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Abstract. TheMaze Generatioproblem has been presented as a benchmark for
the Second Answer Set Programming Competition. We prove that theeprab
NP-complete and identify relevant classes of unsatisfiable instances.

TheMaze GeneratioMG) problem has been presented as a benchmark for the Second
Answer Set Programming (ASP) Competittoihe problem has been placed in tiE
category, which contains problemshi¥ for which an algorithm ir is unknown. Here,

we prove that the problem is in fact complete for the compjesiassNP. In addition,

we identify classes of unsatisfiable instances that areesftiy recognizable. We start

the discussion by defining a maze.

Definition 1 (Maze). A maze is ann x n grid, in which each cell is empty or a wall
and two distinct cells on the edges are indicated as entramgkexit, satisfying the
following conditions: (1) Each cell in an edge of the grid isvall, except entrance and
exit that are empty; (2) There is b x 2 square of empty cells or walls; (3) If two
walls are on a diagonal of @ x 2 square, then not both of their common neighbors are
empty; (4) No wall is completely surrounded by empty celi¥;There is a path from
the entrance to every empty cell.

The MG problem is the decision problem concerning the pdigito build a maze
by extending a partially fixed grid.

Definition 2 (Maze Generation problem).An instance of the MG problem is a struc-
ture of the formG, I, O, W, E), whereG is a set of cells (pairs of integers) representing
agrid, I andO are two distinct cells of~, W and F are subsets aff. The MG problem

is then defined as follows: Given a structu@, I, O, W, E), is there a maze of the
same size off such thatl and O are entrance and exit, respectively, each celliinis

a wall and each cell inF is empty?

An instance of MG is represented i 0]
Fig. 1. In the picture, filled cells belong to= ||| |

W, while empty cells are if. Entrance and ====..=
exit are marked with' and O, respectively, [ | ||
Pectvey: B | 7]

while undefined cells (cells not i/ U F)
are indicated by a question mark (?). Thisd_L2|_ & | | |

is ayesinstance, as proved by the maze i _ )
Fia. 2 Fig.1. An instance of Fig.2. A maze for the in-
9.2 Maze Generation. stance in Fig. 1.
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A non-deterministic algorithm for MG is “Guess a value{iampty, wall} for each
undefined cell and check that all the conditions of a maze atisfied”. The check
can be performed in linear time, and so MG belongd't In order to prove th&P—
completeness of MG, we present a reduction from the Satilifjgiroblem (SAT). The
proof is similar to the one presented for Minesweép@e show how to represent a
logical circuit with blocks of cells of an MG instance, progithat any boolean formula
F can be mapped to an instan@, I, O, W, E)r of MG such thatG, 1,0, W, E)p is
ayesinstance if and only i is satisfiable. The blocks required for representing a logi-

cal circuit by an instance of MG ggzT 712
are shown in Fig. 3-9. In the pic- T|T
tures, filled cells belong t&, while  F=—"
empty cells belong t&. The other =] [=

cells are undefined and marked withrig.3.wire. ~ Fig.4. Termi-  Fig.5.Filler. ~ Fig. 6. Splitter.
the literal they represent, whete nated wire.
is the complement of:. For a cell =] [=]
marked with a literal, we say that (TT1 1]
empty corresponds to false and wall
to true. Each block is now briefly
described. The block in Fig. 3 rep
resents a wire, while the block in
Fig. 4 is used to terminate a wire
Unused blocks are filled with the| | |
block in Fig. 5, while a signal is split
with the block in Fig. 6. Blocks are
connected by one of the connecto

Fig. 7. Blocks connectors.
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. . : Fig. 8.OR gate. Fig.9.NOT gate.
is used for propagating literal values 9 g ¢ 9

between blocks, and the empty connector in all other cades.sihgle cell between
four connected blocks is filled with an empty cell. An OR gaslown in Fig. 8. In
this block, the value of the undefined cells is determinedhieycells representing, y
andz in the left-middle part of the block. If empty is assigned twhox andy, thenz
must be wall in order to avoid an isolated wall. On the othercha empty is assigned
to the cells marked withy, then bothz andy must be wall to avoid an isolated wall.
Soz = T A, thusz = 2 V y holds. Note that an OR gate is ah x 11 block, using
the same space as combining féux 5 blocks. A NOT gate is shown in Fig. 9. In this
block, the value of all the undefined cells is fixed by the cellthe vertical center of
the block. Consider the right-middle part of the block. Ifpggnis assigned to the cells
marked withz, theny must be wall in order to avoid an isolated wall. The same holds
for z andy on the left-middle part of the blockk empty impliesy wall. Theny = =
holds. Since the signal is propagated from the first to thiertag, a NOT gate can be
combined with a splitter to obtain a bent wire. Note that a Nfafe is al 7 x 11 block,
using the same space as combiningsié blocks. In all the presented blocks, with the
exception of the splitter, there is a path connecting eaatopampty cells, for any lit-
eral assignment. We can then avoid isolated empty cellsthgtahg wires/terminators

2 Richard Kaye. Minesweeper iP—completeMath. Intelligencey 2 (22): 9-15, 2000.



to all the edges with literals of any used splitter. Morepgance a wire ends in a ter-
minator (Fig. 4) or in a gate (Fig. 8 and 9), cells marked wiith $ame literal must be
either all empty or all wall. .

Instances of MG are planar, while circuits may D
include crossed wires (which are non-planar), so T
we have to find a suitable planar representation of _ Di
these. Assuming the availability of an XOR gatg g, €055 e vires wi three XOR
crossed wires can be simulated by three splitters
and three XORs, as shown in Figure®1The XOR v @y
gate itself can be simulated in the plane by OR an
NOT gates, as shown in Fig. 11. Since any boolean
function can be represented by a combination ©f- 11.Making an XOR gate with OR and NOT
OR and NOT gates, these building blocks are sufe®
ficient for building any logical gate or circuit. For
example, the formula:(—z V —y) is equivalent to o
an AND gate. L L[=]e

Given a boolean formul&@', we mapF’ into an T—_E ]
instance of MG by building a logical circuit like ]
the one in Fig- 12, which fepfesem(&$1 A x2) A Fig.12. A Maze Generation circuit for
(z1 V x3)). In the picture, lines are wires, crossed—z1 A z2) A (z1 V z3)).
lines are cross-overs, filled-in circles are splitters,dmare gates and square brackets
are terminators. The terminator marked with T fixes the sigaue (by fixing to wall
the cell marked withz in the third row of the block in Fig. 4). The circuit can be il
by a depth-first visit of the tree structure of the booleamfigla. For each node, after
all its children have been visited, a new gate is introducetithe wires of the children
are split and connected to the gate. Each element of suchutaan be built with an
N x N block, for some fixedV not depending on the boolean formula, and then all
the circuit has siz¢ Nn)?, wheren is the number of symbols in the boolean formula.
The logical circuit can be then built in polynomial time. Weneplete the construction
by putting the circuit inside a border of empty cells (for nenting all blocks to the
entrance), surrounded by a border of undefined cells. In dge ef the undefined cells,
we arbitrarily choose two non-adjacent non-corner cefisegenting entrance and exit.

Maze Generation and Unsatisfiability.We now associate a bit string to each row of
a maze, where 1 stays for a wall and 0 for an empty cell.if a bit string of length
k > 1, a; denotes the-th bitof ¢, 1 < i < k.

Definition 3 (0-block). A 0-block of lengthk > 3 is a bit stringa of lengthk, where
a1 =ar = landay, = --- = ar_1 = 0. If k£ is even, then the 0-block will be called
an even 0-block, otherwise an odd 0-block. Given a bit sthirigt the number oéven
0-blocksin b be denoted by#,,.

An even 0-block is given in Fig. 13. Properties 2 and 3 of a mage [ [ | W
deal with2 x 2 squares of cells (see Fig. 14). We then introduce a fe¥g. 13. An even 0-
mal definition of ¢ x 2) square in terms of bit strings. block.

3 Leslie M. Goldschlager. The monotone and planar circuit value probieebg space com-
plete for P.ACM SIGACT News (2): 25-29, 1977.



Definition 4 (Squares).Let a and b be two bit strings of lengtlk > 2. Then in the

pair ab we identifyk — 1 squares:[a;, a;y+1,bi,0i11], 1 < i < k — 1. We define a
“bad square” as a square in which; = b;,1 anda; 1 = b;. A bad square is called a
0-square ifa; = a;41 = 0, a 1-square ifs; = a;4+1 = 1, a D-square ifa; # a;y1.

Given the definition above, condition 2 and 3 of Definition & ar
equivalent to “there is no bad square” on 2 consecutive raes. H} . E
notions of 0-block and squares are exploited to show outteesn  Fig. 14. A 0-square, a 1-
particular, the next lemma states an important propertgroigg Sauar and a D-squares.
the number of even 0-blocks in two bit strings starting andiregpin 1 and without bad
squares.

Lemma 1. Let ¢ and b be two bit strings of lengttk: > 1 such thateb has no bad
square, andi; = ax = by = by = 1. Thenk is odd if and only it#, and#, have the
same parity.

To simplify the presentation, we postpone the proof of tmentea above after the
presentation of the classes of unsatisfiable instancedirshelass is introduced by the
next theorem.

Theorem 1. Let(G, I, O, W, E) be an instance of MG such thaand O are adjacent
and not in a corner. If the edge with and O has odd length, then the instance is
unsatisfiable.

Proof. Let m be the number of rows it¥ andG; the bit string associated to thieh
row of the grid,1 < i < m. Assume thaf andO are in the first row, so thats, = 1.
Sincel andO are not located in a corner, the first and last bitggfare equal to 1,

1 <i < m, and so we can apply Lemma 1 to each @aitz;;,1 <i <m — 1, and
conclude that each row @ has an odd number of even 0-block. This is impossible
because the last row must be filled with only walls, thatds, = 1-- - 1. a

Before introducing the second class of unsatisfiable itstswe define a relaxed
problem that allows us to apply Lemma 1 in case entrance am@mexnot adjacent.
The problem asks for a quasi-maze inranx n grid, where a quasi-maze is defined as
follows.

Definition 5 (Quasi-maze)A quasi-maze is am x n grid in which all the edges are
walls, each cell is empty or a wall, and there is no bad squarsvio consecutive rows.

A guasi-maze can be obtained from a maze if entrance andrexitoh adjacent.

Lemma 2. From a maze in which entrance and exit are not adjacent itvgagk pos-
sible to construct a quasi-maze simply by putting a wall eméhtrance and exit cells.

Proof. Since entrance and exit are not adjacent, they cannot beamerof the maze,
otherwise they are not reachable from the other empty @&dl€ntrance and exit have 3
adjacent cells. Two of these are on the edge, and so are Wadlsemaining one must be
empty, in order to avoid an unreachable cell. Léte the edge with entrance/exit, and
the row or column adjacent ta So, ifa; is the entrance/exit cell, then_; = a;11 =1



andb; = 0 holds. Thus, independently of the valueagf we never have a bad square
in the two squares in whict; is involved. Now note that the other squares come from
a maze, and so they contain no bad square. ad

The relaxed problem is unsatisfiable if bathandn are even.
Theorem 2. There is no quasi-maze of sizex n if bothm andn are even.

Proof. Let m be the number of rows it andG; the bit string associated to thieh
row of the grid,1 < ¢ < m. Since all the edge cells of a quasi-maze are filled with
walls, the first and last bits @¥; are equal to 11 < i < m. So we can apply Lemma 1
to each pailG;G;+1, 1 <i < m — 1, and conclude that,, , is even, while#¢,,
isodd,1 < k£ < . This is impossible because the last row must be filled witly on
walls, thatisG,,, =1---1. |

The second class of unsatisfiable instances is then idehtifie

Corollary 1. Let{(G,I,0,W, E) be an instance of MG such th&tis an evenx even
grid. If I and O are not adjacent, then the instance is unsatisfiable.

Proof. From Lemma 2 and Theorem 2.

Proof of Lemma 1. We will prove Lemma 1 using strong induction by splitting the
strings at a 0-block of length at least 4. The next lemma asstirat there is such a
0-block for strings of even length (greater than 2).

Lemma 3. Let ¢ and b be two bit strings of lengttt > 4 such thatab has no bad
square, andy; = ay = by = by, = 1. If k is even, then there is a 0-block of length at
least 4 ina or b.

Proof. We assume that has no 0-block of length at least 4 and use inductiork oo
show thath has a 0-block of length at least 4. Suppose first that 4. In this case, at
least one ofi; andaz must be 1, in order to avoid a 0-block of length 4; we can safely
assume that it iss (as is symmetric). Ther, is O to avoid a 1-square. Now note that
bz must be 0 becausedf; is 0 we have to avoid a D-square, while fgr= 1 a 1-square
must be avoided. Sbis a 0-block of length 4, and the claim is true. Suppose thecla
is true for all the pairs of bit strings of length— 2 in order to show that it holds for a
pair of bit strings of lengtlt. If by = b3 = 0 the claim is trivially true. Ifb; = 1, then

ae = 0 to avoid a 1-square, which implies = 1 to avoid a 0-block of length greater
than 3, which in turn implies; = 1 to avoid a D-square; on the other handjdf= 0
andbs = 1, thenaz = 1 holds for otherwise we would have a D-square or a 0-block of
length at least 4 in case, = 1 or 0, respectively. So, in both cases, = b3 = 1. We
can then apply the induction hypothesisan - - a,, andbs - - - b,, and conclude that the
claim is true. O

Lemma 1 requires that both the bit strings start and end in drder to apply the
inductive hypothesis after the strings are split at a 04blof length at least 4), we can
possibly add some bits to the string with the 0-block preisgrthe number of even
0-blocks.



Proposition 1. Leta be a bit string of lengttk > 4 such thaia; = ap =1.1fa;--- a;
is a0-block,l <i < j <k,suchthati —i+ 1> 4,then#,,..q;, = #4,-..a,,,1, and
#aj---ak = #laj71~--ak'

Proof. Indeed, since; = a; = 1, no even 0-block is added tg - - - a; anda; - - - ax,
regardless the value af; anda;_;. a

To simplify the discussion we introduce a compact notatmrtlie bit strings pre-
ceding and following a 0-block.

Definition 6 (Left and right sub-strings). Let a and b be two bit strings of length
k > 4 such thaieb has no bad square, antf = a; = b1 = b, = 1. Leta;---a; bea
0-block,1 < i < j <k, suchthatj — i+ 1 > 4. The left and right sub-strings efand
bw.rt.a; - - - aj, denotedi =%, b=* anda™7, b>7, respectively, are defined as follows:

a<i:a1..-ai . o a>'J:aJak . .
b<1:blbl 7|fbi—1 b}j:bj"'bk ,|fbj—1
<i _ J — N

o= ol ey o e = e an Gy g

b=t =by b1’ b =1bj_1 by

After applying induction w.r.t. a 0-block of one of the sty we can determine the
number of even 0-blocks in the other string by summing the remof even 0-blocks
in its left and right sub-strings.

Proposition 2. Leta andb be two bit strings of lengtk > 4 such thatab has no bad
square, ant; = ap = by = by = 1. Leta; ---a; be a 0-block]l < i < j <k, such
thatj — i+ 1> 4. Then#, = #p<i + #y-i.

Proof. Sinceab has no 0-squares and no D-squabe$,andb™7 are in fact sub-strings
of b and the sub-string obtained frobrby removingb=¢ andb™7 has no consecutive
O’s. O

We can now prove Lemma 1.

Proof (Lemma 1)We use strong induction on the length of the bit strings. @lesthat
for k = 1 andk = 3 the claim is trivially true becaus¢, = #;, = 0, while k = 2
cannot hold becaus#& has no 1-square. Fér = 4, at least one ofiy, a3, b2, b3 must
be 1, in order to avoid a 0-square; without loss of generaléycan assume that itis.
Then from Lemma 3 we have thathas at least one 0-block of length at least 4. This
implies thatb is a 0-block itself, and so the claim is true becalibas even length.
Suppose the claim is true for all the pairs of bit strings afjiga &/, with &’ < k&, in
order to prove that it holds for a pair of bit strings of length
Consider first the case in which, = #, = 0. Assume, by contradiction, thatis
even. We can apply Lemma 3 and conclude that there is a 0-bfdekgth at least 4 in
a orb; we may assume that - --a;, 1 <i < j <k, isaO0-block such that— i+ 1is
at least 5 and odd. Sinéeis even andi — i + 1 odd, exactly one of andk — j + 1is
odd; we may assume that itidy symmetry. We now apply the induction hypothesis
to «=* andb~?, and toa™7 andb™7. From Proposition 1 and Proposition 2 we obtain



that#;,: is even, while#,., is odd, and s@, is odd, contradicting the assumption
that#, = 0. We can conclude thdtis odd.

From now on we may assume that at least onétgfand#, is different from 0.
Again, we may assume that, is greater than 0. Let; ---a;, 1 < i < j < k, be the
first even O-block inu. Then, since#,<: = 0, by applying the induction hypothesis
to =" and b=, we conclude that,~: is even if and only ifi is odd. In addition,
#.-i = #4 — 1, and so, by applying the induction hypothesisatd and b7, we
conclude that if#,-: is even#,.-; is even if and only ift — j + 1 is odd, while for
#q-: 0dd,#,-; is even if and only ifc — j + 1 is even. Moreovelk — j + 1 depends on
k andsi, and sok — j + 1 is even if and only ifc andi have the same parity. Then there

are only eight cases to be considered, regarding the [zaoitie, : and+#,, as reported
in Table 1.

Table 1. Parities.

k0 Fa ||k — 7+ UFHai |#Fo<i|FHo-i|| o
even even evi even | odd | odd | even||odd
even even odd even |even| odd| odd |leven
even odd even odd odd | even| odd || odd
even odd od¢g odd even| even| even|jeven
odd even even odd odd | odd | odd ||even
odd even odd odd even| odd | even|| odd
odd odd evefj even | odd |even|even|leven
odd odd odd, even |even|even| odd |/ odd

The columns following the first double vertical line are obéal from the preceding
columns by following the previous observations:

— k — 5+ lis even if and only ift and: have the same parity;

— #,-; is obtained by “switching” the parity cf,;

— #<: IS obtained by “switching” the parity af

— #-5 isodd if and only ifk — j + 1 and+#,-; have the same parity;
— #y is obtained by “summing” the parities éf,<: and#;-;.

The first four rows of Table 1 show that the claim is true fagven, that is#, and
# have different parities, while the last four rows prove ttaéra for &£ odd, that is#,
and+, have the same parity. ad

Conclusion. We proved that the Maze Generation problenNiR—complete. We also
identified two relevant classes of unsatisfiable instariResognizing instances belong-
ing to these classes is easy, and so a solver can use thetptesesults in practice.
Moreover, the proof oNP—completeness satisfies the reachability condition withou
using it, so proving the&NP—completeness of MG also if condition (5) is absent. Fi-
nally, Theorem 1 holds regardless of conditions (4) andv#iile Lemma 2, and so
Theorem 2 and Corollary 1, holds independently of condi(i®n
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