
A Java Wrapper for DLV

Francesco Ricca

Department of Mathematics
University of Calabria,

87030 Rende (CS), Italy
ricca@mat.unical.it

Abstract. Disjunctive logic programs are a powerful tool in knowledge repre-
sentation and commonsense reasoning. The recent development of an efficient
disjunctive logic programming engine, named DLV, allows to exploit disjunctive
logic programs for solving complex problems. However, disjunctive logic pro-
gramming systems are currently missing any interface supporting the integration
between commonly used software development languages (like Java or C++) and
disjunctive logic programs. This paper focuses on the DLV Wrapper, a library,
actually implemented in Java, that “wraps” the DLV system inside an external ap-
plication, allowing to embed disjunctive logic programs inside Object-Oriented
source code.

1 Introduction

Nowadays the need for representing and manipulate complex knowledge arises in dif-
ferent areas of computer science including, especially, Artificial Intelligence, Knowl-
edge Management. Logic based formalisms for Knowledge Representation and Reason-
ing and among them Disjunctive Logic Programming (DLP) become interesting tools
to satisfy this need. Disjunctive logic programs are logic programs where disjunction is
allowed in the head of the rules and negation may occur in the body of the rules. Such
programs are now widely recognized as valuable tool for knowledge representation and
common sense reasoning [Gelfond and Lifschitz1991] [Loboet al.1992]. In the last few
years, much effort has been spent in this field for theoretical studies. In particular, much
research has been done on the semantics ofDLP. Today, the most accepted semantic
is theanswer set semantics[Gelfond and Lifschitz1991,Leoneet al.1997]. Disjunctive
logic programs with answer sets semantics allow to express very complex problems up
to ΣP

2 complexity class.
The hardness of the evaluation ofDLP programs discouraged the implementation of

DLP engines. In 1997 appears the first solid implementation of aDLP system, called
DLV (i.e. DataLog with Vel) [Eiteret al.2000,Faberet al.2001]. The DLV core lan-
guage, which is disjunctive datalog with answer set semantics, has been enriched in
several ways [Buccafurriet al.2000] and the DLV system has been improved incorpo-
rating several optimization techniques. Today, the DLV system is recognized to be the
state-of-art implementation ofDLP.

From a technical point of view, DLV is a highly portable program, written in ISO
C++, available in binary form for various platforms (see [Faber and Pfeifer since 1996]).



The availability of a system supporting such an expressive language in an efficient
way is stimulating people to use logic-based systems for the development of their ap-
plications.

Currently, the DLV system is used for educational purpose both in European and
American Universities in AI and database courses. Its applicability for Knowledge
Management and Information Integration is under investigation in the EU project IN-
FOMIX.

On the other hand, today, a large number of software applications is developed by
using object oriented languages like C++ and Java and the need of integrating such
type of application with logic-based systems is arising. However,DLP systems do not
support any type of integration with current software development tools. In particular,
the DLV system cannot be easily integrated in an external application.

In this paper, we try to overcome the above problem. In particular, we describe an
API, currently implemented in Java and named DLV Wrapper, which allows to embed
disjunctive logic programs inside object-oriented source code.

The DLV Wrapper is an Object-Oriented library that “wraps” up the DLV system
in a Java program. In other words, the DLV Wrapper acts as an interface between Java
programs and the DLV system. By using a suitable hierarchy of Java classes, the DLV
Wrapper allows to combine Java code with disjunctive logic programs.

We can summarize a DLV invocation by the following steps:

1. Setup input and invocation parameters.
2. Run DLV.
3. Handle DLV output.

The DLV Wrapper gives us full control on DLV execution. Note that DLV could
spend much time in computing answer sets, because disjunctive logic programs can
encode hard problems (they allow us to express every property that is decidable in
deterministic polynomial time with an oracle in NP). But, as soon as a new model is
computed, DLV outputs it. In order to handle this situation, we provided three modes
of invocation:synchronous, model synchronousandasynchronous.

If we run DLV in synchronousmode, the Java thread calling DLV is blocked until
DLV ends computation. The Java thread calling DLV can only access DLV output
when DLV execution terminates. If we run DLV inmodel synchronousmode or in
asynchronousmode, the Java thread calling DLV can access models as soon as they are
computed. The DLV Wrapper gives us a method that tests if a new model is available.
If we run DLV in model synchronousmode, this method blocks the Java thread calling
DLV until a new model is computed or DLV ends. If we run DLV inasynchronous
mode this method never blocks the Java thread calling DLV.

The DLV Wrapper provides flexible interfaces for input and output. We handle in-
put and output of DLV by using Java objects. This feature allow us to fully embed
disjunctive logic programs inside Object-Oriented source code. Moreover, input pro-
grams can be composed by several text files and in memory Java objects and output
can be redirected specifying the storage device (main memory, hard disk, etc.), for each
ground predicate in a model.



Importantly, the DLV Wrapper also helps data integration by providing a database
connectivity mechanism that allows to import data inDLP programs and exports the
result of a DLV computation by using JDBC.

In the rest of the paper, we focus on the description and usage of the DLV Wrapper
API. In Section 2, we illustrate the DLV system, recalling its architecture, and the core
language. In Section 3, we outline the structure of the DLV Wrapper and its internal
working principles. In Section 4, we show, by a running example, how to use the DLV
Wrapper. In Section 5 we draw our conclusions.

2 The DLV system

DLV is an efficient Answer Set Programming (ASP) system implementing the con-
sistent answer set semantics [Gelfond and Lifschitz1991] with various language en-
hancements like support for logic programming with inheritance and queries, integer
arithmetics and various built-in predicates. It is a highly portable program1, available in
binary form for various platforms (sparc-sun-solaris2.6, alpha-dec-osf4.0, i386-linux-
elf-gnulibc2, ppc-apple-darwin, i386-unknown-freebsd4.2 etc.) and it is easy to build
DLV on further platforms2.

2.1 Kernel Language

The kernel language of DLV is disjunctive datalog extended with strong negation under
the answer set semantics [Eiteret al.1997,Gelfond and Lifschitz1991].

Syntax Strings starting with uppercase letters denote variables, while those starting
with lower case letters denote constants. Aterm is either a variable or a constant. An
atom is an expressionp(t1, . . .,tn), wherep is apredicateof arity n andt1,. . . ,tn are
terms. Aliteral l is either an atoma (in this case, it ispositive), or a negated atom¬a
(in this case, it isnegative).

Given a literall, its complementaryliteral is defined as¬a if l = a anda if l = ¬a.
A setL of literals is said to beconsistentif for every literal l ∈ L, its complementary
literal is not contained inL.

In addition to literals as defined above, DLV also supports built-ins, like#int ,
#succ , <, +, and* .

For details, we refer to our full manual [Faber and Pfeifer since 1996].
A disjunctive rule(rule, for short)r is a formula

a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm.

wherea1, · · · , an, b1, · · · , bm are literals,n ≥ 0, m ≥ k ≥ 0, andnot represents
negation-as-failure(or default negation). The disjunctiona1 ∨ · · ·∨an is theheadof r,

1 Including all frontends, DLV consists of around 40000 lines of ISO C++.
2 For up-to-date information on the system and a full manual please refer to the project home-

page [Faber and Pfeifer since 1996].



while the conjunctionb1, ..., bk, not bk+1, ..., not bm is thebodyof r. A rule without
head literals (i.e.n = 0) is usually referred to asintegrity constraint. If the body is
empty (i.e.k = m = 0), we usually omit the “:- ” sign.

We denote byH(r) the set of literals in the head, and byB(r) = B+(r) ∪ B−(r)
the set of the body literals, whereB+(r) = {b1,. . . , bk} andB−(r) = {bk+1, . . . , bm}
are the sets of positive and negative body literals, respectively.

A disjunctive datalog programP is a finite set of rules.

Semantics DLV implements the consistent answer sets semantics which has originally
been defined in [Gelfond and Lifschitz1991].3

Before we are going to define this semantics, we need a few prerequisites. As usual,
given a programP, UP (the Herbrand Universe) is the set of all constants appearing
inP andBπ (the Herbrand Base) is the set of all possible combinations of predicate
symbols appearing inP with constants ofUP possibly preceded by¬, in other words,
the set of ground literals constructible from the symbols inP.

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsσ from the variables inr to elements ofUP ; Ground(r) is also called the
Ground Instantiationof r. In a similar way, given a programP, Ground(P) denotes

the set
⋃
r∈P

Ground(r). For programs not containing variablesP = Ground(P) holds.

For every programP, we define itsanswer setsin two steps using its ground in-
stantiationGround(P), following [Lifschitz1996]: First we define the answer sets of
positive programs, then we give a reduction of general programs to positive ones and
use this reduction to define answer sets of general programs.

An interpretationI is a set of literals. A consistent interpretationI ⊆ Bπ is called
closed undera positive, i.e.not-free, programP, if, for everyr ∈ Ground(P), H(r)∩
I 6= ∅ wheneverB(r) ⊆ I. I is ananswer setfor a positive programP if it is minimal
w.r.t. set inclusion and closed underP.

The reductor Gelfond-Lifschitz transformof a general ground programP w.r.t. a
setX ⊆ Bπ is the positive ground programPX , obtained fromP by deleting all rules
r ∈ P for which B−(r) ∩ X 6= ∅ holds, and deleting the negative body from the
remaining rules.

An answer set of a general programP is a setX ⊆ Bπ such thatX is an answer
set ofGround(P)X .

The core language of DLV can be used to encode problems of high computational
complexity (up toΣP

2 complexity class), in a highly declarative fashion, following
“Guess&Check” paradigm [Buccafurriet al.2000], but we do not pursue this issue any
further here.

3 The DLV Wrapper

In this section we describe the wrapper that we have implemented to make DLV usable
from Java applications.

3 Note that we only considerconsistent answer sets, while in [Lifschitz1996] also the inconsis-
tent set of all possible literals is a valid answer set.



Fig. 1.TheDLV package UML class diagram.

The DLV Wrapper is an Object-Oriented library, implemented in Java, allowing to
embed a disjunctive logic program inside a Java program. The whole library is depicted
in Figure 1 by an UML (Unified Modeling Language) class diagram. Next we describe
classes that allow to model input and output of DLV, then we talk about the core class
DlvHandler, outlining its most important features.

3.1 Data representation: The classesPredicate, Literal, Modeland Program

In Section 2, we describedDLP syntax and semantic. We briefly recall that disjunc-
tive logic programs (DLV input) are finite sets of rules; models, representing program
solutions (DLV output), are sets of ground literals.

We now describe how input and output of DLV are dealt with an Object-Oriented
library. First of all, we introduceLiteral andPredicateclasses, that model ground pred-
icates and its “basic bricks” (ground literals). Then, we describeModelclass andPro-
gramclass, that respectively model output and input of DLV.

Please note that, ground literals can also be part of a logic program. We useLiteral
andPredicateclasses to friendly manipulate both DLV input4 and DLV output.

The Literal class TheLiteral inner class models ground literals. It provides methods
to access and modify terms, to verify if a literal is positive and to create its complement.

Literal class is an inner class ofPredicateclass (described in the following sub-
section). In this way, everyLiteral object is closely related to the enclosingPredicate
instance.

The Predicate class As previously pointed out, thePredicateclass models ground
predicates.

ThePredicateclass is a powerful tool, since it allows a Java programmer to handle
data to be used as DLV input and to manipulate DLV output. It provides full access to

4 In this case we refer to the ground part of an input program.



predicate features like predicate name, arity and size5. Moreover, it provides two useful
interfaces to access ground literals. The first one is inspired to the well-known interface
java.util.Enumeration, the second one is based on the interfacejava.sql.ResultSettaken
from JDBC.

Enumeration-likeandResultSet-likeinterfaces give full control on the underlying
ground predicate implementation. The former is useful if we want to directly access
Literal objects. The latter can help Java programmers, expert on database programming
and JDBC, to handle ground predicates in a well-known way6.

Despite columns in database tables have name and type, such kind of information
does not exist for arguments in a predicate. In order to fully implementResultSet-like
interface we provided thePredicateMetaDataclass.

ThePredicateMetaDataclass maps a name and a data type to each argument in a
predicate.

We implemented, by using such a type of information, methods likeint getInt(String
name)which retrieves information, from the current row (current literal) on the column
(argument) named “name”, and automatically transforms it in an integer value. APredi-
cateMetaDatamap is only required to enable some special method in theResultSet-like
interface, and it is not mandatory in general.

It is worth to point out thatPredicateclass instances store ground literals in mem-
ory. This can be a serious limitation if we deal with large amount of data. To solve this
problem, we actually provided twoPredicatesubclasses:FilePredicateandJDBCPred-
icate. The first one stores data in text files (in datalog format) and the second one stores
data in relational databases.

Later, we better describe theJDBCPredicateclass and database access.

The Model class TheModelclass represents models (i.e. answer sets).
Since models are sets of ground predicates, theModelclass implements a collection

of Predicateobjects.
We can retrievePredicateinstances inside aModel, either specifying its name (by

means of thegetPredicatemethod) or in a sequential way. In the latter case, we can
choose between two set of methods. The first one is inspired to thejava.util.Enumeration
interface, the second to thejava.sql.ResultSetinterface.

The static constant “NOModel” allows to represent a program which has not mod-
els. We can test if a Model instancem is “no model” callingm.isNoModel()method or
testingm == Model.NO Model.

The Program class TheProgramclass models logic programs.
DLV has a flexible mechanism to specify input programs. It allows to divide a logic

program into several text files. TheProgramclass extends this mechanism. In fact, it
also allows to specify input by usingStringandPredicateobjects.

5 The size of a predicate is the number of literal that compose it.
6 We recall that ground predicates corresponds to tables in relational databases.



This powerful extension fully embeds logic programs inside Java programs. This
way, DLV input can directly be handled by using Java objects. Moreover, we can import
data from relational databases supporting JDBC, by using theJDBCPredicateclass7.

3.2 The DLV Wrapper architecture: the DlvHandler class

In this section we outline the overall dlv wrapper architecture and theDlvHandlerclass
which implements kernel features of the DLV wrapper.

How previously pointed out (see Section 2) DLV is shipped as binary program. We
can run it from a command line specifying invocation parameters and input programs.
DLV outputs answer sets in text format.

The DLV Wrapper executes DLV, in an external native process, acting as a com-
mand line user.

Every Java application has a single instance of the classjava.lang.Runtimewhich
allows the application to interface itself with the environment the application is running
in.

The Runtime.exec()method creates a native process and return an instance of a
subclass ofjava.lang.Processthat can be used to control the process and obtain infor-
mation about it. Thejava.lang.Processclass provides methods for performing input
and output to a process, waiting for a process to complete, checking the exit status, and
destroying (killing) a process. TheDlvHandlerclass manages a DLV instance, which is
a native process, by using theRuntime.exec()method and thejava.lang.Processclass.
All DLV standard I/O operations will be redirected to theDlvHandler instance (inside
the Java Virtual Machine) through a system pipe. This way theDlvHandlerclass feeds
input to and gets output from DLV.

Please note that DLV invocation parameters and text files which contain input pro-
grams are specified as command line parameters by a string array. Data saved in mem-
ory (by usingPredicateinstances) or in databases are redirected to DLV through the
system pipe.

The DlvHandler instance collects DLV output and parses it, building a collection
of Modelobjects.

The whole process is depicted in Figure 2.
All classes the DLV Wrapper is made of are contained in a Java package named

DLV. To embed disjunctive logic programs inside Java code we must include theDLV
package and perform the following steps:

1. Setup input and invocation parameters.
2. Run DLV.
3. Handle DLV output.

We setup input by using aProgramobject. We use aDlvHandlerobject to set invo-
cation parameters, run DLV process instances and handle DLV output. TheDlvHandler
class gives us full control on DLV execution. TheDlvHandlerobject calls DLV, feed-
ing input and retrieving output. As soon as DLV outputs a new model, theDlvHan-
dler object parses it and build aModel object. TheDlvHandler object stores each

7 We describe this feature later.



Fig. 2.The DLV invocation process.

Modelobject in a collection. We can handle this collection ofModelobjects by suitable
methods. TheDlvHandler class implements an interface inspired to the well-known
java.util.Enumeration interface for accessingModelobjects.

Moreover, eachDlvHandler object has got anOutputDescriptorobject (see Fig-
ure 1). TheOutputDescriptorclass describes how to parse DLV output. In particular,
theOutputDescriptordescribes how to buildPredicateobjects to be inserted inModel
objects. TheDLV package provides three types ofPredicateobjects (see Figure 1):

– thePredicateclass;
– theFilePredicateclass;
– theJDBCPredicateclass.

The first one stores data in main memory; the second one stores data in a text file
(in datalog format); the last one stores data in a relational database table. We specify,
by using theOutputDescriptorclass, the predicate class to be used for each ground
predicate. This way, we are able to choose the storage device (main memory, hard disk,
etc.) for each ground predicate8.

How previously pointed out, DLV could spend much time in computing answer
sets, because disjunctive logic programs can encode hard problems (see Section 2).
But, as soon as a new model is computed, DLV outputs it. In order to handle this
situation, we provided three modes of invocation:synchronous, model synchronousand
asynchronous.

If we run DLV in synchronousmode, the Java thread calling DLV is blocked until
DLV ends the computation. The Java thread calling DLV can only access DLV output
when DLV execution terminates. If we run DLV inmodel synchronousmode or in
asynchronousmode, the Java thread calling DLV can access models as soon as they are
computed.

The DLV Wrapper provides a method that tests if a new model is available. If we
run DLV in model synchronousmode, this method blocks the Java thread calling DLV

8 The default storage device is main memory



until a new model is computed or DLV ends. If we run DLV inasynchronousmode
this method never blocks the Java thread calling DLV.

Database accessHow previously pointed out the DLV Wrapper also helps data in-
tegration by providing a database connectivity mechanism allowing to import data in
DLP programs and exporting the result of a DLV computation by using JDBC. This im-
portant feature is implemented through theJDBCPredicateclass. TheJDBCPredicate
class wraps a javax.sql.ResultSet object inside aPredicateobject. TheJDBCPredicate
class automatically performs a mapping from table columns to predicate arguments
by aPredicateMetadataobject9. Note that we easily integrate database data and logic
programs by usingJDBCPredicateobjects. In fact, we always work with “Predicate”
objects, because theJDBCPredicateclass hide implementation details.

We can build aJDBCPredicatefrom an SQL query or a javax.sql.ResultSet object.
We import data from a database including aJDBCPredicatein a Programobject. We
export DLV output to database tables specifying suitable mappings for ground predi-
cates inOutputDescriptorobjects10. In particular we have to map ground predicates to
JDBCPredicateobjects11.

4 The DLV Wrapper “at work”

In this section, we show how to call DLV through the DLV Wrapper by a running
example.

As previously pointed out, you must perform some step to invoke DLV. Now we
show the complete list of steps you have to implement to invoke DLV:

1. Build aProgramobject and setup input.
2. Build aDlvHandlerobject.
3. Set input program and invocation parameters.
4. Run DLV.
5. Handle DLV output by usingModel, Predicateand/orLiteral classes.

In the following, we implement a Java program which outputs two possible solu-
tions of a given Graph 3-colorability problem instance. We informally recall the Graph
3-colorability problem definition.

Given a graphG in the input, assign each node one of three colors (say, red,
green, or blue) such that adjacent nodes always have different colors.

Graph 3-colorability is a hard (NP-complete) problem.
We represent nodes and arcs with a set of facts by usingnode (unary) andarc

(binary) predicates. We can solve the problem using the following disjunctive logic

9 The JDBCPredicate also allows to customize this mapping by usingTranslationMapobjects.
We do no describe here this feature

10 We described this feature in previous subsection.
11 Note that, in this case, we must set the DLV invocation parameter “maximum number of

models” to one.



program:

r1 : color(X, red) ∨ color(X, blue) ∨ color(X, green) :- node(X)
c1 : :- arc(X, Y ), color(X, C), color(Y, C)

The disjunctive ruler1 guesses solution candidates and thec1 constraint checks
solution admissibility.

We partition DLV input in several sources. We save the disjunctive ruler1 in the
file guessIDB.dland the following set of nodes in the filenodeEDB.dl.

node(minnesota). node(wisconsin). node(illinois). node(iowa). node(indiana).

node(michigan). node(ohio).

We write the constraintc1 in a Stringobject and we use aPredicateobject to
representarc predicate.

String check=‘‘ :- arc(X, Y), color(X, C), color(Y, C).’’;

Predicate p=new Predicate(‘‘arc’’,2);

p.addLiteral(p.new Literal(new String[] {"minnesota", "wisconsin" }));

p.addLiteral(p.new Literal(new String[] {"illinois", "iowa" }))

p.addLiteral(p.new Literal(new String[] {"illinois", "michigan" }))

p.addLiteral(p.new Literal(new String[] {"illinois", "wisconsin" }))

p.addLiteral(p.new Literal(new String[] {"illinois", "indiana" }))

p.addLiteral(p.new Literal(new String[] {"indiana", "ohio" }))

p.addLiteral(p.new Literal(new String[] {"michigan", "indiana" }))

p.addLiteral(p.new Literal(new String[] {"michigan", "ohio" }))

p.addLiteral(p.new Literal(new String[] {"michigan", "wisconsin" }))

p.addLiteral(p.new Literal(new String[] {"minnesota", "iowa" }))

p.addLiteral(p.new Literal(new String[] {"wisconsin", "iowa" }))

p.addLiteral(p.new Literal(new String[] {"minnesota", "michigan" }))

We can now implement the first step.

// build a Program object and setup input

Program pr=new Program();

//set input

pr.addProgramFile("guessIDB.dl"); // adds disjunctive rule r1

pr.addString("ckeck’’); // adds integrity constraint c2

pr.addProgramFile("nodeEDB.dl"); // adds node predicate

pr.addPredicate(p) // adds arc predicate

In the following code we implement second and third step:

// build a DlvHandler object

DlvHandler dlv=new DlvHandler("dl.exe");



// set input program

dlv.setProgram(pr);

// set invocation parameters

dlv.setNumberOfModels(2); // computes no more than two solutions

dlv.setIncludeFacts(false);

In the last code fragment we implement forth and fifth step:
try

{

// run DLV by using model synchronous method of invocation

dlv.run(Dlv.MODEL SYNCHRONOUS);

// DLV output handling

while(dlv.hasMoreModels()) // for each model, wait until DLV find a new model

{

Model m=dlv.nextModel(); // gets next model

if(!m.isNoModel())

{

while(m.hasMorePredicates()) // for each predicate in m

{

Predicate p=m.nextPredicate(); // gets next predicate

System.out.println(p.toString()); // print out p

}

System.out.println(‘‘--- END Model’’);

} else System.out.println(‘‘I cannot find a model’’);

}

}

catch(DLVException d) { d.printStackTrace(); }

catch(DLVExceptionUncheked du) { du.printStackTrace(); }

finally

{

System.err.println(dlv.getWarnings()); // print out errors

}

5 Conclusions and future work

We have presented the DLV Wrapper, an Object-Oriented library, currently
implemented in Java, that allows to embed disjunctive logic programs inside
Object-Oriented programs. Basically, the DLV Wrapper executes, in an exter-
nal native process, the DLV system, feeding input and getting output through a
system pipe. Moreover, by using suitable hierarchy of classes, the DLV Wrap-
per allows to handle DLV Input and DLV output by using Java objects and
to import and export data from/to commercial database systems implementing
JDBC drivers. In this way, the DLV Wrapper achieves a tight coupling between
disjunctive logic programs and Java programs.



We believe that the DLV Wrapper will speed up the development of software
applications, both in academia and in industry, employing the highly expressive
power ofDLP, by using the DLV system.
As for as current and future work is concerned, we are testing the DLV Wrap-
per library in real application contexts.
Moreover, we are optimizing both internal data structures and control struc-
tures in order to improve efficiency. Finally, we plan to enrich the current DLV
Wrapper implementation by: (i) adding support for both client-server invoca-
tion mechanisms and XML data source handling; (ii) developing a C++ imple-
mentation of the library.

6 Acknowledgments

I thank Nicola Leone and Giovambattista Ianni for the support offered in the
realization of such work.
This work was supported by the European Commission under project INFOMIX,
project no. IST-2001-33570, and under project WASP, project no. IST-2001-
37004.

References

[Buccafurriet al.2000] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. En-
hancing Disjunctive Datalog by Constraints.IEEE Transactions on Knowledge and
Data Engineering, 12(5):845–860, 2000.

[Eiter et al.1997] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Dat-
alog. ACM Transactions on Database Systems, 22(3):364–418, September 1997.

[Eiter et al.2000] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative Problem-Solving Using the DLV System. In Jack Minker, editor,Logic-
Based Artificial Intelligence, pages 79–103. Kluwer Academic Publishers, 2000.

[Faber and Pfeifer since 1996] Wolfgang Faber and Gerald Pfeifer.DLV homepage,
since 1996.http://www.dlvsystem.com/ .

[Faberet al.2001] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Experimenting
with Heuristics for Answer Set Programming. InProceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI) 2001, pages 635–
640, Seattle, WA, USA, August 2001. Morgan Kaufmann Publishers.

[Gelfond and Lifschitz1991] M. Gelfond and V. Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases.New Generation Computing, 9:365–385, 1991.

[Leoneet al.1997] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunc-
tive stable models: Unfounded sets, fixpoint semantics and computation.Information
and Computation, 135(2):69–112, June 1997.

[Lifschitz1996] Vladimir Lifschitz. Foundations of Logic Programming. In G. Brewka,
editor, Principles of Knowledge Representation, pages 69–127. CSLI Publications,
Stanford, 1996.

[Lobo et al.1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar.Foundations of Dis-
junctive Logic Programming. The MIT Press, Cambridge, Massachusetts, 1992.


