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Abstract. Answer set programming with aggregates (ASP A) allows for mod-
elling many problems in a more concise way than with standard answer set pro-
gramming (ASP ). Previous works have focused on semantical and theoretical
issues, and only few works have addressed computational issues, such as present-
ing algorithms and methods for implementingASP A.
In this paper, we fix a richASP language supporting recursive aggregates, and
study means for implementing a reasoning engine for it. In particular, we leverage
work on unfounded sets forASP A, and show how they can be used for charac-
terizing and computing answer sets. Furthermore, we introduce an operator for
effectively computing the greatest unfounded set (GUS), and study how it can be
evaluated in a modular way, providing a means both for pruning the search space
and for answer set checking. We have implemented these ideas and provide a
brief sketch of the prototype architecture.

1 Introduction

The introduction of aggregate atoms [1–10] is one of the major syntactic extensions to
Answer Set Programming of the recent years. While both semantic and computational
properties of standard (aggregate-free) logic programs have been deeply investigated,
relatively few works have focused on logic programs with aggregates; some of their
semantic properties and their computational features are still far from being fully clari-
fied. In particular, there is a lack of studies on algorithms and optimization methods for
implementing recursive aggregates in ASP efficiently.

In this paper, we try to overcome this deficiency and make a step towards a more ef-
ficient implementation of recursive aggregates in ASP. To this end, we first focus on the
properties of unfounded sets for programs with aggregates.Unfounded sets are at the
basis of the implementation of virtually all currently available ASP solvers. Indeed,na-
tiveASP solvers like, e.g., DLV and Smodels, use unfounded sets for pruning the search
space (through the well-founded operators); andSAT-basedASP solvers like, e.g., AS-
SAT and Cmodels, use the related concept of loop formulas [11, 12] for checking. Thus,
an in-depth study of the properties of unfounded sets for programs with aggregates is a
valuable contribution for the implementation efficientASPA systems.

We provide a new notion of unfounded sets forASPA, explain how unfounded sets
can be profitably employed both for pruning the search space and for checking answer
sets inASPA computations. We then design an operator for computing the greatest
unfounded set (GUS), and, in order to support a more efficientimplementation, we



provide a method for the modular computation of GUS, and sketch the architecture of
our implementation ofASPA.

We adopt theASPA semantics defined in [8], which seems to be receiving a con-
sensus. Recent works, such as [13, 14] give further support for the plausibility of this
semantics by relating it to established constructs for aggregate-free programs. In partic-
ular, [13] presented a semantics for very general programs,and showed that it coincides
with [8] on ASPA programs. We consider the richASPA fragment allowing for dis-
junction, nonmonotonic negation, and both monotonic and anti-monotonic recursive
aggregates; we denote this language by DLPA

a,m.
Roughly, the main contributions of the paper are the following.

– We define a new and intuitive notion of unfounded set for DLPA
a,m, relate it to

previous notions showing also that it agrees with the standard notions of unfounded
sets on aggregate-free programs, and characterize its properties.

– We show that unfounded sets can be profitably employed for pruning the search
space in DLPAa,m computations, by formally proving the properties of greatest un-
founded sets (GUS) w.r.t. pruning.

– We demonstrate the formal properties allowing us to exploitgreatest unfounded
sets for answer-set checking in DLPA

a,m programs.
– We specify an operatorRP,I for computing the greatest unfounded sets.
– We design a modular evaluation technique for computingRP,I component wise to

allow for a more efficient implementation.
– We implement the above results in DLV, obtaining a system supporting the DLPAa,m

language, which is available for experimenting with recursive aggregates.1

To the best of our knowledge, our work provides the first implementation of re-
cursive aggregates in disjunctive ASP. Previous implementations of aggregates in ASP
either forbid recursive aggregates [5] or disallow disjunction [15, 16, 4, 10].2

2 Logic Programs with Aggregates

In this section, we recall syntax, semantics, and some basicproperties of logic programs
with aggregates.

2.1 Syntax

We assume that the reader is familiar with standard LP; we refer to the respective con-
structs asstandard atoms, standard literals, standard rules, andstandard programs.
Two literals are said to be complementary if they are of the form p andnot p for some
atomp. Given a literalL, ¬.L denotes its complementary literal. Accordingly, given a
setA of literals,¬.A denotes the set{¬.L | L ∈ A}. For further background, see [18,
19].

1 Note that before our extension DLV supported only nonrecursive aggregates.
2 Note that Cmodels [17] disallows aggregates in disjunctive rules.



Set Terms.A DLPA set termis either a symbolic set or a ground set. Asymbolic set
is a pair{Vars :Conj}, whereVars is a list of variables andConj is a conjunction of
standard atoms.3 A ground setis a set of pairs of the form〈t :Conj 〉, wheret is a list of
constants andConj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions.An aggregate functionis of the formf(S), whereS is a set term,
andf is anaggregate function symbol. Intuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets of constants to a constant.

Example 1.In the examples, we adopt the syntax of DLV to denote aggregates. Aggre-
gate functions currently supported by the DLV system are:#count (number of terms),
#sum (sum of non-negative integers),#times (product of positive integers),#min

(minimum term),#max (maximum term)4.

Aggregate Literals.An aggregate atomis f(S) ≺ T , wheref(S) is an aggregate
function,≺∈ {=, <, ≤, >,≥} is a predefined comparison operator, andT is a term
(variable or constant) referred to as guard. Also, anaggregate atommay have the form
T1 ≺1 f(S) ≺2 T2, wheref(S) is an aggregate function,≺1,≺2∈ {<, ≤}, andT1

andT2 are terms.

Example 2.The following aggregate atoms are in DLV notation, where thelatter con-
tains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V )} > Y #max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atomis either a standard atom or an aggregate atom. Aliteral L is an atomA or an
atomA preceded by the default negation symbolnot; if A is an aggregate atom,L is
anaggregate literal.

DLPA Programs. A DLPA rule r is a construct

a1 ∨ · · · ∨ an :− b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, . . . , an are standard atoms,b1, . . . , bm are atoms, andn ≥ 1, m ≥ k ≥ 0.
The disjunctiona1 ∨ · · · ∨ an is referred to as theheadof r while the conjunction
b1, ..., bk, not bk+1, ..., not bm is the body of r. We denote the set of head atoms
by H(r), and the set{b1, ..., bk, not bk+1, ..., not bm} of the body literals byB(r).
B+(r) andB−(r) denote, respectively, the sets of positive and negative literals inB(r).
Note that this syntax does not explicitly allow integrity constraints (rules without head
atoms). They can, however, be simulated in the usual way by using a new symbol and
negation.

A DLPA programis a set of DLPA rules. In the sequel, we will often drop DLPA,
when it is clear from the context. Aglobal variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variables arelocal variables.

3 Intuitively, a symbolic set{X : a(X, Y ), p(Y )} stands for the set ofX-values making
a(X, Y ), p(Y ) true, i.e.,{X |∃Y s.t . a(X, Y ), p(Y ) is true}.

4 The first two aggregates roughly correspond, respectively, to the cardinality and weight con-
straint literals of Smodels.#min and#max are undefined for empty set.



Safety. A rule r is safe if the following conditions hold: (i) each global variable of
r appears in a positive standard literal in the body ofr; (ii) each local variable ofr
appearing in a symbolic set{Vars : Conj} appears in an atom ofConj ; (iii) each
guard of an aggregate atom ofr is a constant or a global variable. A programP is safe
if all r ∈ P are safe. In the following we assume that DLPA programs are safe.

2.2 Answer Set Semantics

Universe and Base.Given a DLPA programP, let UP denote the set of constants
appearing inP, andBP be the set of standard atoms constructible from the (standard)
predicates ofP with constants inUP .

Instantiation. A substitutionis a mapping from a set of variables toUP . A substitu-
tion from the set of global variables of a ruler (to UP ) is aglobal substitution for r; a
substitution from the set of local variables of a symbolic set S (to UP ) is a local sub-
stitution forS. Given a symbolic set without global variablesS = {Vars : Conj}, the
instantiation ofS is the following ground set of pairsinst(S):
{〈γ(Vars) : γ(Conj )〉 | γ is a local substitution forS}.5

A ground instanceof a ruler is obtained in two steps: (1) a global substitutionσ for
r is first applied overr; (2) every symbolic setS in σ(r) is replaced by its instantia-
tion inst(S). The instantiationGround(P) of a programP is the set of all possible
instances of the rules ofP.

Interpretations.An interpretationfor a DLPA programP is a consistent set of standard
ground literals, that isI ⊆ (BP ∪ ¬.BP) such thatI ∩ ¬.I = ∅. A standard ground
literal L is true (resp. false) w.r.tI if L ∈ I (resp.L ∈ ¬.I). If a standard ground
literal is neither true nor false w.r.tI then it is undefined w.r.tI. We denote byI+ (resp.
I−) the set of all atoms occurring in standard positive (resp. negative) literals inI. We
denote byĪ the set of undefined atoms w.r.t.I (i.e. BP \ I+ ∪ I−). An interpretation
I is total if Ī is empty (i.e.,I+ ∪ ¬.I− = BP ), otherwiseI is partial. A totalization
of a (partial) interpretationI is a total interpretationJ containingI, (i.e.,J is a total
interpretation andI ⊆ J).

An interpretation also provides a meaning for aggregate literals. Their truth value is
first defined for total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction istrue (resp. false)
w.r.t I if all (resp. some) of its literals are true (resp. false). The meaning of a set, an
aggregate function, and an aggregate atom under an interpretation, is a multiset, a value,
and a truth-value, respectively. Letf(S) be a an aggregate function. The valuationI(S)
of S w.r.t. I is the multiset of the first constant of the elements inS whose conjunction
is true w.r.t.I. More precisely, letI(S) denote the multiset[t1 | 〈t1, ..., tn :Conj 〉∈S∧
Conj is true w.r.t. I ]. The valuationI(f(S)) of an aggregate functionf(S) w.r.t. I is
the result of the application off onI(S). If the multisetI(S) is not in the domain off ,
I(f(S)) = ⊥ (where⊥ is a fixed symbol not occurring inP).

5 Given a substitutionσ and a DLPA objectObj (rule, set, etc.), we denote byσ(Obj) the
object obtained by replacing each occurrence of variableX in Obj by σ(X).



A ground aggregate atomA of the formf(S) ≺ k is true w.r.t.I if: (i) I(f(S)) 6= ⊥,
and, (ii) I(f(S)) ≺ k holds; otherwise,A is false. An instantiated aggregate literal
not A = not f(S) ≺ k is true w.r.t.I if (i) I(f(S)) 6= ⊥, and, (ii)I(f(S)) ≺ k does
not hold; otherwise,not A is false.

If I is apartial interpretation, an aggregate literalA is true (resp. false) w.r.t.I if it
is true (resp. false) w.r.t.eachtotalizationJ of I ; otherwise it is undefined.

Example 3.Consider the atomA = #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉} > 1. Let S be the
ground set inA. For the interpretationI = {p(2, 2)}, each extending total interpretation
contains eitherp(2, 1) or not p(2, 1). Therefore, eitherI(S) = [2] or I(S) = [1, 2] and
the application of#sum yields either2 or 3, henceA is true w.r.t.I, since they are both
greater than1.

Our definitions of interpretation and truth values preserve“knowledge monotonic-
ity”. If an interpretationJ extendsI (i.e.,I ⊆ J), then each literal which is true w.r.t.I

is true w.r.t.J , and each literal which is false w.r.t.I is false w.r.t.J as well.

Minimal Models. Given an interpretationI and a ground ruler, the head ofr is true
w.r.t. I if some literal inH(r) is true w.r.t.I; the body ofr is true w.r.t.I if all literals
in B(r) are true w.r.t.I; rule r is satisfied w.r.t.I if its head is true w.r.t.I whenever
its body is true w.r.t.I. A total interpretationM is amodelof a DLPA programP if
all r ∈ Ground(P) are satisfied w.r.t.M . A modelM for P is (subset) minimal if no
modelN for P exists such thatN+ ⊂ M+. Note that, under these definitions, the word
interpretationrefers to a possibly partial interpretation, while amodelis always a total
interpretation.

Answer Sets.We now recall the generalization of the Gelfond-Lifschitz transformation
and answer sets for DLPA programs from [8]: Given a ground DLPA programP and
a total interpretationI, let PI denote the transformed program obtained fromP by
deleting all rules in which a body literal is false w.r.t.I. I is an answer set of a program
P if it is a minimal model ofGround(P)I .

Example 4.Consider interpretationI1 = {p(a)}, I2 = {not p(a)} and two programs
P1 = {p(a) :− #count{X : p(X)} > 0.} andP2 = {p(a) :− #count{X : p(X)} < 1.}.

Ground(P1) = {p(a) :− #count{〈a : p(a)〉} > 0.} andGround(P1)
I1 = Ground(P1),

Ground(P1)
I2 = ∅. Furthermore,Ground(P2) = {p(a) :− #count{〈a : p(a)〉} < 1.}, and

Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold.
I2 is the only answer set ofP1 (sinceI1 is not a minimal model ofGround(P1)

I1 ),
while P2 admits no answer set (I1 is not a minimal model ofGround(P2)

I1 , andI2 is
not a model ofGround(P2) = Ground(P2)

I2 ).

Note that any answer setA of P is also a model ofP becauseGround(P)A ⊆
Ground(P), and rules inGround(P) \ Ground(P)A are satisfied w.r.t.A.

Monotonicity. Given two interpretationsI andJ we say thatI ≤ J if I+ ⊆ J+ and
J− ⊆ I−. A ground literalℓ is monotone, if for all interpretationsI, J , such thatI ≤ J ,
we have that: (i)ℓ true w.r.t.I impliesℓ true w.r.t.J , and (ii) ℓ false w.r.t.J impliesℓ



false w.r.t.I. A ground literalℓ is antimonotone, if the opposite happens, that is, for all
interpretationsI, J , such thatI ≤ J , we have that: (i)ℓ true w.r.t.J impliesℓ true w.r.t.
I, and (ii)ℓ false w.r.t.I impliesℓ false w.r.t.J . A ground literalℓ is nonmonotone, if it
is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereasnegative standard literals
are antimonotone. Aggregate literals may be monotone, antimonotone or nonmonotone,
regardless whether they are positive or negative. Nonmonotone literals include the sum
over (possibly negative) integers and the average.

Example 5.All ground instances of#count{Z : r(Z)} > 1 andnot #count{Z : r(Z)} < 1

are monotone, while for#count{Z : r(Z)} < 1, andnot #count{Z : r(Z)} > 1 they
are antimonotone.

We denote by DLPAm,a the fragment of DLPA in which monotone and antimono-
tone literals may occur. In the following, byprogramwe will usually refer to a DLPAm,a

program. Given a ruler of a DLPA
m,a program, we denote withMon(B(r)) andAnt(B(r)),

respectively, the set ofmonotoneandantimonotoneliterals inB(r). Note that, as de-
scribed in [20], many programs with nonmonotone literals can be polynomially rewrit-
ten into DLPAm,a programs. Some important examples include programs containing
aggregate atoms of the formT1 ≺1 f(S) ≺2 T2 andf(S) = T (which per se are
nonmonotone independent off(S)), which can be rewritten to conjunctionsT1 ≺1

f(S), f(S) ≺2 T2 andf(S) ≥ T, f(S) ≤ T , respectively.

3 Unfounded Sets

We now give a definition of unfounded set for DLPA programs with monotone and
antimonotone aggregates, extending the one of [14].

In the following we denote byS1 ∪̇ ¬.S2 the set(S1 \ S2) ∪ ¬.S2, whereS1 and
S2 are sets of standard ground literals.

Definition 1 (Unfounded Set).A set X of ground atoms is an unfounded set for a
DLPA

m,a programP w.r.t. an interpretationI if, for each ruler ∈P such thatH(r)∩X 6= ∅,
at least one of the following conditions holds:

1. Ant(B(r)) is false w.r.t.I.
2. Mon(B(r)) is false w.r.t.I ∪̇ ¬.X.
3. H(r) is true w.r.t.I ∪̇ ¬.X.

While condition 1 declares that rule satisfaction does not depend on atoms inX,
conditions 2 and 3 ensure that the rule is satisfied also if theatoms inX are switched
to false. Note that condition 3 is equivalent to(H(r) \ X) ∩ I 6= ∅, and∅ is always an
unfounded set, independent of interpretation and program.

Example 6.Consider the following programP :

a(1) ∨ a(2). a(1) :− #count{〈1:a(2)〉}>1. a(2) :− #count{〈1:a(1)〉}>1.



and I = {a(1), a(2)}. Then{a(1)} and {a(2)} are unfounded sets forP w.r.t. I.
{a(1), a(2)} is not an unfounded set forP w.r.t. I, as for the first rule none of the three
conditions holds.

Theorem 1. A set X of ground atoms is an unfounded set for aDLPA
a,m programP

w.r.t. an interpretationI according to Def. 1 iff it is an unfounded set forP w.r.t. I

according to Def. 1 of [21].

Proof. According to Def. 1 of [21], a setX of ground atoms is an unfounded set for
a programP w.r.t. an interpretationI if, for each ruler in Ground(P) having some
atoms fromX in the head, at least one of the following conditions holds: a) some literal
of B(r) is false w.r.t.I, b) some literal ofB(r) is false w.r.t.I ∪̇ ¬.X, or c) some atom
of H(r) \ X is true w.r.t.I.

First of all, let us observe that conditions 1 and 2 of Def. 1 trivially imply conditions
a) and b), respectively, and that, as noted earlier, condition 3 of Def. 1 is equivalent to
condition c).

Now, observe that if a monotone body literal is false w.r.t.I, it is also false w.r.t.
I ∪̇ ¬.X. In a similar way, if an antimonotone body literal ofr is false w.r.t.I ∪̇ ¬.X,
then it is false also w.r.t.I. Therefore, if condition a) holds for a monotone literal, con-
dition 2 holds for this literal; if condition a) holds for an antimonotone literal, condition
1 holds. Likewise, if condition b) holds for a monotone literal, condition 2 holds; if
condition b) holds for an antimonotone literal, condition 1holds.

Thus, on DLPAm,a our definition of unfounded set specializes Def. 1 of [21] by
imposing stricter properties in conditions 1 and 2.

From this equivalence and results in [21] it follows that unfounded sets as defined
in Def. 1 also coincide with other definitions of unfounded sets for various language
fragments.

Corollary 1. For a non-disjunctive, aggregate-free programPand an interpretationI,
any unfounded set w.r.t. Def. 1 is a standard unfounded set (as defined in [22]).

For an aggregate-free programP and interpretationI, any unfounded set w.r.t.
Def. 1 is an unfounded set as defined in [23].

For a non-disjunctiveLPA
m,a programPand an interpretationI, any unfounded set

w.r.t. Def. 1 is an unfounded set as defined in [14].

We next state an important monotonicity property of unfounded sets.

Proposition 1. Let I be a partial interpretation for aDLPA
m,a programP andX an

unfounded set forP w.r.t. I. Then, for eachJ ⊇ I, X is an unfounded set forP w.r.t. J
as well.

Proof. If X is an unfounded set forP w.r.t. I, then for eacha ∈ X and for each
r ∈ P with a ∈ H(r), (1) Ant(B(r)) is false w.r.t.I, or (2)Mon(B(r)) is false w.r.t.
I ∪̇ ¬.X, or (3)H(r) is true w.r.t.I ∪̇ ¬.X holds. Now, note that sinceI ⊆ J holds,
then alsoI ∪̇ ¬.X ⊆ J ∪̇ ¬.X holds. So, if (1) holds, it holds also forJ , and if (2) or
(3) hold, then they hold also forJ ∪̇ ¬.X.



We next define the central notion in the remainder of this work, theGreatest Un-
founded Set(GUS), as the union of all unfounded sets.

Definition 2. LetI be an interpretation for a programP. Then, letGUSP(I) (the GUS
for P w.r.t. I) denote the union of all unfounded sets forP w.r.t. I.

From Proposition 1 it follows that the GUS of an interpretationI is always contained
in the GUS of a superset ofI.

Proposition 2. LetI be an interpretation for a programP. Then,GUSP(I) ⊆ GUSP(J),
for eachJ ⊇ I.

Note that despite its name, the GUS is not always guaranteed to be an unfounded
set. In the non-disjunctive case, the union of two unfoundedsets is an unfounded set
as well, also in presence of monotone and antimonotone aggregates [14], and so for
these programs a GUS is necessarily an unfounded set. However, in the presence of
disjunctive rules, this property does no longer hold, as shown in [23]. Therefore it also
does not hold for DLPAm,a, and as a consequence a GUS need not be an unfounded set.

Observation 2 If X1 and X2 are unfounded sets for aDLPA
m,a programP w.r.t. I,

thenX1 ∪ X2 is not necessarily an unfounded set.

By virtue of Theorem 1, Proposition 1 of [21] carries over to unfounded sets of
Definition 1.

Proposition 3. If X1 and X2 are unfounded sets for a programP w.r.t. I and both
X1 ∩ I = ∅ andX2 ∩ I = ∅ hold, thenX1 ∪ X2 is an unfounded set forP w.r.t. I.

This allows for defining the class of unfounded-free interpretations for which the
GUS is guaranteed to be an unfounded set.

Definition 3 (Unfounded-free Interpretation). Let I be an interpretation for a pro-
gramP. I is unfounded-free ifI ∩ X = ∅ for each unfounded setX for P w.r.t. I.

As an easy consequence we obtain:

Proposition 4. LetI be an unfounded-free interpretation for a programP. Then,GUSP(I)
is an unfounded set.

Next, we show an interesting property for total interpretations.

Proposition 5. Let I be a total interpretation for a programP. Then,I is unfounded-
free iff no non-empty setX ⊆ I+ is an unfounded set forP w.r.t. I.

Proof. (=⇒) If a non-empty subsetY of I+ is an unfounded set forP w.r.t. I, thenI

is not unfounded-free.
(⇐=) If I is not unfounded-free, then there exists a non-empty subsetof I+ which is
an unfounded set forP w.r.t. I. Let X be an unfounded set forP w.r.t. I such that
Y = X ∩ I 6= ∅. Note thatI ∪̇ ¬.X = I ∪̇ ¬.Y , thenY is also an unfounded set forP
w.r.t. I.



4 Answer Set Checking via Unfounded Sets

Unfounded sets can be used to characterize models and answersets; these characteriza-
tions can be profitably used for answer set checking. Given Theorem 1, the following
results are consequences of Theorem 4 and Corollary 6 of [21].

Proposition 6. Let M be a total interpretation for a programP. ThenM is a model
for P iff M− is an unfounded set forP w.r.t. M .

Proposition 7. LetM be a model forP. M is an answer-set forP iff M is unfounded-
free forP.

Furthermore, we can show that unfounded sets also characterize minimal models.

Proposition 8. LetM be a model for a positive programP. M is a minimal model for
P iff it is unfounded-free.

Proof. (⇐=) If M is not minimal then there exists another modelM1 such thatM+
1 ⊂

M+, and soX = M+ \ M+
1 6= ∅. Then, for eachr ∈ P such thatH(r) ∩ X 6= ∅,

(i) H(r) ∩ M+
1 6= ∅, or (ii) Ant(B(r)) is false w.r.t.M1, or (iii) Mon(B(r)) is false

w.r.t. M1. Note thatM1 = (M \ X) ∪ ¬.X = M ∪̇ ¬.X, and then: from (i) follows
that H(r) is true w.r.t.M ∪̇ ¬.X, from (ii) follows thatAnt(B(r)) is false w.r.t.M
(becauseM1 ≤ M ), from (iii) follows thatMon(B(r)) is false w.r.t.M ∪̇ ¬.X. So,X
is an unfounded set forP w.r.t. M , and thenM is not unfounded-free.
(=⇒) Assume, by contradiction, thatM is not unfounded-free. Then, by Proposition 5,
there exists a non-emptyX ⊆ M+ which is an unfounded set forP w.r.t. M . Now, we
show that the total interpretationM1 = M ∪̇ ¬.X is a model forP (contradicting the
minimality of M ). Let r be a rule ofP such thatH(r) is true w.r.t.M , andH(r) is
false w.r.t.M1. Then,H(r) ∩ X 6= ∅. But X is an unfounded set forP w.r.t. M , then
(1) Ant(B(r)) is false w.r.t.M (and then it is false w.r.t.M1, becauseM1 ≤ M ), or
(2) Mon(B(r)) is false w.r.t.M ∪̇ ¬.X = M1, or (3)H(r) is true w.r.t.M ∪̇ ¬.X =
M1. Note that (3) cannot holds by assumption. Then,r is satisfied w.r.t.M1 by body,
contradicting the minimality ofM .

We next show that the condition of being unfounded-free is invariant for a program
and its reduct.

Lemma 1. Let M be a total interpretation for a programP. M is unfounded-free for
P iff it is unfounded-free forPM .

Proof. (=⇒) If X is not an unfounded set forP w.r.t. M , then for eacha ∈ X there
existsr ∈ P such thatr violates all condition of Definition 1. Then, from condition(1)
and (2),B(r) is true w.r.t.M . Therefore, the imager′ of r is inPM . Clearly,r′ violates
all conditions of Definition 1 forPM w.r.t. M. Now, if M is unfounded-free forP, then,
by Proposition 5, every non-emptyX ⊆ M+ is not an unfounded set forP w.r.t. M ,
and then it is not an unfounded set forPM w.r.t. M . So,M is unfounded-free forPM .
(⇐=) Let X be an unfounded set forP w.r.t. M . Then, for eacha ∈ X and for each
r ∈ P with a ∈ H(r), (1)Ant(B(r)) is false w.r.t.M , or (2)Mon(B(r)) is false w.r.t.



M ∪̇ ¬.X, or (3)H(r) is true w.r.t.M ∪̇ ¬.X. Case (1) or (2) imply thatr has no image
in PM or condition (2) holds forr′. Case (3) imply that condition (3) holds also forr′.
So,X is an unfounded set also forPM w.r.t.M . Therefore, ifM is not unfounded-free
for P, then it is not unfounded-free forPM . It follows thatM unfounded-free forPM

impliesM unfounded-free forP.

Furthermore,GUSP(I) permits to check whetherI is unfounded-free, and then
whether it is an answer set.

Theorem 3. LetI be a total interpretation for a programP. I is unfounded-free if and
only if I− = GUSP(I).

Proof. (⇐=) It is easy to see that each unfounded setX for P w.r.t. I is a subset ofI−,
and thenI ∩ X = ∅ holds.
(=⇒) For each unfounded setX for P w.r.t. I, I ∩ X = ∅ holds. SinceI is total, this
is equivalent toX ⊆ I−, and thenGUSP(I) ⊆ I−. By Proposition 6, it follows that
I− ⊆ GUSP(I), and thenI− = GUSP(I).

Corollary 2. Given a total interpretationI for a programP, I is an answer set if and
only if I− = GUSP(I) andI− is an unfounded set w.r.t.P andI.

These results allow for checking whether a model or an interpretation is an answer set
just by using the notion of unfounded sets.

5 Pruning via Unfounded Sets

In this section we show some properties ofGUSP(I), which may be used during the
computation of the answer sets, for pruning the search spaceand detecting useless
branches of the computation.

Theorem 4. Given an interpretationI for a programP, if I ∩ GUSP(I) 6= ∅, then no
totalization ofI is an answer set forP.

Proof. If I ∩ GUSP(I) 6= ∅, then there exists an unfounded setX for P w.r.t. I such
thatI ∩X 6= ∅. LetJ be a totalization ofI. Then, by Proposition 1,X is an unfounded
set forP w.r.t. J . Clearly,J ∩ X 6= ∅, soJ is not unfounded-free. By Proposition 7J
is not an answer-set forP.

Thus, during the construction of answer sets one may want to compute the GUS
with respect to the interpretation so far and test whether itcontains some element of the
interpretation. If so, one should abandon the constructionand backtrack, as no answer
set can be found in the current branch. Moreover, the GUS alsoserves as an inference
operator for pruning the search space.

Theorem 5. Given an interpretationI for a programP, if J is an answer set contain-
ing I, thenJ containsI ∪̇ ¬.GUSP(I) as well.

Proof. AssumeJ + I ∪̇ ¬.GUSP(I) thenJ ∩ GUSP(I) 6= ∅. From Proposition 2 it
follows thatJ ∩ GUSP(J) 6= ∅, and then, by Theorem 4,J is not an answer set forP.

In other words,¬.GUSP(I) is contained in all answer sets extendingI, so when
constructing answer set candidates we can safely add these literals to the candidate.



6 Computing Greatest Unfounded Sets

We now define an operator for computing the Greatest Unfounded Set of aDLPA

m,a

programP w.r.t. an interpretationI: the operatorRP,I that, given a setX of ground
atoms, discards the elements inX that do not satisfy any of the unfoundedness condi-
tions of Definition 1.

Definition 4. LetP be aDLPA

m,a program andI an interpretation. Then we define the
operatorRP,I as a mapping2BP → 2BP as follows:

RP,I(X) = {a ∈ X | ∀r ∈ ground(P) with a ∈ H(r), Ant(B(r)) is false w.r.t.I,

or Mon(B(r)) is false w.r.t.I ∪̇ ¬.X,

or H(r) is true w.r.t.I ∪̇ ¬.{a}}

Given a setX ⊆ BP , the sequenceR0 = X, Rn = RP,I(Rn−1) decreases mono-
tonically and converges finitely to a limit that we denote byRω

P,I(X). We next show
thatRω

P,I(BP \ I) is an unfounded set, and we can therefore use this operator todetect
undefined atoms that can be safely switched to false, reducing the search space.

Proposition 9. Given aDLPA

m,a programP and an interpretationI, Rω
P,I(BP \ I) is

an unfounded set forP w.r.t. I.

Proof. Let X = Rω
P,I(BP \ I). By definition ofRP,I , we haveX ⊆ BP \ I, and

henceX ∩ I = ∅. Now, for eacha ∈ X and for eachr ∈ P, a ∈ H(r) implies that
Ant(B(r)) is false w.r.t.I, or Mon(B(r)) is false w.r.t.I ∪̇ ¬.X, or H(r) is true w.r.t.
I ∪̇ ¬.{a}. If the last holds, sinceX ∩ I = ∅, alsoH(r) is true w.r.t.I ∪̇ ¬.X. Then,
X is an unfounded set forP w.r.t. I.

Importantly,RP,I does not discard any unfounded set contained in the input set.

Proposition 10. LetP be aDLPA

m,a program,I be an interpretation forP, andJ ⊆
BP . Every unfounded set forP w.r.t. I which is contained inJ is also contained in
Rω

P,I(J).

Proof. Let X ⊆ J be an unfounded set forP w.r.t. I. For eacha ∈ X and for each rule
r ∈ P such thata ∈ H(r), Ant(B(r)) is false w.r.t.I, or Mon(B(r)) is false w.r.t.
I ∪̇ ¬.X, orH(r) is true w.r.t.I ∪̇ ¬.X holds. If the last holds, since{a} ⊆ X, H(r) is
true w.r.t.I ∪̇ ¬.{a} as well. Then, from the definition ofRP,I , RP,I(X) = X holds
and, sinceX is monotonic andX ⊆ J , Rω

P,I(J) must containX.

Using the above propositions, we can prove thatRω
P,I(BP\I) computes the greatest

unfounded set forP w.r.t. I.

Theorem 6. LetP be aDLPA

m,a program andI an unfounded-free interpretation for
it. Then,Rω

P,I(BP \ I) = GUSP(I).

Proof. (⊇) SinceI is unfounded-free,I ∩ X = ∅ holds for each unfounded set forP
w.r.t. I, and thenX ⊆ BP \ I. So, by Proposition 10, alsoX ⊆ Rω

P,I(BP \ I) holds,
and thenGUSP,I(BP \ I) is contained inRω

P,I(BP \ I).
(⊆) By Proposition 9,Rω

P,I(BP \ I) is an unfounded set forP w.r.t. I, and then, by
definition of GUS, it is contained inGUSP(I).



Is is easy to see that the fixpoint of theRP,I operator is efficiently computable.
Thus, from the above theorem one can employRP,I as powerful and efficient pruning
operator for unfounded-free interpretations. Actually, on the large class of head-cycle
free programs [24], theRP,I allows us to always compute the greatest unfounded set,
even if the interpretation is not unfounded-free, and can betherefore employed both for
pruning and answer-set checking. In the next section, we show how this can be done in
an efficient way providing an algorithm for the modular computation of GUS viaRP,I .

7 Modular Evaluation of Greatest Unfounded Sets

In this section, we show how we can localize the computation of unfounded sets. To this
end, we define the notion ofdependency graph, the strongly connected components of
which define the modules, on which the local computation willwork.

With every ground programP, we associate a directed graphDGP = (N , E),
called thedependency graphof P, in which (i) each atom ofP is a node inN and (ii)
there is an arc inE directed from a nodea to a nodeb iff there is a ruler in P such that
b ∈ H(r) anda is a standard atom inMon(B(r)) or an atom appearing in the ground
set of an aggregate literal inMon(B(r)).

An important and well-known class of programs arehead-cycle-free (HCF)pro-
grams: A programP is HCF iff there is no ruler in P such that two predicates occur-
ring in the head ofr are in the same cycle ofDGP . In our implementation for DLPAm,a,
described in Section 8, we consider only HCF programs. This class of programs has
recently been shown to be the largest class of programs for which standard reasoning
tasks are still in NP (cf. [25]). The main result of this section, Theorem 7, is therefore
also stated for HCF programs.

We can partition the set of ground atoms occurring inP in strongly connected com-
ponents. Two atomsa andb are in the same component if there is both a path froma to
b and a path fromb to a in DGP . Also, we can define a partial order� for components:
C1 � C2 iff there exista ∈ C1, b ∈ C2 such that there is a path froma to b. Moreover,
the subprogramPC ⊆ P associated with a componentC consists of all rulesP which
contain an atom ofC in their heads. Before introducing the algorithm, we show some
properties that hold for theRP,I operator.

Lemma 2. LetP be a program andI be an interpretation. For each setsX andY such
thatX ⊆ Y , Rω

P,I(X) ⊆ Rω
P,I(Y ) holds.

Proof. By induction. The only condition of Def. 4 that depends on thestarting setX is
“Mon(B(r)) is false w.r.t.I ∪̇ ¬.X”. If this holds for some atom inRP,I(X) and some
ruler in P, thenMon(B(r)) is false also w.r.t.I ∪̇ ¬.Y , becauseI ∪̇ ¬.Y ≤ I ∪̇ ¬.X.
So, RP,I(X) ⊆ RP,I(Y ). AssumingR(i)

P,I(X) ⊆ R
(i)
P,I(Y ), thenR

(i+1)
P,I (X) =

RP,I(R
(i)
P,I(X)) ⊆ RP,I(R

(i)
P,I(Y )) = R

(i+1)
P,I (Y ).

Lemma 3. LetP be a program andI an interpretation,C a component ofP andPC

the subprogram associated toC. Then, for eachX ⊆ C, RPC ,I(X) = RP,I(X).

Proof. Clearly, each ruler of P with H(r) ∩ X 6= ∅ is also inPC .



Theorem 7. LetC1, C2, ..., Cn be a total order for the components of an HCF program
P such thatCi � Cj implies i ≤ j. Starting fromI0 := I and then, for eachi =
1, ..., n, computingXi := Rω

PCi
,Ii−1

(Ci \ I), Ii := Ii−1 ∪ ¬.Xi, it holds thatIn is

equal toI ∪ ¬.GUSP(I).

Proof. We prove that at each step of the computationXi = Rω
P,I(BP \ I) ∩ Ci holds.

Base(⊆). From Lemma 3 and Lemma 2 it follows thatX1 = Rω
PC1

,I(C1 \ I) =

Rω
P,I(C1 \ I) ⊆ Rω

P,I(BP \ I). So,X1 ⊆ Rω
P,I(BP \ I) ∩ C1, becauseX1 ⊆ C1.

Base(⊇). For eacha ∈ Rω
P,I(BP \ I) ∩ C1 and for eachr ∈ P with a ∈ H(r), (1)

Ant(B(r)) is false w.r.t.I, or (2)Mon(B(r)) is false w.r.t.I ∪̇ ¬.Rω
P,I(BP \ I), or (3)

H(r) is true w.r.t.I ∪̇ ¬.{a}. Note that, sinceP is HCF,a is the only atom inH(r) be-
longing toC1, so from (3) it follows thatH(r) is true w.r.t.I ∪̇ ¬.(Rω

P,I(BP \ I) ∩ C1).
Also, note thatMon(B(r)) depends only on atoms inC1. Then, from (2) it follows that
Mon(B(r)) is false w.r.t.Rω

P,I(BP \ I)∩C1. So,Rω
P,I(BP \ I)∩C1 is an unfounded

set forPC1
w.r.t. I and, by Def. 4, it is a subset ofX1.

Suppose thatXi = Rω
P,I(BP \ I) ∩ Ci.

(⊆) For eacha ∈ Xi+1 and for eachr ∈ PCi+1
with a ∈ H(r), Ant(B(r)) is

false w.r.t.Ii (and w.r.t.I becauseIi ≤ I), or Mon(B(r)) is false w.r.t.Ii ∪̇ ¬.Xi+1

(= I ∪̇ ¬.(Xi+1 ∪ (I−i \ I−))), or H(r) is true w.r.t.Ii ∪̇ ¬.{a} (and therefore also
w.r.t. I ∪̇ ¬.(Xi+1 ∪ (I−i \ I−)) becauseI+

i = I+ anda is the only atom belonging
to someCj , for j = 1, ..., i + 1). No other rule inP \ PCi+1

hasa in head, and then
Xi+1 ∪ (I−i \ I−) is an unfounded set forP w.r.t. I. So, from Proposition 10,Xi+1 is
a subset ofRω

P,I(BP \ I).
(⊇) For eacha ∈ Rω

P,I(BP \ I) ∩ Ci+1 and for eachr ∈ P with a ∈ H(r), (1)
Ant(B(r)) is false w.r.t.I (and so w.r.t.Ii becauseIi ⊇ I), or (2)Mon(B(r)) is false
w.r.t. I ∪̇ ¬.Rω

P,I(BP \ I), or (3)H(r) is true w.r.t.I (and so w.r.t.Ii). From (2) it fol-
lows thatMon(B(r)) is false w.r.t.Y = I ∪̇ ¬.(Rω

P,I(BP \ I) ∩ (C1 ∪ C2 ∪ ... ∪ Ci+1)
(becauseMon(B(r)) depends only from atoms inC1, . . . , Ci+1).
But I ∪̇ ¬.(Rω

P,I(BP \ I) ∩ (C1 ∪ C2 ∪ ... ∪ Ci) = Ii andXi+1 ⊆ Rω
P,I(BP \ I) ∩

Ci+1. ThenY + = (Ii ∪̇ ¬.Xi+1)
+ andY − ⊇ (Ii ∪̇ ¬.Xi+1)

−, soY ≤ Ii ∪̇ ¬.Xi+1

andMon(B(r)) is false also w.r.t.Ii ∪̇ ¬.Xi+1.

8 Prototype Architecture

We have implemented the approach described in Section 7, modifying the system DLV,
which already processes nonrecursive aggregates. For a thorough description of the
DLV architecture, we refer to [26]. The main structure of thesystem is reported in
Figure 1.

The input, after having possibly been processed by some frontends, is handed to
the DLV core, in particular to the grounding, which producesa ground version of the
input, which is guaranteed to have the same answer sets as theinput. Control is then
handed over to the model generator, which performs a backtracking heuristic search
for models, which serve as answer set candidates. During this search, various pruning
techniques are employed, among them also unfounded set computations (cf. [27, 28]).
Each of the found answer set candidates is then submitted to the model checker, which
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Fig. 1.DLV system architecture

verifies whether the model is an answer set (cf. [29]). When theinput program is HCF,
this check need not be done, as any produced candidate is known to be an answer set.

Therefore, for our prototype we had to modify the grounding and generator mod-
ules. In the grounding phase, in the case of non-recursive aggregates all instances of
predicates inside an aggregate are known at the time the aggregate is instantiated. When
supporting also recursive aggregates, this assumption no longer holds, and therefore
a somewhat more complex grounding strategy has to be employed. Concerning the
model generator, a large part of the existing machinery for aggregates could be re-used.
In order to treat recursive aggregates correctly, unfounded set computation involving
aggregates, which has not been present in DLV so far, is necessary. We have imple-
mented unfounded set computations using an optimized implementation of the method
described in Section 7, which further localize the computation by focusing only on the
components that have been affected by the last propagation step. The system prototype
is available athttp://www.dlvsystem.com/dlvRecAggr, and supports a su-
perset of hcf programs, requiring head-cycle freeness onlyon the components with re-
cursive aggregates. Preliminary results of experiments onCompanies Control examples
indicate that the implementation offers good performance on medium-size instances.

References

1. Kemp, D.B., Stuckey, P.J.: Semantics of Logic Programs with Aggregates. In: ISLP’91, MIT
Press (1991) 387–401

2. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Model Seman-
tics for Logic Programs with Aggregates. In Codognet, P., ed.: ICLP-2001, (2001) 212–226

3. Gelfond, M.: Representing Knowledge in A-Prolog. In: Computational Logic. Logic Pro-
gramming and Beyond. LNCS 2408 (2002) 413–451
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