were obtained from the large benchmark and
they are not listed as they would not add anything to the discussion.

Processors Boundary
Homog (sec)

Total
Homog (sec)

Boundary
Heterog (sec)

Total
Heterog (sec)

1 4.27 102.90 18.33 115.51
2 3.38 50.88 22.95 70.19
4 3.13 26.07 23.17 46.29
8 3.34 15.10 22.45 34.81
16 3.68 9.59 25.82 30.33

Table 24: Benchmark results for the homogeneous optimisation on 1-16 processors

Figure 31: Graph showing the benefit to the performance of boundary replication
when employing the homogeneous optimisation (red, diamonds)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 175

8.2.3 Discussion of the Results

8.2.3.1 Necessity of Parallel Computing

Although CAMELot is a general CA execution platform, the software was developed so as
to enable bioremediation modelling. The bioremediation code used as benchmark makes it
evident why parallel computing is essential in order to extract modelling results in reason-
able amounts of time.

The bioremediation code has two modes. In the first mode, the program runs until it satis-
fies a set of conditions, called the equilibrium. When this happens, the program changes to
the second mode where it works directly towards the bioremediation modelling result. This
mode is only maintained for one iteration of the CA Engine, and the system then reverts to
the first mode seeking the equilibrium conditions. Mode switching is controlled by means
of the steering facility.

The number of iterations required in order to reach the equilibrium dominates the running
time of the model. This depends on the conditions set and the required accuracy, but in
general the first equilibrium takes a lot longer than the subsequent ones. In the past EPCC
benchmarked an older version of the bioremediation code. That model was 256x53x5 and
consisted of 59 states. The first equilibrium was reached after 225,546 iterations, whereas
the next one only needed 1,273 iterations. We attempted to reach equilibrium with the
large model discussed in the previous sections. Using 64 processors on the Cray T3E with
the homogeneous optimisation enabled, it ran for 12 hours without reaching equilibrium.
According to Table 23, this exceeds 290,000 iterations without reaching equilibrium. In
such cases the periodic state save facility of CAMELot and its ability to initialise its state
from these files are invaluable.

It is therefore evident that parallel computing is essential for realistic modelling of the bio-
remediation processes.

8.2.3.2 Scaling

The scaling curve in Figure 29 is quite satisfactory. The bioremediation model was only 72
cells long and as a result it could not serve as an ideal benchmark. The 25% difference
between the ideal and the actual speedup in the case of 16 processors can be explained by

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 176

the fact that the number of actual cells is only 2-2.5 times22 more that the number of the
boundary cells in the macrocell. As it can be seen from Table 24, the boundary exchange
accounts for 38% of the total time taken for the model to run. This, and additionally the
fact that the curve of the boundary replication time (in the homogeneous case) of Figure 31
is almost flat, indicates that the boundary exchange is the limiting factor. Finally, the
seemingly abnormal speedup of 2.02 in the case of 2 processors can be attributed to better
caching because the memory size of each macrocell is obviously smaller in this case.

Similar results can be extracted by studying Table 23. The superlinear speedup exhibited in
the case of 4 and 8 processors can be attributed to caching again; it would be very interest-
ing to see the results on one processor but this was impossible as mentioned earlier. The
boundary exchange is less of an issue in configurations up to 16 or even 32 processors and
it seems to affect the speedup drastically on 64 processors. However, when running on 64
processors the size of the boundaries per processor is already half the size of the model
portion on the element and still the execution is 65% faster than with 32 processors.

What has been established from these tests is that other the natural bottleneck of the
boundary exchange, the CA execution scales well as the number of available processors
increases while the size of the per processor data is more than half of the boundary data.

8.2.3.3 Homogeneous Systems Optimisation

This optimisation, discussed in section 5.2.1, has paid off, as it shows on Table 24 and
Figure 31. The curve when not enabling the optimisation appears to be rising as the num-
ber of processing elements increases. Interestingly enough, the homogeneous optimisation
seems to benefit the boundary exchange since the timings appear to be dropping until 8
processors are used although the timing for 16 processors is still less than that for 1 proces-
sor. As for the times themselves, the optimisation appears to save from 77% to 86% for the
boundary exchange.

22 This is because the decomposition is uneven in this case and some macrocells have x dimension 4 and
others have 5

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 177

9. Open Issues

The following issues are possible extensions and optimisation to CAMELot.

9.1 Port to Windows NT

As outlined in [Ironside Farrar 1999], most bioremediation companies interviewed would
be keen on using the CAMELot software, under the condition that no major modifications
or additions to their PC-based computing infrastructure would be necessary. A Linux ver-
sion of CAMELot is available, however even running Linux is probably not desirable for
bioremediation contractors. A more obvious choice would be to run it under an X Window
System environment for Microsoft Windows, such as Hummingbird Exceed, but this
would incur further performance penalties.

Porting the software to run on Windows NT should be possible, given that X-Designer can
produce Windows MFC code and MPI implementations for NT exist. It should be noted
that such a port would benefit substantially the market position of CAMELot, as it would
make it readily available to its target market.

9.2 Single-Processor Optimisation

CAMELot can be used on single-processor systems, although it has been made evident that
the usual bioremediation problems are too demanding to run on a single processor system
in realistic time. The current implementation employs MPI even in the case of single-
processor runs, which incurs an unnecessary performance penalty. A version of CAMELot
stripped of MPI-related calls is expected to perform better than the current one in the sin-
gle-processor case, and should be considered in conjunction with the NT port (section 9.1).
Extensive modifications are required for this optimisation.

9.3 Inactive Strip Detection Enhancements

CAMELot contains an automatic inactive strip detection mechanism, as discussed in sec-
tion 4.6.2. This mechanism could be enhanced in two ways, discussed below.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 178

9.3.1 Automatic Fold Setting

In the current implementation the user must select the number of folds at compile time. It
would be useful of they could alter their selection at run time, both interactively and
through an appropriate steering statement. This facility would be quite hard to implement.
A more important but also more difficult extension, would be to devise an algorithm to set
and adjust the number of folds automatically at run-time. This could use the built-in timing
facility so as to get information about the performance of the system.

9.3.2 Switchable Fold Setting

Currently the user must declare the program as deterministic in order for the inactive fold
detection mechanism to take effect (see section 2.3.7). This disables the mechanism in the
case of the bioremediation code, because the update function changes after specific events.
If a piece of code changes arbitrarily, it is impossible to solve the problem. It is possible
however, to enrich the CARPET language with a statement which would denote the start of
a deterministic period of execution and another one to end it. Such a modification would
render the inactive strip detection mechanism useable in cases like the bioremediation
code, when the non-determinism is detectable or caused by the programmer.

9.4 Timing Function

As mentioned in section 4.7.1.1, the memory copies at the end of each update are not ac-
counted for in any timer apart from the total one. These should be a part of the update
function timer, but it is not straightforward to implement this because the memory copies
take place after the boundary copies, which in turn follow the updates. Because the order
in which these events happen cannot change, the only way to do this is to extent the inter-
face of the timing functions to include a function which starts adding to a given timer
without incrementing the number of calls, and another one to stop this.

9.5 Quiescent Substates

In many cases the CARPET programmer may define a set of states which do not change
over time at all. A good example of such use could be a substate describing the porosity of
the ground in a bioremediation field. This quality is local to each cell and cannot therefore
be represented with a global parameter and does not change as the model evolves at any
point. Such a state is called quiescent.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 179

Currently the CA Engine does not discern between quiescent and normal states. This af-
fects the performance of the system in many ways. The arrays which store the CA data are
larger than they could be thus being heavier to communicate in both types of boundary
replication and slower to copy in the read copy update after the CA update rule has been
applied. Caching of the data to processor memory could also be affected.

This optimisation, suggested quite late in the CAMELot development, requires some modi-
fications to the parser, but the CA Engine code will be very drastically affected. It is how-
ever favoured to provide good performance benefits.

9.6 Visual cell substate value enquiry

A feature which was requested but could not be implemented within the project timescale
was the ability to ascertain the numerical value of a particular cell’s substate by selecting
the cell visually, using the mouse cursor over a Visualisation window. This would be non-
trivial to implement, and would only be useful when the dimensions of the CA are small
enough to allow individual cells to be rendered in the Visualisation windows.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 180

10. References

[AVS 1993] AVS User's Guide, CST 912, Manchester Computing Centre, University of
Manchester, January 1993.

[Baracca et al. 199] COLOMBO WP4: Functional Requirements and Software Package
Design, M.C. Baracca, P. Ornelli, G. Spezzano, D. Talia, November 1998.

 [Booth et al. 1999] COLOMBO WP3: WP3 Tasks T3.4/3.5 Workplan, S. Booth, L.Clarke,
K. Kavoussanakis, G.Smith, S.Telford, Version 1.1, April 1999.

 [Clarke et al. 1998] COLOMBO WP3: Parallel CA programming Environment, Deliver-
able DI3.1.8, L.Clarke, G.Smith, S.Telford, Version 2.0, May 1998.

[Ironside Farrar 1999] COLOMBO WP6: Scotland/United Kingdom Market Survey, Iron-
side Farrar, ref. 5631/MC, October 1999.

[Kavoussanakis et al. 1999] COLOMBO WP3: Performance of CAMELot 0.2, Deliverable
DI3.2.5, K. Kavoussanakis, S D Telford, S P Booth, Version 1.1, February 1999.

[MPIf 1995] MPI: A Message-Passing Interface Standard, Message Passing Interface Fo-
rum, Version 1.1, June 1995.

[Spezzano&Talia 1995] CABOTO WP3: CAMEL Environment User Manual, Deliverable
D5, G.Spezzano, D.Talia, December 1995.

[Smith 1998] COLOMBO WP3: CABOTO CAMEL Source Code Structure Report, Deliv-
erable DI3.1.3, G.Smith February 1998.

[Spezzano et al. 1995] CABOTO WP3: Design and Specification of CAMEL Extension,
Deliverable D2, G.Spezzano, D.Talia, S.Di Gregorio, June 1995.

[Stevens 1990] UNIX Network Programming, W. Richard Stevens, Prentice-Hall Software
Series, 1990.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 181

[Telford et al. 1998] COLOMBO WP3: Design for Portable, Parallel CA Software Envi-
ronment, Deliverable D6, S.Telford, G.Smith, M.C.Baracca, A.Longo, P.Ornelli,
G.Spezzano, D.Talia, May 1998.

[Telford et al. 1999] COLOMBO WP3: Extensions to CAMELot 1.0, Deliverable DI3.4.1,
S.Telford, K. Kavoussanakis, S Booth, Version 1.1, April 1999.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 182

I. CAMELot Release History

• 1.3 (2000/03/31)
Internal Software Deliverable SI3.6.1 (Software Deliverable S3). Relaxation of the
constraint in the CA Engine on the number of processes, folds and CA x-dimension
size; boundary datatype optimisation for homogeneous multiprocessor systems; pa-
rameter arrays added to CARPET; revised GUI parameter editor dialog; improved
AVS file compatibility, plus changes from 1.2.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary
release.

• 1.2.2 (2000/03/15)

Revised SI3.5.1 release: increased default yacc parser stack size to 10000 for
Tru64 UNIX, as default size is too small for large CARPET programs.

Tru64 UNIX 4.0F GUI/parser binary released only.

• 1.2.1 (2000/03/03)
Revised SI3.5.1 release. Added Tru64 UNIX 4.0F (Alpha) support and changes
suggested in COLOMBO WP3 Problem Report 19.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary
release.

• 1.2 (1999/12/03)
Internal Software Deliverable SI3.5.1. Several bugfixes and optimisations; XDR-
format data file support; minor GUI improvements, more CARPET compiler warn-
ings; new cpt_save() CARPET steering function; revised C compiler option con-
figuration, plus changes from 1.1.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI) and Red Hat Linux 5.2 binary release.

• 1.1.2 (1999/10/20)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 183

Revised SI3.4.2 release: changed user-definable C compiler command line argu-
ments to include -DCPT_INCLUDE_FILE= to allow different levels of quote-escaping
required for different MPI implementations (i.e. those with an mpicc shellscript and
those without).

IRIX 6.2 GUI/parser binary released only.

• 1.1.1 (1999/10/07)
Revised SI3.4.2 release: parser bug fix for problem with incorrect array indexing
when using region reduction functions with array substates in CARPET programs.

Red Hat Linux 5.2 binary release (with Metro Link Motif 2.1) only.

• 1.1 (1999/06/10)
Internal Software Deliverable SI3.4.2. Many changes; see Report DI3.4.1. Bug-
fixes: "Parameter" dialog box now gives correct current parameter value, "Edit
Substate" no longer crashes CA Engine. Major efficiency improvements in CA En-
gine.

SunOS 5.5.1, IRIX 6.2 and Linux binary release.

• 1.0.1a (1999/06/08)
Revised SI3.3.4 release: Release 1.0.1 with parser recompiled due to buggy version
of yacc being used to build Linux CAMELot 1.0.1.

Linux GUI/parser binary released only.

• 1.0.1 (1999/06/07)
Revised SI3.3.4 release: parser fix to handle greater numbers of substates,
neighbourhoods and parameters, and to detect when the limits on these are ex-
ceeded.

SunOS 5.5.1 and Linux GUI/parser binaries released only.

• 1.0 (1999/03/08)

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 184

Internal Software Deliverable SI3.3.4 (Software Deliverable S2). Batch mode
added to CA Engine; bugfixes to CA Engine; memory leaks fixed; increased CA
Engine startup timeout to 20s; optimised visualisation rendering.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.2.1 (1999/02/16)

Revised SI3.2.4 release: parser bug fix to enable cell_<substate> access globally
(CAMEL CARPET compatibility); added DimX, DimY, DimZ, NProcs, NFolds con-
stants to CARPET; cpt_thresh handling and random function bug fixes.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.2 (1998/12/09)
Internal Software Deliverable SI3.2.4 (Software Deliverable S1). Added 3-plane
isometric visualisation functionality, runtime CA Engine fold control and colour
map bar display. Many bugfixes and optimisations.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.1 (1998/10/16)

Internal Software Deliverable SI3.2.3. Added runtime CA Engine control, visuali-
sation functionality and CA folds.

SunOS 5.5.1 and IRIX 5.3 binary release.

• 0.0.1 (1998/08/04)

Revised SI3.2.2 release: Changed "MPI arguments" configuration option to "MPI
run command" - this now allows more of the command line to be specified. Slight
changes to font identifiers needed for IRIX X servers.

SunOS 5.5.1 and IRIX 5.3 binary release.

• 0.0 (1998/06/18)
First release, corresponding to Internal Software Deliverable SI3.2.2.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 185

SunOS 5.5.1 and IRIX 5.3 binary release.

Project COLOMBO (Project No.: 24,907) Version 1.0

29/05/2000 186

II. CAMELot MPI Configuration

CAMELot 1.2 and later releases can be configured for various different implementations
of MPI using the "C compiler command line " and "MPI run command" dialog boxes. Im-
plementations it has been successfully tested with are listed below:

MPICH 1.1

This is the MPI implementation that CAMELot is configured for by default. It is as-
sumed that the environment variable $MPIR_ROOT is set to the root directory of the ap-
propriate MPICH installation.

MPICH 1.2

This requires the following change to the default settings:
C compiler flags: change -DCPT_INCLUDE_FILE=\\\"%s\\\" to -
DCPT_INCLUDE_FILE=\"%s\".

LAM 6.3

It is assumed that the environment variable $LAMHOME is set to the root directory of the
appropriate LAM installation. The following change to the default settings are also re-
quired:
C compiler name: change $MPIR_ROOT to $LAMHOME.
C compiler flags: change -DCPT_INCLUDE_FILE=\\\"%s\\\" to -
DCPT_INCLUDE_FILE=\"%s\".
MPI run command: change $MPIR_ROOT to $LAMHOME.

SGI MPT 1.3 (IRIX 6)

This requires the following changes to the default settings:
C compiler name: set to cc.
C compiler flags: change -DCPT_INCLUDE_FILE=\\\"%s\\\" to -
DCPT_INCLUDE_FILE=\"%s\" and append -n32 if using IRIX 6.2 or earlier.
C libraries: append -lmpi.
MPI run command: change to mpirun -np %d.

Sun HPC ClusterTools 3.0

This requires the following changes to the default settings:
C compiler name: set to tmcc.
C libraries: append -lmpi -lnsl.
MPI run command: depends on HPC ClusterTools environment (CRE or LSF).

