
The Maze Generation Problem is NP-complete

Mario Alviano

Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
alviano@mat.unical.it

Abstract. TheMaze Generationproblem has been presented as a benchmark for
the Second Answer Set Programming Competition. We prove that the problem is
NP–complete and identify relevant classes of unsatisfiable instances.

TheMaze Generation(MG) problem has been presented as a benchmark for the Second
Answer Set Programming (ASP) Competition1. The problem has been placed in theNP
category, which contains problems inNP for which an algorithm inP is unknown. Here,
we prove that the problem is in fact complete for the complexity classNP. In addition,
we identify classes of unsatisfiable instances that are efficiently recognizable. We start
the discussion by defining a maze.

Definition 1 (Maze). A maze is anm × n grid, in which each cell is empty or a wall
and two distinct cells on the edges are indicated as entranceand exit, satisfying the
following conditions: (1) Each cell in an edge of the grid is awall, except entrance and
exit that are empty; (2) There is no2 × 2 square of empty cells or walls; (3) If two
walls are on a diagonal of a2× 2 square, then not both of their common neighbors are
empty; (4) No wall is completely surrounded by empty cells; (5) There is a path from
the entrance to every empty cell.

The MG problem is the decision problem concerning the possibility to build a maze
by extending a partially fixed grid.

Definition 2 (Maze Generation problem).An instance of the MG problem is a struc-
ture of the form〈G, I,O,W,E〉, whereG is a set of cells (pairs of integers) representing
a grid, I andO are two distinct cells ofG, W andE are subsets ofG. The MG problem
is then defined as follows: Given a structure〈G, I,O,W,E〉, is there a maze of the
same size ofG such thatI andO are entrance and exit, respectively, each cell inW is
a wall and each cell inE is empty?

I

O

?
?

?

?
?

?

Fig. 1. An instance of
Maze Generation.

I

O

Fig. 2. A maze for the in-
stance in Fig. 1.

An instance of MG is represented in
Fig. 1. In the picture, filled cells belong to
W , while empty cells are inE. Entrance and
exit are marked withI andO, respectively,
while undefined cells (cells not inW ∪ E)
are indicated by a question mark (?). This
is a yes-instance, as proved by the maze in
Fig. 2.

1 http://www.cs.kuleuven.be/ ˜ dtai/events/ASP-competition/

A non-deterministic algorithm for MG is “Guess a value in{empty, wall} for each
undefined cell and check that all the conditions of a maze are satisfied”. The check
can be performed in linear time, and so MG belongs toNP. In order to prove theNP–
completeness of MG, we present a reduction from the Satisfiability problem (SAT). The
proof is similar to the one presented for Minesweeper2: We show how to represent a
logical circuit with blocks of cells of an MG instance, proving that any boolean formula
F can be mapped to an instance〈G, I,O,W,E〉F of MG such that〈G, I,O,W,E〉F is
ayes-instance if and only ifF is satisfiable. The blocks required for representing a logi-

x

x

x
x

x

x

x

x
x

x

Fig. 3.Wire.

x
x

x

x
x

Fig. 4. Termi-
nated wire.

Fig. 5.Filler.

x

x

x
x

x

x

x

x

x

Fig. 6.Splitter.

x x

Fig. 7.Blocks connectors.

x

x
x

x

x

x

x

x

x

y
y

y
y

y

y

y
y

y

z

z
z

z
z

z
z

z

z
z

z

z

z

z

z

z

z

z

z
z

z
z

z

z

z

z

z

z

Fig. 8.OR gate.

x

x
x

x
x

x

x

x
x

x
x

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

y
y

y
y

y
y

y
y

y

y
y

y
y

y
y

y
y

y
y

y

y

y

y

y
y

y

y
y

y
y

y

y

Fig. 9.NOT gate.

cal circuit by an instance of MG
are shown in Fig. 3–9. In the pic-
tures, filled cells belong toW , while
empty cells belong toE. The other
cells are undefined and marked with
the literal they represent, wherex
is the complement ofx. For a cell
marked with a literal, we say that
empty corresponds to false and wall
to true. Each block is now briefly
described. The block in Fig. 3 rep-
resents a wire, while the block in
Fig. 4 is used to terminate a wire.
Unused blocks are filled with the
block in Fig. 5, while a signal is split
with the block in Fig. 6. Blocks are
connected by one of the connectors
in Fig. 7. The non-empty connector
is used for propagating literal values
between blocks, and the empty connector in all other cases. The single cell between
four connected blocks is filled with an empty cell. An OR gate is shown in Fig. 8. In
this block, the value of the undefined cells is determined by the cells representingx, y

andz in the left-middle part of the block. If empty is assigned to both x andy, thenz

must be wall in order to avoid an isolated wall. On the other hand, if empty is assigned
to the cells marked withz, then bothx andy must be wall to avoid an isolated wall.
Soz ≡ x ∧ y, thusz ≡ x ∨ y holds. Note that an OR gate is an11 × 11 block, using
the same space as combining four5 × 5 blocks. A NOT gate is shown in Fig. 9. In this
block, the value of all the undefined cells is fixed by the cellsin the vertical center of
the block. Consider the right-middle part of the block. If empty is assigned to the cells
marked withx, theny must be wall in order to avoid an isolated wall. The same holds
for x andy on the left-middle part of the block:x empty impliesy wall. Theny ≡ x

holds. Since the signal is propagated from the first to the last row, a NOT gate can be
combined with a splitter to obtain a bent wire. Note that a NOTgate is a17× 11 block,
using the same space as combining six5×5 blocks. In all the presented blocks, with the
exception of the splitter, there is a path connecting each pair of empty cells, for any lit-
eral assignment. We can then avoid isolated empty cells by attaching wires/terminators

2 Richard Kaye. Minesweeper isNP–complete.Math. Intelligencer, 2 (22): 9–15, 2000.

2

to all the edges with literals of any used splitter. Moreover, since a wire ends in a ter-
minator (Fig. 4) or in a gate (Fig. 8 and 9), cells marked with the same literal must be
either all empty or all wall.

yx

y x

Fig. 10. Crossing two wires with three XOR
gates.

x

y

x ⊕ y

Fig. 11.Making an XOR gate with OR and NOT
gates.

[x1

[x2

[x3

¬

∧

∨

∧]T
]

]

]
]

]

]

Fig. 12. A Maze Generation circuit for
((¬x1 ∧ x2) ∧ (x1 ∨ x3)).

Instances of MG are planar, while circuits may
include crossed wires (which are non-planar), so
we have to find a suitable planar representation of
these. Assuming the availability of an XOR gate,
crossed wires can be simulated by three splitters
and three XORs, as shown in Figure 103. The XOR
gate itself can be simulated in the plane by OR and
NOT gates, as shown in Fig. 11. Since any boolean
function can be represented by a combination of
OR and NOT gates, these building blocks are suf-
ficient for building any logical gate or circuit. For
example, the formula¬(¬x ∨ ¬y) is equivalent to
an AND gate.

Given a boolean formulaF , we mapF into an
instance of MG by building a logical circuit like
the one in Fig. 12, which represents((¬x1 ∧ x2)∧
(x1 ∨ x3)). In the picture, lines are wires, crossed
lines are cross-overs, filled-in circles are splitters, boxes are gates and square brackets
are terminators. The terminator marked with T fixes the signal to true (by fixing to wall
the cell marked withx in the third row of the block in Fig. 4). The circuit can be built
by a depth-first visit of the tree structure of the boolean formula. For each node, after
all its children have been visited, a new gate is introduced and the wires of the children
are split and connected to the gate. Each element of such a circuit can be built with an
N × N block, for some fixedN not depending on the boolean formula, and then all
the circuit has size(Nn)2, wheren is the number of symbols in the boolean formula.
The logical circuit can be then built in polynomial time. We complete the construction
by putting the circuit inside a border of empty cells (for connecting all blocks to the
entrance), surrounded by a border of undefined cells. In one edge of the undefined cells,
we arbitrarily choose two non-adjacent non-corner cells representing entrance and exit.

Maze Generation and Unsatisfiability.We now associate a bit string to each row of
a maze, where 1 stays for a wall and 0 for an empty cell. Ifa is a bit string of length
k ≥ 1, ai denotes thei-th bit of a, 1 ≤ i ≤ k.

Definition 3 (0-block). A 0-block of lengthk ≥ 3 is a bit stringa of lengthk, where
a1 = ak = 1 anda2 = · · · = ak−1 = 0. If k is even, then the 0-block will be called
an even 0-block, otherwise an odd 0-block. Given a bit stringb, let the number ofeven
0-blocksin b be denoted by#b.

Fig. 13.An even 0-
block.

An even 0-block is given in Fig. 13. Properties 2 and 3 of a maze
deal with2 × 2 squares of cells (see Fig. 14). We then introduce a for-
mal definition of (2 × 2) square in terms of bit strings.

3 Leslie M. Goldschlager. The monotone and planar circuit value problemsare log space com-
plete for P.ACM SIGACT News, 9 (2): 25–29, 1977.

3

Definition 4 (Squares).Let a and b be two bit strings of lengthk ≥ 2. Then in the
pair ab we identifyk − 1 squares:[ai, ai+1, bi, bi+1], 1 ≤ i ≤ k − 1. We define a
“bad square” as a square in whichai = bi+1 andai+1 = bi. A bad square is called a
0-square ifai = ai+1 = 0, a 1-square ifai = ai+1 = 1, a D-square ifai 6= ai+1.

Fig. 14. A 0-square, a 1-
square, and a D-squares.

Given the definition above, condition 2 and 3 of Definition 1 are
equivalent to “there is no bad square” on 2 consecutive rows.The
notions of 0-block and squares are exploited to show our results. In
particular, the next lemma states an important property regarding
the number of even 0-blocks in two bit strings starting and ending in 1 and without bad
squares.

Lemma 1. Let a and b be two bit strings of lengthk ≥ 1 such thatab has no bad
square, anda1 = ak = b1 = bk = 1. Thenk is odd if and only if#a and#b have the
same parity.

To simplify the presentation, we postpone the proof of the lemma above after the
presentation of the classes of unsatisfiable instances. Thefirst class is introduced by the
next theorem.

Theorem 1. Let 〈G, I,O,W,E〉 be an instance of MG such thatI andO are adjacent
and not in a corner. If the edge withI and O has odd length, then the instance is
unsatisfiable.

Proof. Let m be the number of rows inG andGi the bit string associated to thei-th
row of the grid,1 ≤ i ≤ m. Assume thatI andO are in the first row, so that#G1

= 1.
SinceI andO are not located in a corner, the first and last bits ofGi are equal to 1,
1 ≤ i ≤ m, and so we can apply Lemma 1 to each pairGiGi+1, 1 ≤ i ≤ m − 1, and
conclude that each row ofG has an odd number of even 0-block. This is impossible
because the last row must be filled with only walls, that is,Gm = 1 · · · 1. ⊓⊔

Before introducing the second class of unsatisfiable instances we define a relaxed
problem that allows us to apply Lemma 1 in case entrance and exit are not adjacent.
The problem asks for a quasi-maze in anm × n grid, where a quasi-maze is defined as
follows.

Definition 5 (Quasi-maze).A quasi-maze is anm × n grid in which all the edges are
walls, each cell is empty or a wall, and there is no bad square in two consecutive rows.

A quasi-maze can be obtained from a maze if entrance and exit are not adjacent.

Lemma 2. From a maze in which entrance and exit are not adjacent it is always pos-
sible to construct a quasi-maze simply by putting a wall in the entrance and exit cells.

Proof. Since entrance and exit are not adjacent, they cannot be on a corner of the maze,
otherwise they are not reachable from the other empty cells.So entrance and exit have 3
adjacent cells. Two of these are on the edge, and so are walls.The remaining one must be
empty, in order to avoid an unreachable cell. Leta be the edge with entrance/exit, andb

the row or column adjacent toa. So, ifai is the entrance/exit cell, thenai−1 = ai+1 = 1

4

andbi = 0 holds. Thus, independently of the value ofai, we never have a bad square
in the two squares in whichai is involved. Now note that the other squares come from
a maze, and so they contain no bad square. ⊓⊔

The relaxed problem is unsatisfiable if bothm andn are even.

Theorem 2. There is no quasi-maze of sizem × n if bothm andn are even.

Proof. Let m be the number of rows inG andGi the bit string associated to thei-th
row of the grid,1 ≤ i ≤ m. Since all the edge cells of a quasi-maze are filled with
walls, the first and last bits ofGi are equal to 1,1 ≤ i ≤ m. So we can apply Lemma 1
to each pairGiGi+1, 1 ≤ i ≤ m − 1, and conclude that#G2k−1

is even, while#G2k

is odd,1 ≤ k ≤ m
2 . This is impossible because the last row must be filled with only

walls, that is,Gm = 1 · · · 1. ⊓⊔

The second class of unsatisfiable instances is then identified.

Corollary 1. Let 〈G, I,O,W,E〉 be an instance of MG such thatG is an even× even
grid. If I andO are not adjacent, then the instance is unsatisfiable.

Proof. From Lemma 2 and Theorem 2.

Proof of Lemma 1. We will prove Lemma 1 using strong induction by splitting the
strings at a 0-block of length at least 4. The next lemma assures that there is such a
0-block for strings of even length (greater than 2).

Lemma 3. Let a and b be two bit strings of lengthk ≥ 4 such thatab has no bad
square, anda1 = ak = b1 = bk = 1. If k is even, then there is a 0-block of length at
least 4 ina or b.

Proof. We assume thata has no 0-block of length at least 4 and use induction onk to
show thatb has a 0-block of length at least 4. Suppose first thatk = 4. In this case, at
least one ofa2 anda3 must be 1, in order to avoid a 0-block of length 4; we can safely
assume that it isa2 (a3 is symmetric). Thenb2 is 0 to avoid a 1-square. Now note that
b3 must be 0 because ifa3 is 0 we have to avoid a D-square, while fora3 = 1 a 1-square
must be avoided. Sob is a 0-block of length 4, and the claim is true. Suppose the claim
is true for all the pairs of bit strings of lengthk − 2 in order to show that it holds for a
pair of bit strings of lengthk. If b2 = b3 = 0 the claim is trivially true. Ifb2 = 1, then
a2 = 0 to avoid a 1-square, which impliesa3 = 1 to avoid a 0-block of length greater
than 3, which in turn impliesb3 = 1 to avoid a D-square; on the other hand, ifb2 = 0
andb3 = 1, thena3 = 1 holds for otherwise we would have a D-square or a 0-block of
length at least 4 in casea2 = 1 or 0, respectively. So, in both cases,a3 = b3 = 1. We
can then apply the induction hypothesis ona3 · · · an andb3 · · · bn and conclude that the
claim is true. ⊓⊔

Lemma 1 requires that both the bit strings start and end in 1. In order to apply the
inductive hypothesis after the strings are split at a 0-block (of length at least 4), we can
possibly add some bits to the string with the 0-block preserving the number of even
0-blocks.

5

Proposition 1. Leta be a bit string of lengthk ≥ 4 such thata1 = ak = 1. If ai · · · aj

is a 0-block,1 ≤ i < j ≤ k, such thatj − i + 1 ≥ 4, then#a1···ai
= #a1···ai+11, and

#aj ···ak
= #1aj−1···ak

.

Proof. Indeed, sinceai = aj = 1, no even 0-block is added toa1 · · · ai andaj · · · ak,
regardless the value ofai+1 andaj−1. ⊓⊔

To simplify the discussion we introduce a compact notation for the bit strings pre-
ceding and following a 0-block.

Definition 6 (Left and right sub-strings). Let a and b be two bit strings of length
k ≥ 4 such thatab has no bad square, anda1 = ak = b1 = bk = 1. Letai · · · aj be a
0-block,1 ≤ i < j ≤ k, such thatj − i + 1 ≥ 4. The left and right sub-strings ofa and
b w.r.t. ai · · · aj , denoteda≺i, b≺i anda≻j , b≻j , respectively, are defined as follows:

a≺i = a1 · · · ai

b≺i = b1 · · · bi
, if bi = 1

a≺i = a1 · · · ai+11
b≺i = b1 · · · bi+11

, if bi = 0

a≻j = aj · · · ak

b≻j = bj · · · bk
, if bj = 1

a≻j = 1aj−1 · · · ak

b≻j = 1bj−1 · · · bk
, if bj = 0

After applying induction w.r.t. a 0-block of one of the strings, we can determine the
number of even 0-blocks in the other string by summing the number of even 0-blocks
in its left and right sub-strings.

Proposition 2. Let a andb be two bit strings of lengthk ≥ 4 such thatab has no bad
square, anda1 = ak = b1 = bk = 1. Letai · · · aj be a 0-block,1 ≤ i < j ≤ k, such
that j − i + 1 ≥ 4. Then#b = #b≺i + #b≻j .

Proof. Sinceab has no 0-squares and no D-squares,b≺i andb≻j are in fact sub-strings
of b and the sub-string obtained fromb by removingb≺i andb≻j has no consecutive
0’s. ⊓⊔

We can now prove Lemma 1.

Proof (Lemma 1).We use strong induction on the length of the bit strings. Observe that
for k = 1 andk = 3 the claim is trivially true because#a = #b = 0, while k = 2
cannot hold becauseab has no 1-square. Fork = 4, at least one ofa2, a3, b2, b3 must
be 1, in order to avoid a 0-square; without loss of generalitywe can assume that it isa2.
Then from Lemma 3 we have thatb has at least one 0-block of length at least 4. This
implies thatb is a 0-block itself, and so the claim is true becauseb has even length.

Suppose the claim is true for all the pairs of bit strings of lengthk′, with k′ < k, in
order to prove that it holds for a pair of bit strings of lengthk.

Consider first the case in which#a = #b = 0. Assume, by contradiction, thatk is
even. We can apply Lemma 3 and conclude that there is a 0-blockof length at least 4 in
a or b; we may assume thatai · · · aj , 1 ≤ i < j ≤ k, is a 0-block such thatj − i + 1 is
at least 5 and odd. Sincek is even andj − i + 1 odd, exactly one ofi andk − j + 1 is
odd; we may assume that it isi by symmetry. We now apply the induction hypothesis
to a≺i andb≺i, and toa≻j andb≻j . From Proposition 1 and Proposition 2 we obtain

6

that#b≺i is even, while#b≻j is odd, and so#b is odd, contradicting the assumption
that#b = 0. We can conclude thatk is odd.

From now on we may assume that at least one of#a and#b is different from 0.
Again, we may assume that#a is greater than 0. Letai · · · aj , 1 ≤ i < j ≤ k, be the
first even 0-block ina. Then, since#a≺i = 0, by applying the induction hypothesis
to a≺i and b≺i, we conclude that#b≺i is even if and only ifi is odd. In addition,
#a≻j = #a − 1, and so, by applying the induction hypothesis toa≻j and b≻j , we
conclude that if#a≻i is even,#b≻j is even if and only ifk − j + 1 is odd, while for
#a≻i odd,#b≻j is even if and only ifk− j +1 is even. Moreover,k− j +1 depends on
k andi, and sok − j + 1 is even if and only ifk andi have the same parity. Then there
are only eight cases to be considered, regarding the parities ofk, i and#a, as reported
in Table 1.

Table 1.Parities.

k i #a k − j + 1 #a≻j #b≺i #b≻j #b

even even even even odd odd even odd
even even odd even even odd odd even
even odd even odd odd even odd odd
even odd odd odd even even even even
odd even even odd odd odd odd even
odd even odd odd even odd even odd
odd odd even even odd even even even
odd odd odd even even even odd odd

The columns following the first double vertical line are obtained from the preceding
columns by following the previous observations:

– k − j + 1 is even if and only ifk andi have the same parity;
– #a≻j is obtained by “switching” the parity of#a;
– #b≺i is obtained by “switching” the parity ofi;
– #b≻j is odd if and only ifk − j + 1 and#a≻j have the same parity;
– #b is obtained by “summing” the parities of#b≺i and#b≻j .

The first four rows of Table 1 show that the claim is true fork even, that is#a and
#b have different parities, while the last four rows prove the claim for k odd, that is#a

and#b have the same parity. ⊓⊔

Conclusion.We proved that the Maze Generation problem isNP–complete. We also
identified two relevant classes of unsatisfiable instances.Recognizing instances belong-
ing to these classes is easy, and so a solver can use the presented results in practice.
Moreover, the proof ofNP–completeness satisfies the reachability condition without
using it, so proving theNP–completeness of MG also if condition (5) is absent. Fi-
nally, Theorem 1 holds regardless of conditions (4) and (5),while Lemma 2, and so
Theorem 2 and Corollary 1, holds independently of condition(4).

Acknowledgments.Thanks to John van Bon and Wolfgang Faber for helping me in
proving and presenting the results reported in this paper.

7

