
Explaining Answers to Datalog Queries

Datalog 2.0, Dallas, October 11, 2024

Andreas Pieris
University of Edinburgh

University of Cyprus

based on joint work with Marco Calautti, Ester Livshits and Markus Schneider

• Important recursive query language

• Benchmark for other query languages

• Has influenced the SQL3 standard

• Successfully used in many applications, e.g., code querying, web data extraction,

business process, modeling and automation, ontological query answering, …

• Large projects and some companies are “Datalog-based”

Datalog: Another Success Story of LiCS

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Edge start end

a b

b c

c d

Answer start end

a b

a c

a d

b c

b d

c d

Datalog at First Glance

a b c d

a b c d

Syntax of Datalog

A Datalog rule is an expression of the form

R0(!x0) :- R1(!x1),…,Rn(!xn)

• n ≥ 0 - the body might be empty

• R0,…,Rn are relation names

• !x0,…, !xn are tuples of variables

• Each variable in the head occurs also in the body - safety condition

bodyhead

Syntax of Datalog

• Datalog program P: a finite set of Datalog rules

• Extensional relation: does not occur in the head of a rule of P

• Intensional relation: occurs in the head of some rule of P

• Extensional schema: the set of extensional relations of P

• Intensional schema: the set of intensional relations of P

• Datalog query Q: a pair of the form (P, Answer), where P is a Datalog program,

and Answer a distinguished intensional relation (the output relation)

• Semantics: a mapping from databases of the extensional schema to databases of the

intensional schema, and the answer is determined by the output relation

• Equivalent ways for defining the semantics

• Model-theoretic: logical sentences asserting a property of the result

• Fixpoint: solution of a fixpoint procedure

• Proof-theoretic: based on proof trees

Edge start end

a b

b c

c d

Answer start end

a b

a c

a d

b c

b d

c d

Semantics of Datalog

Proof-theoretic Semantics of Datalog

• Given a database D and a Datalog query Q = (P, Answer), we first define the output

of P on D, denoted P(D), and then collect the content of the relation Answer in P(D)

• We define the notion of proof of a relational atom w.r.t. D and P, and then the

output of P on D are all the atoms that can be proven - “proof-theoretic semantics”

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d)}

Answer(a,c)

TrClosure(a,c)

Edge(a,b) TrClosure(b,c)

Edge(b,c)

Proof Tree by Example

Answer(b,d)

TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d)}

Answer(a,d)

TrClosure(a,d)

Edge(a,b) TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

Proof Tree by Example

• Given a database D and a Datalog query Q = (P, Answer), we first define the output

of P on D, denoted P(D), and then collect the content of the relation Answer in P(D)

• We define the notion of proof of a relational atom w.r.t. D and P, and then the

output of P on D are all the atoms that can be proved - “proof-theoretic semantics”

Proof-theoretic Semantics of Datalog

P(D) = {R(c1,…,cn) : there is a proof tree of R(c1,…,cn) w.r.t. D and P}

for a Datalog query Q = (P, Answer), Q(D) = {(c1,…,cn) : Answer(c1,…,cn) ∈ P(D)}

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d)}

Answer(a,c)

TrClosure(a,b)

Edge(a,b) TrClosure(b,c)

Edge(b,c)

Explaining Answers to Datalog Queries

why (a,c) ∈ Q(D)?

{Edge(a,b), Edge(b,c)}

Q = (P, Answer)

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d)}

Explaining Answers to Datalog Queries

why (a,d) ∈ Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}

Q = (P, Answer)

Answer(a,d)

TrClosure(a,d)

Edge(a,b) TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d),

Edge(a,c)}

Explaining Answers to Datalog Queries

Q = (P, Answer)

Answer(a,d)

TrClosure(a,d)

Edge(a,b) TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

why (a,d) ∈ Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P = D = {Edge(a,b), Edge(b,c), Edge(c,d),

Edge(a,c)}

Explaining Answers to Datalog Queries

why (a,d) ∈ Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}

{Edge(a,c), Edge(c,d)}

Q = (P, Answer)
Answer(a,d)

TrClosure(a,d)

Edge(a,c) TrClosure(c,d)

Edge(c,d)

The support of a proof tree T, denoted support(T), is the set of atoms labelling its leaves

Why-Provenance for Datalog Queries

Answer(a,d)

TrClosure(a,d)

Edge(a,c) TrClosure(c,d)

Edge(c,d)

Answer(a,d)

TrClosure(a,d)

Edge(a,b) TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c1,…,cn),

the why-provenance of (c1,…,cn) w.r.t. D and Q is the family of sets of atoms

why((c1,…,cn),D,Q) = {support(T) : T is a proof tree of Answer(c1,…,cn) w.r.t. D and P}

Why-Provenance for Datalog Queries

why-provenance can be alternatively defined using the framework of

provenance semirings by adopting the so-called why-provenance semiring

[Green, Karvounarakis, and Tannen, PODS 2007]; [Green, TCS 2011]

Why-Provenance for Datalog Queries

Answer(a,d)

TrClosure(a,d)

Edge(a,c) TrClosure(c,d)

Edge(c,d)

Answer(a,d)

TrClosure(a,d)

Edge(a,b) TrClosure(b,d)

Edge(b,c) TrClosure(c,d)

Edge(c,d)

why((a,d),D,Q) = { {Edge(a,c), Edge(c,d)}, {Edge(a,b), Edge(b,c), Edge(c,d)} }

Data complexity - D, (c1,…,cn), D’ are part of the input, Q is fixed

Why-Provenance

Input: a database D, a Datalog query Q, a tuple (c1,…,cn), and D’ ⊆ D

Question: D’ ∈ why((c1,…,cn),D,Q)?

Why-Provenance[Q]

Input: a database D, a tuple (c1,…,cn), and D’ ⊆ D

Question: D’ ∈ why((c1,…,cn),D,Q)?

Complexity of Why-Provenance

Data Complexity of Why-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):

1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. There is a Datalog query Q such that Why-Provenance[Q] is NP-hard

Proof Trees as Witnesses

For n > 0, let Dn be the database

{Next(a1, a2), …, Next(an-1, an)}

∪
{A(0), A(1), B(0,1), Last(an)}

R(x,y) :- A(y), Next(x,z), B(w1,w2), R(z,w1), R(z,w2)

R(x,y) :- Last(x), A(y)

Answer(x,y) :- R(x,y)

P =

Answer(a1,0)

R(a1,0)

R(a2,0) R(a2,1)A(0) Next(a1,a2) B(0,1)

R(an,0) R(an,1) R(an,0) R(an,1) R(an,0) R(an,1) R(an,0) R(an,1)…

Last(an) A(0) … … … … Last(an)A(1)Last(an)A(1) Last(an) A(0)

a proof tree can be

exponentially large

Data Complexity of Why-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):

1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. There is a Datalog query Q such that Why-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)}

Proof Directed Acyclic Graph (DAG)

Answer(d)

A(d)

A(a)A(a) T(a,a,d)

S(a)

S(a) S(a)S(a) S(a)

T(a,a,b) T(a,a,c)

T(b,c,a)

A(a) A(a)A(a) A(a)

A(b) A(c)

Answer(d)

A(d)

A(a) T(a,a,d)

S(a) S(a)

T(a,a,b) T(a,a,c)

T(b,c,a)

A(a)A(a)

A(b) A(c)

Compact Representation of Proof Trees

Proposition: For every Datalog program P, there is a polynomial function f such that, for

every database D, atom R(c1,…,cn), and D’ ⊆ D, the following are equivalent:

1. There is a proof tree T of R(c1,…,cn) w.r.t. D and P with support(T) = D’

2. There is a proof DAG G of R(c1,…,cn) w.r.t. D and P with support(G) = D’ and |G| ≤ f(|D|)

(1) ⇒ (2): The proof consist of three main steps:

1. reduce the depth of the proof tree

2. reduce the subtree count (number of subtrees rooted at nodes with the same label)

3. compression (reuse subtrees by folding the tree into a proof DAG)

Compact Representation of Proof Trees

α

β

β

β

β β

β

α

β

β β

Proposition: For every Datalog program P, there is a polynomial function f such that, for

every database D, atom R(c1,…,cn), and D’ ⊆ D, the following are equivalent:

1. There is a proof tree T of R(c1,…,cn) w.r.t. D and P with support(T) = D’

2. There is a proof DAG G of R(c1,…,cn) w.r.t. D and P with support(G) = D’ and |G| ≤ f(|D|)

compression

Compact Representation of Proof Trees

Proposition: For every Datalog program P, there is a polynomial function f such that, for

every database D, atom R(c1,…,cn), and D’ ⊆ D, the following are equivalent:

1. There is a proof tree T of R(c1,…,cn) w.r.t. D and P with support(T) = D’

2. There is a proof DAG G of R(c1,…,cn) w.r.t. D and P with support(G) = D’ and |G| ≤ f(|D|)

(1) ⇒ (2): The proof consist of three main steps:

1. reduce the depth of the proof tree

2. reduce the subtree count (number of subtrees rooted at nodes with the same label)

3. compression (reuse subtrees by folding the tree into a proof DAG)

(2) ⇒ (1): We simply unfold the proof DAG

Data Complexity of Why-Provenance

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from 3SAT

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):

1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. There is a Datalog query Q such that Why-Provenance[Q] is NP-hard

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)}

Conceptually Problematic Proof Trees

Answer(d)

A(d)

A(a)A(a) T(a,a,d)

S(a)

S(a) S(a)S(a) S(a)

T(a,a,b) T(a,a,c)

T(b,c,a)

A(a) A(a)A(a) A(a)

A(b) A(c)

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)}

Conceptually Problematic Proof Trees

Answer(d)

A(d)

A(a)A(a) T(a,a,d)

S(a)

S(a) S(a)S(a) S(a)

T(a,a,b) T(a,a,c)

T(b,c,a)

A(a) A(a)A(a) A(a)

A(b) A(c)

Answer(d)

A(d)

A(a)A(a) T(a,a,d)

S(a) S(a)

A(a) is derived from itself

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

Answer(d)

A(c)A(c) T(c,c,d)

S(b) S(b)

T(b,b,a)A(b) A(b)

S(a) S(a)

T(a,a,c)A(a) A(a)

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

Answer(d)

A(c)A(c) T(c,c,d)

S(b) S(b)

T(b,b,a)A(b) A(b)

S(a) S(a)

T(a,a,c)A(a) A(a)

but its ambiguous how

A(c) is derived

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

Answer(d)

A(c)A(c) T(c,c,d)

S(b) S(b)

T(b,b,a)A(b) A(b)

S(a) S(a)

T(a,a,c)A(a) A(a)

use either the left or

the right subtree

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

Refined Proof Trees

Unambiguous proof trees - each occurrence of an atom has the same subtree

[Calautti, Livshits, P., and Schneider, AAAI 2024]

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from Hamiltonian Cycle

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024 & AAAI 2024]):

Considering only non-recursive or unambiguous proof trees:

1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. There is a Datalog query Q such that Why-Provenance[Q] is NP-hard

Recap

• Explaining answers to Datalog queries according to why-provenance is intractable

(NP-complete) in data complexity, even if the recursion is linear

• The space of proof trees can be refined without paying a price in complexity

…can we employ SAT solvers for explaining answers to Datalog queries?

takeaway

Our Target

Given a database D and a Datalog query Q = (P, Answer),

• for a tuple (c1,…,cn),

• efficiently enumerate the members of the why-provenance of (c1,…,cn) w.r.t. D and Q

• relative to unambiguous proof trees

• On-demand why-provenance: instead of computing the why-provenance for all the

query answers, focus on a given query answer (c1,…,cn) of interest [Elhalawati, Kroetzsch,

and Mennicke, RuleML + RR 2022]

• Incremental computation: instead of computing the whole why-provenance in one-shot,

which is very expensive, provide one explanation at a time (unlike Elhalawati et al.)

• Conceptually meaningful explanations: provide only members of the why-provenance

supported by a conceptually meaningful derivation process (unlike Elhalawati et al.)

From Why-Provenance to SAT

Proposition(informal) ([Calautti, Livshits, P., and Schneider, AAAI 2024]):

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c1,…,cn), there exists

a Boolean formula φ in CNF such that:

1. φ can be computed in polynomial time in D and (c1,…,cn)

2. Each member of the why-provenance of (c1,…,cn) w.r.t. D and Q relative to

unambiguous proof trees corresponds to a truth assignment that satisfies φ

the construction of φ relies on an auxiliary data structure (the downward

closure of Answer(c1,…,cn) w.r.t. D and P), that is, a hypergraph that encodes all

the proof trees of Answer(c1,…,cn) w.r.t D and P in their compact representation

Why-Provenance via SAT Solvers

D, Q = (P, Answer), (c1,…,cn)

downward closure of

Answer(c1,…,cn) w.r.t. D and P
Boolean formula

Satisfying assignment
x1 = 1, x2 = 0, ...

SAT Solver
(Glucose)

Explanation D’ of

(c1,…,cn) w.r.t. D and Q

add constraint for D’

Experimental Evaluation

• Several scenarios from the Datalog literature consisting of a query Q and a family

of databases (varying in size) D[Q]

• For each query Q and database D from D[Q], we have selected 100 tuples from

Q(D) uniformly at random, and for each tuple, we have incrementally computed its

why-provenance w.r.t. D and Q relative to unambiguous proof trees

• Pre-processing: computing the downward closure is the expensive task, whereas

the time for building the Boolean formula is negligible

• Enumeration: with the Boolean formula at hand, we can efficiently enumerate the

members of the why-provenance relative to unambiguous proof trees - each

explanation is produced in milliseconds

https://gitlab.com/aaai24whyprov/datalog-why-provenance

Recap

• Explaining answers to Datalog queries according to why-provenance is intractable

(NP-complete) in data complexity, even if the recursion is linear

• The space of proof trees can be refined without paying a price in complexity

• Encouraging results on using SAT solvers for the incremental computation of

why-provenance relative to unambiguous proof trees

takeaway

• What about less informative notions of provenance (whyminimal-provenance), as

well as more informative notions (whymultiplicity-provenance)?

rest of the talk

whyminimal-provenance can be alternatively defined using the framework of

provenance semirings by adopting the semiring of positive Boolean expressions

[Green, Karvounarakis, and Tannen, PODS 2007]; [Green, TCS 2011]

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c1,…,cn),

the whyminimal-provenance of (c1,…,cn) w.r.t. D and Q is the family of sets of atoms

whymin((c1,…,cn),D,Q) = {support(T) : T is a minimal proof tree of Answer(c1,…,cn) w.r.t. D and P}

WhyMinimal-Provenance for Datalog Queries

there is no proof tree T’ of Answer(c1,…,cn) w.r.t. D and P with support(T’) ⊂ support(T)

Data complexity - D, (c1,…,cn), D’ are part of the input, Q is fixed

WhyMinimal-Provenance

Input: a database D, a Datalog query Q, a tuple (c1,…,cn), and D’ ⊆ D

Question: D’ ∈ whymin((c1,…,cn),D,Q)?

WhyMinimal-Provenance[Q]

Input: a database D, a tuple (c1,…,cn), and D’ ⊆ D

Question: D’ ∈ whymin((c1,…,cn),D,Q)?

Complexity of WhyMinimal-Provenance

Data Complexity of WhyMinimal-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

1. For every Datalog query Q, WhyMinimal-Provenance[Q] is in PTIME

2. There is a Datalog query Q such that WhyMinimal-Provenance[Q] is PTIME-hard

Key Observation: WhyMinimal-Provenance is tightly related to query evaluation

Datalog Query Evaluation

Data complexity - D and (c1,…,cn) are part of the input, Q is fixed

Query-Evaluation

Input: a database D, a Datalog query Q, and a tuple (c1,…,cn)

Question: (c1,…,cn) ∈ Q(D)?

Query-Evaluation[Q]

Input: a database D and a tuple (c1,…,cn)

Question: (c1,…,cn) ∈ Q(D)?

Theorem:

1. For every Datalog query Q, Query-Evaluation[Q] is in PTIME

2. There is a Datalog query Q such that Query-Evaluation[Q] is PTIME-hard

WhyMinimal-Provenance vs. Query Evaluation

Proposition: Consider a database D, a Datalog query Q, and a tuple (c1,…,cn). For every

D’ ⊆ D, the following are equivalent:

1. D’ ∈ whymin((c1,…,cn),D,Q)?

2. (c1,…,cn) ∈ Q(D’) and, for every atom α ∈ D’, (c1,…,cn) ∉ Q(D’ ∖ {α})

Proposition: For every Datalog query Q, there exists a Datalog query Q* such that

Query-Evaluation[Q] reduces in logarithmic space to WhyMinimal-Provenance[Q*]

Data Complexity of WhyMinimal-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

1. For every Datalog query Q, WhyMinimal-Provenance[Q] is in PTIME

2. There is a Datalog query Q such that WhyMinimal-Provenance[Q] is PTIME-hard

1. Upper bound via linearly many calls to query evaluation

2. Lower bound via a reduction from query evaluation

Refined Proof Trees

Corollary: Considering only non-recursive or unambiguous proof trees:

1. For every Datalog query Q, WhyMinimal-Provenance[Q] is in PTIME

2. There is a Datalog query Q such that WhyMinimal-Provenance[Q] is PTIME-hard

WhyMinimal-Provenance relative to non-recursive proof trees

=

WhyMinimal-Provenance

=

WhyMinimal-Provenance relative to unambiguous proof trees

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

[Calautti, Livshits, P., and Schneider, PODS 2025]

Answer(d)

A(c)A(c) T(c,c,d)

S(a) S(a)

T(a,a,c)A(a) A(a)

S(a) S(a)

T(a,a,c)A(a) A(a)

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

More Informative Explanations

why (d) ∈ Q(D)?

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}

Q = (P, Answer)

A(x) :- S(x)

A(x) :- A(y), A(z), T(y,z,x)

Answer(x) :- A(x)

P = D = {S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

More Informative Explanations

why (d) ∈ Q(D)?

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}

{(S(b),4), (T(b,b,c),2), (T(c,c,d), 1)}

Q = (P, Answer)

Answer(d)

A(c)A(c) T(c,c,d)

S(b) S(b)

T(b,b,c)A(b) A(b)

S(b) S(b)

T(b,b,c)A(b) A(b)

The bagsupport of a proof tree T, denoted bagsupport(T), is the bag of atoms labelling its leaves

WhyMultiplicity-Provenance for Datalog Queries

Answer(d)

A(c)A(c) T(c,c,d)

S(a) S(a)

T(a,a,c)A(a) A(a)

S(a) S(a)

T(a,a,c)A(a) A(a)

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}

whymultiplicity-provenance can be alternatively defined using the framework of

provenance semirings by adopting the Boolean provenance polynomial semiring

[Green, Karvounarakis, and Tannen, PODS 2007]; [Green, TCS 2011]

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c1,…,cn),

the whymultiplicity-provenance of (c1,…,cn) w.r.t. D and Q is the family of bags of atoms

whymult((c1,…,cn),D,Q) = {bagsupport(T) : T is a proof tree of Answer(c1,…,cn) w.r.t. D and P}

WhyMultiplicity-Provenance for Datalog Queries

Data complexity - D, (c1,…,cn), B are part of the input, Q is fixed

WhyMultiplicity-Provenance

Input: a database D, a Datalog query Q, a tuple (c1,…,cn), and a bag B

with D being the underlying set of B; integers are encoded in binary

Question: B ∈ whymult((c1,…,cn),D,Q)?

WhyMultiplicity-Provenance[Q]

Input: a database D, a tuple (c1,…,cn), and a bag B

Question: B ∈ whymult((c1,…,cn),D,Q)?

Complexity of WhyMultiplicity-Provenance

Data Complexity of WhyMultiplicity-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a hypergraph-theoretic approach

Hypergraph-theoretic Approach

Proposition (informal): Consider a database D, a Datalog query Q = (P, Answer), a tuple

(c1,…,cn), and a bag B with D being the underlying set. The following are equivalent:

1. There is a proof tree T of Answer(c1,…,cn) w.r.t. D and P with bagsupport(T) = B

2. There exists a certain hyperpath in a directed hypergraph obtained from D and P

• The above proposition leads to an easy guess-and-check algorithm that runs in polynomial

time in the combined size of D, (c1,…,cn), and B

• To show that the “check” step of the above algorithm can be performed in polynomial time,

we had to show that the existence of an Euler hyperpath from a source node to a target

node in a directed hypergraph can be checked in polynomial time

• The latter is shown by characterizing the existence of such an Euler hyperpath via some

simple syntactic conditions that can be verified in polynomial time

Data Complexity of WhyMultiplicity-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a hypergraph-theoretic approach

2. Lower bound via a reduction from 3SAT

Non-Recursive Proof Trees

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

Considering only non-recursive proof trees:

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in PSPACE

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is PSPACE-hard

1. Upper bound via a recursive algorithm that non-deterministically constructs a

proof tree T with the right bagsupport in a depth-first fashion

2. Lower bound via a reduction from Q3SAT

Unambiguous Proof Trees

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

Considering only unambiguous proof trees:

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from Hamiltonian Cycle

Summing Up

Arbitrary Non-Recursive Unambiguous

WhyMultiplicity NP PSPACE NP

Why NP

WhyMinimal PTIME

Arbitrary Non-Recursive Unambiguous

WhyMultiplicity
NP

Why

WhyMinimal NLOGSPACE

Linear recursion: at most one intensional relation in rule-bodies

Summing Up

Arbitrary Non-Recursive Unambiguous

WhyMultiplicity NP PSPACE NP

Why NP

WhyMinimal PTIME

• Encouraging results on using SAT solvers for the incremental computation of

why-provenance relative to unambiguous proof trees

• WhyMinimal-Provenance is tightly related to query evaluation → efficient

Datalog engines can be used

Future Research

• Further development of the SAT-based approach for the incremental computation of

explanations (downward closure, whymultiplicity-provenance)

• Study other interesting notions of provenance (Why and WhyMultiplicity + frequency)

• Explain answers to rule-based ontology-mediated queries (recursive queries with the

additional feature of value invention)

Thank You!

