Using Unfounded Sets for Computing Answer Sets of
Programs with Recursive Aggregates

Mario Alviano, Wolfgang Faber, and Nicola Leone

Department of Mathematics, University of Calabria, 87030 Rende, (€8)
{al vi ano, f aber, | eone}@rat . unical . it

Abstract. Answer set programming with aggregatesS(P“) allows for mod-
elling many problems in a more concise way than with standard answercset p
gramming @A.SP). Previous works have focused on semantical and theoretical
issues, and only few works have addressed computational issabgspresent-
ing algorithms and methods for implementidg P#.

In this paper, we fix a rictd.S P language supporting recursive aggregates, and
study means for implementing a reasoning engine for it. In particular,weedge
work on unfounded sets fot.SP#, and show how they can be used for charac-
terizing and computing answer sets. Furthermore, we introduce aatopéor
effectively computing the greatest unfounded set (GUS), and stdytltan be
evaluated in a modular way, providing a means both for pruning thetssepace
and for answer set checking. We have implemented these ideas aridepao
brief sketch of the prototype architecture.

1 Introduction

The introduction of aggregate atoms [1-10] is one of the m@jatactic extensions to
Answer Set Programming of the recent years. While both sémandl computational
properties of standard (aggregate-free) logic programe baen deeply investigated,
relatively few works have focused on logic programs with raggtes; some of their
semantic properties and their computational featurestéiriasfrom being fully clari-
fied. In particular, there is a lack of studies on algorithmd aptimization methods for
implementing recursive aggregates in ASP efficiently.

In this paper, we try to overcome this deficiency and makefatstgards a more ef-
ficient implementation of recursive aggregates in ASP. Tehd, we first focus on the
properties of unfounded sets for programs with aggregatefunded sets are at the
basis of the implementation of virtually all currently dedile ASP solvers. Indeeda-
tive ASP solvers like, e.g., DLV and Smodels, use unfounded segsining the search
space (through the well-founded operators); 8Ad-basedSP solvers like, e.g., AS-
SAT and Cmodels, use the related concept of loop formulaslP]¥or checking. Thus,
an in-depth study of the properties of unfounded sets fagnams with aggregates is a
valuable contribution for the implementation efficieh$ P4 systems.

We provide a new notion of unfounded sets fof P4, explain how unfounded sets
can be profitably employed both for pruning the search spadda checking answer
sets inASP# computations. We then design an operator for computing thatgst
unfounded set (GUS), and, in order to support a more efficilmptementation, we

provide a method for the modular computation of GUS, andctkerte architecture of
our implementation of\,S PA.

We adopt thedSP4 semantics defined in [8], which seems to be receiving a con-
sensus. Recent works, such as [13, 14] give further suppothé plausibility of this
semantics by relating it to established constructs foreggfe-free programs. In partic-
ular, [13] presented a semantics for very general prograntsshowed that it coincides
with [8] on ASP4 programs. We consider the richS P4 fragment allowing for dis-
junction, nonmonotonic negation, and both monotonic artiéfraonotonic recursive
aggregates; we denote this language by mnl?

Roughly, the main contributions of the paper are the folfayyvi

— We define a new and intuitive notion of unfounded set for B, P relate it to
previous notions showing also that it agrees with the stahaiations of unfounded
sets on aggregate-free programs, and characterize itentiesp

— We show that unfounded sets can be profitably employed faripguthe search
space in DLI?;fm computations, by formally proving the properties of greate-
founded sets (GUS) w.r.t. pruning.

— We demonstrate the formal properties allowing us to exmgo#atest unfounded
sets for answer-set checking in Dj;‘ﬁ programs.

— We specify an operatdR p ; for computing the greatest unfounded sets.

— We design a modular evaluation technique for compuRnRg; component wise to
allow for a more efficient implementation.

— We implement the above results in DLV, obtaining a systenpstting the DLI?l‘fm
language, which is available for experimenting with regraggregates.

To the best of our knowledge, our work provides the first immatation of re-
cursive aggregates in disjunctive ASP. Previous impleatants of aggregates in ASP
either forbid recursive aggregates [5] or disallow disjiore[15, 16, 4, 10F

2 Logic Programs with Aggregates

In this section, we recall syntax, semantics, and some pagjerties of logic programs
with aggregates.

2.1 Syntax

We assume that the reader is familiar with standard LP; we tefthe respective con-
structs asstandard atoms, standard literals, standard rylesdstandard programs
Two literals are said to be complementary if they are of thienfp andnot p for some
atomp. Given a literalL, —.L denotes its complementary literal. Accordingly, given a
setA of literals,—.A denotes the s€t-.L | L € A}. For further background, see [18,
19].

! Note that before our extension DLV supported only nonrecursivesagtes.
2 Note that Cmodels [17] disallows aggregates in disjunctive rules.

Set Terms A DLP# set termis either a symbolic set or a ground setspmbolic set
is a pair{ Vars: Conj }, where Vars is a list of variables and’on; is a conjunction of
standard atom$A ground sets a set of pairs of the forn(t: Conj), wheret is a list of
constants and’onj is a ground (variable free) conjunction of standard atoms.

Aggregate FunctionsAn aggregate functiors of the formf(.S), whereS is a set term,
andf is anaggregate function symhdhtuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets ofstants to a constant.

Example 1.In the examples, we adopt the syntax of DLV to denote aggesgaiggre-
gate functions currently supported by the DLV system #esunt (number of terms),
#sum (sum of non-negative integersktimes (product of positive integersyfmin
(minimum term) #max (maximum ternt.

Aggregate Literals. An aggregate atoms f(S) < T, where f(.S) is an aggregate
function, <€ {=, <, <,>,>} is a predefined comparison operator, dnés a term
(variable or constant) referred to as guard. Alsoaggregate atonmay have the form
Ty <1 f(S) <2 Tz, wheref(S) is an aggregate functiors;, <2€ {<, <}, andTy
and7; are terms.

Example 2.The following aggregate atoms are in DLV notation, whereldtier con-
tains a ground set and could be a ground instance of the former

#max{Z : r(Z),a(Z,V)} >Y #max{(2:7(2),a(2,k)),(2:7(2),a(2,¢))} > 1

An atomis either a standard atom or an aggregate atofitefal L is an atomA or an
atom A preceded by the default negation symhet; if A is an aggregate atond, is
anaggregate literal

DLPA Programs. A DLP rule r is a construct

ar V -V ap i— bi,..., bk, not bgt1,..., not bp,.
whereay,...,a, are standard atomé,,...,b,, are atoms, and > 1, m > k > 0.
The disjunctiora; VvV --- V a, is referred to as thheadof » while the conjunction

b1, ...,bk, not bygi1,...,not by, is thebodyof r. We denote the set of head atoms
by H(r), and the sefb, ..., bx, not bgi1,...,n0t by} of the body literals byB(r).
BT (r)andB~(r) denote, respectively, the sets of positive and negateli inB(r).
Note that this syntax does not explicitly allow integritynstraints (rules without head
atoms). They can, however, be simulated in the usual way img @snew symbol and
negation.

A DLP programis a set of DLP! rules. In the sequel, we will often drop D¥P
when it is clear from the context. §lobal variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variableslacal variables.

3 Intuitively, a symbolic set{X : a(X,Y),p(Y)} stands for the set o -values making
a(X,Y),p(Y) true,i.e. {X|IYs.t. a(X,Y),p(Y) is true}.

* The first two aggregates roughly correspond, respectively, to ttnedity and weight con-
straint literals of Smodels#min and#max are undefined for empty set.

Safety. A rule r is safeif the following conditions hold: (i) each global variablé o
r appears in a positive standard literal in the body-ofii) each local variable of
appearing in a symbolic sétVars : Conj} appears in an atom of'onj; (iii) each
guard of an aggregate atomsofs a constant or a global variable. A progrédris safe
if all » € P are safe. In the following we assume that DL programs are safe.

2.2 Answer Set Semantics

Universe and BaseGiven a DLP* program?P, let Up denote the set of constants
appearing irP, and Bp be the set of standard atoms constructible from the (stdhdar
predicates of° with constants irUp.

Instantiation. A substitutionis a mapping from a set of variables &&. A substitu-
tion from the set of global variables of a rul€to Up) is aglobal substitution for ya
substitution from the set of local variables of a symbolit. S¢to Up) is alocal sub-
stitution for .S. Given a symbolic set without global variablés= {Vars : Conj}, the
instantiation ofS' is the following ground set of pairg.st(S):

{{y(Vars) : v(Cony)) | v is a local substitution fos}.5

A ground instancedf a ruler is obtained in two steps: (1) a global substitutiorfior

r is first applied over-; (2) every symbolic sef in o(r) is replaced by its instantia-
tion inst(S). The instantiatiorGround(P) of a programpP is the set of all possible
instances of the rules @.

Interpretations.An interpretationfor a DLP programpP is a consistent set of standard
ground literals, that i C (Bp U —.Bp) such thatf N —.I = (. A standard ground
literal L is true (resp. false) w.ri if L € I (resp.L € -.I). If a standard ground
literal is neither true nor false w.dtthen it is undefined w.rf. We denote by ™ (resp.
I7) the set of all atoms occurring in standard positive (reggative) literals in/. We
denote byl the set of undefined atoms w.ilt(i.e. Bp \ I U I7). An interpretation
Iistotal if I is empty (i.e., /T U—-.I- = Bp), otherwisel is partial. A totalization
of a (partial) interpretatiord is a total interpretatio/ containing/, (i.e., J is a total
interpretation and C J).

An interpretation also provides a meaning for aggregatdedis. Their truth value is
first defined for total interpretations, and then generdltpepartial ones.

Let I be a total interpretation. A standard ground conjunctiotiue (resp. false)
w.r.t I if all (resp. some) of its literals are true (resp. false)eTheaning of a set, an
aggregate function, and an aggregate atom under an int&ipre is a multiset, a value,
and a truth-value, respectively. LEES) be a an aggregate function. The valuatigs)
of S w.r.t. I is the multiset of the first constant of the element§'iwhose conjunction
is true w.r.t.I. More precisely, lef (S) denote the multisdt, | (¢1, ..., t,: Conj) € SA
Conj is true w.r.t. 1]. The valuation/(f(.S)) of an aggregate functiofi(S) w.r.t. I is
the result of the application gf on I(S). If the multiset/(S) is not in the domain of’,
I(f(S)) = L (where_L is a fixed symbol not occurring iR).

® Given a substitutionr and a DLP* objectObj (rule, set, etc.), we denote by(Obj) the
object obtained by replacing each occurrence of variabla Obj by o(X).

A ground aggregate atorhof the formf(S) < kistruew.rt.lif: (i) I(f(S)) # L,
and, (i) I(f(S)) < k holds; otherwiseA is false. An instantiated aggregate literal
not A =not f(5) < kistruew.rt.Tif (i) I(f(S)) # L, and, (i) I(f(S)) < k does
not hold; otherwisenot A is false.

If I is apartial interpretation, an aggregate literdlis true (resp. false) w.r.f. if it
is true (resp. false) w.r.eachtotalization.J of I ; otherwise it is undefined.

Example 3.Consider the atoml = #sum{(1:p(2,1)), (2:p(2,2))} > 1. Let S be the
ground setim. For the interpretatiofi = {p(2, 2) }, each extending total interpretation
contains eithep(2, 1) ornot p(2, 1). Therefore, eithef(S) = [2] or I(S) = [1,2] and
the application off:sum yields either2 or 3, henceA is true w.r.t.I, since they are both
greater thar.

Our definitions of interpretation and truth values presékv@wledge monotonic-
ity”. If an interpretationJ extends/ (i.e., I C J), then each literal which is true w.ri.
is true w.r.t.J, and each literal which is false w.rkis false w.r.t.J as well.

Minimal Models. Given an interpretatiod and a ground rule, the head of- is true
w.r.t. I if some literal inH (r) is true w.r.t.I; the body ofr is true w.r.t. I if all literals

in B(r) are true w.r.tJ; rule r is satisfied w.r.t. if its head is true w.r.t whenever
its body is true w.r.tI. A total interpretation\/ is amodelof a DLP* program® if

all r € Ground(P) are satisfied w.r.td/. A model M for P is (subset) minimal if no
modelN for P exists such tha* C M. Note that, under these definitions, the word
interpretationrefers to a possibly partial interpretation, whilenadelis always a total
interpretation.

Answer SetsWe now recall the generalization of the Gelfond-Lifschimisformation
and answer sets for DI“Pprograms from [8]: Given a ground DL“PprogramP and

a total interpretationl, let P! denote the transformed program obtained frénby
deleting all rules in which a body literal is false w.ft.] is an answer set of a program
P if it is a minimal model ofGround(P)?.

Example 4.Consider interpretatiol, = {p(a)}, I = {not p(a)} and two programs
P = {p(a) :— #count{X : p(X)} > 0.} and P> = {p(a) :— #count{X : p(X)} < 1.}.

Ground(P1) = {p(a) :— #count{{(a : p(a))} > 0.} andGround(P1)"* = Ground(P,),
Ground(P1)™2 = 0. FurthermoreGround(Ps) = {p(a) :— #count{(a : p(a))} < 1.}, and
Ground(P,)"t = 0, Ground(P:)™ = Ground(P») hold.

I is the only answer set d?, (sincel; is not a minimal model ofsround(P;)!),
while P, admits no answer sef(is not a minimal model of:round(P;)’t, andI, is
not a model ofGround(Py) = Ground(P;)'?).

Note that any answer set of P is also a model ofP becauseGround(P)* C
Ground(P), and rules inGround(P) \ Ground(P)* are satisfied w.r.t4.

Monotonicity. Given two interpretationg and.J we say thatl < J if I™ C J*+ and
J~ C I~.Aground literall is monotoneif for all interpretationd , J, such that < J,
we have that: (iy true w.r.t.] implies? true w.r.t..J, and (ii) ¢ false w.r.t..J implies ¢

false w.r.t.I. A ground literal/ is antimonotoneif the opposite happens, that is, for all
interpretationd, .J, such that < .J, we have that: (iY true w.r.t.J implies/ true w.r.t.
I, and (ii)£ false w.r.t.I implies/ false w.r.t.J. A ground literal/ is nonmonotongf it

is neither monotone nor antimonotone.

Note that positive standard literals are monotone, wharegative standard literals
are antimonotone. Aggregate literals may be monotonenanttone or nonmonotone,
regardless whether they are positive or negative. Nonnooedtiterals include the sum
over (possibly negative) integers and the average.

Example 5.All ground instances oftcount{Z : r(Z)} > 1 andnot #count{Z : r(Z)} < 1
are monotone, while fo#count{Z : r(Z)} < 1, andnot #count{Z : r(Z)} > 1 they
are antimonotone.

We denote by DLlﬁTa the fragment of DLP* in which monotone and antimono-
tone literals may occur. In the following, lprogramwe will usually refer to a DL%G
program. Given aruleof a DLP# _ program, we denote with/ on(B(r)) andAnt(B(r)),
respectively, the set ahonotoneandantimonotonditerals in B(r). Note that, as de-
scribed in [20], many programs with nonmonotone literals loa polynomially rewrit-
ten into DLPA , programs. Some important examples include programs conggi
aggregate atoms of the forify <; f(S) <2 T» and f(S) = T (which per se are
nonmonotone independent ¢f.5)), which can be rewritten to conjunctiods <
f(S), f(S) =2 Tx andf(S) > T, f(S) < T, respectively.

3 Unfounded Sets

We now give a definition of unfounded set for Df!Fprograms with monotone and
antimonotone aggregates, extending the one of [14].

In the following we denote by; U —.S, the set(S; \ S2) U —.S2, whereS; and
S, are sets of standard ground literals.

Definition 1 (Unfounded Set).A set X of ground atoms is an unfounded set for a
DLP;‘ﬁW program w.r.t. an interpretation if, for each ruler € P suchthat (r) N X # 0,
at least one of the following conditions holds:

1. Ant(B(r)) is false w.r.t.z.
2. Mon(B(r)) is false w.r.t.z U —.X.
3. H(r)istruew.r.t.J U—-.X.

While condition 1 declares that rule satisfaction does npedd on atoms i,
conditions 2 and 3 ensure that the rule is satisfied also iatbms inX are switched
to false. Note that condition 3 is equivalent(tt (r) \ X) N I # @, andf is always an
unfounded set, independent of interpretation and program.

Example 6.Consider the following prograrg:

a(l) vV a(2). a(l) :— #count{(1:a(2))} >1. a(2) :— #count{(1:a(1))} >1.

andI = {a(1),a(2)}. Then{a(1)} and{a(2)} are unfounded sets faP w.r.t. I.
{a(1),a(2)} is not an unfounded set fd? w.r.t. I, as for the first rule none of the three
conditions holds.

Theorem 1. A set X of ground atoms is an unfounded set delaiD“a‘fm programP

w.r.t. an interpretation/ according to Def. 1 iff it is an unfounded set f&rw.r.t. I
according to Def. 1 of [21].

Proof. According to Def. 1 of [21], a seK of ground atoms is an unfounded set for
a programP w.r.t. an interpretatiord if, for each ruler in Ground(P) having some
atoms fromX in the head, at least one of the following conditions holdiscene literal
of B(r) is false w.r.t.I, b) some literal ofB(r) is false w.r.t.7 U —.X, or c) some atom
of H(r) \ X is true w.r.t.l.

First of all, let us observe that conditions 1 and 2 of DefidaHly imply conditions
a) and b), respectively, and that, as noted earlier, camd8iof Def. 1 is equivalent to
condition c).

Now, observe that if a monotone body literal is false witit is also false w.r.t.
I'U~.X.In asimilar way, if an antimonotone body literal ofs false w.r.t.J U —.X,
then it is false also w.r.tl. Therefore, if condition a) holds for a monotone literalpeo
dition 2 holds for this literal; if condition a) holds for am@monotone literal, condition
1 holds. Likewise, if condition b) holds for a monotone lgkrcondition 2 holds; if
condition b) holds for an antimonotone literal, conditiohdlds.

Thus, on DLB;‘W our definition of unfounded set specializes Def. 1 of [21] by
imposing stricter properties in conditions 1 and 2.

From this equivalence and results in [21] it follows thataunided sets as defined
in Def. 1 also coincide with other definitions of unfoundedssfer various language

fragments.

Corollary 1. For a non-disjunctive, aggregate-free progrdfand an interpretatiort,
any unfounded set w.r.t. Def. 1 is a standard unfounded setéfined in [22]).

For an aggregate-free prograr® and interpretation/, any unfounded set w.r.t.
Def. 1 is an unfounded set as defined in [23].

For a non—disjunctiveLPﬁ’a programPand an interpretatior?, any unfounded set
w.r.t. Def. 1 is an unfounded set as defined in [14].

We next state an important monotonicity property of unfeeohdets.

Proposition 1. Let I be a partial interpretation for aDLP;j‘W programP and X an

unfounded set foP w.r.t. I. Then, for eacty O I, X is an unfounded set fdP w.r.t. .J
as well.

Proof. If X is an unfounded set faP w.r.t. I, then for eachu € X and for each
r € Pwitha € H(r), (1) Ant(B(r)) is false w.r.t.I, or (2) Mon(B(r)) is false w.r.t.
I'U~-.X,or(3)H(r)is true w.r.t.] U —.X holds. Now, note that since C J holds,
then alsal U —.X C J U —.X holds. So, if (1) holds, it holds also foF, and if (2) or
(3) hold, then they hold also fof U —. X .

We next define the central notion in the remainder of this wtrk Greatest Un-
founded SefGUS), as the union of all unfounded sets.

Definition 2. LetI be an interpretation for a prograr®. Then, leilGUS»(I) (the GUS
for P w.r.t. I) denote the union of all unfounded sets fow.r.t. I.

From Proposition 1 it follows that the GUS of an interpreiat is always contained
in the GUS of a superset @f

Proposition 2. LetI be an interpretation for a progra®. ThenGUSp(I) C GUSp(J),
foreachJ D 1.

Note that despite its name, the GUS is not always guarantebd ain unfounded
set. In the non-disjunctive case, the union of two unfounsktd is an unfounded set
as well, also in presence of monotone and antimonotone gajgr® [14], and so for
these programs a GUS is necessarily an unfounded set. Hpvietbe presence of
disjunctive rules, this property does no longer hold, aswhio [23]. Therefore it also
does not hold for DLﬁ,a, and as a consequence a GUS need not be an unfounded set.

Observation 2 If X; and X, are unfounded sets for BLPA

m,a programp w.rt. I,
thenX; U X5 is not necessarily an unfounded set.

By virtue of Theorem 1, Proposition 1 of [21] carries over ttfaunded sets of
Definition 1.

Proposition 3. If X; and X, are unfounded sets for a prograf w.r.t. I and both
XiNI=0andX, NI =0 hold, thenX; U X, is an unfounded set fgP w.r.t. I.

This allows for defining the class of unfounded-free intetations for which the
GUS is guaranteed to be an unfounded set.

Definition 3 (Unfounded-free Interpretation). Let I be an interpretation for a pro-
gramP. I is unfounded-free if N X = () for each unfounded séf for P w.r.t. I.

As an easy consequence we obtain:

Proposition 4. LetI be an unfounded-free interpretation for a progrénThen GUSp (1)
is an unfounded set.

Next, we show an interesting property for total interprietzs.

Proposition 5. Let I be a total interpretation for a prograr®. Then,I is unfounded-
free iff no non-empty set C I is an unfounded set foP w.r.t. I.

Proof. (=) If a non-empty subsét of I is an unfounded set fdP w.r.t. I, thenl

is not unfounded-free.

(«<=) If I is not unfounded-free, then there exists a non-empty swliget which is
an unfounded set foP w.r.t. I. Let X be an unfounded set fg? w.r.t. I such that
Y = X NI #0.Note thatl U—-.X = I U-.Y, thenY is also an unfounded set f@r

w.r.t. 1.

4 Answer Set Checking via Unfounded Sets

Unfounded sets can be used to characterize models and asetwethese characteriza-
tions can be profitably used for answer set checking. Givesoiidgm 1, the following
results are consequences of Theorem 4 and Corollary 6 aof [21]

Proposition 6. Let M be a total interpretation for a prograr®. ThenM is a model
for P iff M~ is an unfounded set fd? w.r.t. M.

Proposition 7. Let M be a model fofP. M is an answer-set foP iff M is unfounded-
free forP.

Furthermore, we can show that unfounded sets also chaescteinimal models.

Proposition 8. Let M be a model for a positive prograf. M is a minimal model for
P iff it is unfounded-free.

Proof. («<=) If M is not minimal then there exists another modi&l such thatV/;" ¢
M+, and soX = M+ \ M;" # (. Then, for each- € P such thatH (r) N X # 0,
(i) H(r) N M;" # 0, or (i) Ant(B(r)) is false w.r.t.My, or (i) Mon(B(r)) is false
w.r.t. M;. Note thatM; = (M \ X)U-.X = M U —.X, and then: from (i) follows
that H(r) is true w.rt. M U —.X, from (i) follows that Ant(B(r)) is false w.r.t.A/
(becauséf; < M), from (i) follows that Mon(B(r)) is false w.r.t.M/ U —.X. So, X
is an unfounded set fdp w.r.t. M, and thenVM is not unfounded-free.

(=) Assume, by contradiction, thaf is not unfounded-free. Then, by Proposition 5,
there exists a non-emptfy C M ™ which is an unfounded set f@ w.r.t. M. Now, we
show that the total interpretatia; = M U —.X is a model forP (contradicting the
minimality of M). Letr be a rule ofP such thatH (r) is true w.r.t.M, and H(r) is
false w.r.t.M;. Then,H(r) N X # (). But X is an unfounded set fdP w.r.t. M, then
(1) Ant(B(r)) is false w.r.t.M (and then it is false w.r.tM/;, becauséf; < M), or
(2) Mon(B(r)) is false w.rt.M U —.X = My, or (3) H(r) is true w.r.t M U —.X =
M. Note that (3) cannot holds by assumption. Theis satisfied w.r.tAZ; by body,
contradicting the minimality of\/.

We next show that the condition of being unfounded-freevariiant for a program
and its reduct.

Lemma 1. Let M be a total interpretation for a prograr®. M is unfounded-free for
P iff it is unfounded-free foPM .

Proof. (=) If X is not an unfounded set f@ w.r.t. M, then for eachu € X there
existsr € P such that violates all condition of Definition 1. Then, from conditigt)
and (2),B(r) is true w.r.t. M. Therefore, the image of r is in PM. Clearly,r’ violates
all conditions of Definition 1 fo w.r.t. M. Now, if M is unfounded-free foP, then,
by Proposition 5, every non-empty C M ™ is not an unfounded set f¢ w.r.t. M,
and then it is not an unfounded set @# w.r.t. M. So, M is unfounded-free foP.
(«<=) Let X be an unfounded set f@ w.r.t. M. Then, for eaclu € X and for each
r € Pwitha € H(r), (1) Ant(B(r)) is false w.r.t.M, or (2) Mon(B(r)) is false w.r.t.

MU-.X,or(3)H(r)istrue w.rt.M U —.X. Case (1) or (2) imply thathas no image
in PM or condition (2) holds for’. Case (3) imply that condition (3) holds also fdr
So,X is an unfounded set also f& w.r.t. M. Therefore, ifM is not unfounded-free
for P, then it is not unfounded-free f@* . It follows that A/ unfounded-free foP™
implies M unfounded-free fofP.

Furthermore GUSp (I) permits to check whethef is unfounded-free, and then
whether it is an answer set.

Theorem 3. Let I be a total interpretation for a prograr®. I is unfounded-free if and
onlyif I= = GUSp(I).

Proof. («<=) Itis easy to see that each unfoundedXdbr P w.r.t. I is a subset of —,
and then/ N X = (holds.

(=) For each unfounded séf for P w.r.t. I, I N X = () holds. Since is total, this
is equivalent taX C I, and thenGUS»(I) C I~. By Proposition 6, it follows that
I~ C GUSp(I), and thenl — = GUSp(I).

Corollary 2. Given a total interpretatior for a program®P, I is an answer set if and
only if I= = GUSp(I) andI~ is an unfounded set w.r® andI.

These results allow for checking whether a model or an inégagion is an answer set
just by using the notion of unfounded sets.

5 Pruning via Unfounded Sets

In this section we show some properties(@¥S» (1), which may be used during the
computation of the answer sets, for pruning the search spadedetecting useless
branches of the computation.

Theorem 4. Given an interpretatior for a programP, if I N GUSp(I) # 0, then no
totalization of! is an answer set foP.

Proof. If I N GUSp(I) # 0, then there exists an unfounded $gfor P w.r.t. I such
that/ N X # (). Let J be a totalization of . Then, by Proposition 1X is an unfounded
set forP w.r.t. J. Clearly,J N X # (), soJ is not unfounded-free. By PropositionJs7
is not an answer-set f@?.

Thus, during the construction of answer sets one may wanbngpate the GUS
with respect to the interpretation so far and test whethmoritains some element of the
interpretation. If so, one should abandon the constru@mhbacktrack, as no answer
set can be found in the current branch. Moreover, the GUSsals@s as an inference
operator for pruning the search space.

Theorem 5. Given an interpretatiod for a programP, if J is an answer set contain-
ing I, thenJ contains! U —.GUSp (1) as well.

Proof. AssumeJ 2 I U —~.GUSp(I) thenJ N GUSp(I) # (0. From Proposition 2 it
follows thatJ N GUSp(J) # 0, and then, by Theorem 4, is not an answer set fop.

In other words,~.GUS»(I) is contained in all answer sets extendifgso when
constructing answer set candidates we can safely add itersdslto the candidate.

6 Computing Greatest Unfounded Sets

We now define an operator for computing the Greatest Unfoi®det of aDL P
programP w.r.t. an interpretatiod: the operatofR ; that, given a sef of ground
atoms, discards the elementsinthat do not satisfy any of the unfoundedness condi-
tions of Definition 1.

Definition 4. LetP be aDLPﬁ’a program andl an interpretation. Then we define the
operatorRp ; as a mappin@?» — 257 as follows:

Rp.(X)={a € X |Vre ground(P) with a € H(r), Ant(B(r)) is false w.r.t.z,
or Mon(B(r)) is false w.rtl U —.X,
or H(r)is true w.rt.l U—.{a}}

Given a sefX C Bp, the sequenc®&, = X, R,, = Rp ;(R,—1) decreases mono-
tonically and converges finitely to a limit that we denote7® ;(X). We next show
thatR% ;(Bp \ I) is an unfounded set, and we can therefore use this operadeteot
undefined atoms that can be safely switched to false, regticensearch space.

Proposition 9. Given aDLPﬁya program? and an interpretation, R% ;(Bp \ I) is
an unfounded set fdP w.r.t. I.

Proof. Let X = R;J,J(Bp \ I). By definition of Rp ;, we haveX C Bp \ I, and
henceX NI = (). Now, for eachu € X and for eachr € P, a € H(r) implies that
Ant(B(r)) is false w.r.t.I, or Mon(B(r)) is false w.r.t.I U —.X, or H(r) is true w.r.t.
I U -.{a}. Ifthe last holds, sinc& NI = 0, alsoH (r) is true w.r.t.] U —.X. Then,
X is an unfounded set fdP w.r.t. I.

Importantly, R » ; does not discard any unfounded set contained in the input set

Proposition 10. Let? be aDLP: , program,I be an interpretation fo®, and.J C

m,a

Bp. Every unfounded set fdP w.r.t. I which is contained in/ is also contained in
$.1(J)-

Proof. Let X C J be an unfounded set f@? w.r.t. I. For eachu € X and for each rule
r € P such thata € H(r), Ant(B(r)) is false w.r.t.I, or Mon(B(r)) is false w.r.t.
I'U~.X,orH(r)istrue w.r.t.J U—.X holds. If the last holds, since:} C X, H(r) is
true w.r.t.7 U —.{a} as well. Then, from the definition ®&» ;, R» ;(X) = X holds
and, sinceX is monotonic and{’ C J, R% ;(.J) must containX..

Using the above propositions, we can prove Rét; (Bp\I) computes the greatest
unfounded set foP w.r.t. I.

Theorem 6. LetP be aDLP;j‘W program and/ an unfounded-free interpretation for

it. Then,R% ;(Bp \ I) = GUSp(I).

Proof. (D) Sincel is unfounded-free] N X = () holds for each unfounded set fBY
w.r.t. I, and thenX C Bp \ I. So, by Proposition 10, als& C R%’I(Bp \ I) holds,
and thenGUSp 1(Bp \ I) is contained irR%, ;(Bp \).

(€) By Proposition 9,R% ;(Bp \ I) is an unfounded set fdP w.r.t. 7, and then, by
definition of GUS, itis contained iGUSp (I).

Is is easy to see that the fixpoint of tfhep ; operator is efficiently computable.
Thus, from the above theorem one can empRyy ; as powerful and efficient pruning
operator for unfounded-free interpretations. Actually,tbe large class of head-cycle
free programs [24], th& p ; allows us to always compute the greatest unfounded set,
even if the interpretation is not unfounded-free, and catihbeefore employed both for
pruning and answer-set checking. In the next section, we $ioav this can be done in
an efficient way providing an algorithm for the modular congtion of GUS vigRp ;.

7 Modular Evaluation of Greatest Unfounded Sets

In this section, we show how we can localize the computatfamfounded sets. To this
end, we define the notion aiependency graplthe strongly connected components of
which define the modules, on which the local computation watk.

With every ground progran®, we associate a directed graptGp = (N, E),
called thedependency grapbf P, in which (i) each atom oP is a node inV and (ii)
there is an arc it directed from a node to a node iff there is a ruler in P such that
b € H(r) anda is a standard atom i/ on(B(r)) or an atom appearing in the ground
set of an aggregate literal M on(B(r)).

An important and well-known class of programs &ead-cycle-free (HCFpro-
grams: A progran® is HCF iff there is no rule- in P such that two predicates occur-
ring in the head of are in the same cycle @Gp. In our implementation for DLﬁﬂ,
described in Section 8, we consider only HCF programs. Tlaisscof programs has
recently been shown to be the largest class of programs fmhvgtandard reasoning
tasks are still in NP (cf. [25]). The main result of this senti Theorem 7, is therefore
also stated for HCF programs.

We can partition the set of ground atoms occurringim strongly connected com-
ponents. Two atomg andb are in the same component if there is both a path fadm
b and a path frond to a in DG . Also, we can define a partial orderfor components:
C1 =X (s iff there exista € Cq, b € C5 such that there is a path fromto b. Moreover,
the subprogran®Pc C P associated with a componefitconsists of all rule$ which
contain an atom of” in their heads. Before introducing the algorithm, we shomeso
properties that hold for thR» ; operator.

Lemma 2. LetP be a program and be an interpretation. For each sek§ andY such
thatX C Y, R% ;(X) C R ,(Y) holds.

Proof. By induction. The only condition of Def. 4 that depends ongtating setX is
“Mon(B(r)) isfalse w.r.tZ U—.X". If this holds for some atom iR » ; (X) and some
ruler in P, thenMon(B(r)) is false alsow.r.tf U —.Y, becausd U -.Y < T U —.X.

So, Rp1(X) C Rp(Y). AssumingRY,(X) C RS, (Y), thenRYETV(X) =
Rp1(RR) (X)) € Rp 1 (RE), (V) = RV ().

Lemma 3. LetP be a program and an interpretation,C' a component oP andP¢
the subprogram associated €& Then, for eactX C C, Rp. 1(X) = Rp 1(X).

Proof. Clearly, each rule of P with H(r) N X # () is also inP¢.

Theorem 7. LetC1, Cs, ..., C,, be a total order for the components of an HCF program
P such thatC; < C; implies¢ < j. Starting froml, := I and then, for each =
1,...,n, computingX; := R%ci,lifl(ci \I), I; := I, U~-.X,, it holds that[, is
equal tol U -.GUSp(I).

Proof. We prove that at each step of the computation= R% ;(Bp \ 1) N C; holds.
Base(C). From Lemma 3 and Lemma 2 it follows thaf; = R%Ol’I(Cl \1I) =
R$ 1 (C1\ 1) CR% ;(Bp \ I). S0,X1 C R (Bp \ I) N Cy, becauseX; C Ch.
Base(2). For eachn € R% ;(Bp \ I) N (4 and for eachr € P with a € H(r), (1)
Ant(B(r)) is false w.r.t.z, or (2) Mon(B(r)) is false w.r.tl U-.R% ;(Bp \ I), or (3)
H(r)is true w.r.t.J U —.{a}. Note that, sincé is HCF,a is the only atom inf (r) be-
longing toC', so from (3) it follows that (r) is true w.r.t.1 U—.(R% (Bp \ I) N Cy).
Also, note that\/on(B(r)) depends only on atoms @ . Then, from (2) it follows that
Mon(B(r)) is false w.rtR% ;(Bp \ I)NC1. S0,R% (Bp \ I)NCy is an unfounded
set forPq, w.r.t. I and, by Def. 4, it is a subset of; .

Suppose thak; = R% ;(Bp \ I) N C;.

(€) For eacha € X;;; and for eachr € P¢,., with a € H(r), Ant(B(r)) is
false w.r.t.I; (and w.r.t.7 becausd; < I), or Mon(B(r)) is false w.r.t.[; U —.X; 1
(=TU-.(Xi31U(; \I7))),or H(r) is true w.r.t.I; U —.{a} (and therefore also
w.rt. T U —.(X;11 U (I; \ I7)) becausd;’ = I anda is the only atom belonging
to someC}, for j = 1,...,i + 1). No other rule inP \ Pc,,, hasa in head, and then
Xi+1 U (I; \ I7)is an unfounded set fdP w.r.t. I. So, from Proposition 10X, is
asubset oR$;(Bp \ I).

(D) For eacha € R% 1(Bp \ I) N Ciyq1 and for eachr € P with a € H(r), (1)
Ant(B(r)) is false w.r.t.I (and so w.r.tI; becausd; D I), or (2) Mon(B(r)) is false
w.rt. T U —R% ((Bp\ I),or(3)H(r)is true w.rt. (and so w.r.tl;). From (2) it fol-
lows thatMon(B(r)) isfalse w.rtY = TU-.(R% (Bp \ 1) N (C1 UC2 U...UCiy1)
(becauseé\fon(B(r)) depends only from atoms iy, . .., Ci11).

Butl U ﬁ.(R%J(Bp \ I) n (Cl udUu...U Cl) =1 andXiH - R%’I(Bp \ I) n
Ci+1. ThenYt = (11 U _|.Xi+1)+ andY~ D (Iz U _‘.XH_l)i, soY < I; U _‘~Xi+1
andMon(B(r)) is false also w.r.tl; U —.X; .

8 Prototype Architecture

We have implemented the approach described in Section #fyimapthe system DLV,

which already processes nonrecursive aggregates. Forautifo description of the
DLV architecture, we refer to [26]. The main structure of gystem is reported in
Figure 1.

The input, after having possibly been processed by soméeinds, is handed to
the DLV core, in particular to the grounding, which produeeground version of the
input, which is guaranteed to have the same answer sets agptite Control is then
handed over to the model generator, which performs a batrg heuristic search
for models, which serve as answer set candidates. Durisgs#arch, various pruning
techniques are employed, among them also unfounded seutatiops (cf. [27, 28]).
Each of the found answer set candidates is then submittéx tmbdel checker, which

User Interface

Diagnosis saL3
Frontend Frontend

Inheritance
Frontend

Intelligent
Grounding

Model Model
Checker Generator

Fig. 1. DLV system architecture

verifies whether the model is an answer set (cf. [29]). Whenrpet program is HCF,
this check need not be done, as any produced candidate is\kodye an answer set.
Therefore, for our prototype we had to modify the grounding generator mod-
ules. In the grounding phase, in the case of non-recursigesggtes all instances of
predicates inside an aggregate are known at the time thegaggris instantiated. When
supporting also recursive aggregates, this assumptioongelt holds, and therefore
a somewhat more complex grounding strategy has to be entpl@@ncerning the
model generator, a large part of the existing machinerydgregates could be re-used.
In order to treat recursive aggregates correctly, unfodrei# computation involving
aggregates, which has not been present in DLV so far, is sagedNe have imple-
mented unfounded set computations using an optimized mgiéation of the method
described in Section 7, which further localize the compaitaby focusing only on the
components that have been affected by the last propagatipnhe system prototype
is available aht t p: / / www. dl vsyst em coni dl vRecAggr, and supports a su-
perset of hcf programs, requiring head-cycle freeness amiyhe components with re-
cursive aggregates. Preliminary results of experimentSampanies Control examples
indicate that the implementation offers good performancenedium-size instances.

Planning
Frontend

3
File
System

DLV core

Relational|
Database

References

1. Kemp, D.B., Stuckey, P.J.: Semantics of Logic Programs with éggges. In: ISLP’91, MIT
Press (1991) 387-401

2. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded &table Model Seman-
tics for Logic Programs with Aggregates. In Codognet, P., ed.: 12061, (2001) 212—-226

3. Gelfond, M.: Representing Knowledge in A-Prolog. In: Computatituogic. Logic Pro-
gramming and Beyond. LNCS 2408 (2002) 413-451

4. Simons, P., Niemal I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Artificial Intelligencel38(2002) 181-234

5. Dell’Armi, T., Faber, W., lelpa, G., Leone, N., Pfeifer, G.: Aggate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in.DIv/ [JCAI
2003, Acapulco, Mexico,(2003) 847—852

6. Pelov, N., Truszc#yski, M.: Semantics of disjunctive programs with monotone aggregates -
an operator-based approach. In: NMR 2004. (2004) 327-334

7. Pelov, N., Denecker, M., Bruynooghe, M.: Partial stable mod®idaigic programs with
aggregates. In: LPNMR-7. LNCS 2923

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates jardive logic programs: Se-

mantics and complexity. In: JELIA 2004. LNCS 3229

. Son, T.C., Pontelli, E.: A Constructive Semantic Characterizationgafrégates in ASP.

Theory and Practice of Logic Programming (2007) Accepted for patitin, available in
CoRR as cs.Al/0601051.

Son, T.C., Pontelli, E., Elkabani, I.: On Logic Programming with reggtes. Tech. Report
NMSU-CS-2005-006, New Mexico State University (2005)

Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Pangiby SAT Solvers. In:
AAAI-2002, Edmonton, Alberta, Canada, AAAI Press / MIT Pres3Q2)

Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Pragrs. In: Proceedings of the
Nineteenth International Conference on Logic Programming (ICLR{@803) 451-465
Ferraris, P.: Answer Sets for Propositional Theorlgst p: / / www. cs. ut exas. edu/
user s/ ott o/ paper s/ propt heori es. ps (2004)

Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative aoch@itational Properties of
Logic Programs with Aggregates. In: Nineteenth International JoinféZence on Artificial
Intelligence (IJCAI-05). (2005) 406-411

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cavdtizen answer set solving. In:
Twentieth International Joint Conference on Atrtificial Intelligence (IJOR),(2007) 386—
392

Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Séte8d=nhanced to Non-tight
Programs. In: LPNMR-7. LNCS 2923

Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. IRNMR’05. LNCS
3662

Baral, C.: Knowledge Representation, Reasoning and DeclaRrti#em Solving. CUP
(2003)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programd Bisjunctive Databases.
NGC9(1991) 365-385

Faber, W.: Decomposition of Nonmonotone Aggregates in LogigrRnoming. WLP 2006
164-171

Faber, W.: Unfounded Sets for Disjunctive Logic Programs withitPary Aggregates. In:
LPNMR’05. LNCS 3662

Van Gelder, A., Ross, K., Schlipf, J.: The Well-Founded SemafdicGeneral Logic Pro-
grams. JACM38(3) (1991) 620-650

Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models:ounfled Sets, Fixpoint
Semantics and Computation. Information and ComputéitRfg2) (1997) 69-112
Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disiumd.ogic Programs.
AMAI 12 (1994) 53-87

Faber, W., Leone, N.: On the Complexity of Answer Set Progragmwith Aggregates.
In: Logic Programming and Nonmonotonic Reasoning — 9th InternatiGoaference, LP-
NMR’07, Tempe, Arizona, 2007, Proceedings. (2007) To appear.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., P&rj,Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TQB)(2006) 499-562
Faber, W.: Enhancing Efficiency and Expressiveness in AnSeeProgramming Systems.
PhD thesis, TU Wien (2002)

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Ofesafor Disjunctive Logic
Programming Systems. Fundamenta Informatic{2—-3) (2006) 183-214

Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive LogiogPamming Systems by
SAT Checkers. Artificial Intelligenc&5(1-2) (2003) 177-212

