
Università della Calabria
Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica

xxiii ciclo

Settore Disciplinare INF/01 – INFORMATICA

Tesi di Dottorato

Dynamic Magic Sets

Mario Alviano

Supervisori Coordinatore

Prof. Wolfgang Faber Prof. Nicola Leone

Prof. Nicola Leone

A.A. 2009 – 2010

Dedicated to my parents,
Vincenzo and Natalina,
for their loving support

Acknowledgments

I am thankful to my supervisor Wolfgang Faber, whose encouragement, guidance
and support have made possible to achieve the results described in this thesis. It
is an honor for me to be his student and I am indebted to him for his meticulous
proofreading of this thesis. I am also thankful to my supervisor Nicola Leone for
his always interesting insights that contributed to achieve the results presented
in this thesis. And I am grateful to Thomas Eiter for having kindly hosted me
at the Institute of Information Systems of Vienna University of Technology.

I would like to thank also all the colleagues who made these three years
pleasant, especially Lucantonio Ghionna and Marco Sirianni, who shared the
office with me, and Annamaria Bria and Marco Manna, with whom I attended
the ESSLLI summer school in Bordeaux.

Finally, I owe my deepest gratitude to my parents for their support, and to
my brother, Leonardo, for keeping the threat of terrorism away from Italy.

This research has been partly carried out within the PIA project of DLVSYS-
TEM s.r.l., supported by Regione Calabria and EU under POR Calabria FESR
2007-2013, and within the PRIN project LoDeN supported by MIUR.

i

Abstract

Disjunctive Datalog with stable model semantics is a rule–based language for
knowledge representation and common sense reasoning that also allows to use
queries for checking the presence of specific atoms in stable models. Expressive-
ness is a strength of the language, which indeed captures the second level of the
polynomial hierarchy. However, because of this high expressive power, evalu-
ating Disjunctive Datalog programs and queries is inherently nondeterministic.
In fact, Disjunctive Datalog computations are typically characterized by two
distinct phases. The first phase, referred to as program instantiation, is deter-
ministic and associates input programs with equivalent ground programs; only
deterministic knowledge is inferred in this phase. The second phase, referred
to as stable model search, is nondeterministic and computes stable models of
instantiated programs.

Many query optimization techniques have been proposed in the literature.
Among them are Magic Sets, originally introduced for standard Datalog pro-
grams. Program instantiation is sufficient for computing the semantics of stan-
dard Datalog programs because only deterministic knowledge can be represented
in this case. For this reason, the original Magic Set technique is only focused on
the optimization of program instantiation. Dynamic Magic Sets are an exten-
sion of the technique that takes into account the nondeterministic knowledge
encoded into Disjunctive Datalog programs. In fact, in addition to the standard
optimization of program instantiation, Dynamic Magic Sets provide further op-
timization potential to the subsequent stable model search.

In this thesis, Dynamic Magic Sets are proved to be sound and complete
for stratified and super–coherent programs. To this end, a strong relationship
between magic atoms and unfounded sets is highlighted. Dynamic Magic Sets
are also used for proving decidability of reasoning for a class of programs with
uninterpreted function symbols. In particular, it is shown that the application
of Dynamic Magic Sets to finitely recursive queries generates finitely ground
programs, for which decidability of reasoning has been established in the liter-
ature.

Dynamic Magic Sets have been implemented in a prototype extending DLV,
a state–of–the–art system for Disjunctive Datalog programs and queries. The
effectiveness of Dynamic Magic Sets has been assessed by experimenting with
the prototype system. Experimental results confirm that Dynamic Magic Sets
can provide significant, possibly exponential, performance gains.

iii

Sommario

Datalog disgiuntivo con semantica dei modelli stabili è un linguaggio a regole
per la rappresentazione della conoscenza e il ragionamento di senso comune. In
Datalog disgiuntivo la presenza di specifici atomi nei modelli stabili di un pro-
gramma può essere verificata facendo uso di query. Uno dei punti di forza del
linguaggio è la sua alta espressività: tutte le proprietà nel secondo livello della
gerarchia polinomiale possono infatti essere rappresentate in Datalog disgiunti-
vo. Tuttavia, a causa di questa alta espressività, la valutazione di programmi
e query in Datalog disgiuntivo è inerentemente non–deterministica. In Datalog
disgiuntivo, infatti, le computazioni sono tipicamente caratterizzate da due fasi
distinte. Nella prima fase, che è denominata istanziazione ed è deterministica, i
programmi in input vengono associati con programmi equivalenti senza variabili;
solo conoscenza deterministica può essere inferita in questa fase. I modelli stabili
dei programmi istanziati vengono quindi computati durante la seconda fase, che
è denominata ricerca dei modelli stabili ed è tipicamente non–deterministica.

Molte tecniche per l’ottimizzazione di query in programmazione logica sono
state proposte in letteratura. Fra queste, una delle più note è la tecnica Magic
Set, originariamente introdotta per programmi Datalog standard. Poiché solo
conoscenza deterministica può essere rappresentata in programmi Datalog stan-
dard, i modelli stabili di questi programmi possono essere computati durante
la fase di istanziazione. Dynamic Magic Set è un’estensione della tecnica che si
avvale della natura non–deterministica di Datalog disgiuntivo per ottimizzare
anche la successiva fase di ricerca dei modelli stabili.

In questa tesi, la tecnica Dynamic Magic Set è dimostrata essere corretta
e completa per programmi stratificati e super–coerenti. Nel provare questi ri-
sultati viene evidenziata una interessante relazione fra atomi magic e insiemi
infondati. Inoltre, la tecnica Dynamic Magic Set viene utilizzata per dimostra-
re la decidibilità della valutazione per una classe di programmi con simboli di
funzione non–interpretati. Più precisamente, nella tesi viene dimostrato che
l’applicazione di Dynamic Magic Set su query finitamente ricorsive produce
programmi finitamente istanziabili, per i quali la decidibilità della valutazione
è stata stabilita in letteratura. Inoltre, l’efficacia della tecnica Dynamic Magic
Set è stata valuta sperimentalmente. A questo scopo, è stato implementato un
prototipo estendendo DLV, un noto sistema per Datalog disgiuntivo. I risultati
della sperimentazione confermano che la tecnica Dynamic Magic Set può fornire
guadagni prestazionali esponenziali.

v

Contents

1 Introduction 1

2 Disjunctive Datalog 5
2.1 Syntax . 5

2.1.1 Disjunctive Datalog Programs 5
2.1.2 Syntactically Restricted Classes 7

2.2 Semantics . 9
2.2.1 Stable Models . 9
2.2.2 Query Answering . 12

2.3 Bottom–Up Computations . 14
2.4 Expressive Power . 17
2.5 Knowledge Representation and Reasoning 18

3 Magic Set Techniques 23
3.1 Magic Sets for Datalog . 23

3.1.1 Sideways Information Passing 24
3.1.2 Classic Magic Sets . 27

3.2 Magic Sets for Disjunctive Datalog 33
3.2.1 SIPS for Disjunctive Datalog Rules 33
3.2.2 Static Magic Sets . 37
3.2.3 Dynamic Magic Sets . 45
3.2.4 Query Equivalence Theorem 51

3.3 Dynamic Magic Sets and Super–Coherent Disjunctive Datalog
Programs . 65
3.3.1 Super–Coherent Disjunctive Datalog Programs 66
3.3.2 Running Example . 66
3.3.3 Query Equivalence Theorem 70

4 Application: Decidability for Datalog with Functions 73
4.1 Datalog with Function Symbols 74

4.1.1 Preliminaries . 74
4.1.2 Finitely Ground Programs 75
4.1.3 Finitely Recursive Queries and Programs 77

4.2 Dynamic Magic Sets for Finitely Recursive Queries 78
4.2.1 The DMS Algorithm Revised 78
4.2.2 Query Equivalence Theorem 80

4.3 Decidability Theorem . 82
4.4 Expressive Power of Finitely Recursive Programs 84

vii

viii CONTENTS

5 Implementation and Experiments 89
5.1 System Architecture . 89
5.2 Compared Methods, Benchmark Problems and Data 90
5.3 Results and Discussion . 95

6 Application to Data Integration 103
6.1 Data Integration Systems . 103
6.2 Consistent Query Answering . 104
6.3 Experimental Results . 107

7 Related Work 119

8 Conclusion 121

Bibliography 123

List of Tables

5.1 Average execution time for Strategic Companies 97
5.2 Average execution time for Simple Path 98
5.3 Average execution time for Related 99
5.4 Average execution time for Conformant Plan Checking 100
5.5 Average execution time for Related — Super–Coherent Encoding 101
5.6 Average execution time for Conformant Plan Checking — Super–

Coherent Encoding . 102

6.1 Average execution time for Query 1 — INFOMIX benchmark . . 109
6.2 Average execution time for Query 2 — INFOMIX benchmark . . 111
6.3 Average execution time for Query 3 — INFOMIX benchmark . . 113
6.4 Average execution time for Query 4 — INFOMIX benchmark . . 115
6.5 Average execution time for Query 5 — INFOMIX benchmark . . 117

ix

List of Figures

2.1 Containment relationships between Datalog∨,¬ and its subclasses 8
2.2 Dependency graphs for programs from Examples 2.1.4 and 2.1.7 9
2.3 ProgramInstantiation algorithm 15
2.4 StableModels algorithm . 16
2.5 QueryAnswering algorithm . 17

3.1 Graphical representation of EDB F1 for program P3 24
3.2 Classic Magic Sets algorithm for Datalog programs 28
3.3 ProcessQuery function for Classic Magic Sets 29
3.4 Adorn function for Classic Magic Sets 30
3.5 Generate function for Classic Magic Sets 31
3.6 Modify function for Classic Magic Sets 32
3.7 Graphical representation of EDB F2 for program P5 35
3.8 Static Magic Sets algorithm for Disjunctive Datalog programs . . 39
3.9 ProcessQuery function for Static and Dynamic Magic Sets 40
3.10 Adorn function for Static and Dynamic Magic Sets 41
3.11 Generate function for Static Magic Sets 42
3.12 Modify function for Static Magic Sets 44
3.13 Dynamic Magic Sets algorithm for Disjunctive Datalog programs 46
3.14 Generate function for Dynamic Magic Sets 47
3.15 Modify function for Dynamic Magic Sets 48

4.1 Dynamic Magic Sets algorithm for finitely recursive queries . . . 79

5.1 DLV prototype system architecture 90
5.2 Structure of Simple Path and Related instances 92
5.3 Structure of Conformant Plan Checking instances 94
5.4 Average execution time for Strategic Companies 97
5.5 Average execution time for Simple Path 98
5.6 Average execution time for Related 99
5.7 Average execution time for Conformant Plan Checking 100
5.8 Average execution time for Related — Super–Coherent Encoding 101
5.9 Average execution time for Conformant Plan Checking — Super–

Coherent Encoding . 102

6.1 Encoding of Query 1 — INFOMIX benchmark 108
6.2 Average execution time for Query 1 — INFOMIX benchmark . . 109
6.3 Encoding of Query 2 — INFOMIX benchmark 110

xi

xii LIST OF FIGURES

6.4 Average execution time for Query 2 — INFOMIX benchmark . . 111
6.5 Encoding of Query 3 — INFOMIX benchmark 112
6.6 Average execution time for Query 3 — INFOMIX benchmark . . 113
6.7 Encoding of Query 4 — INFOMIX benchmark 114
6.8 Average execution time for Query 4 — INFOMIX benchmark . . 115
6.9 Encoding of Query 5 — INFOMIX benchmark 116
6.10 Average execution time for Query 5 — INFOMIX benchmark . . 117

Chapter 1

Introduction

Datalog [64] and its extensions (most notably negation and disjunction, see for
instance [23, 58, 53, 52, 33, 66, 50]) are rule–based languages for knowledge rep-
resentation and common sense reasoning originally introduced in the context of
deductive databases [57]. In particular, Disjunctive Datalog programs [50] are
characterized by the presence of disjunction in rule heads and nonmonotonic
negation in bodies. In this setting the language allows for expressing all prop-
erties in the second level of the polynomial hierarchy [26], that is, all problems
belonging to the complexity class ΣP

2 (= NPNP). The high expressive power of
Disjunctive Datalog, which is guaranteed also if recursive definitions involving
negation are forbidden, allows for modeling problems that cannot be polyno-
mially encoded as instances of the satisfiability problem (unless the polynomial
hierarchy collapses).

The semantics of a (Disjunctive) Datalog program is defined by the set of
its stable models [33, 47], that is, minimal models of the program which sat-
isfy an additional condition specifically designed for nonmonotonic negation.
Stable models are usually defined for ground programs, i.e., programs without
variables. The semantics of non–ground programs is then given by the stable
models of associated, equivalent ground programs. For this reason, many sys-
tems for computing stable models of Disjunctive Datalog programs implement
two distinct phases, namely program instantiation and stable model search. Pro-
gram instantiation usually consists of a bottom–up algorithm which iteratively
derives new rules by matching bodies with atoms encountered in previous itera-
tions. Stable model search, instead, is generally implemented by a backtracking
algorithm which explores the search space efficiently. Among the systems adopt-
ing these two distinct phases are DLV [46], GnT [39], Cmodels [48], and ClaspD
[25].

The framework of Disjunctive Datalog also supports query answering for re-
trieving all substitution answers matching a given query. Answers to a query
have to be witnessed by some or all stable models of the input program, depend-
ing on whether brave or cautious reasoning is adopted. However, even if query
answering depends on stable models, their complete computation is often not
required. In fact, substantial parts of the stable models could be irrelevant for
answering a query. For this reason, sometimes queries over Datalog programs
are better handled by top–down strategies, similar to those adopted by Prolog
systems [59, 43]. A typical top–down strategy looks for a rule from which some

1

2 CHAPTER 1. INTRODUCTION

answers to the input query might be derived; if a rule of this kind is found,
its body atoms are considered as subqueries and the procedure is iterated. In
this way, a top–down evaluation of a query over a standard Datalog program
only considers parts of the program which are relevant for answering the query.
However, in contrast to bottom–up computations, termination is not guaran-
teed per se in top–down evaluations, and extra effort is required for avoiding
loops in case of recursive definitions.

Magic Sets [64, 7, 10], one of the best known technique in logic programming
for the optimization of query answering, aim at combining the benefits of the
two strategies. In fact, given a program and a query, the Magic Set technique
rewrites the program in order to simulate a top–down evaluation of the query
by means of a bottom–up computation of the stable models of the rewritten
program. This feature of Magic Sets is mostly evident in the original technique,
referred to as Classic Magic Sets in this thesis. Classic Magic Sets have been
defined for standard Datalog programs, where disjunction and nonmonotonic
negation are not allowed. Under these restrictions, the semantics of a program
is given by exactly one stable model, which contains all and only deterministic
consequences of the program. Therefore, the unique stable model of a standard
Datalog program can be completely computed during program instantiation,
and only this model has to be checked for answering a given query. In this
setting, Classic Magic Sets introduce rules defining additional atoms, named
magic atoms, in order to identify relevant atoms for answering the input query.
Relevant atoms are those atoms which are reachable by a top–down evaluation
of the query. Program instantiation is then limited by adding magic atoms in
the bodies of the original rules. In fact, only rules which would be considered in
a top–down evaluation of the query are produced in this case. It is important
to observe that magic atoms have deterministic definitions according to Classic
Magic Sets, and can be completely determined during program instantiation.

Extending Classic Magic Sets to Disjunctive Datalog, the objective of the
work presented in this thesis, has to face with additional difficulties. A first
difficulty is that the semantics of Disjunctive Datalog programs is given by
many stable models in general. A second difficulty, which is eventually due to
the first, is extending the notion of relevant atoms: Is an atom still relevant when
it is reachable in a hypothetical top–down evaluation of the input query? Or
should an ad–hoc definition be introduced? The problem of extending Classic
Magic Sets to Disjunctive Datalog has been first addressed in [37], where the
standard notion of relevant atoms has been adopted. As a consequence of this
choice, when the technique of [37] is applied to a Disjunctive Datalog program,
magic atoms represent a sizable superset of all the atoms required for answering
the input query. Moreover, these magic atoms have deterministic definitions
and can be completely determined during program instantiation. It follows
that only program instantiation is directly optimized by the technique, and no
further optimization potential is provided to the subsequent stable model search.
For this reason, the technique of [37] is referred to as Static Magic Sets in this
thesis.

Dynamic Magic Sets [2] are another proposal for extending Classic Magic
Sets to Disjunctive Datalog. In particular, Dynamic Magic Sets are the main
topic of the work reported in this thesis. What distinguishes Dynamic Magic
Sets from all previously proposed techniques is the notion of relevant atoms.
Indeed, while Classic Magic Sets and Static Magic Sets define relevant atoms

3

as the atoms reachable by a hypothetical top–down evaluation, Dynamic Magic
Sets also consider a notion of conditional relevance. More specifically, following
Dynamic Magic Sets, the relevant atoms are the atoms which can be reached by a
hypothetical top–down evaluation according to all previously done assumptions.
In this way Dynamic Magic Sets enlarge the optimization provided by magic
atoms to the stable model search: parts of the program are dynamically disabled
on the base of previously done assumptions.

Contribution

The main contribution of the work reported in this thesis are summarized in the
following. First of all, a new Magic Set technique for the optimization of query
answering over Disjunctive Datalog programs is presented. The new technique,
referred to as Dynamic Magic Sets, introduces many interesting novelties with
respect to Static Magic Sets, a previously proposed technique for Disjunctive
Datalog. Indeed, while the optimization provided by Static Magic Sets is limited
to program instantiation, Dynamic Magic Sets enlarge their influence to the
subsequent stable model search phase by introducing a concept of conditional
relevance.

A second relevant contribution is the establishment of the correctness of
Dynamic Magic Sets for the class of Disjunctive Datalog programs with stratified
negation. This result is also extended to a larger class of programs named
super–coherent. Notably, super–coherent programs include all odd–cycle–free
programs.

A third contribution is the identification of a strong relationship between
magic sets and unfounded sets [66, 47].1 More specifically, it has been shown
that the relevant atoms for answering a given query are either true or belong to
some unfounded set. It is the relationship with unfounded sets that eventually
allows for proving the correctness of Dynamic Magic Sets.

Another theoretical contribution is the application of Dynamic Magic Sets
for proving the decidability of the reasoning over finitely recursive programs
[9], a class of Datalog programs with uninterpreted function symbols. More
specifically, finitely recursive programs are mapped to finitely ground programs
[19], for which decidability of the reasoning has already been established in the
literature. Moreover, expressive power of finitely recursive programs is analyzed,
showing that the restrictions that guarantee decidability of the reasoning do not
limit the set of computable functions which can be expressed by the class.

A practical contribution is the implementation of Dynamic Magic Sets in
a prototype system obtained by extending DLV, a state–of–the–art solver for
Disjunctive Datalog. In particular, a new module has been added to the core
of DLV. Input queries and programs are processed by the new module, which
implements Dynamic Magic Sets. The rewritten program generated by the
new module is then processed by the standard procedures of DLV for program
instantiation and stable model search.

Finally, the implemented prototype system has been tested for assessing the
impact of Dynamic Magic Sets on query answering over Disjunctive Datalog pro-
grams. The results of the experiments, involving synthetic as well as real data,

1Unfounded sets have been used in the literature to characterize stable models and to
define the well–founded semantics.

4 CHAPTER 1. INTRODUCTION

highlight that in many cases Dynamic Magic Sets provide significant perfor-
mance gains and often outperform Static Magic Sets. Notably, even when most
of the program is relevant for answering a given query, the overhead introduced
by Dynamic Magic Sets is negligible.

Organization

The remainder of the thesis is structured as follows. First, syntax and se-
mantics of Disjunctive Datalog programs are introduced in Chapter 2, where
expressive power of the language is also discussed and some examples of knowl-
edge representation and reasoning are provided. Then, Magic Set techniques
are introduced in Chapter 3. In particular, Dynamic Magic Sets are proved
to be sound and complete for the classes of stratified and super–coherent Dis-
junctive Datalog programs. After that, finitely recursive programs, and the
applicability of Dynamic Magic Sets to this class, are discussed in Chapter 4.
Afterwards, experimental results and an application to data integration are pre-
sented in Chapters 5–6. Finally, related work and conclusion are reported in
Chapters 7–8.

Chapter 2

Disjunctive Datalog

In this chapter we introduce Disjunctive Datalog with nonmonotonic negation
under the stable model semantics (Datalog∨,¬), also known as Answer Set Pro-
gramming. The chapter is structured as follows. In Section 2.1 we present the
syntax of the language and relevant syntactically restricted fragments. Then, in
Section 2.2 we define stable model semantics and query answering. After that,
in Section 2.3 we present a typical bottom–up evaluation strategy for Disjunc-
tive Datalog programs. Finally, in Section 2.4 we briefly discuss the expressive
power of the language, and in Section 2.5 we provide examples of knowledge
representation and reasoning by means of Datalog∨,¬ programs.

2.1 Syntax

In this section we present the basis of Disjunctive Datalog and introduce some
syntactically restricted subclasses.

2.1.1 Disjunctive Datalog Programs

Let C be a set of constants, V a set of variables and S a set of predicate symbols
(or simply predicates). In this thesis we use the convention that variables are
denoted by strings starting with upper case letters, predicate symbols by strings
starting with lower case letters, and constants either by natural numbers or by
strings starting with lower case letters.

Example 2.1.1. Examples of constants, variables and predicates are:

• Constants: 1, 2, 341, a, b, c, alice, bob;

• Variables: X, Y, Z, Person, Man;

• Predicates: p, q, fatherOf, parentOf.

�

A term is either a variable or a constant, i.e., an element in V∪C. Predicates
are associated with non–negative arities and combined with terms to obtain

5

6 CHAPTER 2. DISJUNCTIVE DATALOG

atoms and literals. An atom is a structure of the form

p(t1, . . . , tk),
1

where:

• p is a predicate, i.e., p belongs to S;

• t1, . . . , tk are terms (named arguments), i.e., t1, . . . , tk belong to V ∪ C;

• the disequality k ≥ 0 is satisfied.

The arity of p is k; if k = 0, parenthesis are omitted and the simpler notation p

is used. An atom p(t1, . . . , tk) is ground (i.e., variable–free) if all its arguments
are constants (i.e., if t1, . . . , tk belong to C). A positive literal is an atom p(t̄),
while a negative literal is an atom preceded by the negation as failure symbol
not. A literal is ground if its atom is ground.

Example 2.1.2. Examples of atoms and literals are p(1), fatherOf(X, bob),
succ, not fatherOf(alice, bob), not fail. �

A Datalog∨,¬ rule r is a structure of the form

h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).
(2.1)

where:

• h1(ū1), . . . , hm(ūm), b1(v̄1), . . . , bn(v̄n) are atoms;

• the disequalities m ≥ 1 and n ≥ k ≥ 0 are satisfied.

The disjunction
h1(ū1) v · · · v hm(ūm)

is the head of r, while the conjunction

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n)

is the body of r. The set of head atoms is denoted by H(r), while the set of
body literals is denoted by B(r). We also use B+(r) and B−(r) for denoting
the set of atoms appearing in positive and negative body literals, respectively,
and ATOMS(r) for the set of all atoms appearing in r. Hence, the following
sets are associated with a rule r of the form (2.1):

• H(r) = {h1(ū1), . . . , hm(ūm)};

• B(r) = {b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n)};

• B+(r) = {b1(v̄1), . . . , bk(v̄k)};

• B−(r) = {bk+1(v̄k+1), . . . , bn(v̄n)};

• ATOMS(r) = {h1(ū1), . . . , hm(ūm), b1(v̄1), . . . , bn(v̄n)}.

1We use the notation t̄ for a sequence of terms. Thus, an atom with predicate p is usually
referred to as p(t̄) in this thesis.

2.1. SYNTAX 7

A rule r is ground if all atoms in ATOMS(r) are ground.
Datalog∨,¬ rules are constrained to be safe, that is, all variables appearing

in a rule r must also appear in B+(r). A consequence of the safety condition is
that rules with empty bodies have to be ground (i.e., B(r) = ∅ implies that r is
ground).2 Indeed, any variable would violate the safety condition in this case.
Particular attention is deserved to rules with empty bodies and atomic heads:
These rules constitute certain knowledge, as we will see in Section 2.2, and for
this reason are named facts. In other words, a rule r is a fact if |H(r)| = 1 and
B(r) = ∅.

Example 2.1.3. Consider the following rules:

r1 : person(X) :− parentOf(X, Y).

r2 : male(Z) :− not female(Z).

Rule r1 is safe thanks to parentOf(X, Y), while r2 is unsafe because of Z. �

A Datalog∨,¬ program P is a set of Datalog∨,¬ rules. A program P is ground
if all its rules are ground. In a similar way, a program P is safe if all its rules are
safe. As mentioned earlier, all programs are assumed to be safe unless otherwise
specified.

Example 2.1.4. The following is a Datalog∨,¬ program, referred to as P1

hereinafter:

person(a). person(b). parentOf(a, b).

r3 : ancestorOf(X, Y) :− parentOf(X, Y).

r4 : ancestorOf(X, Y) :− parentOf(X, Z), ancestorOf(Z, Y).

r5 : nonAncestorOf(X, Y) :− person(X), person(Y), not ancestorOf(X, Y).

r6 : fatherOf(X, Y) v motherOf(X, Y) :− parentOf(X, Y).

�

2.1.2 Syntactically Restricted Classes

Disjunctive Datalog is a large class of programs which comprises many inter-
esting subclasses. Some of these subclasses are introduced in this section. Con-
tainment relationships between these subclasses are shown in Figure 2.1.

We start by introducing Standard, Normal and Positive Disjunctive Datalog.
Standard Datalog (simply denoted Datalog) is the language that has given rise
to all other formalisms discussed in this thesis. In Datalog, disjunction and
nonmonotonic negation are not allowed. Hence, a Datalog rule r is a rule of
the form (2.1) such that |H(r)| = 1 and B−(r) = ∅. Normal Datalog (denoted
Datalog¬), instead, is characterized by atomic heads and the possibility of non-
monotonic negation in rule bodies. Formally, a Datalog¬ rule r is a rule of the
form (2.1) such that |H(r)| = 1. Finally, Positive Disjunctive Datalog (denoted
Datalog∨) is characterized by rules with disjunctive heads and positive bodies.
Therefore, a Datalog∨ rule r is a rule of the form (2.1) such that B−(r) = ∅.

Example 2.1.5. Consider the rules from Example 2.1.4:

2In these rules the symbol “ :− ” is omitted.

8 CHAPTER 2. DISJUNCTIVE DATALOG

Datalog Datalog¬Datalog¬sDatalog∨

Datalog∨,¬

Datalog∨,¬s

Figure 2.1: Containment relationships between Datalog∨,¬ and its subclasses

• r3 and r4 are Datalog rules;

• r3, r4 and r5 are Datalog¬ rules;

• r3, r4 and r6 are Datalog∨ rules.

�

Two other relevant subclasses are obtained from Datalog∨,¬ and Datalog¬

by disabling the use of nonmonotonic negation in recursive definitions. The
definition of these subclasses is based on the notion of dependency graph.

Definition 2.1.6 (Dependency Graph). Let P be a Datalog∨,¬ program. The
dependency graph of P, denoted by G(P), is a labeled directed graph having:

• a node for each predicate appearing in P;

• an arc h →ℓ b if there are a rule r ∈ P and two atoms h(ū) ∈ H(r),
b(v̄) ∈ B+(r) ∪B−(r), where

– ℓ is ǫ (the empty string) if b(v̄) ∈ B+(r) (in this case, h depends
positively on b), or

– ℓ is “¬” if b(v̄) ∈ B−(r) (i.e., h depends negatively on b).

A program P is stratified with respect to negation if no cycles in G(P) involve
negative dependencies (i.e., arcs labeled “¬”). We can then define the class of
Stratified Datalog∨,¬ programs (denoted Datalog∨,¬s) and the class of Stratified
Datalog¬ programs (denoted Datalog¬s).

Example 2.1.7. Program P1 in Example 2.1.4 is a Datalog∨,¬s program. In-
deed, its dependency graph G(P1) contains just one cycle (actually, a self–loop)
which involves no negative dependencies; G(P1) is shown in Figure 2.2(a). An
unstratified program P2 can be achieved from P1 by substituting r5 with the
following rules:

r7 : fatherOf(X, Y) :− parentOf(X, Y), not motherOf(X, Y).

r8 : motherOf(X, Y) :− parentOf(X, Y), not fatherOf(X, Y).

2.2. SEMANTICS 9

person parentOf

ancestorOf

fatherOf motherOfnonAncestorOf

¬

(a) G(P1) — see Example 2.1.4

person parentOf

ancestorOf

fatherOf motherOfnonAncestorOf

¬

¬
¬

Negative cycle

(b) G(P2) — see Example 2.1.7

Figure 2.2: Dependency graphs for programs from Examples 2.1.4 and 2.1.7

The dependency graph G(P2) of P2, shown in Figure 2.2(b), contains one cycle
with negative dependencies which involves fatherOf and motherOf. �

2.2 Semantics

The semantics of a Disjunctive Datalog program is given by the set of its stable
models. Each stable model represents a plausible world or scenario according
to the knowledge encoded in the program. Stable models and query answering
under stable model semantics are introduced in this section.

2.2.1 Stable Models

Stable models are defined for ground programs only, while the semantics of pro-
grams with variables is given by considering equivalent ground programs. The
process which associates a ground program with every Datalog∨,¬ program is
referred to as program instantiation. Essentially, rules of a non–ground program
are interpreted as a schema: All variables are considered universally quantified
and ranging over the set of all constants of the program. This concept is for-
malized below.

Let P be a Datalog∨,¬ program. The set of constants appearing in P is the

10 CHAPTER 2. DISJUNCTIVE DATALOG

universe of P, denoted by UP ; if P contains no constants, an arbitrary constant ξ
is added to UP . The set of ground atoms constructible from predicates in P with
elements of UP is the base of P, denoted by BP . A substitution ϑ is a function
from variables to elements of UP . For a structure S (atom, literal, rule), by Sϑ

we denote the structure obtained from S by substituting all occurrences of each
variable X in S with ϑ(X). A ground atom p(t̄′) is an instance of an atom p(t̄) if
there is a substitution ϑ from the variables in p(t̄) to UP such that p(t̄′) = p(t̄)ϑ,
that is, the application of ϑ to the variables of p(t̄) generates p(t̄′). In a similar
way, a ground rule r′ is an instance of a rule r if there is a substitution ϑ from
the variables in r to UP such that r′ = rϑ. The program instantiation of P is
the set of all instances of the rules in P, denoted by Ground(P).

Example 2.2.1. Consider again program P1 from Example 2.1.4:

• UP1
= {a, b};

• BP1
= {person(a), person(b), parentOf(a, a), parentOf(a, b),

parentOf(b, a), parentOf(b, b), ancestorOf(a, a),
ancestorOf(a, b), ancestorOf(b, a), ancestorOf(b, b),
nonAncestorOf(a, a), nonAncestorOf(a, b),
nonAncestorOf(b, a), nonAncestorOf(b, b),
fatherOf(a, a), fatherOf(a, b), fatherOf(b, a), fatherOf(b, b),
motherOf(a, a), motherOf(a, b), motherOf(b, a), motherOf(b, b)}.

The program instantiation Ground(P1) of P1 consists of 20 ground rules
(plus facts): 4 ground rules for each of r3, r5 and r6, and 8 ground rules obtained
from r4. We avoid to enumerate all of these rules and just report the instances
of r6 to give an example:

fatherOf(a, a) v motherOf(a, a) :− parentOf(a, a).

fatherOf(a, b) v motherOf(a, b) :− parentOf(a, b).

fatherOf(b, a) v motherOf(b, a) :− parentOf(b, a).

fatherOf(b, b) v motherOf(b, b) :− parentOf(b, b).

�

We point out that predicates are used for defining relations. Relations (and
predicates) can be either extensional or intensional: Extensional relations are
defined by an enumeration of facts, while intensional relations are defined by
rules, not all of which are facts. More formally, let P be a Datalog∨,¬ program.
A defining rule for a predicate p is a rule r ∈ P such that some atom p(t̄) belongs
to H(r). If all defining rules for a predicate p are facts, p is an extensional
database predicate (EDB predicate); otherwise, p is an intensional database
predicate (IDB predicate). The set of rules defining IDB predicates is denoted
by IDB(P), while EDB(P) is used for referring to the set of the remaining rules.
Moreover, the set of all facts in P is denoted by FACTS(P).

Example 2.2.2. Consider again program P1 from Example 2.1.4:

• person and parentOf are EDB predicates;

• all other predicates are IDB predicates;

2.2. SEMANTICS 11

• r3 and r4 are defining rules for ancestorOf;

• r5 is a defining rule for nonAncestorOf;

• r6 is a defining rule for both fatherOf and motherOf.

�

We are now ready for introducing the semantics of Disjunctive Datalog. We
start by defining interpretations and models. An interpretation for a Datalog∨,¬

program P is a function which associates each atom in BP with a truth value,
i.e., a value between true and false. An interpretation I is usually represented
by the set of atoms interpreted as true. An interpretation also assigns a truth
value to ground literals: A positive ground literal p(t̄) is true with respect to an
interpretation I if and only if p(t̄) ∈ I, while a negative ground literal not p(t̄)
is true if and only if p(t̄) 6∈ I (or, equivalently, if and only if p(t̄) is false with
respect to I). An interpretation I satisfies a ground rule r if at least one atom
in H(r) is true whenever all body literals of r are true, that is, if H(r) ∩ I 6= ∅
holds whenever B+(r) ⊆ I and B−(r) ∩ I 6= ∅. Finally, an interpretation M is
a model of P if M satisfies all rules in Ground(P).

Example 2.2.3. Consider again program P1 from Example 2.1.4. The set of
all interpretations of P1 is given by the power set of BP1

, which accounts for
a total of 222 possible interpretations (more than 4 millions). Many of these
interpretations are not models of P1. For example, every interpretation not
containing person(a) or person(b), which are facts of P1. Other interpretations
are considered below.

• FACTS(P1) is not a model because, for instance, rule

ancestorOf(a, b) :− parentOf(a, b).

is not satisfied in this case (the head is false while the body is true).

• Adding ancestorOf(a, b) does not result in a model because, for instance,
rule

nonAncestorOf(a, a) :− person(a), person(a), not ancestorOf(a, a).

is not satisfied.

• A model is neither obtained if nonAncestorOf(a, a), nonAncestorOf(b, a)
and nonAncestorOf(b, b) are added to the previous interpretation; indeed,
rule

fatherOf(a, b) v motherOf(a, b) :− parentOf(a, b).

is not satisfied because parentOf(a, b) is true, but both fatherOf(a, b)
and motherOf(a, b) are false.

• A model is finally achieved from the previous interpretation by adding
either fatherOf(a, b) or motherOf(a, b).

• All supersets of these two models are models as well.

12 CHAPTER 2. DISJUNCTIVE DATALOG

�

The definition of stable model is based on the notion of program reduct.
Let P be a Datalog∨,¬ program and I an interpretation. The reduct of P with
respect to I, denoted by Ground(P)I , is obtained from Ground(P) in two steps:

1. Rules with false negative literals are deleted, i.e., each rule r ∈ Ground(P)
such that B−(r) ∩ I 6= ∅;

2. All negative literals are removed from the remaining rules, that is, if r has
not been deleted in the previous step, Ground(P)I contains a rule r′ such
that H(r′) = H(r) and B(r′) = B+(r).

An interpretation M is a stable model of P if and only if M is a subset–minimal
model of Ground(P)M . The set of all stable models of a Datalog∨,¬ program
P is denoted by SM(P).

Example 2.2.4. Consider again program P1 from Example 2.1.4 and the fol-
lowing interpretations:

• I1 = FACTS(P1) ∪ {ancestorOf(a, b), nonAncestorOf(a, a),
nonAncestorOf(b, a), nonAncestorOf(b, b)};

• I2 = I1 ∪ {fatherOf(a, b)};

• I3 = I1 ∪ {motherOf(a, b)};

• I4 = I1 ∪ {fatherOf(a, b), motherOf(a, b)}.

I1 is not a stable model because the following rule in the reduct is not satisfied:

fatherOf(a, b) v motherOf(a, b) :− parentOf(a, b).

On the other hand, I2 and I3 are minimal models of the respective reducts, and
so stable models of P1. The interpretation I4, instead, is not a stable model
because it is not a subset–minimal model of the reduct with respect to I4. In
fact, it can be checked that SM(P1) = {I2, I3}. �

Stable models posses many interesting properties. Among them are mini-
mality and support. In fact, stable models are incomparable with respect to set
inclusion, which means that no superfluous information is contained in stable
models. Stable models are also supported models, that is, models containing
only atoms which are “supported” by some rule with a true body. Finally,
in Datalog∨,¬ we distinguish coherent and incoherent programs: Coherent pro-
grams admit at least one stable model, while incoherent programs have no stable
models. Datalog¬ programs are either coherent or incoherent in general, while
Datalog, Datalog∨, Datalog¬s , Datalog∨,¬s programs are guaranteed to be co-
herent. In particular, each Datalog or Datalog¬s program is characterized by a
unique stable model.

2.2.2 Query Answering

Stable models of a Datalog∨,¬ program represent all plausible scenarios accord-
ing to the knowledge encoded in the program. Then, stable models can be used

2.2. SEMANTICS 13

for checking if a property of interest holds in some or in all possible scenarios.
Queries are used for expressing this interest. A formal definition of a query is
provided in this section.

We start by introducing the notions of brave and cautious consequence of
a program, which are used in the definition of query answering. Let P be a
Datalog∨,¬ program. A ground atom p(t̄) is a brave consequence of P if p(t̄)
belongs to some stable model of P, i.e., if there is M ∈ SM(P) such that
p(t̄) ∈ M . In this case we also say that P bravely entails p(t̄), denoted by
P |=b p(t̄). Cautious consequences are defined in a similar way, but all stable
models are considered in this case. Thus, a ground atom p(t̄) is a cautious
consequence of P if p(t̄) belongs to all stable models of P, i.e., if p(t̄) ∈ M

for all M ∈ SM(P). In this case we also say that P cautiously entails p(t̄),
denoted by P |=c p(t̄).

Example 2.2.5. Examples of brave and cautious consequences of program P1

from Example 2.1.4 are the following:

• fatherOf(a, b) and motherOf(a, b) are brave consequences of P1;

• ancestorOf(a, b) is both a brave and a cautious consequence of P1.

�

Queries are expressed by atoms, but more complex queries are expressible
by using additional rules (see Example 2.2.6 below). Hence, a query Q is an
atom p(t̄) followed by a question mark:3

Q = p(t̄)?

We assume that each constant appearing in Q also appears in P; if this is not
the case, a fact q(s̄) is added to P, where q is a fresh predicate and s̄ is the list
of constants occurring in Q. The set of substitutions ϑ for the variables of p(t̄)
such that p(t̄)ϑ is a brave consequence of P is denoted by Ansb(Q,P). In a
similar way, the set of substitutions ϑ for the variables of p(t̄) such that p(t̄)ϑ
is a cautious consequence of P is denoted by Ansc(Q,P). Thus:

• Ansb(Q,P) = {ϑ | P |=b p(t̄)ϑ} (brave reasoning);

• Ansc(Q,P) = {ϑ | P |=c p(t̄)ϑ} (cautious reasoning).

For ground queries, the sets Ansb(Q,P) and Ansc(Q,P) are either empty or
just contain ǫ (the empty substitution).

Example 2.2.6. Let Q1 = fatherOf(X, b) and Q2 = ancestorOf(a, Y) be two
queries for program P1 from Example 2.1.4. Query Q1 is asking for the father
of b, while Q2 is interested in the descendants of a. Hence:

• Ansb(Q1,P1) = {a} and Ansc(Q1,P1) = ∅;

• Ansb(Q2,P1) = {b} = Ansc(Q2,P1).

3For simplifying the reading, question marks of queries are omitted when referring to them
in the text.

14 CHAPTER 2. DISJUNCTIVE DATALOG

Now suppose that we want to check that the relation expressed by parentOf is
anti–reflexive, that is, parentOf(x, y) true implies that parentOf(y, x) is false.
In other words, we have to verify that there is no substitution ϑ such that the
conjunction

parentOf(X, Y)ϑ, parentOf(Y, X)ϑ

is true. In this case a query inconsistent and the following auxiliary rule can
be considered:

inconsistent :− parentOf(X, Y), parentOf(Y, X).

If the query is not a brave or a cautious consequence, the relation expressed by
parentOf is anti–reflexive. �

For Datalog and Datalog¬s programs, brave and cautious reasoning coin-
cide. Indeed, these programs have unique stable models. For Datalog∨ and
Datalog∨,¬s programs, instead, it can be observed that cautious consequences
are also brave consequences. Indeed, these programs admit at least one stable
model. This is not true in general for Datalog¬ and Datalog∨,¬ programs. In
fact, a Datalog¬ or Datalog∨,¬ program P may be incoherent, in which case all
atoms in BP are cautious consequences of P, but no atom is a brave consequence
of P.

Two programs are said to be equivalent with respect to a given query if they
provide the same answers to the query. Formally, let P and P ′ be Datalog∨,¬

programs, and Q a query. The programs P and P ′ are brave equivalent with
respect to Q, denoted by P≡b

QP
′, if Ansb(Q,P ∪ F) = Ansb(Q,P

′ ∪ F) is
guaranteed for each set of facts F defined over the EDB predicates of P and
P ′. Similarly, P and P ′ are cautious equivalent with respect to Q, denoted by
P≡c

QP
′, if Ansc(Q,P ∪F) = Ansc(Q,P

′∪F) is guaranteed for each set of facts
F defined over the EDB predicates of P and P ′.

Example 2.2.7. Program P1 from Example 2.1.4 and program P2 from Exam-
ple 2.1.7 are brave and cautious equivalent with respect to any query. In fact,
SM(P1) and SM(P2) coincide for all possible EDB. �

Equivalence is fundamental for query optimization. In Chapter 3 we will
present some techniques for associating input programs with equivalent pro-
grams which allow for potentially optimized query answering.

2.3 Bottom–Up Computations

Many Datalog∨,¬ systems implement a two-phase bottom–up strategy. The first
phase is named program instantiation. For an input program P, it produces a
ground program which is equivalent to Ground(P), but significantly smaller.
Most of the techniques used in this phase stem from bottom–up methods de-
veloped for classic and deductive databases; see for example [1] or [32, 46] for
details. A fact which is used in these techniques is that the truth of an atom
p(t̄) has to be supported by some rule having p(t̄) in the head and such that
all body literals are true. If no rule of this kind exists, p(t̄) is guaranteed to
be false in all stable models. This is the case, for instance, of all instances of

2.3. BOTTOM–UP COMPUTATIONS 15

Algorithm ProgramInstantiation(P)
Input: A Datalog∨,¬ program P;
Output: An equivalent ground program;
var
R, R′ : set of rules;

begin
1. R := FACTS(P);
2. repeat
3. R′ := R;
4. Let H be the set of atoms occurring in the head of some rule in R′;
5. for each rule r ∈ P do
6. for each substitution ϑ for all variables of r do
7. if B+(r)ϑ ⊆ H do add rϑ to R; end if
8. end for
9. end for

10. until R = R′;
11. return R;

end.

Figure 2.3: ProgramInstantiation algorithm

EDB atoms which do not occur in EDB(P). Also rules having some positive
literals which are known to be false cannot support any atom, which in turn
could imply new false atoms. We point out that no assumption is made during
program instantiation, only deterministic knowledge is derived. An elementary
algorithm implementing program instantiation is reported in Figure 2.3. The
algorithm uses two sets of rules, namely R and R′. Initially, R contains all facts
of P (line 1). Then, a copy of R is stored in R′ (line 3) and the set H of all
atoms occurring in the head of some rule in r′ is computed (line 4). After that,
each rule r of P is instantiated with respect to all substitutions ϑ such that
B+(r)ϑ is a subset of H (lines 5–9). All new instances are added to R (line 7).
The process is repeated until no new rules are generated (lines 2–10). Finally,
the algorithm terminates and the set R is returned in output (line 11).

Example 2.3.1. Consider again program P1 from Example 2.1.4. By invoking
ProgramInstantiation, the following ground program is generated:

person(a). person(b). parentOf(a, b).

ancestorOf(a, b) :− parentOf(a, b).

nonAncestorOf(a, a) :− person(a), person(a), not ancestorOf(a, a).

nonAncestorOf(a, b) :− person(a), person(b), not ancestorOf(a, b).

nonAncestorOf(b, a) :− person(b), person(a), not ancestorOf(b, a).

nonAncestorOf(b, b) :− person(b), person(b), not ancestorOf(b, b).

fatherOf(a, b) v motherOf(a, b) :− parentOf(a, b).

�

The second phase is often referred to as stable model search and takes care

16 CHAPTER 2. DISJUNCTIVE DATALOG

Algorithm StableModels(P)
Input: A Datalog∨,¬ program P;
Output: The set of stable models of P;
var
SM: set of stable models;

begin
1. SM := ∅;
2. StableModelsAux(ProgramInstantiation(P), ∅, ∅, BP , SM);
3. return SM ;

end.

Procedure StableModelsAux(P, T , F , U , SM)
Input
P: program;
T , F , U : set of ground atoms;
SM : set of stable models;

Output: none;
begin

1. ComputeDeterministicConsequences(P, T , F , U);
2. if T ∩ F = ∅ then
3. if U 6= ∅ then
4. take an element p(t̄) from U ;
5. StableModelsAux(P, T ∪ {p(t̄)}, F , U \ {p(t̄)}, SM);
6. StableModelsAux(P, T , F ∪ {p(t̄)}, U \ {p(t̄)}, SM);
7. else if StabilityCheck(T) then
8. add T to SM ;
9. end if

10. end if
end.

Figure 2.4: StableModels algorithm

of the non–deterministic computation. Essentially, one undefined atom is se-
lected and its truth or falsity is assumed. The assumption might imply truth or
falsity of other undefined atoms. Hence, the process is repeated until either an
inconsistency is derived or all atoms have been interpreted. In the latter case an
additional check is performed to ensure stability of the model. Details on this
process can be found for example in [28]. An elementary algorithm implement-
ing stable model search is reported in Figure 2.4. The algorithm uses a recursive
procedure for computing all stable models of the input program. The recursive
procedure starts by computing all deterministic consequences (line 1). After
that, if an inconsistency has been introduced (line 2), the procedure returns.
Otherwise, recursive invocations are made assuming the truth or falsity of some
undefined atom. Finally, when all atoms are true or false, the constructed model
is checked for stability and eventually added to the set of stable models (line
7). The procedures used in Figure 2.4 for computing deterministic consequences
and checking stability of models are out of the scope of this work and have been
omitted for simplicity.

Query answering is typically handled by storing all admissible answer substi-
tutions as stable models are computed. For brave reasoning, each stable model
can contribute substitutions to the set of answers. In this case the set of an-

2.4. EXPRESSIVE POWER 17

Algorithm QueryAnswering(Q, P, brave–reasoning)
Input: A query Q over a Datalog∨,¬ program P and a boolean brave–reasoning;
Output: The set Ansb(Q,P) if brave–reasoning, the set Ansc(Q,P) otherwise;
var
Ans: set of substitutions;

begin
1. if brave–reasoning then
2. Ans := ∅;
3. for each stable model M in StableModels(P) do
4. Ans := Ans ∪ {ϑ | Qϑ ∈ M};
5. end for
6. else
7. Ans := {ϑ | Qϑ ∈ BP};
8. for each stable model M in StableModels(P) do
9. Ans := Ans \ {ϑ | Qϑ 6∈ M};

10. end for
11. end if
12. return Ans;

end.

Figure 2.5: QueryAnswering algorithm

swers is initially empty. For cautious reasoning, instead, each stable model may
eliminate some substitutions from the set of admissible answers. Therefore, in
this case all possible substitutions for the input query are initially contained
in the set of answers. An elementary algorithm implementing this strategy is
shown in Figure 2.5. Admissible answers are stored in Ans, which initially is
empty (in case of brave reasoning; line 2) or contains all possible substitutions
(in case of cautious reasoning; line 7). Then, for each stable model produced by
the StableModels algorithm, some substitutions are added (brave reasoning;
lines 3–5) or removed (cautious reasoning; lines 8–10) from Ans. Finally, the
algorithm terminates and the set Ans is returned in output.

2.4 Expressive Power

Disjunctive Datalog is a powerful formalism for knowledge representation and
common sense reasoning. It is particularly suitable for representing incomplete
knowledge and nonmonotonic reasoning, and it is also used in Artificial Intelli-
gence for applications in diagnosis and planning. Its expressiveness is powerful
in a precise mathematical sense, and in particular it allows for expressing all
problems in the complexity class ΣP

2 in a uniform way [26]. This high expres-
siveness is relevant in many contexts. For instance, important problems in
Artificial Intelligence are not solvable with polynomial reductions to SAT4 (un-
less the polynomial hierarchy collapses), while they are directly representable
in Disjunctive Datalog [46]. It is important to observe that Disjunctive Datalog
captures the second level of the polynomial hierarchy thanks to disjunction. In-
deed, without disjunction, the expressive power of the language decreases down
to the first level of the polynomial hierarchy, that is, only NP queries can be

4A formal definition of SAT, the satisfiability problem, is provided in Section 2.5.

18 CHAPTER 2. DISJUNCTIVE DATALOG

represented by Datalog¬ programs. On the other hand, nonmonotonic nega-
tion only afford a marginal contribution to the expressive power of Disjunctive
Datalog. Indeed, stratified negation is enough for expressing all properties in
the complexity class ΣP

2 [26], which means that Datalog∨,¬s and Datalog∨,¬

have the same expressive power. Below, we present a modular and polynomial
translation of Datalog∨,¬ programs to Datalog∨,¬s programs.

Let P be a ground Datalog∨,¬ program. Moreover, let fail be an atom
not occurring in BP which will be used to discard some interpretations. The
Datalog∨,¬s program associated with P is the program P ′ obtained from P by
applying the following changes:

1. Each occurrence of a negative literal not a is replaced by aF, where aF is
an atom not occurring in BP ;

2. For each fresh atom aF introduced in the previous step, another fresh atom
aT and the following rules are added to P ′:

r9 : aT v aF.

r10 : aT :− a.

r11 : fail :− aT, not a.

We start by observing that P ′ is a stratified program. Indeed, negative literals
appear only in r11, and the only head atom in r11 is fail, which does not appear
elsewhere in P ′. Then, we note that one among aT and aF is guessed by r9, but
aT must be chosen if a is true because of r10, and only in this case because of
r11. Therefore, since aT and aF do not appear in other heads in P ′, aF is derived
if and only if a is false, that is, if and only if not a is true. Hence, there is a
one–to–one mapping between the stable models of P and P ′, and the following
equality is established:

SM(P) = {M ∩ BP |M ∈ SM(P ′) and fail 6∈M}.

2.5 Knowledge Representation and Reasoning

Examples of knowledge representation and reasoning are reported in this sec-
tion. We point out that all problems discussed in this section are encoded by
stratified programs. Further examples are discussed in the remainder of the
thesis. In particular, some problems falling in the complexity class ΣP

2 , like for
instance strategic companies and consistent query answering, are presented in
Chapters 5–6.

Satisfiability

Satisfiability (SAT) is among the most studied problems in computer science. It
consists of deciding whether a given propositional formula is satisfiable. SAT was
the first problem which was proved to be NP–complete and it is a well–studied
problem, for both theoretical and practical aspects. Concerning theoretical
aspects, SAT has been used for proving NP–hardness of many other problems.
Concerning practical aspects, SAT is widely used for solving difficult problems

2.5. KNOWLEDGE REPRESENTATION AND REASONING 19

belonging to the complexity class NP, such as verification of circuits. More
specifically, instances of problems in NP can be translated to SAT instances,
which can be efficiently handled by SAT solvers. A well-known result about
SAT is that the problem remains NP–complete even if boolean formulas are
constrained to have a particular form, referred to as 3–CNF (3 conjunctive
normal form). In this case the problem is referred to as 3–SAT and can be
formulated as follows:

Given a propositional 3–CNF formula Φ over the variables x1, . . . , xn,
is there a truth assignment for the variables x1, . . . , xn satisfying the
formula Φ? Let Φ be of the form

Φ = C1 ∧ · · · ∧ Cm, (2.2)

where each clause Ci is a disjunction ℓ1i ∨ ℓ2i ∨ ℓ3i , and each ℓ
j
i is

a positive or negative literal (note that in the context of SAT the
term “literal” denotes a propositional variable xk or a propositional
variable preceded by the negation symbol ¬xk; clauses and literals
are unordered).

A formula Φ of form (2.2) can be encoded as follows:

• variable(x), for each propositional variable x appearing in Φ;

• clause0(x, y, z), for each clause ¬x ∨ ¬y ∨ ¬z in Φ;

• clause1(x, y, z), for each clause x ∨ ¬y ∨ ¬z in Φ;

• clause2(x, y, z), for each clause x ∨ y ∨ ¬z in Φ;

• clause3(x, y, z), for each clause x ∨ y ∨ z in Φ.

Then, SAT can be encoded by the program PSAT and the query below:

true(X) v false(X) :− variable(X).

unsat :− clause0(X, Y, Z), true(X), true(Y), true(Z).

unsat :− clause1(X, Y, Z), false(X), true(Y), true(Z).

unsat :− clause2(X, Y, Z), false(X), false(Y), true(Z).

unsat :− clause3(X, Y, Z), false(X), false(Y), false(Z).

sat :− not unsat.

sat?

The query sat is a brave consequence of PSAT if and only if Φ is satisfiable.

A Non–Decisional Variant

Suppose we are now interested in the following problem:

Given a proposition formula Φ, retrieve all variables that are required
to be true (resp. false) in order to satisfy Φ.

20 CHAPTER 2. DISJUNCTIVE DATALOG

This problem can be handled by slightly modifying the program PSAT. In
particular, for retrieving these variables and the associated values, it is enough
to replace the query by value(X, V), add the rules

value(X, true) :− true(X).

value(X, false) :− false(X).

value(X, true) :− variable(X), unsat.

value(X, false) :− variable(X), unsat.

and perform cautious reasoning. Note that no substitution is removed from the
set of possible answers if unsat is derived to be true.

Tautology

Tautology is a coNP–complete problem which is strictly related to SAT, as it is
its complement. The problem can be defined as follows:

Given a propositional 3–CNF formula Φ over the variables x1, . . . , xn,
is Φ satisfied by all possible truth assignments for the variables
x1, . . . , xn?

The formula Φ can be encoded as described above for SAT, and it can be shown
that the query sat is a cautious consequence of the program PSAT if and only
if Φ is a tautology.

Not–All–Equal–SAT

Not-all-equal-SAT (NAE–SAT) is a variant of SAT which remains NP–complete
even if all literals are positive. Essentially, the problem can be stated as follows:

Given a propositional 3–CNF formula Φ over the variables x1, . . . , xn,
is there a truth assignment for the variables x1, . . . , xn satisfying the
formula Φ and such that no clause has all literals true?

Assuming the further restriction that formula Φ is positive (i.e., all literals in Φ
are positive), and that Φ is encoded by the predicates clause3 and variable,
NAE–SAT can be handled by performing brave reasoning over the following
program and query:

true(X) v false(X) :− variable(X).

unsat :− clause3(X, Y, Z), true(X), true(Y), true(Z).

unsat :− clause3(X, Y, Z), false(X), false(Y), false(Z).

sat :− not unsat.

sat?

Colorability

Colorability is an NP–complete problem in graph theory which can be formu-
lated as follows:

2.5. KNOWLEDGE REPRESENTATION AND REASONING 21

Given an undirected graph G and k colors c1, . . . , ck, is there an
assignment of colors for the vertices of G such that no two adjacent
vertices share the same color?

Here we assume that only three colors are available, namely red, green and blue.
Under this restriction, the problem is still NP–complete and referred to as 3–
colorability. Graphs can be encoded by the predicates vertex and edge, where
edge is assumed to define a symmetric relation. In this case the problem can
be encoded by the program PCOL and the query below:

color(X, red) v color(X, green) v color(X, blue) :− vertex(X).

nocol :− edge(X, Y), color(X, C), color(Y, C).

col :− not nocol.

col?

Intuitively, a color is guessed for each vertex by the first rule. Here we are
implicitly taking advantage of the minimality of the stable model semantics.
The second rule, instead, checks that no pair of adjacent vertices share the
same color. Therefore, the original graph G is a yes–instance of 3–colorability
if and only if col is a brave consequence of the program above.

A Non–Decisional Variant

Suppose that we are now interested in the following problem:

Given an undirected graph G, retrieve all pairs of vertices sharing
the same color in all 3–coloring of G.

This problem can be handled by slightly modifying program PCOL. In partic-
ular, for retrieving these pairs of vertices, it is enough to replace the query by
sameColor(X, Y), add the rules

sameColor(X, Y) :− color(X, C), color(Y, C).

sameColor(X, Y) :− vertex(X), vertex(Y), nocol.

and perform cautious reasoning. Note that no substitution is removed from the
set of possible answers if nocol is derived to be true.

k–Clique

We conclude this chapter by presenting another NP–complete problem in graph
theory, usually referred to as k–Clique. It can be stated as follows:

Given an undirected graph G and an integer k, does G contain a
subgraph which is a k–clique, i.e., a complete graph with k vertices?

Instances of the problem can be encoded by means of the predicates vertex and
edge in an intuitive way (edge is assumed to define a symmetric relation). In
addition, there is a fact k(i) for each i = 1, . . . , k. The problem can be encoded

22 CHAPTER 2. DISJUNCTIVE DATALOG

by the following program and query:

in(I, X) v out(I, X) :− k(I), vertex(X).

noclique :− in(I, X), in(I, Y), X 6= Y.

inclique(X) :− in(I, X).

noclique :− inclique(X), inclique(Y), X 6= Y, not edge(X, Y).

clique :− not noclique.

clique?

The first three rules above guess k vertices or more, while the last two rules check
whether each pair of guessed vertices is connected. Therefore, the original graph
G contains a k clique if and only if the query clique is a brave consequence of
the program above.

Chapter 3

Magic Set Techniques

In this chapter we describe three Magic Set techniques for query optimization,
the main topic of the work described in this thesis. In particular, we discuss the
original Magic Set method for Datalog programs, herein referred to as Classic
Magic Sets, and two extensions of the technique to Disjunctive Datalog, namely
Static and Dynamic Magic Sets. Static Magic Sets are the first proposed ex-
tension of Classic Magic Sets to Disjunctive Datalog programs, while Dynamic
Magic Sets are the technique developed and analyzed in this thesis.

Classic Magic Sets aim at identifying parts of a program which are relevant
for answering a given query. In this way Classic Magic Sets allow for discarding a
sensible number of ground rules during the instantiation of a program. The same
notion of relevance, adapted to the disjunctive case, is used by Static Magic Sets.
However, there is a crucial difference between Datalog and Disjunctive Datalog
which is not addressed by Static Magic Sets: Datalog programs are characterized
by the uniqueness of the intended model, while Disjunctive Datalog programs
possess many stable models in general. We point out that what is relevant for
a query in one stable model may be completely irrelevant in another one, or
also in all others. Indeed, every stable model represents a different, plausible
scenario according to the knowledge represented in a program. Dynamic Magic
Sets take advantage of this aspect, which can allow for exponential performance
gains with respect to the original program as well as with respect to the program
generated by Static Magic Sets.

The chapter is structured as follows. Classic Magic Sets are presented in
Section 3.1, while Static and Dynamic Magic Sets are introduced in Section 3.2.
Dynamic Magic Sets are proved to be sound and complete for Datalog∨,¬s pro-
grams in Section 3.2.4, where we also show a strong relationship between magic
sets and unfounded sets which was not previously recognized in the literature.
After that, in Section 3.3 the correctness of Dynamic Magic Sets is enlarged to
super–coherent programs, which include all odd–cycle–free programs.

3.1 Magic Sets for Datalog

In this section we introduce Classic Magic Sets (CMS) for standard Datalog
programs. In particular, in Section 3.1.1 we introduce the concept of binding
and of sideways information passing. After that, in Section 3.1.2 we provide a

23

24 CHAPTER 3. MAGIC SET TECHNIQUES

a

b

c

d

parentOf(a, b)

Figure 3.1: Graphical representation of EDB F1 for program P3

detailed description of an algorithm implementing CMS.

3.1.1 Sideways Information Passing

Magic Sets aim to simulate a top–down evaluation of a query Q, like SLD–
resolution [42] adopted by Prolog. According to this kind of evaluation, all
rules r such that Q = p(t̄)ϑ, for an atom p(t̄) ∈ H(r) and a substitution ϑ, are
considered in a first step. Then, the atoms in B+(r)ϑ are taken as subqueries,1

and the procedure is iterated. According to this process, if a (sub)query has
some arguments bound to constant values, this information is “passed” to the
atoms in the body. Moreover, bodies are processed in a certain sequence, and
processing a body atom may bind some of its arguments for subsequently con-
sidered body atoms, thus “generating” and “passing” bindings within the body.
Whenever a body atom is processed, each of its arguments is therefore consid-
ered to be either bound or free. We illustrate this mechanism by means of an
example.

Example 3.1.1. Consider a database consisting of a relation parentOf(X, Y),
where X is a parent of Y. In particular, assume the following EDB, graphically
represented in Figure 3.1:

F1 = {parentOf(a, b), parentOf(d, c), parentOf(b, c)}.

A relation ancestorOf defining the transitive closure of parentOf can be achieved
by means of the program P3 reported below:

r12 : ancestorOf(X, Y) :− parentOf(X, Y).

r13 : ancestorOf(X, Y) :− parentOf(X, Z), ancestorOf(Z, Y).

Now assume we are just interested in the descendants of a person a given in
input. Thus, we are interested in answering the query Q3 reported below:

ancestorOf(a, Y)?

1We recall that standard Datalog rules have empty negative body.

3.1. MAGIC SETS FOR DATALOG 25

A typical top–down evaluation scheme would consider r12 and r13 with X bound
to a and Y free. In particular, when considering r12, the information about
the binding of variable X is passed to the atom parentOf(X, Y), which is indeed
the only subquery atom occurring in r12. Hence, the subquery parentOf(a, Y) is
considered. The only atom in F1 which matches the subquery is parentOf(a, b),
and so the answer b is obtained from the rule instance

ancestorOf(a, b) :− parentOf(a, b).

When considering r13, instead, the binding information can be passed either
to parentOf(X, Z) or to ancestorOf(Z, Y). Suppose that subqueries are evalu-
ated according to their order in rules, from left to right, so that parentOf(X, Z)
is considered before ancestorOf(Z, Y) in r13. In particular, F1 contains the
atom parentOf(a, b) which binds Z to b. This binding information might
be propagated to the remaining subquery ancestorOf(Z, Y), which becomes
ancestorOf(b, Y) in this case. The process is then repeated by looking for an
answer to the subquery ancestorOf(b, Y). Again, the rule r12 is considered,
from which ancestorOf(b, c) is derived because parentOf(b, c) belongs to F1.
Then, since all subqueries in the rule

ancestorOf(a, c) :− parentOf(a, b), ancestorOf(b, c).

are true, c is another answer for Q3. It can be checked that no other substitu-
tions are answers for Q3. Indeed, the only other person occurring in F1 is d,
which however only appears as a parent. �

In the example above we had two degrees of freedom in the specification
of the top–down evaluation scheme. The first one concerns the order used for
processing body atoms. In fact, the declarative semantics of Datalog allows
for an arbitrary order to be adopted. The second degree of freedom is slightly
more subtle and concerns the selection of the terms to be considered bound
to constants from previous evaluations. Indeed, while we have considered the
propagation of all binding information that originates from previously processed
body atoms, it is in general possible to restrict the top–down evaluation by par-
tially propagating this information. For instance, one may desire to propagate
only information generated from the evaluation of EDB predicates, or even just
the information that is passed on via head atoms.

The specific propagation strategy adopted in a top–down evaluation scheme
is called sideways information passing strategy (SIPS). Roughly, a SIPS is a
partial order over the atoms of each rule which also specifies how the bindings
originate and propagate [10, 37]. In order to properly formalize this concept
we first introduce adornment strings, a convenient way for representing binding
information for IDB predicates.

Definition 3.1.2 (Adornment String). Consider an atom p(t1, . . . , tk). An
adornment string for p(t1, . . . , tk) is a string

α = a1 · · · ak

defined over the alphabet {b, f }. For each i ∈ {1, . . . , k} the argument ti is
either bound (if ai = b) or free (if ai = f).

A formal definition of SIPS for Datalog rules is provided below.

26 CHAPTER 3. MAGIC SET TECHNIQUES

Definition 3.1.3 (SIPS for Datalog Rules). A SIPS for a Datalog rule r with
respect to a binding α for the atom p(t̄) ∈ H(r) is a pair

(≺α
r , f

α
r),

where:

• ≺α
r is a strict partial order over ATOMS(r); ≺α

r is such that

p(t̄) ≺α
r q(s̄)

holds for all atoms q(s̄) ∈ ATOMS(r) different from p(t̄);

• fα
r is a function assigning to each atom q(s̄) ∈ ATOMS(r) a subset of the

variables in s̄ — intuitively, those made bound after processing q(s̄); fα
r

must guarantee that fα
r (p(t̄)) (the head atom of r) contains all and only

the variables of p(t̄) corresponding to bound arguments in pα.

Examples of adornment strings and SIPS are provided below.

Example 3.1.4. Resume from Example 3.1.1. The adornment string associ-
ated with the query ancestorOf(a, Y) is bf . Indeed, only the first argument of
ancestorOf is bound to a constant in this case. The SIPS (≺bf

r12
, fbf

r12
) adopted

in Example 3.1.1 for the rule r12 and the binding bf can be formalized as follows:

• ancestorOf(X, Y) ≺bf
r12

parentOf(X, Y);

• fbf
r12

(ancestorOf(X, Y)) = {X};

• fbf
r12

(parentOf(X, Y)) = {X, Y}.

The SIPS (≺bf
r13

, fbf
r13

) for r13 and bf , instead, can be formalized as follows:

• ancestorOf(X, Y) ≺bf
r13

parentOf(X, Z) ≺bf
r13

ancestorOf(Z, Y);

• fbf
r13

(ancestorOf(X, Y)) = {X};

• fbf
r12

(parentOf(X, Z)) = {X, Z};

• fbf
r12

(ancestorOf(Z, Y)) = {Z, Y}.

A different SIPS for r13 and bf could be (≺bf
r13

, f̂bf
r13

), where f̂bf
r13

is as follows:

• f̂bf
r13

(ancestorOf(X, Y)) = {X};

• f̂bf
r13

(parentOf(X, Z)) = {X};

• f̂bf
r13

(ancestorOf(Z, Y)) = {Z, Y}.

According to this SIPS the atom parentOf(X, Z) does not provide a binding for
the variable Z. �

Given a query over a Datalog program, the answers associated with the
query do not depend on the adopted SIPS, but different SIPS could imply
very different computations. Top–down systems like Prolog have to pay quite
attention to the choice of SIPS, as adopting some SIPS could result in infinite

3.1. MAGIC SETS FOR DATALOG 27

computations. For instance, consider program P4 below, obtained from P3 by
slightly modifying the rule r13:

r12 : ancestorOf(X, Y) :− parentOf(X, Y).

r14 : ancestorOf(X, Y) :− ancestorOf(X, Z), parentOf(Z, Y).

Even if P3 and P4 are equivalent, a top–down evaluation of P4 following a
left–to–right selection strategy would not terminate because of r14. Indeed, to
answer ancestorOf(a, Y), the subquery ancestorOf(a, Z) has to be processed
first. But ancestorOf(a, Z) and ancestorOf(a, Y) are actually the same query,
which means that the computation starts an infinite loop. Usually, top–down
systems adopt special techniques, like for instance tabling, to overcome these
problems. These techniques are out of the scope of this thesis, as termination is
guaranteed for bottom–up systems. All the algorithms and techniques we shall
develop and discuss in this thesis are orthogonal with respect to the underlying
SIPS to be used in hypothetical top–down evaluations. Therefore, hereinafter
Datalog programs are assumed to be provided in input together with some ar-
bitrarily defined SIPS (≺α

r , f
α
r), for each rule r and for each possible adornment

string α of the atom in H(r).

3.1.2 Classic Magic Sets

The original Magic Set technique, referred to as Classic Magic Sets in this
thesis, has been defined in the context of Datalog. In this section we present
the details of the algorithm implementing Classic Magic Sets. Minor changes
to the original algorithm have been made for allowing a better comparison with
the other Magic Set techniques presented in this thesis. The reader is referred to
[64] for a detailed presentation of the original algorithm. Additional definitions
and notations that will be used in the presentation of Classic Magic Sets are
given below.

Definition 3.1.5 (Adorned Atom). Let α be an adornment string. There-
fore, pα and pα(t̄) are, respectively, the adorned predicate and atom associated
with p(t̄) and α. The arguments of pα(t̄) are considered either bound or free
according to the adornment string α.

Adorned atoms are associated with magic atoms, which are used for identi-
fying relevant atoms for answering an input query.

Definition 3.1.6 (Magic Atom). Let pα(t̄) be an adorned atom. The magic
version of pα(t̄), denoted by magic(pα(t̄)), is an atom magic pα(t̄′) such that:

• t̄′ is obtained from t̄ by eliminating all arguments corresponding to an f
label in α;

• magic pα is a new predicate symbol, for simplicity denoted by attach-
ing the prefix “magic ” to the predicate symbol pα (we assume that no
standard predicate in P has the prefix “magic ”).

We are now ready to describe the CMS algorithm, reported in Figure 3.2.
CMS starts with a query Q over a Datalog program P and outputs a rewritten
program CMS(Q,P). The method uses two sets, S and D, to store adorned

28 CHAPTER 3. MAGIC SET TECHNIQUES

Algorithm CMS(Q,P)
Input: A query Q and a Datalog program P
Output: A rewritten Datalog program
var
S, D : set of adorned predicates;
R

mgc
Q,P

, Rmod
Q,P

: set of rules;

ra: adorned rule;
begin

1. S := ∅; D := ∅; R
mgc
Q,P

:= ∅; Rmod
Q,P

:= ∅;

2. ProcessQuery(Q, S, Rmod
Q,P

, Rmgc
Q,P

);

3. while S 6= ∅ do
4. take an element pα from S; remove pα from S; add pα to D;
5. for each rule r ∈ P such that H(r) = {p(t̄)} do
6. ra := Adorn(r, α, S, D);
7. R

mgc
Q,P

:= R
mgc
Q,P

∪ Generate(r, α, ra);

8. add Modify(ra) to Rmod
Q,P

;
9. end for

10. end while
11. return R

mgc
Q,P

∪ Rmod
Q,P

∪ EDB(P);

end.

Figure 3.2: Classic Magic Sets algorithm for Datalog programs

predicates to be propagated and already processed, respectively. Magic rules
are stored in the set Rmgc

Q,P , modified rules in Rmod
Q,P . Initially, all sets S, D, Rmgc

Q,P

and Rmod
Q,P are empty (line 1). The algorithm starts by processing the query

(line 2), which includes putting the adorned version of the query predicate into
S. After that, the main loop of the algorithm is repeated until S is empty
(lines 3–10). More specifically, an adorned predicate pα is moved from S to D

(line 4) and each rule r having an atom p(t̄) in the head is considered (lines
5–9). The adorned version ra of the rule r is computed (this step may also
put new adorned predicates into S; line 6), from which magic rules (line 7)
and a modified rule r′ are generated (line 8). Finally, the algorithm terminates
returning the program obtained by the union of Rmgc

Q,P , Rmod
Q,P and EDB(P) (line

11). The details of the four auxiliary functions in CMS are discussed in the
remainder of this section. The query and the program from Example 3.1.1 and
the associated SIPS presented in Example 3.1.4 are used as running example.

Function 1: ProcessQuery

The first function of CMS, ProcessQuery, is reported in Figure 3.3. For a
query Q = p(t̄), ProcessQuery builds an adornment string α for the predicate
p (lines 2–5). The element in position i of α is b if the i–th argument of p(t̄) is
a constant, otherwise the element in position i of α is f . After that, the adorned
predicate pα is added to S (line 6) in order to be subsequently processed for
binding propagation. Moreover, the function builds a query seed and a rule for

3.1. MAGIC SETS FOR DATALOG 29

Function ProcessQuery(Q, S, Rmod
Q,P

, Rmgc
Q,P

)
Input
Q: query;
S : set of adorned predicates;
R

mgc
Q,P

, Rmod
Q,P

: set of rules;
Output: none;
var
α: adornment string;

begin
1. Let p(t̄) be the atom in Q;
2. α := ǫ;
3. for each argument t in t̄ do
4. if t is a constant then α := αb; else α := αf ; end if
5. end for
6. add pα to S;
7. add magic(pα(t̄)) to R

mgc
Q,P

;

8. add p(X) :− pα(X) to Rmod
Q,P

;
end.

Figure 3.3: ProcessQuery function for Classic Magic Sets

gathering answers:

magic(pα(t̄)).

p(X) :− pα(X).

where X is a list of variables. The query seed is stored into the set R
mgc
Q,P (line

7), while the gathering rule into the set Rmod
Q,P (line 8).

Example 3.1.7. For the query Q3 from Example 3.1.1 the function Process-
Query builds:

• the adorned predicate ancestorOfbf ;

• the query seed magic ancestorOfbf (a);

• the gathering rule ancestorOf(X, Y) :− ancestorOfbf (X, Y).

�

Function 2: Adorn

The key idea of Magic Sets is to materialize the binding information for IDB
predicates that would be propagated during a top–down computation. Hence,
after processing the query, each adorned predicate is eventually used to propa-
gate its information into the body of the rules defining it. This kind of prop-
agation is performed according to an appropriate SIPS, thereby simulating a
top–down evaluation of the query. In particular, if a binding α has to be prop-
agated into a rule r with head p(t̄), the associated SIPS (≺α

r , f
α
r) determines

which variables are bound in the evaluation of each atom of r. More specifically,
a variable X of an atom q(s̄) in ATOMS(r) is bound if and only if either

30 CHAPTER 3. MAGIC SET TECHNIQUES

Function Adorn(r, α, S, D)
Input
r: rule;
α: adornment string;
S, D : set of predicates;

Output: an adorned rule;
var
ra: adorned rule;
αi: adornment string;

begin
1. Let p(t̄) be the atom in H(r).
2. Let (≺α

r , f
α
r) be the SIPS associated with r and α.

3. ra := r;
4. for each IDB atom pi(t̄i) in ATOMS(r) do
5. αi := ǫ;
6. for each argument t in t̄ do
7. if t is a constant then
8. αi := αib;
9. else

10. Argument t is a variable. Let X be such a variable.
11. if X ∈ fα

r (p(t̄)) or there is b(v̄) in B+(r) such that
12. b(v̄) ≺α

r q(s̄) and X ∈ fα
r (b(v̄)) then

13. αi := αib;
14. else
15. αi := αif ;
16. end if
17. end if
18. end for
19. substitute pi(t̄i) in ra with p

αi
i (t̄i);

20. if set D does not contain p
αi
i then add p

αi
i to S; end if

21. end for
22. return ra;

end.

Figure 3.4: Adorn function for Classic Magic Sets

• X ∈ fα
r (p(t̄)), or

• there is an atom b(v̄) ∈ B+(r) such that b(v̄) ≺α
r q(s̄) and X ∈ fα

r (b(v̄)).

The function Adorn, reported in Figure 3.4, takes care of the materializa-
tion of the binding information for IDB predicates. Given a rule r and a binding
α, the function builds an adorned rule ra starting form r (line 3) and substi-
tuting all IDB predicates by adorned predicates obtained according to the SIPS
(≺α

r , f
α
r) associated with r and α (lines 4–21). Each new adorned predicate

generated in this phase is added to S unless it has been produced previously
(that is, unless the adorned predicate does belong to D; line 20). Finally, the
function terminates, returning the adorned rule ra (line 22).

Example 3.1.8. The adorned predicate ancestorOfbf has been added to S

while processing the query ancestorOf(a, Y) in Example 3.1.7. After that,
ancestorOfbf is moved from S to D (line 4 of Figure 3.2) and its binding infor-
mation bf is propagated in all rules defining the predicate ancestorOf (lines 5–9
of Figure 3.2). In this case the for loop is repeated twice, for r12 and r13, and

3.1. MAGIC SETS FOR DATALOG 31

Function Generate(r, α, ra)
Input
r: rule;
α: adornment string;
ra: adorned rule;

Output: a set of magic rules;
var
R: set of rules;
r∗: rule;

begin
1. Let pα(t̄) be the atom in H(ra).
2. Let (≺α

r , f
α
r) be the SIPS associated with r and α.

3. R := ∅;
4. for each atom p

αi
i (t̄i) in B+(ra) do

5. if αi 6= ǫ then
6. r∗ := magic(pαi

i (t̄i)) :− magic(pα(t̄));

7. for each atom p
αj

j (t̄j) in B+(ra) such that pj(t̄j) ≺α
r pi(t̄i) do

8. add atom p
αj

j (t̄j) to B+(r∗);
9. end for

10. add r∗ to R;
11. end if
12. end for
13. return R;

end.

Figure 3.5: Generate function for Classic Magic Sets

the adorned rules ra12, ra13 (reported below) are generated.2 The order in which
rules are processed is negligible, so let us assume that r12 is processed first.
According to the SIPS (≺bf

r12
, fbf

r12
) defined in Example 3.1.4, when the binding

information bf is propagated into r12, the following adorned rule is produced:

ra12 : ancestorOfbf (X, Y) :− parentOf(X, Y).

Instead, when propagating bf into rule r13 according to the SIPS (≺bf
r13

, fbf
r13

)
defined in Example 3.1.4, the following adorned rule is obtained:

ra13 : ancestorOfbf (X, Y) :− parentOf(X, Z), ancestorOfbf (Z, Y).

Note that adornment strings are only applied to IDB predicates; hence, the
EDB predicate parentOf is not adorned in the rules ra12 and ra13. Note also that
no new adorned predicates are generated in this case. �

Function 3: Generate

The function Generate, reported in Figure 3.5, is used for producing magic
rules from each adorned rule produced by Adorn. When Generate is invoked
for an adorned rule ra with head atom pα(t̄), which has been obtained by
adorning a rule r with respect to the adornment string α, a magic rule r∗

2We recall here that each adorned rule produced in this step of the algorithm is subsequently
processed by the functions Generate and Modify (see Examples 3.1.9 and 3.1.10).

32 CHAPTER 3. MAGIC SET TECHNIQUES

Function Modify(ra)
Input
ra: adorned rule;

Output: a modified rule;
var
r′: rule;

begin
1. Let pα(t̄) be the atom in H(ra).
2. r′ := ra;
3. add magic(pα(t̄)) to B+(r′);
4. return r′;

end.

Figure 3.6: Modify function for Classic Magic Sets

is produced for each atom pαi

i (t̄i) in the body of ra such that pi is an IDB

predicate: The head atom of r∗ is magic(qβi

i (s̄i)), while the body of r∗ consists

of magic(pα(t̄)) and all atoms q
βj

j (s̄j) in B+(r) such that qj(s̄j) ≺
α
r qi(s̄i)

holds.

Example 3.1.9. In Example 3.1.8 two adorned rules have been produced,
namely ra12 and ra13. When Generate is invoked for rule ra12, an empty set
is returned. Indeed, in this case B+(ra12) does not contain IDB predicates. For
rule ra13, instead, Generate returns the following magic rule:

r∗13 : magic ancestorOfbf (Z) :− magic ancestorOfbf (X), parentOf(X, Z).

�

Function 4: Modify

Each adorned rule produced by Adorn is also processed by the function Modify
reported in Figure 3.6. In particular, given an adorned rule ra with head atom
pα(t̄), Modify returns a modified rule r′ obtained from ra by adding the magic
atom magic(pα(t̄)) to its body. This magic atom limits the range of the head
variables during program instantiation.

Example 3.1.10. For the adorned rules ra12 and ra13 from Example 3.1.8 the
following modified rules are generated:

r′12 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′13 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X),

parentOf(X, Z), ancestorOfbf (Z, Y).

�

The correctness of Classic Magic Sets is well known for Datalog programs;
see for instance [64].

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 33

Example 3.1.11. The complete program CMS(Q3,P3) is reported below:3

magic ancestorOfbf (a).

ancestorOf(X, Y) :− ancestorOfbf (X, Y).

r∗13 : magic ancestorOfbf (Z) :− magic ancestorOfbf (X), parentOf(X, Z).

r′12 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′13 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X),

parentOf(X, Z), ancestorOfbf (Z, Y).

The rewritten program above is equivalent to the original program with re-
spect to the query ancestorOf(a, Y). Indeed, each answer ϑ for Q3 and P3

derived by means of r12 is such that parentOf(a, Y)ϑ occurs as a fact. An-
swers of this kind are also derived by CMS(Q3,P3) thanks to the magic seed
magic ancestorOfbf (a) and the rule r′12. All other answers are obtained from
r13 by combining instances of parentOf(a, Z) and ancestorOf(Z, Y) matching
on Z. All answers of this kind are also provided by CMS(Q3,P3) thanks to the
magic rule r∗13. We also note that the program CMS(Q3,P3) is an optimized
version of P3. Indeed, only rules defining relevant atoms are produced during
program instantiation. For instance, no rule defining ancestorOf(d, c) is gener-
ated during the program instantiation of CMS(Q3,P3) because the magic atom
magic ancestorOfbf (d) cannot be produced in this case. �

3.2 Magic Sets for Disjunctive Datalog

Static and Dynamic Magic Sets are two extensions of Classic Magic Sets that
allow for query optimization over Disjunctive Datalog programs. The details
of the two techniques are discussed in this section. In particular, the section
is structured as follows. In Section 3.2.1 we present the main ideas that have
been used for enabling the Magic Set method to work on Disjunctive Datalog
programs. After that, Static Magic Sets are introduced in Section 3.2.2 and
Dynamic Magic Sets in Section 3.2.3. Finally, in Section 3.2.4 the correctness of
Dynamic Magic Sets is established for Datalog∨,¬s and Datalog∨,¬

SC programs.

3.2.1 SIPS for Disjunctive Datalog Rules

Sideways information passing strategies (SIPS) for Datalog rules have been dis-
cussed in Section 3.1.1. In particular, SIPS have been presented as a convenient
way for identifying relevant atoms for answering queries over Datalog programs.
In this section we extend the concept of SIPS to the framework of Disjunctive
Datalog.

As first observed in [37], while in Datalog bindings have to be propagated
only from head atoms to body atoms, in Disjunctive Datalog bindings have to
be propagated also from head atoms to head atoms. Indeed, since stable models
are subset–minimal, a rule r can support the truth of an atom p(t̄) in H(r) only
if all atoms in H(r) \ {p(t̄)} are false. Hence, when processing a rule r and a

3EDB facts are usually omitted in examples because only IDB rules are rewritten by Magic
Set techniques.

34 CHAPTER 3. MAGIC SET TECHNIQUES

(sub)query p(t̄) ∈ H(r), all atoms in ATOMS(r) \ {p(t̄)} have to be considered
as subqueries, which means that instances of these atoms may be relevant for
answering the (sub)query p(t̄). An example is given below.

Example 3.2.1. Consider the following Datalog∨,¬ program:

p(X) v q(Y) :− b(X, Y).

Suppose we are interested in answering the following query:

p(1)?

In this case the binding information b for predicate p is propagated from the
query p(1) to the disjunctive rule above. In particular, the atom q(Y) has to be
evaluated in order to answer the query p(1). Let us assume that the adopted
SIPS provides a binding for the variable Y of q(Y) through the atom b(X, Y), and
that the EDB of the program consists of the facts b(1, 2) and b(2, 3). Thus, the
atom q(2) is considered as a subquery, while the atom q(3) is not. �

In order to properly extend the concept of SIPS to Disjunctive Datalog rules,
the following aspects have to be taken into account:

• rule heads may have more than one atom; therefore, the SIPS depends on
the specific head atom matching the (sub)query;

• the only head atom which can pass bindings is the one matching the
(sub)query;

• negative literals cannot pass bindings to other atoms.

These aspects are formalized below.

Definition 3.2.2 (SIPS for Datalog∨,¬ Rules). A SIPS for a Datalog∨,¬ rule r

with respect to a binding α for an atom p(t̄) ∈ H(r) is a pair

(≺pα(t̄)
r , fpα(t̄)

r),

where:

• ≺
pα(t̄)
r is a strict partial order over the atoms in ATOMS(r); ≺

pα(t̄)
r is such

that
p(t̄) ≺pα(t̄)

r q(s̄)

holds for all atoms q(s̄) ∈ ATOMS(r) different from p(t̄), and

qi(s̄i) ≺
pα(t̄)
r qj(s̄j)

implies that atom qi(s̄i) belongs to B+(r) ∪ {p(t̄)};

• f
pα(t̄)
r is a function assigning to each atom q(s̄) ∈ ATOMS(r) a subset of

the variables in s̄ — intuitively, those made bound after processing q(s̄);

f
pα(t̄)
r is such that f

pα(t̄)
r (p(t̄)) contains all and only the variables of p(t̄)

corresponding to bound arguments in pα.

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 35

a

b

c d e

possibleAncestorOf(a, b)

Figure 3.7: Graphical representation of EDB F2 for program P5

Note that Definition 3.1.3 and Definition 3.2.2 coincide for Datalog programs
because Datalog rules have atomic heads and positive bodies. Below is an
example of SIPS for a Disjunctive Datalog program.

Example 3.2.3. In Example 3.1.1 we have considered a program defining
an IDB predicate ancestorOf as the transitive closure of an EDB predicate
parentOf. This program has been used to determine all descendants of a given
person a. Let us now assume that only uncertain knowledge is contained in the
database. In particular, assume that a superset of the relation parentOf(X, Y)
is stored by means of the EDB predicate possibleParentOf. In this case the
relation parentOf(X, Y) can be reconstructed by guessing a subset of the relation
possibleParentOf(X, Y). Therefore, the descendants of a can be retrieved by
means of the query Q4 and the program P5 below:

Q4 : ancestorOf(a, Y)?

r15 : parentOf(X, Y) v nonParentOf(X, Y) :− possibleParentOf(X, Y).

r16 : ancestorOf(X, Y) :− parentOf(X, Y).

r17 : ancestorOf(X, Y) :− ancestorOf(X, Z), parentOf(Z, Y).

In particular, the relation parentOf(X, Y) is guessed by the rule r15,4 and its
transitive closure is computed as before by the rules r16 and r17. Assume now
the following EDB, graphically represented in Figure 3.7:

F2 = {possibleParentOf(a, b), possibleParentOf(b, c),

possibleParentOf(b, d), possibleParentOf(b, e)}.

In this case program P5 has sixteen stable models, one for each possible subset
of F2. Hence, the answers to the query Q4 are the following sets:

4In order to avoid loops in relation parentOf, program P5 could be modified by adding the
following rule:

nonParentOf(X, Y) :− possibleParentOf(X, Y), ancestorOf(Y, X).

For simplicity, in the example we assume that loops cannot occur, for instance by assuming
that the relation possibleParentOf(X, Y) is acyclic.

36 CHAPTER 3. MAGIC SET TECHNIQUES

• Ansb(Q4,P5) = {b, c, d, e} (brave answers);

• Ansc(Q4,P5) = ∅ (cautious answers).

We now describe the adornments produced and propagated in a hypothetical
top–down evaluation of Q4 over P5. The first binding information comes from
the query and can be represented by an adorned predicate ancestorOfbf . This
binding information is propagated in the rules r16 and r17 according to some
properly defined SIPS. Let us assume that the SIPS

(≺ancestorOfbf (X,Y)
r16

, fancestorOfbf (X,Y)
r16

) and (≺ancestorOfbf (X,Y)
r17

, fancestorOfbf (X,Y)
r17

)

are defined as follows:

• ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r16 parentOf(X, Y);

• f
ancestorOfbf (X,Y)
r16 (ancestorOf(X, Y)) = {X};

• f
ancestorOfbf (X,Y)
r16 (parentOf(X, Y)) = {X, Y};

• ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r17 ancestorOf(X, Z);

• ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r17 parentOf(Z, Y);

• ancestorOf(X, Z) ≺
ancestorOfbf (X,Y)
r17 parentOf(Z, Y);

• f
ancestorOfbf (X,Y)
r17 (ancestorOf(X, Y)) = {X};

• f
ancestorOfbf (X,Y)
r17 (ancestorOf(X, Z)) = {X, Z};

• f
ancestorOfbf (X,Y)
r17 (parentOf(Z, Y)) = {Z, Y}.

Hence, a new binding bf for the predicate parentOf is produced, and parentOfbf

is propagated in the rule r15. Let us assume that the SIPS

(≺parentOfbf (X,Y)
r15

, fparentOfbf (X,Y)
r15

)

is as follows::

• parentOf(X, Y) ≺
parentOfbf (X,Y)
r15 possibleParentOf(X, Y);

• parentOf(X, Y) ≺
parentOfbf (X,Y)
r15 nonParentOf(X, Y);

• f
parentOfbf (X,Y)
r15 (parentOf(X, Y)) = f

parentOfbf (X,Y)
r15 (nonParentOf(X, Y)) = {X};

• f
parentOfbf (X,Y)
r15 (possibleParentOf(X, Y)) = {X, Y}.

Thus, a new binding bf for predicate nonParentOf is produced and propagated
in the rule r15. Let assume that the SIPS

(≺nonParentOfbf (X,Y)
r15

, fnonParentOfbf (X,Y)
r15

)

is defined as follows:

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 37

• nonParentOf(X, Y) ≺
nonParentOfbf (X,Y)
r15 possibleParentOf(X, Y);

• nonParentOf(X, Y) ≺
nonParentOfbf (X,Y)
r15 parentOf(X, Y);

• f
nonParentOfbf (X,Y)
r15 (nonParentOf(X, Y)) = {X};

• f
nonParentOfbf (X,Y)
r15 (parentOf(X)) = {X};

• f
nonParentOfbf (X,Y)
r15 (possibleParentOf(X, Y)) = {X, Y}.

Note that the choice of SIPS for all other pairs of rules and adorned predicates
is negligible, as these combinations do not occur while Q4 is evaluated over P5

according to the SIPS reported above. �

We recall that all the algorithms and techniques discussed in this thesis are
orthogonal with respect to the underlying SIPS to be used in a hypothetical
top–down evaluation. Therefore, hereinafter Datalog∨,¬ programs are assumed
to be provided in input together with some arbitrarily defined SIPS

(≺pα(t̄)
r , fpα(t̄)

r),

for each rule r, for each atom p(t̄) ∈ H(r), and for each possible adornment
string α for p(t̄).

3.2.2 Static Magic Sets

The new notion of SIPS is not enough for extending Classic Magic Sets to
Disjunctive Datalog. In fact, adorning a rule may give rise to multiple rules
with different adornments for head atoms. While this is not a problem for
standard Datalog programs, the semantics of a disjunctive program may be
affected. For example, let us consider the following query and program:

g(a)?

edb(a, a).

r18 : g(X) :− p(X, Y), q(Z, X).

r19 : p(X, Y) v q(X, Y) :− edb(X, Y).

Since r19 is the only rule defining p and q, for each substitution ϑ such that the
atom edb(X, Y)ϑ occurs in the EDB, every stable model of the program above
has to contain exactly one of p(X, Y)ϑ and q(X, Y)ϑ (because of minimality). In
particular, the program above has two stable models, one containing p(a, a)
and the other q(a, a). In these two stable models the query atom g(a) is false,
which implies that the query is neither a brave nor a cautious consequence of
the program above. Now let us try to apply the CMS algorithm in a naive way,
by just changing the kind of SIPS for dealing with disjunctive heads. When
processing the query, the adorned predicate gb is produced. After that, this
binding information is propagated in the rule r18 and the following adorned

38 CHAPTER 3. MAGIC SET TECHNIQUES

rule is produced:5

ra18 : gb(X) :− pbf (X, Y), qfb(Z, X).

Two new adorned predicates have been produced, namely pbf and qfb . If the
atom edb(X, Y) does not provide any binding for the variables X and Y, when
propagating pbf and qfb in r19 the following adorned rules are generated:

ra19,1 : pbf (X, Y) v qbf (X, Y) :− edb(X, Y).

ra19,2 : pfb(X, Y) v qfb(X, Y) :− edb(X, Y).

These rules might support two atoms pbf (a, a) and qfb(a, a), thus giving a chance
to the query atom g(a) to be true. Indeed, the application of CMS would
generate the following program:

magic gb(a).

g(X) :− gb(X).

r′18 : gb(X) :− magic gb(X), pbf (X, Y), qfb(Z, X).

r′19,1 : pbf (X, Y) v qbf (X, Y) :− magic pbf (X), magic qbf (X), edb(X, Y).

r′19,2 : pfb(X, Y) v qfb(X, Y) :− magic pfb(Y), magic qfb(Y), edb(X, Y).

r∗18 : magic pbf (X) :− magic gb(X).

r∗18 : magic qfb(X) :− magic gb(X).

r∗19,1 : magic qbf (X) :− magic pbf (X).

r∗19,2 : magic pbf (X) :− magic qbf (X).

r∗19,3 : magic qfb(X) :− magic pfb(X).

r∗19,4 : magic pfb(X) :− magic qfb(X).

We recall that the original EDB consists only of the atom edb(a, a). Hence, the
program above admits a stable model containing both pbf (a, a) and qfb(a, a).
Thus, this stable model also contains gb(a) because of r′18. The truth of gb(a) in
turn implies that the query atom g(a) is true, which means that g(a) is a brave
consequence of the rewritten program (while it was not a brave consequence of
the original program).

Static Magic Sets (SMS) circumvents this problem by using some auxiliary
predicates that collect all facts coming from different adornments. For instance,
for the predicate p in the previous example, the following collector rules are
introduced by SMS:

collect p(X, Y) :− pbf (X, Y).

collect p(X, Y) :− pfb(X, Y).

Collector predicates of SMS store a sizable superset of the atoms which are

5Note that in this specific case the rule produced by CMS does not depend on the chosen
SIPS. In fact, every valid SIPS would give rise to the production of this rule.

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 39

Algorithm SMS(Q,P)
Input: A query Q and a Datalog∨,¬ program P
Output: A rewritten Datalog∨,¬ program
var
S, D : set of adorned predicates;
R

mgc
Q,P

, Rmod
Q,P

: set of rules;

ra: adorned rule;
begin

1. S := ∅; D := ∅; R
mgc
Q,P

:= ∅; Rmod
Q,P

:= ∅;

2. ProcessQuery v (Q, S, Rmgc
Q,P

);

3. while S 6= ∅ do
4. take an element pα from S; remove pα from S; add pα to D;
5. for each rule r in P and for each atom p(t̄) in H(r) do
6. ra := Adorn v (r, pα(t̄), S, D);
7. R

mgc
Q,P

:= R
mgc
Q,P

∪ GenerateSMS(r, pα(t̄), ra);

8. end for
9. add collect p(X) :− pα(X) to R

mgc
Q,P

;

10. end while
11. Rmod

Q,P
:= ModifySMS(P);

12. return R
mgc
Q,P

∪ Rmod
Q,P

∪ EDB(P);

end.

Figure 3.8: Static Magic Sets algorithm for Disjunctive Datalog programs

relevant for answering a given query. It is important to note that this set is
defined deterministically, which means that the assumptions made during the
computation cannot be used to restrict the relevant part of the program. In
terms of bottom–up systems, this implies that the magic atoms of SMS can
provide a direct optimization only to program instantiation.

The SMS algorithm is reported in Figure 3.8 (the algorithm has been restated
in order to be compared with Dynamic Magic Sets; we refer to [37] for the
original description). SMS starts with a query Q over a Datalog∨,¬ program
P and outputs a rewritten program SMS(Q,P). As CMS, the method uses
two sets, S and D, to store adorned predicates to be propagated and already
processed, respectively. Rules defining magic and “collector” predicates are
stored in the set R

mgc
Q,P , modified rules in Rmod

Q,P . Initially, all sets S, D, Rmgc
Q,P

and Rmod
Q,P are empty (line 1). The algorithm starts by processing the query

(line 2), which also puts the adorned version of the query predicate into S.
After that, the main loop of the algorithm is repeated until S is empty (lines
3–10). More specifically, an adorned predicate pα is moved from S to D (line
4) and each rule r having an atom p(t̄) in its head is processed (lines 5–8). In
particular, the adorned version ra of the rule r is computed (line 6), from which
magic rules are generated (note that this process is repeated for each atom p(t̄)
in H(r) matching the predicate p; line 7). After having processed all defining
rules for p(t̄), a rule for collecting all facts coming from pα is stored in R

mgc
Q,P

(line 9). Just before the end, the original rules of P are modified by adding
“collector” atoms to their bodies (line 11). Finally, the algorithm terminates
returning the program obtained by the union of Rmgc

Q,P , Rmod
Q,P and EDB(P) (line

12). The details of the four auxiliary functions in SMS are discussed in the

40 CHAPTER 3. MAGIC SET TECHNIQUES

Function ProcessQuery v (Q, S, Rmgc
Q,P

)
Input
Q: query;
S : set of adorned predicates;
R

mgc
Q,P

: set of rules;
Output: none;
var
α: adornment string;

begin
1. Let p(t̄) be the atom in Q.
2. α := ǫ;
3. for each argument t in t̄ do
4. if t is a constant then α := αb; else α := αf ; end if
5. end for
6. add pα to S;
7. add magic(pα(t̄)) to R

mgc
Q,P

;

end.

Figure 3.9: ProcessQuery function for Static and Dynamic Magic Sets

remainder of this section. The program and SIPS from Example 3.2.3 are used
as running example.

Function 1: ProcessQuery v

The first function of SMS, ProcessQuery v , is reported in Figure 3.9. Essen-
tially, the only difference with respect to the original ProcessQuery is that
rules for gathering answers are not generated by ProcessQuery v .

Example 3.2.4. For the query Q4 from Example 3.2.3, ProcessQuery v

builds:

• the adorned predicate ancestorOfbf ;

• the query seed magic ancestorOfbf (a).

�

Function 2: Adorn v

The second function of SMS, Adorn v , is reported in Figure 3.10. For each
adorned predicate pα produced by SMS, its binding information is propagated
into all rules defining the predicate p. The propagation is performed according
to a given SIPS. In particular, for a binding α associated with an atom p(t̄) in
the head of a rule r, the associated SIPS

(≺pα(t̄)
r , fpα(t̄)

r)

determines which variables are bound in the evaluation of each atom of r: A
variable X of an atom q(s̄) in ATOMS(r) is bound if and only if either

• X ∈ f
pα(t̄)
r (p(t̄)), or

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 41

Function Adorn v (r, pα(t̄), S, D)
Input
r: rule;
pα(t̄): adorned atom;
S, D : set of rules;

Output: an adorned rule;
var
ra: adorned rule;
αi: adornment string;

begin

1. Let (≺
pα(t̄)
r , f

pα(t̄)
r) be the SIPS associated with r and pα(t̄).

2. ra := r;
3. for each IDB atom pi(t̄i) in ATOMS(r) do
4. αi := ǫ;
5. for each argument t in t̄ do
6. if t is a constant then
7. αi := αib;
8. else
9. Argument t is a variable. Let X be such a variable.

10. if X ∈ f
pα(t̄)
r (p(t̄)) or there is b(v̄) in B+(r) such that

11. b(v̄) ≺
pα(t̄)
r pi(t̄i) and X ∈ f

pα(t̄)
r (b(v̄)) then

12. αi := αib;
13. else
14. αi := αif ;
15. end if
16. end if
17. end for
18. substitute pi(t̄i) in ra with p

αi
i (t̄i);

19. if set D does not contain p
αi
i then add p

αi
i to S; end if

20. end for
21. return ra;

end.

Figure 3.10: Adorn function for Static and Dynamic Magic Sets

• there exists b(v̄) ∈ B+(r) such that b(v̄) ≺
pα(t̄)
r q(s̄) and X ∈ f

pα(t̄)
r (b(v̄)).

Example 3.2.5. The adorned predicate ancestorOfbf has been added to S

while processing the query atom ancestorOf(a, Y) in Example 3.2.4. Then,
ancestorOfbf is moved from S to D (line 4 of Figure 3.8) and its binding
information bf is propagated in all rules defining the predicate ancestorOf

(lines 5–9 of Figure 3.8). In this case the for loop is repeated twice, for r16 and
r17, and the following adorned rules are generated:

ra16 : ancestorOfbf (X, Y) :− parentOfbf (X, Y).

ra17 : ancestorOfbf (X, Y) :− ancestorOfbf (X, Z), parentOfbf (Z, Y).

A new adorned predicate, parentOfbf , is added to S in order to be processed in
a subsequent iteration. When Adorn v is invoked for parentOfbf , the following
adorned rule is produced:

ra15 : parentOfbf (X, Y) v nonParentOfbf (X, Y) :− possibleParentOf(X, Y).

42 CHAPTER 3. MAGIC SET TECHNIQUES

Function GenerateSMS(r, pα(t̄), ra)
Input
r: rule;
pα(t̄): adorned atom;
ra: adorned rule;

Output: a set of magic rules;
var
R: set of rules;
r∗: rule;

begin

1. Let (≺
pα(t̄)
r , f

pα(t̄)
r) be the SIPS associated with r and pα(t̄).

2. R := ∅;
3. for each atom p

αi
i (t̄i) in ATOMS(ra) different from pα(t̄) do

4. if αi 6= ǫ do
5. r∗ := magic(pαi

i (t̄i)) :− magic(pα(t̄));

6. for each p
αj

j (t̄j) in B+(ra) such that pj(t̄j) ≺
pα(t̄)
r pi(t̄i) do

7. add atom p
αj

j (t̄j) to B+(r∗);
8. end for
9. add rule r∗ to R;

10. end if
11. end for
12. r∗ := pα(t̄) :− magic(pα(t̄));

13. for each atom p
αj

j (t̄j) in B+(ra) do

14. add atom p
αj

j (t̄j) to B+(r∗);
15. end for
16. add rule r∗ to R;
17. return R;

end.

Figure 3.11: Generate function for Static Magic Sets

Another new adorned predicate, nonParentOfbf , is added to S. Finally, when
Adorn v is invoked for nonParentOfbf , the rule ra15 is produced again. �

Function 3: GenerateSMS

The third function of SMS, GenerateSMS, is reported in Figure 3.11. Given
an adorned rule ra, obtained by adorning a rule r with respect to an adorned
atom pα(t̄), GenerateSMS produces one magic rule for each adorned atom in
ra (lines 3–11). Moreover, the function generates a rule having pα(t̄) in its
head such that the body contains magic(pα(t̄)) and all literals in B+(ra) (lines
12–16). Note also that the SMS algorithm enriches the set of magic rules by
introducing a collecting rule

collect p(t̄) :− pα(t̄).

for each adorned predicate pα (line 9 of Figure 3.8).

Example 3.2.6. In Example 3.2.5 the following adorned rules have been pro-
duced: ra16, ra17 and ra15 (the latter is produced twice). When the function

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 43

GenerateSMS is invoked for ra16, the following rules are produced:

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗16,2 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), parentOfbf (X, Y).

Note that the second rule above is considered a magic rule because, as we will
see later, its purpose is to restrict the range of the variables during program
instantiation. When GenerateSMS is invoked for ra17, instead, the following
magic rules are generated:

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOfbf (X, Z).

r∗17,3 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), ancestorOfbf (X, Z),

parentOfbf (Z, Y),

Finally, GenerateSMS is invoked for ra17 with parentOfbf (X, Y), and for ra17 with
nonParentOfbf (X, Y). The following magic rules are generated:

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗15,2 : parentOfbf (X, Y) :− magic parentOfbf (X), possibleParentOf(X, Y).

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

r∗15,4 : nonParentOfbf (X, Y) :− magic nonParentOfbf (X),

possibleParentOf(X, Y).

Additional rules are introduced by the SMS algorithm (line 9 of Figure 3.8)
for each generated adorned predicate. In our example, the following additional
rules are added:

collect ancestorOf(X, Y) :− ancestorOfbf (X, Y).

collect parentOf(X, Y) :− parentOfbf (X, Y).

collect nonParentOf(X, Y) :− nonParentOfbf (X, Y).

�

Function 4: ModifySMS

The last function of SMS, ModifySMS, is reported in Figure 3.12. Given a
Datalog∨,¬ program P, the function returns a modified program containing a
rule r′ for each rule r of P. The rule r′ is obtained from r by adding to B+(r)
an atom collect p(t̄) for each atom p(t̄) in H(r).

Example 3.2.7. Consider again the program P5 from Example 3.2.3. When
ModifySMS is invoked, the following modified rules are generated:

r′15 : parentOf(X, Y) v nonParentOf(X, Y) :− collect parentOf(X, Y),

collect nonParentOf(X, Y), possibleParentOf(X, Y).

r′16 : ancestorOf(X, Y) :− collect ancestorOf(X, Y), parentOf(X, Y).

44 CHAPTER 3. MAGIC SET TECHNIQUES

Function ModifySMS(P)
Input
P: program;

Output: a set of modified rules;
var
R: set of rules;
r′: rule;

begin
1. R := ∅;
2. for each rule r in P do
3. r′ := r;
4. for each atom p(t̄) in H(r) do
5. add collect pα(t̄) to B+(r′);
6. end for
7. add rule r′ to R;
8. end for
9. return R;

end.

Figure 3.12: Modify function for Static Magic Sets

r′17 : ancestorOf(X, Y) :− collect ancestorOf(X, Y), ancestorOf(X, Z),

parentOf(Z, Y).

�

The correctness of Static Magic Sets has been established for Datalog∨ pro-
grams [37], while the applicability to Datalog∨,¬s has just been hinted at in
[37].

Example 3.2.8. The complete program SMS(Q4,P5) is reported below:

r′15 : parentOf(X, Y) v nonParentOf(X, Y) :− collect parentOf(X, Y),

collect nonParentOf(X, Y), possibleParentOf(X, Y).

r′16 : ancestorOf(X, Y) :− collect ancestorOf(X, Y), parentOf(X, Y).

r′17 : ancestorOf(X, Y) :− collect ancestorOf(X, Y), ancestorOf(X, Z),

parentOf(Z, Y).

collect ancestorOf(X, Y) :− ancestorOfbf (X, Y).

collect parentOf(X, Y) :− parentOfbf (X, Y).

collect nonParentOf(X, Y) :− nonParentOfbf (X, Y).

rQ4
: magic ancestorOfbf (a).

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOfbf (X, Z).

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 45

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

r∗16,2 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), parentOfbf (X, Y).

r∗17,3 : ancestorOfbf (X, Y) :− magic ancestorOfbf (X), ancestorOfbf (X, Z),

parentOfbf (Z, Y),

r∗15,2 : parentOfbf (X, Y) :− magic parentOfbf (X), possibleParentOf(X, Y).

r∗15,4 : nonParentOfbf (X, Y) :− magic nonParentOfbf (X),

possibleParentOf(X, Y).

The rewritten program above is query equivalent to the original program P5

with respect to to the query Q4, but allows for a more succinct instantiation.
Indeed, if the EDB contains many facts which are not related to the query, the
magic rules in SMS(Q4,P5) allow for discarding rules related to these atoms
during program instantiation. �

3.2.3 Dynamic Magic Sets

Dynamic Magic Sets (DMS) are our proposal to extend Classic Magic Sets
to Disjunctive Datalog programs. While Static Magic Sets introduce collect-
ing predicates for preserving the semantics of input programs, Dynamic Magic
Sets achieve the same result by stripping off adornments from non–magic pred-
icates. In this way, Dynamic Magic Sets allow for more performant instanti-
ations. Moreover, Dynamic Magic Sets introduce the concept of conditional
relevance, also referred to as dynamic relevance, which allows for further opti-
mization potential in stable model search.

The DMS algorithm is reported in Figure 3.13. DMS starts with a query Q
over a Datalog∨,¬ program P and outputs a rewritten program DMS(Q,P). As
CMS and SMS, the method uses two sets, S and D, to store adorned predicates
to be propagated and already processed, respectively. Magic rules are stored
in the set R

mgc
Q,P , modified rules in Rmod

Q,P . No “collector” predicates or rules are

produced by DMS. Initially, all sets S, D, Rmgc
Q,P and Rmod

Q,P are empty (line 1).
The algorithm starts by processing the query (line 2), also putting the adorned
version of the query predicate into S. The main loop of the algorithm is then
repeated until S is empty (lines 3–10). In particular, an adorned predicate pα

is moved from S to D (line 4) and each rule r having and atom p(t̄) in head
is considered (lines 5–9). The adorned version ra of the rule r is computed
(line 6), from which magic rules are generated (line 7) and a modified rule r′

is obtained (line 8). Finally, the algorithm terminates returning the program
obtained by the union of Rmgc

Q,P , Rmod
Q,P and EDB(P) (line 11). The details of the

four auxiliary functions in Figure 3.13 are discussed below by using the query,
the program and the SIPS from Example 3.2.3 as running example.

Function 1: ProcessQuery v

The first function of DMS, ProcessQuery v , is the same as for SMS, reported
in Figure 3.9 and discussed in Section 3.2.2. We recall here that invoking
ProcessQuery v for Q4 generates:

46 CHAPTER 3. MAGIC SET TECHNIQUES

Algorithm DMS(Q,P)
Input: A query Q and a Datalog∨,¬ program P
Output: A rewritten Datalog∨,¬ program
var
S, D : set of adorned predicates;
R

mgc
Q,P

, Rmod
Q,P

: set of rules;

ra: adorned rule;
begin

1. S := ∅; D := ∅; R
mgc
Q,P

:= ∅; Rmod
Q,P

:= ∅;

2. ProcessQuery v (Q, S, Rmgc
Q,P

);

3. while S 6= ∅ do
4. take an element pα from S; remove pα from S; add pα to D;
5. for each rule r in P and for each atom p(t̄) in H(r) do
6. ra := Adorn v (r, pα(t̄), S, D);
7. R

mgc
Q,P

:= R
mgc
Q,P

∪ GenerateDMS(r, pα(t̄), ra);

8. Rmod
Q,P

:= Rmod
Q,P

∪ {ModifyDMS(r, ra)};
9. end for

10. end while
11. return R

mgc
Q,P

∪ Rmod
Q,P

∪ EDB(P);

end.

Figure 3.13: Dynamic Magic Sets algorithm for Disjunctive Datalog programs

• the adorned predicate ancestorOfbf ;

• the query seed magic ancestorOfbf (a).

Function 2: Adorn v

The second function of DMS, Adorn v , is the same as for SMS, reported in
Figure 3.10 and discussed in Section 3.2.2. We report below the adorned rules
produced for the query Q4 and the program P5:

ra16 : ancestorOfbf (X, Y) :− parentOfbf (X, Y).

ra17 : ancestorOfbf (X, Y) :− ancestorOfbf (X, Z), parentOfbf (Z, Y).

ra15 : parentOfbf (X, Y) v nonParentOfbf (X, Y) :− possibleParentOf(X, Y).

We recall that the rule ra15 is produced twice, for parentOfbf and nonParentOfbf .

Function 3: GenerateDMS

The third function of DMS, GenerateDMS, is reported in Figure 3.14. The
function is similar to Generate, used by CMS, but SIPS for Disjunctive Datalog
rules are considered in this case. We observe that only magic atoms are adorned
in the rewritten program produced by DMS, while adornments are stripped off
standard predicates (lines 6–8). Stripping off adornments allows to avoid the
introduction of “collector” predicates, which are instead required by SMS for
preserving the correctness of the technique.

Example 3.2.9. In this example, we will re–use rule labels of Example 3.2.6 for
denoting some generated rules. While processing Q4 and P5, GenerateDMS is

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 47

Function GenerateDMS(r, pα(t̄), ra)
Input
r: rule;
pα(t̄): adorned atom;
ra: adorned rule;

Output: a set of magic rules;
var
R: set of rules;
r∗: rule;

begin

1. Let (≺
pα(t̄)
r , f

pα(t̄)
r) be the SIPS associated with r and pα(t̄).

2. R := ∅;
3. for each atom p

αi
i (t̄i) in ATOMS(ra) different from pα(t̄) do

4. if αi 6= ǫ then
5. r∗ := magic(pαi

i (t̄i)) :− magic(pα(t̄));

6. for each atom pj(t̄j) in B+(r) such that pj(t̄j) ≺
pα(t̄)
r pi(t̄i) do

7. add atom pj(t̄j) to B+(r∗);
8. end for
9. add r∗ to R;

10. end if
11. end for
12. return R;

end.

Figure 3.14: Generate function for Dynamic Magic Sets

invoked four times. When GenerateDMS is invoked for rule ra16 and the adorned
atom ancestorOfbf (X, Y), the following magic rule is produced:

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

When GenerateDMS is invoked for ra17 and ancestorOfbf (X, Y), the following
magic rules are generated:

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

When GenerateDMS is invoked for rule ra15 and parentOfbf (X, Y), the following
magic rule is produced:

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

When GenerateDMS is invoked for rule ra15 and nonParentOfbf (X, Y), instead,
the following magic rule is generated:

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

Note that DMS does not produce any collector rule. Moreover, note the

48 CHAPTER 3. MAGIC SET TECHNIQUES

Function ModifyDMS(r, ra)
Input
r: rule;
ra: adorned rule;

Output: a modified rule;
var
r′: rule;

begin
1. r′ := r;
2. for each atom pα(t̄) in H(ra) do
3. add magic(pα(t̄)) to B+(r′);
4. end for
5. return r′;

end.

Figure 3.15: Modify function for Dynamic Magic Sets

difference between the rule r∗∗17,2 above and the rule r∗17,2 produced by SMS:

r∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOfbf (X, Z).

The predicate ancestorOf is adorned in r∗17,2, while it is not in r∗∗17,2. �

Function 4: ModifyDMS

The last function of DMS, ModifyDMS, is reported in Figure 3.15. Given an
adorned rule ra, obtained from a rule r, the function builds and returns a
modified rule r′. The modified rule r′ is obtained from r by adding to its body
a magic atom magic(pα(t̄)) for each adorned atom pα(t̄) occurring in H(ra).
ModifyDMS is similar to the function Modify used by CMS, but in this case
more than one magic atom is possibly added to rule bodies. Moreover, while
adornments of non–magic predicates are preserved by CMS, they are stripped
off in DMS.

Example 3.2.10. While processing Q4 and P5, the following modified rules
are produced:

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

r′′15 : parentOf(X, Y) v nonParentOf(X, Y) :− magic parentOfbf (X),

magic nonParentOfbf (X), possibleParentOf(X, Y).

To sum up, the complete program DMS(Q4,P5) comprises the following

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 49

rules:

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

r′′15 : parentOf(X, Y) v nonParentOf(X, Y) :− magic parentOfbf (X),

magic nonParentOfbf (X), possibleParentOf(X, Y).

rQ4
: magic ancestorOfbf (a).

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

We recall below the original EDB:

F2 = {possibleParentOf(a, b), possibleParentOf(b, c),

possibleParentOf(b, d), possibleParentOf(b, e)},

During program instantiation the following atoms are derived to be true:

• magic ancestorOfbf (a), because of rQ4
;

• magic parentOfbf (a), because of r∗16,1 and magic ancestorOfbf (a);

• magic nonParentOfbf (a), because of r∗15,1 and magic parentOfbf (a).

Thus, program instantiation produces the following rules:6

magic parentOfbf (b) :− magic ancestorOfbf (a), ancestorOf(a, b).

magic nonParentOfbf (b) :− magic parentOfbf (b).

ancestorOf(a, b) :− magic ancestorOfbf (a), parentOf(a, b).

ancestorOf(a, c) :− magic ancestorOfbf (a), ancestorOf(a, b),

parentOf(b, c).

ancestorOf(a, d) :− magic ancestorOfbf (a), ancestorOf(a, b),

parentOf(b, d).

ancestorOf(a, e) :− magic ancestorOfbf (a), ancestorOf(a, b),

parentOf(b, e).

6Note that only underlined atoms are actually present in the program generated by program
instantiation. Atoms already known to be true have been included to simplify the identification
of rules.

50 CHAPTER 3. MAGIC SET TECHNIQUES

parentOf(a, b) v nonParentOf(a, b) :− magic parentOfbf (a),

magic nonParentOfbf (a), possibleParentOf(a, b).

parentOf(b, c) v nonParentOf(b, c) :− magic parentOfbf (b),

magic nonParentOfbf (b), possibleParentOf(b, c).

parentOf(b, d) v nonParentOf(b, c) :− magic parentOfbf (b),

magic nonParentOfbf (b), possibleParentOf(b, d).

parentOf(b, e) v nonParentOf(b, c) :− magic parentOfbf (b),

magic nonParentOfbf (b), possibleParentOf(b, e).

This program is then processed by the stable model search phase. We note that
there is just one rule with a true body, from which either parentOf(a, b) or
nonParentOf(a, b) may be inferred. Note also that the other disjunctive rules
are not active because of magic parentOfbf (b) and magic nonParentOfbf (b).
We point out that in this case magic sets provide a dynamic optimization to
stable model search by deactivating rules which are not relevant in the consid-
ered partial model. Moreover, it can be checked that P5 and DMS(Q4,P5) are
query equivalent with respect to Q4. �

Below we give another example of application of Dynamic Magic Sets. This
time a Datalog∨,¬s program is considered.

Example 3.2.11. Suppose we are interested in retrieving all people which are
not ancestors of a person a in a given genealogy graph like the one shown in
Figure 3.7. Assuming the presence of an EDB predicate person, the scenario
above can be modeled by means of the query Q5 and the program P6 reported
below:

Q5 : nonAncestorOf(a, Y)?

r15 : parentOf(X, Y) v nonParentOf(X, Y) :− possibleParentOf(X, Y).

r16 : ancestorOf(X, Y) :− parentOf(X, Y).

r17 : ancestorOf(X, Y) :− ancestorOf(X, Z), parentOf(Z, Y).

r20 : nonAncestorOf(X, Y) :− person(X), person(Y), not ancestorOf(X, Y).

Note that P6 has been obtained by adding the rule r20 to the program P5. We
now describe the application of DMS to Q5 and P6. While processing the query,
the following magic seed is produced:

rQ5
: magic nonAncestorOfbf (a).

Thus, the adorned predicate nonAncestorOfbf has to be propagated into r20,
assuming the SIPS

(≺nonAncestorOfbf (X,Y)
r20

, fnonAncestorOfbf (X,Y)
r20

)

defined below:

• nonAncestorOf(X, Y) ≺
nonAncestorOfbf (X,Y)
r20 person(X);

• nonAncestorOf(X, Y) ≺
nonAncestorOfbf (X,Y)
r20 person(Y);

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 51

• nonAncestorOf(X, Y) ≺
nonAncestorOfbf (X,Y)
r20 ancestorOf(X, Y);

• f
nonAncestorOfbf (X,Y)
r20 (nonAncestorOf(X, Y)) = {X};

• f
nonAncestorOfbf (X,Y)
r20 (person(X)) = {X};

• f
nonAncestorOfbf (X,Y)
r20 (person(Y)) = {Y};

• f
nonAncestorOfbf (X,Y)
r20 (ancestorOf(X, Y)) = {X}.

The following modified and magic rules are produced according to this SIPS:

r′20 : nonAncestorOf(X, Y) :− magic nonAncestorOfbf (X), person(X),

person(Y), not ancestorOf(X, Y).

r∗20 : magic ancestorOfbf (X) :− magic nonAncestorOfbf (X).

A new adorned predicate is then produced, namely ancestorOfbf , at which
point the algorithm continues in the same way as in Examples 3.2.4–3.2.10. If
the SIPS described in Example 3.2.3 are adopted for all other rules, the rewritten
program DMS(Q5,P6) comprises the following rules:

r′20 : nonAncestorOf(X, Y) :− magic nonAncestorOfbf (X), person(X),

person(Y), not ancestorOf(X, Y).

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

r′′15 : parentOf(X, Y) v nonParentOf(X, Y) :− magic parentOfbf (X),

magic nonParentOfbf (X), possibleParentOf(X, Y).

rQ5
: magic nonAncestorOfbf (a).

r∗20 : magic ancestorOfbf (X) :− magic nonAncestorOfbf (X).

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

It can be checked that the program above is equivalent to the original program
with respect to the query Q5. �

3.2.4 Query Equivalence Theorem

In this section correctness of Dynamic Magic Sets for Disjunctive Datalog pro-
grams with stratified negation is formally established. In particular, the follow-
ing theorem is proved.

52 CHAPTER 3. MAGIC SET TECHNIQUES

Theorem 3.2.12 (Query Equivalence Theorem). Let Q be a query over a
Datalog∨,¬s program P. Then, the following equivalences are established:

• P ≡b
Q DMS(Q,P); and

• P ≡c
Q DMS(Q,P).

The proof of the theorem above covers the remainder of this section. In par-
ticular, we first highlight syntactic relationships between original and rewrit-
ten programs, and show an interesting relationship between magic sets and
unfounded sets. After that, we prove the soundness and the completeness of
stable model correspondence for Dynamic Magic Sets for Datalog∨,¬s programs
by using the results obtained in the first part of this section. Based on this we
can then show Theorem 3.2.12.

Preliminaries

We start by providing a syntactic relationship between transformed and original
programs.

Proposition 3.2.13. Consider a query Q over a Datalog∨,¬ program P and a
rule r′ ∈ DMS(Q,P) of the form

r′ : h1(ū1) v · · · v hm(ūm) :− magic(hα1

1 (ū1)), . . . , magic(hαm
m (ūm)),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

For each substitution ϑ such that r′ϑ ∈ Ground(DMS(Q,P)), there is a rule
rϑ ∈ Ground(P) such that

r : h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).

Proof. The rule r′ has been produced by a rule ra obtained by adorning r.
Hence, it is enough to note that the rules r and r′ are defined over the same set
of variables.

The proposition above allows for passing from a ground rule of the trans-
formed program to an associated ground rule of the original program. We next
provide a complementary result, connecting ground rules of the original program
to ground rules of the rewritten program.

Proposition 3.2.14. Consider a query Q over a Datalog∨,¬ program P and a
rule r ∈ P of the form

r : h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).

For each substitution ϑ such that rϑ ∈ Ground(P), and for each adornment
string αi such that magic(hαi

i (ūi))ϑ ∈ BDMS(Q,P), there are adornment strings
α1 , . . . , αm , β1 , . . . , βn such that Ground(DMS(Q,P)) contains the following
rules:

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 53

1. A modified rule r′ϑ, where:

r′ : h1(ū1) v · · · v hm(ūm) :− magic(hα1

1 (ū1)), . . . , magic(hαm
m (ūm)),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

2. A magic rule r∗jϑ, for each j ∈ {1, . . . ,m} different from i, where:

• H(r∗j) = {magic(h
αj

j (ūj))}, and

• B(r∗j) = {magic(hαi

i (ūi))} ∪ {b(v̄) ∈ B+(r) | b(v̄) ≺
h
αi
i (ūi)

r hj(ūj)}.

3. A magic rule r∗jϑ, for each j ∈ {1, . . . , n} such that bj is an IDB predicate,
where:

• H(r∗j) = {magic(b
βj

j (v̄j))}, and

• B(r∗j) = {magic(hαi

i (ūi))} ∪ {b(v̄) ∈ B+(r) | b(v̄) ≺
h
αi
i (ūi)

r bj(v̄j)}.

Proof. Since magic(hαi

i (ūi))ϑ is a ground atom in BDMS(Q,P), the adorned pred-
icate hαi

i has been added to S at some point of the DMS algorithm, and it
has eventually been used to adorn r, thereby producing an adorned rule ra.
Let α1 , . . . , αm , β1 , . . . , βn be the adornment strings in ra. Hence, invoking
ModifyDMS for r and ra generates r′, which then belongs to DMS(Q,P).
Since r and r′ are defined over the same set of variables, we can conclude that
r′ϑ ∈ Ground(DMS(Q,P)). Moreover, the adorned rule ra has been used by
GenerateDMS for generating magic rules according to the adopted SIPS. The
structure of these magic rules is as stated in 2. and 3. and their variables are a
subset of the variables of r. We can thus conclude that the claim holds.

In order to prove the Query Equivalence Theorem we will use the well es-
tablished notion of unfounded set for Datalog∨,¬ programs introduced in [47].
Before introducing unfounded sets, however, we have to define partial interpre-
tations, that is, interpretations for which some atoms may be undefined.

Definition 3.2.15 (Partial Interpretation). Let P be a Datalog∨,¬ program. A
partial interpretation for P is a pair 〈T,U〉 such that T ⊆ U ⊆ BP . The atoms
in T are interpreted as true, while the atoms in U \ T are undefined. All other
atoms are false.

We can then formalize the notion of unfounded set.

Definition 3.2.16 (Unfounded Set). Let 〈T,U〉 be a partial interpretation for
a Datalog∨,¬ program P, and X ⊆ BP be a set of atoms. Then, X is an
unfounded set for P with respect to 〈T,U〉 if and only if, for each ground rule
r ∈ Ground(P) with X ∩ H(r) 6= ∅, at least one of the following conditions
holds:

• the body of r is false with respect to 〈T,U〉, i.e., either

B+(r) 6⊆ U , or (3.1)

B−(r) ∩ T 6= ∅; (3.2)

54 CHAPTER 3. MAGIC SET TECHNIQUES

• some positive body literal of r occurs in X, i.e.,

B+(r) ∩X 6= ∅; (3.3)

• some head atom of r not occurring in X is true with respect to I, i.e.,

H(r) ∩ (T \X) 6= ∅. (3.4)

Intuitively, (3.1), (3.2) and (3.4) check if the rule is satisfied by 〈T,U〉 re-
gardless to the atoms in X, while condition (3.3) ensures that the rule can be
satisfied by forcing all atoms in X to be false. The following is an adaptation
of Theorem 4.6 in [47] to our notation.

Theorem 3.2.17 ([47]). Let 〈T,U〉 be a partial interpretation for a Datalog∨,¬

program P. Then, for any stable model M of P such that T ⊆M ⊆ U , and for
each unfounded set X of P with respect to 〈T,U〉, M ∩X = ∅ holds.

We now highlight an interesting property of unfounded sets, providing a
link with magic sets which has not been previously considered in the literature.
The link between unfounded sets and magic sets is given by the following set of
“killed” atoms.

Definition 3.2.18 (Killed Atoms). LetQ be a query over a Datalog∨,¬ program
P, M ′ a model of DMS(Q,P), and N ′ ⊆M ′ a model of Ground(DMS(Q,P))M

′

.
The set

killedM
′

Q,P(N ′)

of the killed atoms for DMS(Q,P) with respect to M ′ and N ′ is defined as
follows:

{p(t̄) ∈ BP \N
′ | either p is an EDB predicate, or

there is a binding α such that magic(pα(t̄)) ∈ N ′}.

Intuitively, killed atoms are either false ground instances of some EDB pred-
icate, or false atoms which are relevant with respect to Q (they have associated
magic atoms in the model N ′). In terms of a hypothetical top–down evaluation
of Q this means that killed atoms would be considered as subqueries but dis-
covered to be false. Note that, if M ′ is stable model, the set killedM

′

Q,P(M ′)
is well–defined. Indeed, a stable model is both a model of DMS(Q,P) and a
minimal model of Ground(DMS(Q,P))M

′

trivially satisfying M ′ ⊆M ′.

Example 3.2.19. Consider again the program DMS(Q4,P5) from Example 3.2.10:

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

r′′15 : parentOf(X, Y) v nonParentOf(X, Y) :− magic parentOfbf (X),

magic nonParentOfbf (X), possibleParentOf(X, Y).

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 55

rQ4
: magic ancestorOfbf (a).

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

r∗15,1 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗15,3 : magic parentOfbf (X) :− magic nonParentOfbf (X).

The original EDB F2 is reported below:

F2 = {possibleParentOf(a, b), possibleParentOf(b, c),

possibleParentOf(b, d), possibleParentOf(b, e)}.

Hence, the following is a stable model of DMS(Q4,P5):

M ′
1 = F2 ∪ {magic ancestorOfbf (a), magic parentOfbf (a),

magic nonParentOfbf (a), nonParentOf(a, b)}.

Therefore, the set killed
M ′

1

Q4,P5
(M ′

1) contains the following ground atoms:

• ancestorOf(a, Y), for each Y ∈ {a, b, c, d, e};

• parentOf(a, Y), for each Y ∈ {a, b, c, d, e};

• nonParentOf(a, Y), for each Y ∈ {a, c, d, e};

• possibleParentOf(X, Y), for each X, Y ∈ {a, b, c, d, e} such that the atom
possibleParentOf(X, Y) does not occur in F2.

�

We observe that the set of killed atoms in the example above is an unfounded
set for P5 with respect to 〈M ′

1 ∩BP5
,BP5

〉. This is not by chance, as formalized
in the next theorem.

Theorem 3.2.20. Consider a query Q over a Datalog∨,¬ program P. Let M ′

be a model for DMS(Q,P), and N ′ ⊆ M ′ a model of Ground(DMS(Q,P))M
′

.
Then, killedM

′

Q,P(N ′) is an unfounded set for P with respect to 〈M ′ ∩BP ,BP〉.

Proof. Let X be the set killedM
′

Q,P(N ′). According to Definition 3.2.16, for
each rule rϑ ∈ Ground(P) (ϑ a substitution) such that H(r)ϑ∩X 6= ∅, we have
to show that at least one of the following conditions holds:

(3.1) B+(r)ϑ 6⊆ BP ,7 or

(3.2) B−(r)ϑ ∩ (M ′ ∩ BP) 6= ∅, or

(3.3) B+(r)ϑ ∩X 6= ∅, or

(3.4) H(r)ϑ ∩ ((M ′ ∩ BP) \X) 6= ∅.

7Note that this condition cannot hold.

56 CHAPTER 3. MAGIC SET TECHNIQUES

Let rϑ be such that

r : h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).

and let hi(ūi)ϑ be an atom in H(r)ϑ∩X. By Definition 3.2.18 of killedM
′

Q,P(N ′),
hi(ūi)ϑ ∈ X implies that there is an adornment string αi such that the magic
atom magic(hαi

i (ūi))ϑ belongs to N ′. Thus, magic(hαi

i (ūi))ϑ ∈ BDMS(Q,P), and
by Proposition 3.2.14 there is a ground rule r′ϑ ∈ Ground(DMS(Q,P)) such
that

r′ : h1(ū1) v · · · v hm(ūm) :− magic(hα1

1 (ū1)), . . . , magic(hαm
m (ūm)),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

Since M ′ is a model of DMS(Q,P), when considering the rule r′ϑ three cases
may occur.

Case 1: B−(r′)ϑ ∩M ′ 6= ∅, that is, the negative body of r′ϑ is false with
respect to M ′. In this case, since B−(r) = B−(r′) and B−(r)ϑ ⊆ BP , from
B−(r′)ϑ ∩M ′ 6= ∅ we immediately conclude

B−(r)ϑ ∩ (M ′ ∩ BP) 6= ∅,

that is, (3.2) holds.

Case 2: B+(r′)ϑ 6⊆M ′, that is, the positive body of r′ϑ is false with respect to
M ′. In this case we shall show that (3.3) holds, i.e., that B+(r)ϑ∩X 6= ∅. Since
N ′ ⊆M ′, B+(r′)ϑ 6⊆M ′ implies B+(r′)ϑ 6⊆ N ′. Note that also B+(r′)ϑ∩BP 6⊆
N ′ must hold in this case. In fact, if B+(r′)ϑ ∩ BP ⊆ N ′, from the rules from
Proposition 3.2.14 (item 2) and since N ′ is a model containing magic(hαi

i (ūi))ϑ
by assumption, we would conclude that B+(r′)ϑ ⊆ N ′. Therefore, there must
be an atom bj(v̄j) ∈ B+(r) such that bj(v̄j)ϑ 6∈ N ′ and, for any b(v̄) ∈ B+(r),

b(v̄) ≺
h
αi
i (ūi)

r bj(v̄j) implies b(v̄)ϑ ∈ N ′. If bj is an EDB predicate, the atom
bj(v̄j)ϑ belongs to X by the definition of killed atoms. Otherwise, bj is an IDB
predicate, and so from Proposition 3.2.14 (item 3) there is a magic rule r∗jϑ in
Ground(DMS(Q,P)) such that:

• H(r∗j) = {magic(b
βj

j (v̄j))};

• B(r∗j) = {magic(hαi

i (ūi))} ∪ {b(v̄) ∈ B+(r) | b(v̄) ≺
h
αi
i (ūi)

r bj(v̄j)}.

Thus, B+(r∗j)ϑ ⊆ N ′ holds because magic(hαi

i (ūi))ϑ belongs to N ′ and by the

properties of bj(v̄j). Therefore, since N ′ is a model of Ground(DMS(Q,P))M
′

,

magic(b
βj

j (v̄j)) belongs to N ′, from which bj(v̄j) ∈ X follows from the definition
of killed atoms. Thus, independently of the type (EDB, IDB) of bj, (3.3) holds.

Case 3: H(r′)ϑ ∩M ′ 6= ∅, that is, the head of r′ϑ is true with respect to M ′.
In this case we can assume that B−(r′)ϑ ∩M ′ = ∅ (otherwise, Case 1 can be
applied) and show that either

(3.3) B+(r)ϑ ∩X 6= ∅, or

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 57

(3.4) H(r)ϑ ∩ ((M ′ ∩ BP) \X) 6= ∅

hold. From the assumption B−(r′)ϑ ∩M ′ = ∅ we can conclude that there is
a rule in Ground(DMS(Q,P))M

′

obtained from r′ϑ by removing its negative
body literals. Consider now the literals b1(v̄1)ϑ, . . . , bk(v̄k)ϑ in B+(r)ϑ and
assume that there is a j ∈ {1, . . . k} such that:

• atom bj(v̄j)ϑ does not belong to N ′; and

• for each atom b(v̄) ∈ B+(r) such that

b(v̄) ≺
h
αi
i (ūi)

r bj(v̄j),

atom b(v̄)ϑ belongs to N ′.

In this case we can show that bj(v̄j)ϑ is a killed atom, from which condition
(3.3) immediately follows. We have to consider two cases. If bj is an EDB

predicate, bj(v̄j) belongs to killedM
′

Q,P(N ′) because it is a false instance of an
EDB atom (see Definition 3.2.18). Otherwise, if bj is an IDB predicate, we
consider the rule r∗j from Proposition 3.2.14 (item 3). In particular, note that

B+(r∗j)ϑ ⊆ {magic(hαi

i (ūi)), b1(v̄1), . . . , bk(v̄k)}ϑ ⊆ N ′;

hence, magic(b
βj

j (v̄j))ϑ ∈ H(r∗j) belongs to N ′ because N ′ is a model of the

program Ground(DMS(Q,P))M
′

by assumption. We can then conclude that,
also in this case, bj(v̄j) belongs to killedM

′

Q,P(N ′) by definition.

It remains to consider the case in which such a j does not exist. Then we
know that bj(v̄j) ∈ N ′ holds for all j ∈ {1, . . . , k}. Moreover, recall that N ′

also contains magic(hαi

i (ūi)). Hence, from the magic rules in Proposition 3.2.14
(item 2), we can conclude that magic(h

αj

j (ūj)) ∈ N ′ holds for all j ∈ {1, . . . , n}

(we recall that N ′ is a model of Ground(DMS(Q,P))M
′

by assumption). Hence,
we have B+(r′)ϑ ⊆ N ′, which in turn implies that

H(r′)ϑ ∩N ′ 6= ∅. (3.5)

Note that H(r′)ϑ = H(r)ϑ and H(r)ϑ ⊆ BP ; thus, from (3.5) we conclude

H(r)ϑ ∩ (N ′ ∩ BP) 6= ∅. (3.6)

Now observe that X = killedM
′

Q,P(N ′) is a subset of BP\N
′ by Definition 3.2.18,

so N ′ ∩ BP = (N ′ ∩ BP) \X and thus (3.6) implies

H(r)ϑ ∩ ((N ′ ∩ BP) \X) 6= ∅. (3.7)

Finally, remember that N ′ ⊆ M ′ by assumption, therefore from (3.7) we con-
clude

H(r)ϑ ∩ ((M ′ ∩ BP) \X) 6= ∅,

i.e., condition (3.4) holds in this case.

58 CHAPTER 3. MAGIC SET TECHNIQUES

Soundness of Dynamic Magic Sets

Before proving the soundness of stable model correspondence for Dynamic Magic
Sets for Datalog∨,¬s programs, we show below a lemma which holds for Datalog∨,¬

programs in general.

Lemma 3.2.21. Let Q be a query over a Datalog∨,¬ program P, and M ′ a stable
model of DMS(Q,P). Moreover, let P ∪ (M ′ ∩ BP) be the program obtained by
adding to P a fact for each atom in M ′ ∩ BP . Then, each stable model M of
P ∪ (M ′ ∩ BP) is in turn a stable model of P containing M ′ ∩ BP .

Proof. Let M be a stable model of P ∪ (M ′ ∩ BP). Clearly enough, M is in
turn a model of P such that M ⊇M ′ ∩ BP . We shall show that M is in fact a
stable model of P. Assume, for the sake of contradiction, that M is not a stable
model of P, and let N ⊂M be a model of Ground(P)M .

Consider the following interpretation:

N ′ = (N ∩ (M ′ ∩ BP)) ∪ (M ′ \ BP). (3.8)

We can show N ′ ⊂M ′ in two steps.

1. First, N ′ ⊆M ′ can be proved by comparing (3.8) and

M ′ = (M ′ ∩ BP) ∪ (M ′ \ BP).

2. Then, we prove that N ′ 6= M ′ must hold. Indeed, if N ′ = M ′, N ⊇
M ′ ∩ BP holds because N ′ is the union of N ∩ (M ′ ∩ BP) and M ′ \ BP ,
which are disjoint. Since N is a model of Ground(P)M by assumption,
N ⊇M ′ ∩ BP in turn implies that N is a model of

Ground(P)M ∪ (M ′ ∩ BP) = Ground(P ∪ (M ′ ∩ BP))M .

This is in contradiction with the assumption that M is a stable model of
P ∪ (M ′ ∩ BP) because N ⊂M by assumption. Hence, N ′ ⊂M ′ holds.

Our aim is now to show that N ′ is a model of Ground(DMS(Q,P))M
′

,
which would give rise to a contraction with the original assumption that M ′ is
a stable model of DMS(Q,P). Hence, we have to consider two types of rules in
Ground(DMS(Q,P))M

′

, those obtained from modified rules and those obtained
from magic rules, and show that they are satisfied by N ′.

Rules of type 1 (modified rules): Consider first a rule obtained by remov-
ing negative literals from a ground modified rule r′ϑ ∈ Ground(DMS(Q,P))
such that B+(r′)ϑ ⊆ N ′. Our aim is then to show that

H(r′)ϑ ∩N ′ 6= ∅. (3.9)

Let r′ be of the form

r′ : h1(ū1) v · · · v hm(ūm) :− magic(hα1

1 (ū1)), . . . , magic(hαm
m (ūm)),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 59

By applying Proposition 3.2.13, we can conclude the existence of a rule rϑ in
Ground(P) such that

r : h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).

We can show that B−(r)ϑ∩M = ∅, so that a rule obtained from rϑ by removing
its negative body literals belongs to Ground(P)M . Note that B−(r′)ϑ∩M ′ = ∅
holds by definition of the reduct, and B−(r) = B−(r′). Hence, it is enough to
show that B−(r)ϑ ⊆ killedM

′

Q,P(M ′) and that killedM
′

Q,P(M ′) is an unfounded
set for P ∪ (M ′ ∩ BP) with respect to 〈M ′ ∩ BP ,BP〉. Indeed, in this case
B−(r)ϑ ∩M = ∅ would be a consequence of Theorem 3.2.17. Let us start by
showing that B−(r)ϑ ⊆ killedM

′

Q,P(M ′) holds. To this aim, consider the magic
rules from Proposition 3.2.14 (item 3). In particular, for each j ∈ {k+ 1, . . . , n}
there is a magic rule r∗jϑ belonging to Ground(DMS(Q,P))M

′

(recall that magic
rules have empty negative bodies) and such that:

• H(r∗j) consists of atom magic(b
βj

j (v̄j)), for some adornment βj ; and

• B(r∗j) is a subset of B+(r′).

Recall that N ′ is a model of Ground(DMS(Q,P))M
′

by assumption. More-
over, we assumed B+(r′) ⊆ N ′. Hence, from these magic rules we can con-

clude that magic(b
βj

j (v̄j))ϑ ∈ N ′ for all j ∈ {k + 1, . . . , n}. Thus, B−(r)ϑ ⊆

killedM
′

Q,P(M ′) holds by Definition 3.2.18 of killedM
′

Q,P(M ′).

We now prove that killedM
′

Q,P(M ′) is an unfounded set for P ∪ (M ′ ∩ BP)
with respect to 〈M ′ ∩ BP ,BP〉. By Theorem 3.2.20, we already now that
killedM

′

Q,P(M ′) is an unfounded set for P with respect to 〈M ′∩BP ,BP〉. Hence,
it is enough to note that the rules added to P are facts corresponding to the
atoms in M ′ ∩ BP , and

(M ′ ∩ BP) ∩ killedM
′

Q,P(M ′) = ∅

holds by Definition 3.2.18 of killedM
′

Q,P(M ′).
We are then ready to prove (3.9). To this aim consider H(r′)ϑ ∩N ′. Since

H(r′) = H(r), and by construction of N ′,

H(r′)ϑ ∩N ′ = H(r)ϑ ∩ (N ∩ (M ′ ∩ BP))

holds. Hence, for proving (3.9) we just have to show that (3.10) and (3.11)
below hold:

H(r)ϑ ∩N 6= ∅; (3.10)

H(r)ϑ ∩N ⊆ H(r)ϑ ∩ (M ′ ∩ BP). (3.11)

For proving (3.10) it is enough to observe that the rule obtained by removing the
negative literals from rϑ belongs to Ground(P)M , B+(r)ϑ ⊆ N holds because
B+(r)ϑ = B+(r′)ϑ ∩ BP ⊆ N ′ ∩ BP ⊆ N , and N is a model of Ground(P)M .
For proving (3.11), instead, note that

H(r)ϑ ∩N ⊆ H(r)ϑ ∩M

60 CHAPTER 3. MAGIC SET TECHNIQUES

holds because N ⊂M . Hence, we have just to show that

H(r)ϑ ∩M = H(r)ϑ ∩ (M ′ ∩ BP). (3.12)

To this aim, we consider the magic rules from Proposition 3.2.14 (item 2). From
these rules, and by the same considerations already done for the magic rules of
item 3, there is an adornment string αj such that magic(h

αj

j (ūj)) ∈ M ′, for

each j ∈ {1, . . . ,m}. Hence, H(r)ϑ \M ′ is a subset of killedM
′

Q,P(M ′), which
is disjoint from M . Therefore,

M ∩ (H(r)ϑ \M ′) = ∅

holds, which combined with M ⊇ M ′ ∩ BP gives rise to (3.12), and thus (3.9)
holds.

Rules of type 2 (magic rules): Consider now a ground magic rule r∗ϑ ∈
Ground(DMS(Q,P))M

′

such that B+(r∗)ϑ ⊆ N ′, and let magic(pα(t̄)) be the
(only) atom in H(r∗)ϑ. Since N ′ ⊂ M ′ holds by assumption, B+(r∗)ϑ ⊆ N ′

implies that B+(r∗)ϑ ⊂M ′, which in turn implies magic(pα(t̄))ϑ ∈M ′ because
M ′ is a model of DMS(Q,P). Moreover, since BP does not contain any magic
atom, magic(pα(t̄))ϑ is also contained in M ′ \ BP . Thus, from (3.8) we can
conclude

H(r∗)ϑ ∩N ′ 6= ∅,

that is, the rule r∗ϑ is satisfied by N ′.

For a query Q over a Datalog∨,¬ program P, Lemma 3.2.21 above provides
a link from each stable model M ′ of DMS(Q,P) to all stable models of P
containing M ′ ∩ BP , if any. Hence, in order to prove the correctness of stable
model correspondence for Dynamic Magic Sets for Datalog∨,¬s programs we
just have to note that P accepts at least one stable model of this kind. The
next theorem formalizes this intuition.

Theorem 3.2.22 (Soundness). Let Q be a query over a Datalog∨,¬s program
P. Then, for each stable model M ′ of DMS(Q,P) and for each substitution ϑ,
there is a stable model M of P such that Qϑ ∈M if and only if Qϑ ∈M ′.

Proof. Since P is a Datalog∨,¬s program, P ∪ (M ′ ∩ BP) is also a Datalog∨,¬s

program (only facts are added to P). Hence, the program P ∪ (M ′∩BP) admits
at least one stable model M . Therefore, by Lemma 3.2.21 such an M is a stable
model of P such that M ⊇M ′ ∩ BP . Thus, we trivially have that

Qϑ ∈M ′ =⇒ Qϑ ∈M

holds. The other direction is proved by considering the contrapositive, that is,

Qϑ 6∈M ′ =⇒ Qϑ 6∈M. (3.13)

To this aim consider the set killedM
′

Q,P(M ′) and note that the magic seed is
associated with each instance of Q in BP . Hence, all instances of Q which are
false with respect to M ′ belong to killedM

′

Q,P(M ′). Since killedM
′

Q,P(M ′) is an
unfounded set for P with respect to 〈M ′ ∩ BP ,BP〉 by Theorem 3.2.20, and M

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 61

is a stable model of P such that M ′ ∩ BP ⊆M ⊆ BP , from Theorem 3.2.17 we
conclude (3.13).

Completeness of Dynamic Magic Sets

For proving the completeness of stable model correspondence for Dynamic Magic
Sets we construct an interpretation for DMS(Q,P) based on one for P. The
new interpretation is referred to as “magic variant” and is defined below.

Definition 3.2.23 (Magic Variant). Consider a query Q over a Datalog∨,¬

program P. Let I be an interpretation for P. We define an interpretation
variant∞Q,P(I) for DMS(Q,P), called the magic variant of I with respect to Q
and P, as the fixpoint of the following sequence:

variant0Q,P(I) = EDB(P)

varianti+1
Q,P(I) = variantiQ,P(I) ∪

{p(t̄) ∈ I | ∃α such that magic(pα(t̄)) ∈ variantiQ,P(I)} ∪
{magic(pα(t̄)) | ∃ r∗ ∈ Ground(DMS(Q,P)) such that

magic(pα(t̄)) ∈ H(r∗) and B+(r∗) ⊆ variantiQ,P(I)}, ∀i ≥ 0.

Below is an example of magic variant.

Example 3.2.24. Consider again Q4 and P5 from Example 3.2.3, and the
rewritten program DMS(Q4,P5) from Example 3.2.10. Moreover, consider the
following stable model of P5:

M1 = F2 ∪ {nonParentOf(a, b), parentOf(b, c),

parentOf(b, d), parentOf(b, e)}.

While computing the magic variant of M1, the following sequence of interpre-
tations is built:

variant0Q4,P5
(M1) = F2

variant1Q4,P5
(M1) = variant0Q4,P5

(M1) ∪ {magic ancestorOfbf (a)}

variant2Q4,P5
(M1) = variant1Q4,P5

(M1) ∪ {magic parentOfbf (a)}

variant3Q4,P5
(M1) = variant2Q4,P5

(M1) ∪ {magic nonParentOfbf (a)}

variant4Q4,P5
(M1) = variant3Q4,P5

(M1) ∪ {nonParentOf(a, b)}

variant5Q4,P5
(M1) = variant4Q4,P5

(M1) = variant∞Q4,P5
(M1)

Note that variant∞Q4,P5
(M1) is a stable model DMS(Q4,P5). In particular, it

coincides with the stable model M ′
1 presented in Example 3.2.19. �

In the example above, we started from a stable model of the original program
P5 and computed its magic variant. The resulting interpretation was a stable
model of the rewritten program. Below, we prove that this is true in general.

Lemma 3.2.25. Let Q be a query over a Datalog∨,¬ program P. For each
stable model M of P, there is a stable model M ′ of DMS(Q,P) (which is the
magic variant of M) such that M ⊇M ′ ∩ BP .

62 CHAPTER 3. MAGIC SET TECHNIQUES

Proof. Let
M ′ = variant∞Q,P(M) (3.14)

be the magic variant of the stable model M . Thus,

M ⊇M ′ ∩ BP (3.15)

holds by definition. Hence, it remains to prove that M ′ is a stable model of
DMS(Q,P). We start by showing that M ′ is a model for Ground(DMS(Q,P))M

′

.
To this end, consider a rule in Ground(DMS(Q,P))M

′

having a true body, that
is, a rule obtained by removing the negative body literals from a rule

r′ϑ ∈ Ground(DMS(Q,P)) (3.16)

such that the following relationships hold:

B−(r′)ϑ ∩M ′ = ∅; (3.17)

B+(r′)ϑ ⊆M ′. (3.18)

In particular, our aim is to show that

H(r′)ϑ ∩M ′ 6= ∅. (3.19)

We distinguish two cases.

Case 1: If r′ is a magic rule, we prove that (3.19) holds by showing that
the (only) atom in H(r′)ϑ belongs to M ′. Indeed, this is the case because of
Definition 3.2.23, (3.14) and (3.18).

Case 2: Otherwise, r′ is a modified rule of the form

r′ : h1(ū1) v · · · v hm(ūm) :− magic(hα1

1 (ū1)), . . . , magic(hαm
m (ūm)),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

For all i ∈ {1, . . . ,m} the atom magic(hαi

i (ūi))ϑ belongs to M ′ because of (3.18).
Hence, for proving (3.19) it is enough to show that

H(r′)ϑ ∩M 6= ∅ (3.20)

because in this case
H(r′)ϑ ∩M ′ = H(r′)ϑ ∩M

would be a consequence of Definition 3.2.23 of variant∞Q,P(M).

To prove (3.20) we apply Proposition 3.2.13 and conclude that there is a
rule rϑ ∈ Ground(P) such that

r : h1(ū1) v · · · v hm(ūm) :− b1(v̄1), . . . , bk(v̄k),

not bk+1(v̄k+1), . . . , not bn(v̄n).

3.2. MAGIC SETS FOR DISJUNCTIVE DATALOG 63

In particular, note that the following equalities hold:

H(r) = H(r′); (3.21)

B−(r) = B−(r′); (3.22)

B+(r)ϑ = B+(r′)ϑ ∩ BP . (3.23)

From (3.21) we conclude that (3.20) is equivalent to

H(r)ϑ ∩M 6= ∅. (3.24)

From (3.15), (3.18) and (3.23) we conclude

B+(r)ϑ = B+(r′)ϑ ∩ BP ⊆M ′ ∩ BP ⊆M. (3.25)

Hence, since M is a model of P, and the positive body of rϑ is true with respect
to M because of (3.25) above, for proving (3.24) it is enough to show that also
the negative body is true with respect to M , i.e.,

B−(r)ϑ ∩M = ∅. (3.26)

Assume, for the sake of contradiction, that this is not the case, and let j ∈
{k + 1, . . . , n} be such that

bj(v̄j)ϑ ∈M. (3.27)

If bj is an EDB predicate, a contradiction with (3.17) arises. Indeed, by Defi-
nition 3.2.23, and because of (3.14), EDB(P) is a subset of M ′, which in turn
implies that bj(v̄j)ϑ belongs to M ′. Then, assume that bj is an IDB predi-
cate. In this case we can apply Proposition 3.2.14 for each hi(ūi)ϑ ∈ H(r)ϑ. In
particular, we consider the rule r∗jϑ from Proposition 3.2.14 (item 3) and note
that

B(r∗j)ϑ ⊆ {magic(hαi (ūi)), b1(v̄1), . . . , bk(v̄k)}ϑ ⊆ B+(r′)ϑ. (3.28)

Hence, by combining (3.14), (3.18) and (3.28) with Definition 3.2.23, we obtain

magic(b
βj

j (v̄j))ϑ ∈M ′ (3.29)

(βj an adornment string). Finally, by combining (3.14), (3.27) and (3.29) with
Definition 3.2.23, we conclude bj(v̄j)ϑ ∈ M ′, which contradicts (3.17), and we
have shown Case 2 for (3.19).

It remains to show that M ′ is also a minimal model of Ground(DMS(Q,P))M
′

.
Let N ′ be a model of Ground(DMS(Q,P))M

′

such that N ′ ⊆ M ′. We shall
show that in this case also M ′ ⊆ N ′ holds, from which the minimality of M ′

follows. We proceed by induction on the structure of M ′ = variant∞Q,P(M).
The base case, i.e.,

variant0Q,P(M) ⊆ N ′,

is clearly true, since variant0Q,P(M) contains only EDB facts which are also in

Ground(DMS(Q,P))M
′

and N ′ is a model. Now suppose

variantiQ,P(M) ⊆ N ′

64 CHAPTER 3. MAGIC SET TECHNIQUES

in order to prove that
varianti+1

Q,P(M) ⊆ N ′

holds as well. Considering an atom ℓ in

varianti+1
Q,P(M) \ variantiQ,P(M),

we distinguish two cases.

Case 1: Let ℓ = magic(pα(t̄)) be a magic atom. In this case, by Defini-
tion 3.2.23, there must be a rule r∗ ∈ Ground(DMS(Q,P)) having magic(pα(t̄))
in its head and such that B+(r∗) ⊆ variantiQ,P(M). We can then apply the

induction hypothesis and conclude that B+(r∗) ⊆ N ′ holds. Hence, since N ′

is a model of Ground(DMS(Q,P))M
′

, the magic atom magic(pα(t̄)) belongs to
N ′ (we recall that r∗ ∈ Ground(DMS(Q,P))M

′

because magic rules have empty
negative bodies).

Case 2: Let ℓ = p(t̄) be a standard atom. By Definition 3.2.23, p(t̄) be-
longs to M and there is an adornment string α such that magic(pα(t̄)) ∈
variantiQ,P(M). Hence, magic(pα(t̄)) ∈ N ′ by the induction hypothesis. Since

M ′ is a model of DMS(Q,P), and N ′ is a model of Ground(DMS(Q,P))M
′

such
that N ′ ⊆ M ′, we can compute the set killedM

′

Q,P(N ′) (see Definition 3.2.18).

Moreover, killedM
′

Q,P(N ′) is an unfounded set for P with respect to 〈M ′ ∩
BP ,BP〉 because of Theorem 3.2.20. Hence, since M ′ ∩ BP ⊆ M ⊆ BP holds
because of (3.15), and M is a stable model of P by assumption, by applying
Theorem 3.2.17 we conclude that

M ∩ killedM
′

Q,P(N ′) = ∅.

Finally, since p(t̄) ∈ M ′ ∩ BP and M ′ ∩ BP ⊆ M , the equality above implies
that p(t̄) 6∈ killedM

′

Q,P(N ′), which in turn implies p(t̄) ∈ N ′.

We can now prove the completeness of stable model correspondence for Dy-
namic Magic Sets.

Theorem 3.2.26 (Completeness). Let Q be a query over a Datalog∨,¬ program
P. Then, for each stable model M of P and for each substitution ϑ, there is
a stable model M ′ of DMS(Q,P) (which is the magic variant of M) such that
Qϑ ∈M if and only if Qϑ ∈M ′.

Proof. Let M be a stable model of P and M ′ = variant∞Q,P(M) its magic
variant. Because of Lemma 3.2.25, M ′ is a stable model of DMS(Q,P) such
that M ⊇M ′ ∩ BP . Thus, we trivially have that

Qϑ ∈M ′ =⇒ Qϑ ∈M

holds. The other direction is proved by considering the contrapositive, that is,

Qϑ 6∈M ′ =⇒ Qϑ 6∈M. (3.30)

To this aim, consider the set killedM
′

Q,P(M ′) and note that the magic seed is
associated with each instance of Q is in BP . Hence, all instances of Q which are

3.2. DYNAMIC MAGIC SETS AND SUPER–COHERENT PROGRAMS 65

false with respect to M ′ belong to killedM
′

Q,P(M ′). Since killedM
′

Q,P(M ′) is an
unfounded set for P with respect to 〈M ′ ∩ BP ,BP〉 by Theorem 3.2.20, and M

is a stable model of P such that M ′ ∩ BP ⊆M ⊆ BP , from Theorem 3.2.17 we
conclude (3.30).

Note that the theorem above does not fully extend to the completeness of
query answering for Dynamic Magic Sets for Datalog∨,¬ programs. In fact, it
only considers substitution answers achieved by means of some stable models.
This is sufficient for proving the completeness of brave reasoning in general,
but it is not enough for cautious reasoning. Indeed, when cautious reasoning is
performed on an incoherent program, the answer comprise all possible substitu-
tions. These substitutions are not necessarily contained in the answer obtained
for the rewritten program, which may be coherent. However, all Datalog∨,¬s

programs are coherent and we can then prove the correctness of query answering
for Dynamic Magic Sets for this class.

Proof of Query Equivalence Theorem (3.2.12). Consider any set of facts F de-
fined over the EDB predicates of P (we recall that P and DMS(Q,P) have the
same set of EDB predicates). Our aim is then to show the following equalities:

1. Ansb(Q,P ∪ F) = Ansb(Q,DMS(Q,P) ∪ F);

2. Ansc(Q,P ∪ F) = Ansc(Q,DMS(Q,P) ∪ F).

Hence, since P is coherent, we are interested in proving that:

1. For all substitutions ϑ, atom Qϑ belongs to some stable model M of P∪F
if and only if Qϑ belongs to some stable model M ′ of DMS(Q,P) ∪ F ;

2. For all substitutions ϑ, atom Qϑ belongs to all stable models M of P ∪F
if and only if Qϑ belongs to all stable models M ′ of DMS(Q,P) ∪ F .

Note that the DMS algorithm does not depend on EDB facts; thus,

DMS(Q,P) ∪ F = DMS(Q,P ∪ F)

holds. Therefore, the two statements above are equivalent to:

1. For all substitutions ϑ, atom Qϑ belongs to some stable model M of P∪F
if and only if Qϑ belongs to some stable model M ′ of DMS(Q,P ∪ F);

2. For all substitutions ϑ, atom Qϑ belongs to all stable models M of P ∪F
if and only if Qϑ belongs to all stable models M ′ of DMS(Q,P ∪ F).

We can then conclude the proof by observing that the last two statements above
are direct consequences of Theorem 3.2.22 and Theorem 3.2.26.

3.3 Dynamic Magic Sets and Super–Coherent

Disjunctive Datalog Programs

The correctness of Dynamic Magic Sets can be extended to the class of Super–
Coherent Disjunctive Datalog programs, denoted by Datalog∨,¬

SC and defined

66 CHAPTER 3. MAGIC SET TECHNIQUES

in the next section. In particular, we note that many definitions and claims
in Section 3.2.4 have been introduced and proved for Datalog∨,¬ programs in
general. In fact, Theorem 3.2.22 is the only claim which relies on the properties
of stratified programs. Thus, in the following we just have to extend this theorem
to the class of Datalog∨,¬

SC programs.

3.3.1 Super–Coherent Disjunctive Datalog Programs

The class of Super–Coherent Disjunctive Datalog programs is defined below.

Definition 3.3.1 (Datalog∨,¬
SC Programs). A Datalog∨,¬ program P is super–

coherent if the program P ∪ F is coherent for every set of facts F , i.e., if for
every F it holds that

SM(P ∪ F) 6= ∅.

Let Datalog∨,¬
SC denote the set of all super–coherent programs.

Note that deciding whether a program P belongs to Datalog∨,¬
SC is com-

putable. If P is not Datalog∨,¬
SC , there is a set of facts F such that P ∪ F is

not coherent. However, we can restrict the sets of facts to be checked to a finite
number. Assuming that different rules have different variable names, and that
no constant ξX belongs to UP , we can restrict F to be among all possible sets
of ground atoms constructible by combining predicates of P with constants in

UP ∪ {ξX | X is a variable of P}.

In fact, if the incoherence is not due (only) to atoms in BP , but if new constant
symbols are required, the exact names of these symbols are irrelevant and the
possibility of instantiating each variable with a different constant is sufficient to
trigger the incoherence.

Datalog∨,¬
SC programs constitute an interesting class of programs. All strati-

fied and all odd–cycle–free programs belong to Datalog∨,¬
SC . Indeed, every strat-

ified and every odd–cycle–free program is coherent, and coherence is maintained
even if an arbitrary set of facts is added to its rules (no cycle of dependencies can
be introduced in this way). On the other hand, there are Datalog∨,¬

SC programs
which contain odd cycles. An example is shown below.

Example 3.3.2. Consider the following program:

a v b.

a :− not a, not b.

The program above is Datalog∨,¬
SC but not odd–cycle–free. Indeed, an odd cycle

involving a is present, but the first rule ensures that the body of the second rule
is false in all models. Thus, the odd cycle cannot be activated. �

3.3.2 Running Example

In this section we show the applicability of Dynamic Magic Sets to Datalog∨,¬
SC

programs by means of a running example similar to the one used in Section 3.2
for introducing SIPS and Magic Set techniques for Disjunctive Datalog pro-
grams. Consider the scenario from Example 3.2.3: We are interested in com-

3.3. DYNAMIC MAGIC SETS AND SUPER–COHERENT PROGRAMS 67

puting all descendants of a given person a in a database containing informa-
tion about “possible” parent–child relationships. Program P5 in Example 3.2.3
guesses a subset of these possible relationships to be actually in the relation
parentOf(X, Y). The guess is obtained by means of the following disjunctive
rule:

r15 : parentOf(X, Y) v nonParentOf(X, Y) :− possibleParentOf(X, Y).

Here, we consider an equivalent program P7 obtained from P5 by substituting
r15 with the following rules:

r20 : parentOf(X, Y) :− possibleParentOf(X, Y), not nonParentOf(X, Y).

r21 : nonParentOf(X, Y) :− possibleParentOf(X, Y), not parentOf(X, Y).

Hence, our running example consists of Q4 and the program P7 below:

Q4 : ancestorOf(a, Y)?

r20 : parentOf(X, Y) :− possibleParentOf(X, Y), not nonParentOf(X, Y).

r21 : nonParentOf(X, Y) :− possibleParentOf(X, Y), not parentOf(X, Y).

r16 : ancestorOf(X, Y) :− parentOf(X, Y).

r17 : ancestorOf(X, Y) :− ancestorOf(X, Z), parentOf(Z, Y).

We consider the EDB F2 from Example 3.2.3:

F2 = {possibleParentOf(a, b), possibleParentOf(b, c),

possibleParentOf(b, d), possibleParentOf(b, e)}.

Therefore, we have the following sets of answers:

• Ansb(Q4,P7) = {b, c, d, e} (brave answers);

• Ansc(Q4,P7) = ∅ (cautious answers).

A hypothetical top–down evaluation of Q4 over P7 would produce the same
adornments discussed in Example 3.2.3. More specifically, the adopted SIPS
are reported below.

• (≺
ancestorOfbf (X,Y)
r16 , f

ancestorOfbf (X,Y)
r16) is such that:

– ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r16 parentOf(X, Y);

– f
ancestorOfbf (X,Y)
r16 (ancestorOf(X, Y)) = {X};

– f
ancestorOfbf (X,Y)
r16 (parentOf(X, Y)) = {X, Y}.

• (≺
ancestorOfbf (X,Y)
r17 , f

ancestorOfbf (X,Y)
r17) is such that:

– ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r17 ancestorOf(X, Z);

– ancestorOf(X, Y) ≺
ancestorOfbf (X,Y)
r17 parentOf(Z, Y);

– ancestorOf(X, Z) ≺
ancestorOfbf (X,Y)
r17 parentOf(Z, Y);

68 CHAPTER 3. MAGIC SET TECHNIQUES

– f
ancestorOfbf (X,Y)
r17 (ancestorOf(X, Y)) = {X};

– f
ancestorOfbf (X,Y)
r17 (ancestorOf(X, Z)) = {X, Z};

– f
ancestorOfbf (X,Y)
r17 (parentOf(Z, Y)) = {Z, Y}.

• (≺
parentOfbf (X),Y
r20 , f

parentOfbf (X,Y)
r20) is such that:

– parentOf(X, Y) ≺
parentOfbf (X,Y)
r20 possibleParentOf(X, Y);

– parentOf(X, Y) ≺
parentOfbf (X,Y)
r20 nonParentOf(X, Y);

– f
parentOfbf (X,Y)
r20 (parentOf(X, Y)) = {X};

– f
parentOfbf (X,Y)
r20 (nonParentOf(X, Y)) = {X};

– f
parentOfbf (X,Y)
r20 (possibleParentOf(X, Y)) = {X, Y}.

• (≺
nonParentOfbf (X,Y)
r21 , f

nonParentOfbf (X,Y)
r21) is such that:

– nonParentOf(X, Y) ≺
nonParentOfbf (X,Y)
r21 possibleParentOf(X, Y);

– nonParentOf(X, Y) ≺
nonParentOfbf (X,Y)
r21 parentOf(X, Y);

– f
nonParentOfbf (X,Y)
r21 (nonParentOf(X, Y)) = {X};

– f
nonParentOfbf (X,Y)
r21 (parentOf(X, Y)) = {X};

– f
nonParentOfbf (X,Y)
r21 (possibleParentOf(X, Y)) = {X, Y}.

The DMS algorithm starts by initializing S, D, Rmgc
Q4,P7

and Rmod
Q4,P7

to the
empty set (see line 1 of Figure 3.13). Then, ProcessQuery v is invoked for
Q4: The adorned atom ancestorOfbf is stored into the set S and the query
seed magic ancestorOfbf (a) is added to R

mgc
Q4,P7

(reported in Figure 3.9). After
that, the main loop of the algorithm is executed (lines 3–10 of Figure 3.13). In
particular, ancestorOfbf is moved from S to D and its binding information is
propagated into the rules r16 and r17. The following adorned rules are produced
by Adorn v (reported in Figure 3.10):

ra16 : ancestorOfbf (X, Y) :− parentOfbf (X, Y).

ra17 : ancestorOfbf (X, Y) :− ancestorOfbf (X, Z), parentOfbf (Z, Y).

The new adorned predicate parentOfbf is stored into S, and the adorned rules
above are processed by GenerateDMS (reported in Figure 3.14) and ModifyDMS

(reported in Figure 3.15), which produce the following rules:

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗17,1 : magic ancestorOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

3.3. DYNAMIC MAGIC SETS AND SUPER–COHERENT PROGRAMS 69

The main loop is then repeated for parentOfbf , which is moved from S to D.
The rule r20 is considered, from which the following adorned rule is produced:

ra20 : parentOfbf (X, Y) :− possibleParentOf(X, Y), not nonParentOfbf (X, Y).

Note that Y in nonParentOf remains free because possibleParentOf does not
precede it in the considered SIPS. A new adorned predicate, nonParentOfbf ,
is produced and stored into S. After that, from ra20 the following rules are
generated:

r∗20 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r′20 : parentOf(X) :− magic parentOfbf (X), possibleParentOf(X, Y),

not nonParentOf(X, Y).

The main loop is then repeated for nonParentOfbf , which is moved from S to
D. From r21 the following adorned rule is obtained:

ra21 : nonParentOfbf (X, Y) :− possibleParentOf(X, Y), not parentOfbf (X, Y).

No new adorned predicate is added to S in this case. After that, from rule ra21
the following rules are produced:

r∗21 : magic parentOfbf (X) :− magic nonParentOfbf (X).

r′21 : nonParentOf(X, Y) :− magic nonParentOfbf (X),

possibleParentOf(X, Y), not parentOfbf (X, Y).

To sum up, the rewritten program DMS(Q4,P7) consists of the following
rules:

rQ4
: magic ancestorOfbf (a).

r∗16,1 : magic parentOfbf (X) :− magic ancestorOfbf (X).

r∗∗17,2 : magic parentOfbf (Z) :− magic ancestorOfbf (X), ancestorOf(X, Z).

r∗20 : magic nonParentOfbf (X) :− magic parentOfbf (X).

r∗21 : magic parentOfbf (X) :− magic nonParentOfbf (X).

r′20 : parentOf(X) :− magic parentOfbf (X), possibleParentOf(X, Y),

not nonParentOf(X, Y).

r′21 : nonParentOf(X, Y) :− magic nonParentOfbf (X),

possibleParentOf(X, Y), not parentOfbf (X, Y).

r′′16 : ancestorOf(X, Y) :− magic ancestorOfbf (X), parentOf(X, Y).

r′′17 : ancestorOf(X, Y) :− magic ancestorOfbf (X), ancestorOf(X, Z),

parentOf(Z, Y).

70 CHAPTER 3. MAGIC SET TECHNIQUES

3.3.3 Query Equivalence Theorem

For proving the correctness of stable model correspondence for Dynamic Magic
Sets for the class of Datalog∨,¬

SC programs we first extend the soundness result.
Hence, the following is an extension of Theorem 3.2.22 to Datalog∨,¬

SC programs.

Theorem 3.3.3 (Soundness for Datalog∨,¬
SC). Let Q be a query over a Datalog∨,¬

SC

program P. Then, for each stable model M ′ of DMS(Q,P) and for each sub-
stitution ϑ, there is a stable model M of P such that Qϑ ∈ M if and only if
Qϑ ∈M ′.

Proof. Since P is a Datalog∨,¬
SC program, P ∪ (M ′ ∩ BP) is coherent (only facts

are added to P). Hence, program P ∪ (M ′ ∩ BP) admits at least one stable
model M . Therefore, by Lemma 3.2.21, such an M is a stable model of P such
that M ⊇M ′ ∩ BP . Thus, we trivially have that

Qϑ ∈M ′ =⇒ Qϑ ∈M

holds. The other direction is proved by considering the contrapositive, that is,

Qϑ 6∈M ′ =⇒ Qϑ 6∈M. (3.31)

To this aim consider the set killedM
′

Q,P(M ′) and note that the magic seed is
associated with each instance of Q is in BP . Hence, all instances of Q which are
false with respect to M ′ belongs to killedM

′

Q,P(M ′). Since killedM
′

Q,P(M ′) is
an unfounded set for P with respect to 〈M ′ ∩ BP ,BP〉 by Theorem 3.2.20, and
M is a stable model of P such that M ′ ∩ BP ⊆M ⊆ BP , from Theorem 3.2.17
we conclude (3.31).

In proving the soundness of stable model correspondence for Dynamic Magic
Sets for super–coherent programs we used a key property of the class: Coherence
of a Datalog∨,¬

SC program is maintained even if an arbitrary set of facts is added
to the program. In general, Datalog∨,¬ programs do not have this property. In
fact, we point out that the application of Dynamic Magic Sets to Datalog∨,¬

programs which are not in Datalog∨,¬
SC may result in unsound answers. Below is

an example.

Example 3.3.4. Consider the following query and program:

q(a)?

edb(a).

q(X) v p(X) :− edb(X).

co(X) :− q(X), not co(X).

First of all, note that the program is not super–coherent: An incoherent program
can be obtained by adding the fact q(a). The rewritten program generated by

3.3. DYNAMIC MAGIC SETS AND SUPER–COHERENT PROGRAMS 71

DMS consists of the following rules:

magic qb(a).

edb(a).

qb(X) v pb(X) :− magic qb(X), magic pb(X), edb(X).

magic pb(X) :− magic qb(X).

magic qb(X) :− magic pb(X).

The rewritten program above has two stable models, namely

{edb(a), magic qb(a), magic pb(a), p(a)}

and
{edb(a), magic qb(a), magic pb(a), q(a)}.

Therefore, q(a) is a brave consequence of the rewritten program. However, q(a)
is not a brave consequence of the original program, which admits only one stable
model, namely {edb(a), p(a)}. �

We are then prove the correctness of query answering for Dynamic Magic
Sets for the class of Super–Coherent Disjunctive Datalog programs.

Theorem 3.3.5 (Query Equivalence Theorem for Datalog∨,¬
SC). Let Q be a

query over a Datalog∨,¬
SC program P. Then, the following equivalences hold:

• P ≡b
Q DMS(Q,P); and

• P ≡c
Q DMS(Q,P).

Proof. Since P is coherent, the claim is a consequence of Theorem 3.3.3 and
Theorem 3.2.26.

Chapter 4

Application: Decidability

for Datalog with Functions

Datalog and its extensions have been defined in Chapter 2 as rule–based lan-
guages allowing the use of variables and constants in atom arguments. In this
chapter the definition of terms is enlarged for allowing the use of function sym-
bols. When function symbols are permitted, the expressive power of the lan-
guage increases considerably, up to the first level of the analytical hierarchy
if disjunction or recursive negation are allowed [?]. However, this high ex-
pressive power implies that the common reasoning tasks became undecidable
when function symbols are present. The possibility to identify large classes of
programs with functions for which the reasoning tasks are still decidable has
been intensively studied in the past decade by many authors; see for instance
[19, 15, 49, 61, 27]. Among the identified classes, finitely ground programs are
the largest class of Disjunctive Datalog programs with functions for which sta-
ble models are still computable by standard bottom–up strategies; however, it
is not decidable whether a given program is finitely ground.

In this chapter we relate finitely ground programs to another class of pro-
grams with function symbols, namely the class of finitely recursive queries and
programs. We prove the decidability of reasoning over finitely recursive queries
and programs by providing a link with the class of finitely ground programs.
In particular, we show that the application of Dynamic Magic Sets to a finitely
recursive query generates a finitely ground program. We point out that finitely
recursive queries constitute a natural formalization of queries over Disjunctive
Datalog programs with function symbols which can be answered by means of
a finite top–down evaluation. Note that our result does not imply a contain-
ment relationship between the two classes, indeed the class of finitely ground
programs and the class of finitely recursive queries cannot be compared with
respect to set inclusion. Finally, we show that each Turing machine defining a
recursive function can be associated with a finitely recursive program, so that
every computable function can still be expressed by the class.

The remainder of this chapter is structured as follows. In Section 4.1 Data-
log is extended for allowing the use of function symbols and functional terms.
In that section we also introduce the class of finitely ground programs and the
class of finitely recursive queries and programs. Then, in Section 4.2 the cor-

73

74 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

rectness of Dynamic Magic Sets for finitely recursive queries is shown. After
that, in Section 4.3 the decidability of reasoning over finitely recursive queries
and programs is proved. Finally, in Section 4.4 the expressive power of finitely
recursive programs is discussed.

4.1 Datalog with Function Symbols

The syntax of Disjunctive Datalog can be extended with function symbols and
functional terms for allowing the representation of recursive structures. In this
section we introduce some key concepts and provide some examples. Moreover,
we present the class of finitely ground programs and the class of finitely recursive
queries and programs.

4.1.1 Preliminaries

Let V be a set of variables and S be a set of predicate symbols, as introduced
in Chapter 2. Moreover, let F be a set of function symbols (or functors), each
one associated with non–negative arity.1 In this thesis, function symbols are
denoted by strings starting with lower case letters or by numbers (function
symbols representing numbers have arity zero).

A term is either a variable or a functional term, where the latter is obtained
by combining functors and variables. Atoms, literals, rules and programs are
defined as in the function–free case, yielding the language Datalog∨,¬

FS .

Example 4.1.1. The following is a Datalog∨,¬
FS program:

int(0).

int(s(X)) :− int(X).

The program above contains two function symbols, namely s and 0. The func-
tion symbol s has arity 1, while the function symbol 0 has arity zero (it is a
constant). �

Program instantiation and stable models of Datalog∨,¬
FS programs are defined

as in the function–free case (see Section 2.2.1). The only difference is that for a
Datalog∨,¬

FS program P the universe UP is obtained by combining functors in P
in all possible ways. Hence, if P contains a functor of positive arity, UP contains
infinitely many terms. Consequently, also the base BP and the instantiation
Ground(P) of a Datalog∨,¬

FS program P are infinite in general. For instance,
the instantiation of the program in Example 4.1.1 is infinite and contains the
following rules:

int(0).

int(s(0)) :− int(0).

int(s(s(0))) :− int(s(0)).

int(s(s(s(0)))) :− int(s(s(0))).

· · ·

1Function symbols of arity zero are constants.

4.1. DATALOG WITH FUNCTION SYMBOLS 75

Therefore, also stable models may contains infinitely many atoms. For instance,
the program in Example 4.1.1 has a unique stable model which contains an
infinite number of atoms:

int(0), int(s(0)), int(s(s(0))), int(s(s(s(0)))), . . .

Query answering over Datalog∨,¬
FS programs is undecidable in general. How-

ever, there are classes of programs for which the decidability of reasoning is
guaranteed. For instance, finitely ground programs have equivalent and effec-
tively computable finite ground programs, for which the stable model search
phase can be performed as usual. This class and the class of finitely recursive
programs and queries are presented in the next sections.

4.1.2 Finitely Ground Programs

The class of finitely ground (FG) programs [19] constitutes a natural formaliza-
tion of programs which can be finitely evaluated in a bottom–up way. We recall
the key concepts in this section, and refer to [19] for details and examples.

Definition 4.1.2 (Positive Dependency Graph). Let P be a Datalog∨,¬
FS pro-

gram. The positive dependency graph of P, denoted by G+(P), is a directed
graph having:

• a node for each IDB predicate of P;

• an edge h → b if there is a rule r ∈ P and two atoms h(ū) ∈ H(r) and
b(v̄) ∈ B+(r) ∪B−(r).

Given a Datalog∨,¬
FS program P, a component C of P is a maximal set of

strongly connected nodes (predicates) in G+(P), that is, two predicates p and q

belong to the same component if and only if G+(P) contains a path connecting
p to q and a path connecting q to p.

Definition 4.1.3 (Component Graph). Let P be a Datalog∨,¬
FS program. The

component graph of P, denoted by GC(P), is a labeled directed graph having:

• a node for each component of G+(P);

• an edge C ′ →+ C if there is a rule r ∈ P and two atom h(ū) ∈ H(r) and
b(v̄) ∈ B+(r) such that h ∈ C and b ∈ C ′;

• an edge C ′ →− C if

– C ′ →+ C is not an edge of GC(P), and

– there is a rule r ∈ P and two atom h(ū) ∈ H(r) and b(v̄) ∈ B−(r)
such that h ∈ C and b ∈ C ′.

In a component graph GC(P) we distinguish between weak paths and strong
paths: A path is weak if at least one of its edges is labeled with “−”, otherwise
it is strong. A component ordering

γ = 〈C1, . . . , Cn〉

is a total order for the components of P such that the following conditions are
satisfied for each pair of components Ci, Cj with i < j:

76 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

• there is no strong path from Cj to Ci in GC(P);

• if there is a weak path from Cj to Ci, there must be a weak path also from
Ci to Cj .

A component ordering γ for a Datalog∨,¬
FS program P allows for partitioning

P in modules. Each module is associated with a component C and contains
only rules which define predicates in C. This concept is formalized below.

Definition 4.1.4 (Module). Let P be a Datalog∨,¬
FS program,

γ = 〈C1, . . . , Cn〉

a component ordering for P, and Ci a component of P. Then, the module of
P defining Ci, denoted by P (Ci), comprises the rules of P which define some
predicate in Ci and no other predicate belonging to a component Cj such that
j < i. In other words, each rule belongs to the module of the component which
is minimal among all components to which head predicates of this rule belong.

Given a rule r and a set A of ground atoms, an instance rϑ of r is an A–
restricted instance of r if B+(r)ϑ ⊆ A. For a Datalog∨,¬

FS program P and a set
A of ground atoms, the set of all A–restricted instances of the rules of P is
denoted by InstP(A). Note that

InstP(A) ⊆ Ground(P)

holds for every A ⊆ BP . Intuitively, the operator InstP(A) identifies those
ground instances that may be supported by a given set A of ground atoms.
Consider now a component ordering

γ = 〈C1, . . . , Cn〉

for a Datalog∨,¬
FS program P, and two sets of ground rules T and R. Then, for

every i ∈ {1, . . . , n}, the simplification

Simpl
γ
i (T,R)

of T with respect to R is obtained from T by performing the following operations:

1. Delete each rule r such that either the head or the negative body of r

contains some atom p(t̄) which is a fact in R, i.e., each rule r such that

(H(r) ∪B−(r)) ∩ FACTS(R) 6= ∅;

2. Eliminate from each remaining rule r the atoms in

B+(r) ∩ FACTS(R),

and each literal not p(t̄) such taht p(t̄) ∈ B−(r) and p belongs to a
component Cj with j < i, and there is no rule r′ ∈ R with p(t̄) ∈ H(r′).

Assuming that R contains all ground instances obtained from the modules pre-
ceding Ci, by invoking Simpl

γ
i (T,R) we delete from T the rules which cannot

contribute to the reasoning, either because of a “true” head atom or because

4.1. DATALOG WITH FUNCTION SYMBOLS 77

of a “false” body literal. The operator Simpl
γ
i (T,R) simplifies the remaining

rules by removing from all bodies those literals which are “true” with respect
to R. We now define the operator Φ by combining Inst and Simpl. Let P be
a Datalog∨,¬

FS program, Ci a component in a component ordering

γ = 〈C1, . . . , Cn〉,

R and S two sets of ground rules. Then, the operator Φ is defined as the
following set of ground rules:

ΦP,i,R(S) = Simpl
γ
i (InstP (Ci)(H), R),

where H is the set of head atoms in R∪S. Note that the operator Φ is monotone
and thus always admit a least fixpoint

Φ∞
P,i,R(∅).

We can then define the intelligent instantiation Pγ of a Datalog∨,¬
FS program P

with respect to a component ordering

γ = 〈C1, . . . , Cn〉

as the last element Pγ
n of the following sequence:

• Pγ
0 = EDB(P);

• Pγ
i = Pγ

i−1 ∪ Φ∞
P,i,P

γ

i−1

(∅), for each i ∈ {1, . . . , n}.

Definition 4.1.5 (Finitely Ground Program). Let P be a Datalog∨,¬
FS program.

If Pγ is finite for every component ordering γ, the program P is finitely ground.
Let FG denote the class of all finitely ground programs.

The main result for this class of programs is stated below.

Theorem 4.1.6 ([19]). Cautious and brave reasoning over FG programs are
computable.

4.1.3 Finitely Recursive Queries and Programs

The definition of finitely recursive queries and programs [9] are based on the
notion of relevant atoms. Let P be a program and Q a ground query. The
relevant atoms for Q with respect to P are:

• Q itself;

• each atom in ATOMS(r), where r is a rule in Ground(P) such that some
atom in H(r) is relevant for Q.

We can then define the class of finitely recursive queries and programs.

Definition 4.1.7 (Finitely Recursive Query and Program). Let Q be a ground
query over a Datalog∨,¬

FS program P. Then,

• Q is finitely recursive on P if the set of relevant atoms for Q with respect
to P is finite;

78 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

• P is finitely recursive if every ground query is finitely recursive on P.

Let Datalog∨,¬s

FR denote the class of stratified finitely recursive Datalog∨,¬
FS queries

and programs.

In the definition above, we have explicitly considered ground queries only.
In fact, infinitely many atoms would be relevant for a query Q with variables;
for instance, all atoms Qϑ such that ϑ is a substitution for the variables of Q.
Therefore, in this chapter we only consider ground queries.

Example 4.1.8. Consider the query Q6 and the program P8 below:

Q6 : greaterThan(s(s(0)), 0)?

r22 : int(0).

r23 : int(s(X)) :− int(X).

r24 : lessThan(X, s(X)) :− int(X).

r25 : lessThan(X, s(Y)) :− lessThan(X, Y).

r26 : greaterThan(s(X), Y) :− int(X), int(Y), not lessThan(X, Y).

The first observation is that P8 cautiously and bravely entails Q6. Moreover, we
note that Q6 is finitely recursive on P8. Indeed, the number of relevant ground
atoms is bounded by the term depth of the arguments, which themselves must
be finite. �

4.2 Dynamic Magic Sets for Finitely Recursive

Queries

For queries over Datalog∨,¬s

FR programs, the algorithm implementing Dynamic
Magic Sets can be simplified by means of the restrictions in the definition of
Datalog∨,¬s

FR . In this section we discuss these simplifications and extend the
correctness result to Datalog∨,¬s

FR queries.

4.2.1 The DMS Algorithm Revised

In this section we simplify the DMS algorithm reported in Figure 3.13 by means
of the peculiarities of finitely recursive queries. These simplifications hold in
general if at least one functor of positive arity is present; otherwise, if only
constants and variables are used, the standard technique presented in Chapter 3
can be used.

For a finitely recursive query Q over an Datalog∨,¬s

FS program P, the DMS
algorithm can be simplified by means of the following observations:

• For each (sub)query p(t̄) and each rule r with an atom p(t̄′) ∈ H(r), all
variables appearing in r must also appear in p(t̄′). Indeed, if this is not the
case, infinitely many atoms would be relevant for Q (i.e., the query would
not be finitely recursive). Therefore, all adornment strings generated by
the DMS algorithm contain only b s.

• For each (sub)query and for each processed rule r, all variables of r are
bound by the (sub)query. Therefore, by properly limiting the adopted

4.2. DYNAMIC MAGIC SETS FOR FINITELY RECURSIVE QUERIES 79

Algorithm DMS(Q,P)
Input: A query Q = g(z̄) and a Datalog∨,¬s

FR program P
Output: A rewritten program
var
S, D : set of predicates;
R

mgc
Q,P

, Rmod
Q,P

: set of rules;

r′: rule;
begin

1. D := ∅; Rmod
Q,P

:= ∅;

2. R
mgc
Q,P

:= {magic g(z̄).}; S := {g};

3. while S 6= ∅ do
4. take an element p from S; remove p from S; add p to D;
5. for each rule r in P and for each atom p(t̄) in H(r) do
6. r′ := r;
7. for each atom q(s̄) ∈ H(r) do
8. add magic q(s̄) to B(r′);
9. end for

10. add r′ to Rmod
Q,P

;

11. for each atom q(s̄) ∈ ATOMS(r)\{p(t̄)} s.t. q is an IDB predicate do
12. add magic q(s̄) :− magic p(t̄) to R

mgc
Q,P

;

13. if set D does not contain pi then add pi to S; end if
14. end for
15. end for
16. end while
17. return R

mgc
Q,P

∪ Rmod
Q,P

∪ EDB(P);

end.

Figure 4.1: Dynamic Magic Sets algorithm for finitely recursive queries

SIPS, the bodies of the magic rules generated from r can contain only the
magic version of the (sub)query.

The magic predicate associated with a predicate p can then be denoted by
magic p, meaning that all arguments of p are considered bound. Thus, the
magic atom associated with an atom p(t̄) will be denoted by magic p(t̄).

The algorithm DMS implementing Dynamic Magic Sets for Datalog∨,¬s

FR

queries is reported in Figure 4.1. Given a program P and a query Q = g(z̄), the
algorithm outputs a rewritten program DMS(Q,P). The method exploits two
sets, S and D, for storing predicates to be propagated and already processed,
respectively. Magic rules are stored in the set R

mgc
Q,P , while modified rules in

Rmod
Q,P . Initially, D and Rmod

Q,P are empty, S contains the predicate g, and R
mgc
Q,P

contains the magic seed magic g(z̄) (lines 1–2). The main loop of the algorithm
is then repeated until S becomes empty (lines 3–16). In the main loop, a pred-
icate p is moved from S to D (line 4) and each rule r having an atom p(t̄) in
its head is considered (lines 5–15). In particular, a modified rule r′ is obtained
from r by adding a positive body literal magic q(s̄) for each atom q(s̄) ∈ H(r)
(lines 6–10). Moreover, a magic rule

r∗ : magic q(s̄) :− magic p(t̄).

is generated for each atom q(s̄) ∈ ATOMS(r) \ {p(t̄)} such that q is an IDB
predicate. In this case, q is also added to S if q does not belong to D (lines

80 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

11–14). Finally, the algorithm terminates returning the program obtained by
the union of Rmgc

Q,P , Rmod
Q,P and EDB(P) (line 17).

Example 4.2.1. The program obtained by applying DMS to the query and the
program in Example 4.1.8 comprises the following rules:

rQ6
: magic greaterThan(s(s(0)), 0).

r∗26,1 : magic int(X) :− magic greaterThan(s(X), Y).

r∗26,2 : magic int(Y) :− magic greaterThan(s(X), Y).

r∗26,3 : magic lessThan(X, Y) :− magic greaterThan(s(X), Y).

r∗24 : magic int(X) :− magic lessThan(X, s(X)).

r∗25 : magic lessThan(X, Y) :− magic lessThan(X, s(Y)).

r23 : magic int(X) :− magic int(s(X)).

r′22 : int(0) :− magic int(0).

r′23 : int(s(X)) :− magic int(s(X)), int(X).

r′24 : lessThan(X, s(X)) :− magic lessThan(X, s(X)), int(X).

r′25 : lessThan(X, s(Y)) :− magic lessThan(X, s(Y)), lessThan(X, Y).

r′26 : greaterThan(s(X), Y) :− magic greaterThan(s(X), Y),

int(X), int(Y), not lessThan(X, Y).

In this case the unique stable model of Rmgc
Q6,P8

is

M∗ = {magic greaterThan(s(s(0)), 0), magic int(s(0)),

magic int(0), magic lessThan(s(0), 0)}.

The intelligent instantiation of Rmod
Q6,P8

is the program below:2

int(0) :− magic int(0).

int(s(0)) :− magic int(s(0)), int(0).

greaterThan(s(s(0)), 0) :− magic greaterThan(s(s(0)), 0),

int(s(0)), int(0), not lessThan(s(0), 0).

Hence, P8 and DMS(Q6,P8) are equivalent with respect to Q6. �

4.2.2 Query Equivalence Theorem

The correctness of Dynamic Magic Sets for the class of Datalog∨,¬s

FR queries
can be proved by essentially following the proof presented in Section 3.2.4 for
function–free programs. However, some definitions and proofs can be simplified
because of the simplification of the DMS algorithm. A first observation is that
Proposition 3.2.13 and Proposition 3.2.14 define syntactic properties which hold

2Note that only underlined atoms are actually present in the program generated by program
instantiation. Atoms already known to be true have been included to simplify the identification
of rules.

4.2. DYNAMIC MAGIC SETS FOR FINITELY RECURSIVE QUERIES 81

also in presence of function symbols. A second observation is that the definition
of “killed atoms” can be simplified as follows.

Definition 4.2.2 (Killed Atoms for Datalog∨,¬s

FR). Let Q be a finitely recursive
query over a Datalog∨,¬s

FS program P, M ′ a model of DMS(Q,P), and N ′ ⊆M ′

a model of Ground(DMS(Q,P))M
′

. The set

killedM
′

Q,P(N ′)

of the killed atoms for DMS(Q,P) with respect to M ′ and N ′ is the following
set of ground atoms:

{p(t̄) ∈ BP \N
′ | either p is an EDB predicate, or magic p(t̄) ∈ N ′}

Another simplification can be made in the definition of “magic variant”.
Indeed, for a finitely recursive query Q over a Datalog∨,¬s

FS program P, the
program R

mgc
Q,P is positive and disjunction–free. Therefore, Rmgc

Q,P has a unique
and finite stable model (see Lemma 4.3.3 in the next section for a detailed
proof).

Definition 4.2.3 (Magic Variant for Datalog∨,¬s

FR). Consider a finitely recursive
query Q over a Datalog∨,¬s

FS program P. Let I be an interpretation for P. We
define an interpretation variantQ,P(I) for DMS(Q,P), called the magic variant
of I with respect to Q and P, as follows:

variantQ,P(I) = EDB(P) ∪M∗ ∪ {p(t̄) ∈ I | magic p(t̄) ∈M∗},

where M∗ is the unique stable model of Rmgc
Q,P .

We can then prove the correctness of Dynamic Magic Sets for Datalog∨,¬s

FR

queries.

Theorem 4.2.4 (Query Equivalence Theorem for Datalog∨,¬s

FR). Let Q be a
finitely recursive query over a Datalog∨,¬s

FR program P. Then, the following
equivalences are established:

• P ≡b
Q DMS(Q,P); and

• P ≡c
Q DMS(Q,P).

Proof. We start by observing that Theorem 3.2.20, claiming that killed atoms
constitute an unfounded set, also holds for Datalog∨,¬s

FR queries. Indeed, no
assumption on the finiteness of ground programs is made in proving Theo-
rem 3.2.20. By the same argument, Lemma 3.2.21 and Theorem 3.2.22 hold
for Datalog∨,¬s

FR queries. Hence, from these claims it follows that the Dynamic
Magic Set technique for Datalog∨,¬s

FR queries is sound. For proving the com-
pleteness, we have to consider Lemma 3.2.25 and Theorem 3.2.26. In particu-
lar, Lemma 3.2.25 has been proved by induction on the structure of the magic
variant, which may be transfinite for an infinite stable model. However, we
observe that for Datalog∨,¬s

FR queries the definition of the magic variant does
not use induction. Hence, the proof of Lemma 3.2.25 can be easily adapted
for Datalog∨,¬s

FR queries. For proving Theorem 3.2.26, instead, no assumption
on the finiteness of ground programs has been made, so it can be extended to
Datalog∨,¬s

FR queries with minor effort.

82 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

4.3 Decidability Theorem

The decidability of brave and cautious reasoning for Datalog∨,¬s

FR queries is
proved by providing a map to finitely ground programs. More specifically, we
show that the application of Dynamic Magic Sets to finitely recursive queries
generates finitely ground programs, for which query answering is known to be
decidable. We start by showing some properties of programs generated by the
application of Dynamic Magic Sets to finitely recursive queries.

Lemma 4.3.1. Let Q be a finitely recursive query over a Datalog∨,¬
FS program

P, and DMS(Q,P) the program obtained by applying Dynamic Magic Sets on
Q and P. Then, each cycle of dependencies in DMS(Q,P) involving some
predicates of P is also present in P.

Proof. Consider first a cycle of dependencies in DMS(Q,P) containing some
magic predicates. In this case only magic predicates are involved in the cycle
because magic rules have the form

magic q(s̄) :− magic p(t̄).

Thus, the other cycles in DMS(Q,P) only comprise standard predicates. These
cycles depend only on modified rules, which have been obtained from rules in P.
Only magic atoms have been added to these rules, so the cycle is also present
in P.

The lemma above can be used for proving that Dynamic Magic Sets gener-
ate stratified programs when applied on Datalog∨,¬s

FR queries. This property of
Dynamic Magic Sets is due to the particular restriction imposed on the choice
of SIPS in this section. In fact, in general the magic set rewriting of a stratified
program can produce unstratified negation even if disjunction and functions are
disallowed [40].

Corollary 4.3.2. Let Q be a finitely recursive query over a Datalog∨,¬s

FS program
P, and DMS(Q,P) the program obtained by applying Dynamic Magic Sets on Q
and P. Then, DMS(Q,P) is a Datalog∨,¬s

FS program, that is, stratification with
respect to negation is preserved.

Proof. By applying Lemma 4.3.1, each cycle of dependencies in DMS(Q,P)
which involves some predicates of P is also present in the original program
P. Each other cycle involves only magic predicates and positive dependencies
because magic rules contain no negative literals.

All magic rules generated by Dynamic Magic Sets are characterized by
atomic heads and positive bodies. For finitely recursive queries, magic rules
are also characterized by bodies consisting of exactly one magic atom. It can
be proved that the program comprising these magic rules is unique and finite.

Lemma 4.3.3. Let Q be a finitely recursive query over a Datalog∨,¬s

FS program
P. Let R

mgc
Q,P be the program which comprises all magic rules produced while

computing DMS(Q,P). Then, Rmgc
Q,P has a unique and finite stable model that

will be denoted by M∗.

4.3. DECIDABILITY THEOREM 83

Proof. Since R
mgc
Q,P is positive and normal, it admits a unique stable model

M∗. We shall show that each ground magic atom in M∗ corresponds to a
relevant atom for Q with respect to P, from which finiteness of M∗ follows. Let
magic q(s̄)ϑ be an atom in M∗ (ϑ a substitution) different from the magic seed.
Hence, magic q(s̄)ϑ must be supported by a magic rule

r∗ϑ : magic q(s̄)ϑ :− magic p(t̄)ϑ.

in Ground(DMS(Q,P)) such that magic p(t̄)ϑ belongs to M∗. We shall show
that q(s̄)ϑ is relevant for p(t)ϑ in this case. In fact, the magic rule r∗ in
DMS(Q,P) has been generated from a rule r ∈ P such that:

• the atom p(t̄) occurs in H(r); and

• the atom q(s̄) belongs to ATOMS(r) \ {p(t̄)}.

Recall that, by previous observations, all variables in r also appear in p(t̄).
Hence, rϑ belongs to Ground(P) and is such that:

• p(t̄)ϑ is an atom in its head;

• q(s̄)ϑ occurs in the rule.

Therefore, q(s̄)ϑ is relevant for p(t̄)ϑ. This is enough for proving that each
atom in M∗ corresponds to an atom which is relevant for Q with respect to P
because the query seed is the only fact in R

mgc
Q,P .

We can now link Datalog∨,¬s

FR queries and finitely ground programs by means
of the following theorem.

Theorem 4.3.4. Let Q be a finitely recursive query over a Datalog∨,¬s

FS program
P, and DMS(Q,P) the program obtained by applying Dynamic Magic Sets on
Q and P. Then, DMS(Q,P) is a finitely ground program.

Proof. Consider a component ordering

γ = 〈C1, . . . , Cn〉

for DMS(Q,P). We have to show that the intelligent instantiation of DMS(Q,P)
with respect to γ, DMS(Q,P)γ , is finite. We start by observing that the compo-
nents with non–magic predicates are disjoint from the components with magic
predicates because of Lemma 4.3.1. Therefore, for proving that DMS(Q,P)γ

is finite, we have to consider two kinds of components. For a component Ci

containing magic predicates, DMS(Q,P)γi is a subset of M∗, which is finite by
Lemma 4.3.3. For a component Ci containing standard predicates, we consider
a modified rule r′ ∈ P (Ci) having the following form:

r′ : h1(ū1) v · · · v hm(ūm) :− magic h1(ū1), . . . , magic hm(ūm),

b1(v̄1), . . . , bk(v̄k), not bk+1(v̄k+1), . . . , not bn(v̄n).

We observe that in any γ, Ci follows each component which contains a predicate
magic hj, for j ∈ {1, . . . ,m}. Moreover, since Q is finitely recursive on P, each
variable appearing in r′ also appears in some magic atom in B(r′). Therefore,
DMS(Q,P)γi is finite also in this case, because M∗ is finite.

84 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

We are now ready for proving the decidability of brave and cautious reason-
ing over finitely recursive queries.

Theorem 4.3.5. Let Q be a finitely recursive query over a Datalog∨,¬s

FS program
P. Then, deciding whether P cautiously (or bravely) entails Q is computable.

Proof. Let DMS(Q,P) be the program obtained by applying Dynamic Magic
Sets on Q and P. Then, the following equivalences are established by Theo-
rem 4.2.4:

• P ≡b
Q DMS(Q,P); and

• P ≡c
Q DMS(Q,P).

Since DMS(Q,P) is finitely ground by Theorem 4.3.4, the decidability of brave
and cautious reasoning follows from Thereom 4.1.6.

4.4 Expressive Power of Finitely Recursive Pro-

grams

The restrictions that guarantee the decidability of reasoning for Datalog∨,¬s

FR

queries do not limit the expressiveness of the class. Indeed, all computable
functions can be expressed by Datalog∨,¬s

FR programs (even without using dis-
junction and negation). In this section we formalize this result by showing how
to encode a deterministic Turing machine as a positive program with functions.
Input strings are encoded by queries which are finitely recursive if the Turing
machine halts. Essentially, we adapt a well–known result in classic first–order
logic to our notation and terminology: All computable functions can be repre-
sented by Horn clauses [63].

A Turing machine M with semi–infinite tape is a 5–tuple

M = 〈Σ,S, si, sf, δ〉,

where:

• Σ is an alphabet (i.e., a set of symbols);

• S is a set of states;

• si, sf ∈ S are two distinct states, which are respectively used for repre-
senting the initial and final state of M;

• δ is a transition function, that is,

δ : S × Σ −→ S × Σ× {←,→}.

Given an input string
x = x1 · · · xn,

the initial configuration of M is such that:

• the current state is si;

• the tape contains x followed by an infinite sequence of blank symbols
(represented by ⊔), a special tape symbol in Σ;3

3We assume x does not contain any blank symbol.

4.4. EXPRESSIVE POWER OF FINITELY RECURSIVE PROGRAMS 85

• the head is over the first symbol of the tape.

The other configurations assumed by M with input x are then obtained by
means of the transition function δ. In particular, if s and v are the current
state and symbol, respectively, and

δ(s, v) = (s′, v′, m),

the successive configuration is obtained by means of the following operation:

1. M overwrites v with v′;

2. M moves its head according to m ∈ {←,→};

3. M changes its state to s′.

We assume that M never moves its head to the left of the first symbol of the
tape. The machineM accepts x if the final state sf is reached at some point of
the computation.

A Turing machineM can be simulated by means of a Datalog∨,¬s

FS program.
In particular, configurations of M are encoded by instances of

conf(S, L, V, R),

where:

• S is the current state;

• L is the list of symbols on the left of the head in reverse order;

• V is the symbol under the head;

• R is a finite list of symbols on the right of the head containing at least all
the non–blank symbols.

Hence, the initial configuration of M with input x is encoded by the query
QM(x) below:

conf(si, [], x1, [x2, . . . , xn])? if n > 0;

conf(si, [], ⊔, [])? otherwise.

The machine M is implemented by a program PM containing a rule

conf(sf, L, V, R).

for representing the final state sf, and a set of rules implementing the transition
function δ. More specifically, for each state s ∈ S \ {sf} and for each symbol
v ∈ Σ, the program PM contains the following rules:

conf(s, [V|L], v, R) :− conf(s′, L, V, [v′|R]). if δ(s, v) = (s′, v′,←);

conf(s, L, v, [V|R]) :− conf(s′, [v′|L], V, R). if δ(s, v) = (s′, v′,→);

conf(s, L, v, []) :− conf(s′, [v′|L], ⊔, []). if δ(s, v) = (s′, v′,→).

86 CHAPTER 4. DECIDABILITY FOR DATALOG WITH FUNCTIONS

Note that we do not explicitly represent the infinite sequence of blanks on the
right of the tape; the last rule above effectively produces a blank whenever the
head moves right of all explicitly represented symbols. Therefore, the atoms
produced by a top–down evaluation of the query and program above represent
only the effectively reached tape positions. We also note that the program
above is not safe due to the rule encoding the final state. A safe program can
be achieved by introducing a fact sigma(v) for each v ∈ Σ and by replacing the
unsafe rule with the following rules:

conf(sf, L, V, R) :− sigma(V), list(L), list(R).

list([]).

list([V|L]) :− sigma(V), list(L).

However, it can be checked that the two programs are equivalent with respect
to every query representing an initial configuration for M. We can then prove
that QM(x) and PM actually implement the machine M with input x.

Theorem 4.4.1. Consider a Turing machine M and an input string x. Let
QM(x) and PM be the query and the program encoding M with input x as
described above. Then, PM bravely and cautiously entails QM(x) if and only if
M accepts x.

Proof Sketch. We observe that the program PM bravely and cautiously entails
the query QM(x) if and only if the unique stable model of PM contains a se-
quence of ground atoms

conf(t̄1), . . . , conf(t̄m)

such that:

• conf(t̄1) is the query atom;

• conf(t̄m) is an instance of the atom conf(sf, L, V, R), that is, the first
argument of conf(t̄m) is sf;

• for each i ∈ {1, . . . ,m− 1}, the rule

conf(t̄i) :− conf(t̄i+1).

belongs to Ground(PM); intuitively, the rule above is an instance of a
rule implementing the transition function of M.

Hence, from these observations and since instances of conf(t̄) represent config-
urations of M, the claim follows.

We can now link computable sets and finitely recursive queries.

Theorem 4.4.2. Let L be a computable set. Then, there is an Datalog∨,¬s

FR

program P deciding L; that is, for each string x there is a query Q such that Q
is finitely recursive on P. Moreover, Q is such that P cautiously (or bravely)
entails Q if and only if x ∈ L.

4.4. EXPRESSIVE POWER OF FINITELY RECURSIVE PROGRAMS 87

Proof. Since L is computable, there is a Turing machine M computing it. Let
P = PM be the program encoding M as described above. Moreover, for a
string x, let Q = QM(x) be the query encoding the initial configuration of M
with input x as described above. Hence, by Theorem 4.4.1, PM cautiously and
bravely entails QM(x) if and only if x ∈ L. Therefore, it remains to show that

PM is a Datalog∨,¬s

FR program. Clearly, PM is Datalog∨,¬s

FS (actually, it is even
negation–free), so we have to prove that QM(x) is finitely recursive on PM.
By construction of PM, for each ground atom conf(t̄) in BPM

there is exactly
one rule in Ground(PM) having conf(t̄) in head. This rule has at most one
atom conf(t̄′) in its body and implements either the transition function or the
final state of M. Thus, the atoms relevant for QM(x) are exactly the atoms
representing the configurations assumed by M with input x. The claim then
follows because M halts in a finite number of steps by assumption.

We note that, when Dynamic Magic Sets are applied on the program and
query used to encode a Turing machine, the magic predicates effectively encode
all reachable configurations and a bottom–up evaluation of the magic program
corresponds to a simulation of the Turing machine. Hence, only encodings of
Turing machine invocations that visit all (infinitely many) tape cells are not
finitely recursive. We also note that recognizing whether a Datalog∨,¬s

FR query is
finitely recursive is RE–complete, that is, complete for the class of recursively
enumerable decision problems.

Chapter 5

Implementation and

Experiments

Dynamic Magic Sets have been implemented in DLV [46]. The achieved proto-
type system allows for efficient query answering over Disjunctive Datalog pro-
grams. In this chapter, the architecture of the prototype system is presented.
Moreover, experimental results assessing the effectiveness of Dynamic Magic
Sets are reported. Further experimental results on an application scenario us-
ing real–world data are reported in Chapter 6.

5.1 System Architecture

Disjunctive Magic Sets have been implemented and integrated into the core of
the DLV system. The architecture of the prototype is presented in Figure 5.1.
DLV supports both brave and cautious reasoning. Brave reasoning is performed
if the command–line option -FB is specified, while -FC is used for cautious
reasoning. The DMS algorithm is applied by default only for (partially) bound
queries, and can be disabled by specifying the option -ODMS-. For completely
free queries, instead, the application of DMS can be explicitly requested by
specifying the option -ODMS. Finally, for completely bound queries the magic
variant of the stable model witnessing the truth or the falsity of the query,
depending on whether brave or cautious reasoning is adopted, can be printed
by specifying the option --print-model.1

In our prototype, the input query and program are processed by the Magic
Set Rewriter module, which implements DMS. Then, the rewritten and opti-
mized program is processed by the Intelligent Grounding module, which imple-
ments program instantiation. After that, the ground program is processed by
the Model Generator module, which implements stable model search. There-
fore, apart from the new Magic Set Rewriter module, the only modification to
the original DLV is for the output: For ground queries the witnessing stable
model is no longer printed by default, but only if --print-model is specified.
An executable of the DLV system supporting Dynamic Magic Sets is available
at http://www.dlvsystem.com/magic/.

1Magic predicates are not printed.

89

90 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

Magic Set

Rewriter

Brave

Reasoning

Frontend

Intelligent

Grounding

Model

Generator

Ground

Program

Model

Checker

User Interface

Output

Filtering

Relational

Database

File

System

Cautious

Reasoning

Frontend

Other

Frontends

Figure 5.1: DLV prototype system architecture

5.2 Compared Methods, Benchmark Problems

and Data

Effectiveness of Dynamic Magic Sets has been assessed empirically. The exper-
iments comprise the following benchmarks:

• Strategic Companies;

• Simple Path;

• Related;

• Conformant Plan Checking;

• Super–Coherent Encodings for Related and Conformant Plan Checking.

In particular, the first three benchmarks have already been used to assess SMS
in [37]. In the experiments, each benchmark is associated with a Disjunctive
Datalog query. For each benchmark, the average execution time of DLV has
been measured for:

• original queries (No Magic);

• queries optimized by Static Magic Sets (SMS);

5.2. COMPARED METHODS, BENCHMARK PROBLEMS AND DATA 91

• queries optimized by Dynamic Magic Sets (DMS).

A detailed description of each benchmark is provided below.

Strategic Companies

In the Strategic Companies problem, a collection

C = c1, . . . , cm

of companies is given, for some m ≥ 1. Each company produces some goods
in a set G, and each company ci ∈ C is possibly controlled by a set of owner
companies Oi ⊆ C. In this context, a set C ′ ⊆ C of companies is a strategic set
if it is minimal among all sets satisfying the following conditions:

• Companies in C ′ produce all goods in G;

• Oi ⊆ C ′ implies ci ∈ C ′, for each i = 1, . . . , m.

In our benchmark, two distinct companies ci, cj ∈ C are also provided in input,
and the existence of a strategic set C ′ such that ci and cj occur in C ′ has
to be checked. We used the instances submitted to the Second Answer Set
Competition,2 which are subjected to two additional restrictions:

• each product is produced by at most four companies; and

• each company is controlled by at most four companies.

Under these restrictions the problem is still ΣP
2 –complete [17], i.e., complete for

the second level of the polynomial hierarchy. Instances of Strategic Companies
are encoded by means of the predicates producedBy and controlledBy. In
particular, there is a fact

producedBy(p, ca, cb, cc, cd)

when a product p is produced by companies ca, cb, cc and cd, and a fact

controlledBy(c, ca, cb, cc, cd),

when a company c is controlled by companies ca, cb, cc and cd. If a prod-
uct p is produced by less than four companies (but at least one), the atom
producedBy(p, ca, cb, cc, cd) contains repetitions of companies. For instance,
producedBy(p, ca, cb, cc, cc) is used for representing that p is produced solely
by ca, cb and cc. Analogously, if a company c is controlled by less than four
companies. The problem is encoded by the query

st(ci), st(cj)?

over the following program:

st(C1) v st(C2) v st(C3) v st(C4) :− producedBy(P, C1, C2, C3, C4).

st(C) :− controlledBy(C, C1, C2, C3, C4), st(C1), st(C2), st(C3), st(C4).

2http://www.cs.kuleuven.be/~dtai/events/ASP-competition/index.shtml

92 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

b

a

Figure 5.2: Structure of Simple Path and Related instances

We point out that conjunctive queries are allowed in DLV: Essentially, new
rules and symbols are introduced as described in Chapter 2. In this case DLV

replaces the original query by
q(ci, cj)?

and adds the following rule:

q(ci, cj) :− st(ci), st(cj).

The companies ci and cj belong to a strategic set C ′ if and only if the query is
bravely true.

Simple Path

The Simple Path problem can be formulated as follows:

Given a directed graph G and two nodes a and b, does there exist a
unique path connecting a to b in G?

Instances of Simple Path are encoded by means of the predicate edge. In par-
ticular, there is a fact

edge(u, v)

when an arc connects node u to node v in graph G. The structure of G is the
same used in [37] and consists of a square matrix of nodes connected as shown
in Figure 5.2. Instances of this benchmark have been generated by varying the
number of nodes. The problem is encoded by the query

sp(a, b)?

5.2. COMPARED METHODS, BENCHMARK PROBLEMS AND DATA 93

over the following program:

sp(X, X) v not sp(X, X) :− edge(X, Y).

sp(X, Y) v not sp(X, Y) :− sp(X, Z), edge(Z, Y).

path(X, Y) :− sp(X, Y).

path(X, Y) :− not sp(X, Y).

not sp(X, Z) :− path(X, Y1), path(X, Y2), Y1 6= Y2,

edge(Y1, Z), edge(Y2, Z).

The last rule above derives all pairs of nodes which are connected by two different
paths in G. The first two rules, instead, guess whether there is a unique path
between two nodes. It can be shown that there is a unique path in G connecting
a to b if and only if the query is bravely true. Note that a simpler encoding
could be obtained by using stratified negation, but such an encoding would have
prevented the comparison with SMS.

Related

The Related problem can be formulated as follows:

Given a genealogy graph storing information of relationship (fa-
ther/brother) among people, and given two distinct people a and
b, is b a possible ancestor of a?

Instances of Related are encoded by means of the predicate related. In partic-
ular, there is a fact

related(x, y)

when a person x is known to be related to a person y, that is, when x is the
father or a brother of y. The structure of the “genealogy” graph, reported in
Figure 5.2, is the same used in [37] and coincides with the one used for testing
Simple Path. Also in this case, instances have been generated by varying the
number of nodes in the graph (thus, the number of people in the genealogy).
The problem is encoded by the query

ancestorOf(b, a)?

over the following program:

fatherOf(X, Y) v brotherOf(X, Y) :− related(X, Y).

ancestorOf(X, Y) :− fatherOf(X, Y).

ancestorOf(X, Y) :− fatherOf(X, Z), ancestorOf(Z, Y).

The query is bravely true if and only if b is a possible ancestor of a.

Conformant Plan Checking

The Conformant Plan Checking problem has been designed for highlighting the
dynamic optimization provided by DMS to the stable model search phase. The
problem is inspired by a setting in planning, in particular, testing whether a
given plan is conformant with respect to a state transition diagram [34]. A

94 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

a

b

Figure 5.3: Structure of Conformant Plan Checking instances

state transition diagram is essentially a directed graph formed of nodes, repre-
senting states, and arcs labeled by actions, meaning that executing the action
in the source state will lead to the target state. In the considered setting non-
determinism is allowed, that is, executing an action in one state might lead
nondeterministically to one of several successor states. A plan is a sequence of
actions, and it is conformant with respect to a given initial state a and a goal
state b if each possible execution of the action sequence leads from a to b.

In the benchmark, we assume that the action selection process has already
been performed. The state transition diagram is then assumed to be already
reduced to the transitions that may occur when executing the given plan. Fur-
thermore, we assume that there are at most two possible successor states for
each state. More specifically, the transition graphs in our experiment have the
shape of binary trees rooted in the initial state a, augmented by one additional
node and arcs such that all leaves are connected to the final state b, as depicted
in Figure 5.3. This can also be viewed as whether all outgoing paths of a node
in a directed graph reach a particular confluence node. In the benchmark, in-
stances are encoded by means of the predicate ptrans. In particular, there is a
fact

ptrans(s, si, sj)

when si and sj are the possible successor states of a state s. If s is a leaf of the
tree in the transition graph, and only in this case, si = sj = b. The problem is
encoded using the query

reach(a, b)?

over the following program:

trans(X, Y) v trans(X, Z) :− ptrans(X, Y, Z).

reach(X, Y) :− trans(X, Y).

reach(X, Y) :− reach(X, Z), trans(Z, Y).

The plan is conformant if and only if the query is cautiously true.

5.3. RESULTS AND DISCUSSION 95

Super–Coherent Encodings for Related and Conformant

Plan Checking

The experiment is completed by two Datalog∨,¬
SC encodings for Related and

Conformant Plan Checking. In particular, Related is encoded by the following
program:

fatherOf(X, Y) :− related(X, Y), not brotherOf(X, Y).

brotherOf(X, Y) :− related(X, Y), not fatherOf(X, Y).

ancestorOf(X, Y) :− fatherOf(X, Y).

ancestorOf(X, Y) :− fatherOf(X, Z), ancestorOf(Z, Y).

For each fact related(x, y), either fatherOf(x, y) or brotherOf(x, y) is guessed
by the first and second rules above. Then, the transitive closure of the relation
fatherOf is computed as usual by the last two rules. Conformant Plan Check-
ing, instead, is encoded by the following program:

trans(X, Y) :− ptrans(X, Y, Z), Y 6= Z, not trans(X, Z).

trans(X, Z) :− ptrans(X, Y, Z), Y 6= Z, not trans(X, Y).

trans(X, Y) :− ptrans(X, Y, Y).

reach(X, Y) :− trans(X, Y).

reach(X, Y) :− reach(X, Z), trans(Z, Y).

For each state in the input transition graph, if two different successor states are
given, a nondeterministic choice is made by the first and second rules above.
Otherwise, if there is just one successor state, a deterministic choice is made by
the third rule. Note that the condition Y 6= Z is important in the first two rules,
since dropping it would render the program incoherent (and thus incorrect) for
all instances containing states with only one successor state (all of the instances
considered here).

5.3 Results and Discussion

The experiment has been performed on a 3GHz Intel R© Xeon R© processor system
with 4GB RAM under the Debian 4.0 operating system with a GNU/Linux
2.6.23 kernel. The DLV prototype used has been compiled using GCC 4.3.3.
For each instance of the benchmark, we have allowed a maximum running time
of 600 seconds (10 minutes) and a maximum memory usage of 3GB.

On all considered problems DMS performs better or equal to SMS. Both
DMS and SMS improve DLV without Magic Sets. We point out that the time
needed for rewriting is included only for DMS. In fact, we have been unable
to obtain an implementation of Static Magic Sets, and thus performed SMS
rewritings manually. The results are analyzed in detail below.

Strategic Companies. The results for Strategic Companies are reported in
Figure 5.4 and in Table 5.1. Instances do not have a uniform structure, but are
ordered by size in the graph. Without magic sets only the smallest two instances
are solved in the allotted time. Substantial performance gains are provided by

96 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

SMS and DMS, which essentially perform equally in this benchmark. In fact, we
have verified that SMS and DMS produce exactly the same rewritten program
for the query and program encoding Strategic Companies.

Simple Path. The results for Simple Path are shown in Figure 5.5 and in
Table 5.2. Without magic sets only the smallest instances are solved in the
allotted time, with a very steep increase in execution time. Even if SMS pro-
vides a sensible performance gain, it scales worse than DMS. In this case the
gap between SMS and DMS is mostly due to the grounding of the additional
predicates introduced by SMS.

Related. The results for Related are reported in Figure 5.6 and in Table 5.3.
An even steeper increase in runtime with respect to Simple Path is exhibited
by the execution without magic sets, while the benefit provided by DMS are
much more evident in this case. In particular, DMS appears to have an expo-
nential speedup over SMS. In this case DMS outperforms SMS thanks to the
optimization potential provided to stable model search by the magic atoms.

Conformant Plan Checking. The results for Conformant Plan Checking
are shown in Figure 5.7 and in Table 5.4. Without magic sets only the smallest
instances are solved. Also SMS does not scale well at all, while DMS appears
to be exponentially faster than SMS. In this case DMS takes advantage of the
conditional relevance implemented by its magic atoms. In fact, the magic atoms
of DMS provide further optimization potential to stable model search: Parts of
the ground program are disabled according to previously made assumptions.
On the contrary, magic atoms of SMS have deterministic definitions and cannot
provide any optimization potential to stable model search.

Super–Coherent Encodings for Related and Conformant Plan Check-
ing. The results for these benchmarks are reported in Figures 5.8–5.9 and in
Tables 5.5–5.6. SMS has been not considered because its correctness has not
been proved for programs with recursive negation. We observe that the results
obtained with super–coherent encodings are almost the same as those obtained
by the positive encodings discussed previously. We point out that DLV performs
exponentially better with DMS also in this case.

5.3. RESULTS AND DISCUSSION 97

 0

 20

 40

 60

 80

 100

 120

x100.0q

x110.0q

x135.02q

x145.0q

x150.02q

x150.04q

x165.03q

x165.04q

x170.02q

x170.0q

x175.01q

x175.04q

x185.0q

x215.01q

x215.04q

E
xe

cu
tio

n
tim

e
(s

)
No Magic

SMS
DMS

Figure 5.4: Average execution time for Strategic Companies

Table 5.1: Average execution time for Strategic Companies

Instance Name
No Magic SMS DMS
(seconds) (seconds) (seconds)

x100.0q 28.07 0.61 0.60
x110.0q 117.67 8.66 8.58
x135.02q — 4.68 4.64
x145.0q — 5.21 5.18
x150.02q — 7.84 7.80
x150.04q — 7.81 7.78
x165.03q — 12.82 12.80
x165.04q — 19.32 19.33
x170.02q — 21.45 21.37
x170.0q — 14.75 14.74
x175.01q — 24.27 24.15
x175.04q — 17.53 17.48
x185.0q — 32.86 32.86
x215.01q — 34.39 34.53
x215.04q — 34.46 34.54

98 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

 0

 100

 200

 300

 400

 500

 600

 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

E
xe

cu
tio

n
tim

e
(s

)

Instance size (number of nodes)

No Magic
SMS
DMS

Figure 5.5: Average execution time for Simple Path

Table 5.2: Average execution time for Simple Path

Instance Size No Magic SMS DMS
(number of nodes) (seconds) (seconds) (seconds)

100 1.08 0.01 0.00
225 10.30 0.02 0.02
400 59.44 0.08 0.04
625 235.33 0.16 0.09
900 — 0.33 0.20

1 600 — 0.95 0.60
2 500 — 2.27 1.42
3 600 — 4.62 2.89
4 900 — 8.47 5.29
6 400 — 14.42 8.97
8 100 — 22.94 14.51

10 000 — 34.76 21.72
12 100 — 50.70 32.09
14 400 — 72.47 44.79
16 900 — 103.85 64.10
19 600 — 143.52 90.43
22 500 — 206.30 126.77
25 600 — 288.07 175.81
28 900 — 401.70 241.75
32 400 — 528.91 321.45
36 100 — — 417.90
40 000 — — 532.79

5.3. RESULTS AND DISCUSSION 99

 0

 50

 100

 150

 200

 250

 300

 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(s

)

Instance size (number of nodes)

No Magic
SMS
DMS

Figure 5.6: Average execution time for Related

Table 5.3: Average execution time for Related

Instance Size No Magic SMS DMS
(number of nodes) (seconds) (seconds) (seconds)

225 1.42 0.12 0.03
400 15.31 0.40 0.04
625 84.40 1.00 0.06
900 293.58 2.10 0.09

1 225 — 3.96 0.13
1 600 — 6.77 0.18
2 025 — 10.93 0.25
2 500 — 16.83 0.33
3 025 — 24.76 0.40
3 600 — 35.20 0.50
4 225 — 48.72 0.62
4 900 — 66.06 0.77
5 625 — 87.26 0.94
6 400 — 113.42 1.11
7 225 — 145.33 1.36
8 100 — 184.06 1.56
9 025 — 230.44 1.80

10 000 — 284.74 2.15

100 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000 70000

E
xe

cu
tio

n
tim

e
(s

)

Instance size (number of states)

No Magic
SMS
DMS

Figure 5.7: Average execution time for Conformant Plan Checking

Table 5.4: Average execution time for Conformant Plan Checking

Instance Size No Magic SMS DMS
(number of states) (seconds) (seconds) (seconds)

256 0.18 0.05 0.04
512 1.04 0.21 0.09

1 024 6.74 1.21 0.21
2 048 50.23 8.03 0.59
4 096 345.47 58.72 1.74
8 192 — 451.14 5.62

16 384 — — 19.35
32 768 — — 70.83
65 536 — — 279.41

5.3. RESULTS AND DISCUSSION 101

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(s

)

Instance size (number of nodes)

No Magic
DMS

Figure 5.8: Average execution time for Related — Super–Coherent Encoding

Table 5.5: Average execution time for Related — Super–Coherent Encoding

Instance Size No Magic DMS
(number of nodes) (seconds) (seconds)

225 2.48 0.03
400 21.72 0.05
625 108.50 0.08
900 378.81 0.11

1 225 — 0.17
1 600 — 0.27
2 025 — 0.31
2 500 — 0.42
3 025 — 0.54
3 600 — 0.68
4 225 — 0.85
4 900 — 1.04
5 625 — 1.28
6 400 — 1.51
7 225 — 1.81
8 100 — 2.18
9 025 — 2.57

10 000 — 2.95

102 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10000 20000 30000 40000 50000 60000 70000

E
xe

cu
tio

n
tim

e
(s

)

Instance size (number of states)

No Magic
DMS

Figure 5.9: Average execution time for Conformant Plan Checking — Super–
Coherent Encoding

Table 5.6: Average execution time for Conformant Plan Checking — Super–
Coherent Encoding

Instance Size No Magic DMS
(number of nodes) (seconds) (seconds)

256 0.21 0.04
512 1.31 0.10

1 024 8.74 0.25
2 048 63.15 0.66
4 096 424.62 1.91
8 192 — 6.04

16 384 — 20.17
32 768 — 72.77
65 536 — 284.98

Chapter 6

Application to Data

Integration

In this chapter we give a brief account of a case study that evidences the impact
of Dynamic Magic Sets when used on programs that realize data integration
systems. The chapter is structured as follows. We first give an overview of
data integration systems in Section 6.1. Then, in Section 6.2 we show how data
integration systems can be implemented using Disjunctive Datalog programs.
Finally, in Section 6.3 we discuss about the results of our experiments, aimed
at assessing the impact of Dynamic Magic Sets on a data integration system
involving real–world data.

6.1 Data Integration Systems

The main goal of data integration systems is to offer transparent access to
heterogeneous sources by providing users with a global schema: The global
schema can be queried without having to know from what sources the data
come from. In fact, given a query over the global schema, the task of a data
integration system is to identify and access the data sources which are relevant
for answering the query, and to combine the obtained data. Data integration
systems use a set of mapping assertions which specify the relationship between
the data sources and the global schema. Following [44], we formalize a data
integration system I as a triple

〈G,S,M〉,

where:

1. G is the global (relational) schema, that is, a pair

〈Ψ,Σ〉,

where Ψ is a finite set of relation symbols, each one with an associated
positive arity, and Σ is a finite set of integrity constraints (ICs) expressed
on the symbols in Ψ. ICs are first–order assertions that are intended to
be satisfied by database instances.

103

104 CHAPTER 6. APPLICATION TO DATA INTEGRATION

2. S is the source schema, constituted by the schemas of the various sources
that are part of the data integration system. In particular, we assume
that S is a relational schema of the form

S = 〈Ψ′, ∅〉,

which means that there are no integrity constraints on the sources. This
assumption implies that data stored at the sources are locally consistent,
which is common in data integration. Indeed, sources are in general ex-
ternal to the integration system, which is not in charge of analyzing or
restoring their consistency.

3. M is the mapping establishing the relationship between G and S. In our
framework the mapping follows the global–as–view (GAV) approach, that
is, each global relation is associated with a view—a conjunctive query over
the sources. We assume that these associations are represented as Datalog
rules.

Since integrated sources are originally autonomous, the main semantical is-
sue in data integration systems is that data obtained by applying the map-
ping assertions may not satisfy the constraints of the global schema. This
problem has lately received a lot of interest in the literature; see for instance
[18, 16, 13, 12, 22, 21, 30, 31, 4, 20]. An approach for tackling this problem is
based on the notion of repair for an inconsistent database, as introduced in [5].
Roughly speaking, a repair of an inconsistent database is a new database that
satisfies the constraints in the schema, and minimally differs from the original
one. Since an inconsistent database might possess multiple repairs, the stan-
dard approach in answering user queries is to return the answers that are true
in every possible repair. These are called consistent answers in the literature.

6.2 Consistent Query Answering

There is an intuitive relationship between consistent query answering over data
integration systems and queries over Datalog∨,¬ programs. Indeed, for each
data integration system

I = 〈G,S,M〉,

it is possible to associate a Datalog∨,¬ program Π(I) such that each stable model
of Π(I) corresponds to a possible repair of I. Hence, a query Q over G can be
answered by performing cautious reasoning for Q over Π(I). In fact, various
authors considered the idea of encoding the constraints of the global schema
G into various kinds of logic programs; see for instance [6, 35, 8, 18, 16, 20].
Some of these approaches use logic programs with unstratified negation [18],
whereas other approaches take advantage of Disjunctive Datalog programs with
stratified negation [14, 51].

In this context, Magic Set techniques can provide crucial optimization poten-
tial. Indeed, the benefits of Magic Sets for optimizing logic programs obtained
by translating data integration systems have already been discussed in the lit-
erature. In particular, a translation of data integration systems to Datalog¬

programs has been presented in [51], where a Magic Set technique (defined in
[29]) has been profitably used for optimizing the query answering.

6.2. CONSISTENT QUERY ANSWERING 105

We now report an alternative transformation which produces Datalog∨,¬s

programs, that is, no unstratified occurrences of negation are present in the
programs obtained by this transformation. This rewriting has been devised and
used within the EU project INFOMIX on data integration [45].

Consider a data integration system

I = 〈G,S,M〉,

where
G = 〈Ψ,Σ〉

and M is specified as a Datalog program. Moreover, let D be a database for
G, represented as a set of facts over the relational predicates in G. We assume
that each constraint over the global schema is either a key or an exclusion
dependency. A set of attributes x̄ is a key for a relation r if

(r(x̄, ȳ) ∧ r(x̄, z̄))→ ȳ = z̄, ∀{r(x̄, ȳ), r(x̄, z̄)} ⊆ D.

An exclusion dependency holds between a set of attributes x̄ of a relation r and
a set of attributes w̄ of a relation s if

(r(x̄, ȳ) ∧ s(w̄, z̄))→ x̄ 6= w̄, ∀{r(x̄, ȳ), s(w̄, z̄)} ⊆ D.

The disjunctive rewriting of I is the Datalog∨,¬s program

Π(I) = ΠM ∪ΠKD ∪ΠED ∪ΠCOLL,

where:

1. For each Datalog rule in M of the form

r(ū) :− s1(v̄1), . . . , sm(v̄m).

where r is a relation in G and s1, . . . , sm are relations in S, the program
ΠM contains the following rule:

rD(ū) :− s1(v̄1), . . . , sm(v̄m).

2. For each relation r in G, and for each key defined over a set of its attributes
x̄, the program ΠKD contains the following rules:

rout(x̄, ȳ) v rout(x̄, z̄) :− rD(x̄, ȳ), rD(x̄, z̄), Y1 6= Z1.

...

rout(x̄, ȳ) v rout(x̄, z̄) :− rD(x̄, ȳ), rD(x̄, z̄), Ym 6= Zm.

where ȳ = Y1, . . . , Ym, and z̄ = Z1, . . . , Zm.

3. For each exclusion dependency between a set of attributes x̄ = X1, . . . , Xm
of a relation r and a set of attributes w̄ = W1, . . . , Wm of a relation s, the

106 CHAPTER 6. APPLICATION TO DATA INTEGRATION

program ΠED contains the following rule:

rout(x̄, ȳ) v sout(w̄, z̄) :− rD(x̄, ȳ), sD(w̄, z̄), X1 = W1, . . . , Xm = Wm.
1

4. For each relation r in G, the program ΠCOLL contains the following rule:

r(x̄) :− rD(x̄), not rout(x̄).

Given a data integration system I and the associated rewriting Π(I), it can be
shown that:

For each query Q over G, and for each source database F over S,
the consistent query answers to Q precisely coincide with the set
Ansc(Q,Π(I) ∪ F) of cautious answers for the query Q over the
program Π(I)∪F (see Section 2.2.2 for a formal definition of Ansc).

Below is an example of data integration system.

Example 6.2.1. Let red wine(NAME, MAKER) and white wine(NAME, MAKER)
be two global relations obtained from a source schema containing the relations
italian wine(NAME, TYPE, MAKER) and french wine(NAME, TYPE, MAKER). In
particular, the mapping is given by the following Datalog program:

red wine(N, M) :− italian wine(N, “red”, WM).

red wine(N, M) :− french wine(N, “red”, WM).

white wine(N, M) :− italian wine(N, “white”, WM).

white wine(N, WM) :− french wine(N, “white”, WM).

In the global schema we assume the following integrity constraints:

• NAME is a key of red wine;

• NAME is a key of white wine;

• There is an exclusion dependency between the argument NAME of red wine

and the argument NAME of white wine (red wines are not white wines and
vice versa).

Hence, the disjunctive rewriting of this data integration system is the following
Datalog∨,¬s program:

red wineD(N, M) :− italian wine(N, “red”, WM).

red wineD(N, M) :− french wine(N, “red”, WM).

white wineD(N, M) :− italian wine(N, “white”, WM).

white wineD(N, WM) :− french wine(N, “white”, WM).

red wineout(N, M) v red wineout(N, M
′) :− red wineD(N, M),

red wineD(N, M′), M 6= M′.

white wineout(N, M) v white wineout(N, M
′) :− white wineD(N, M),

white wineD(N, M′), M 6= M′.

1Actually, the following equivalent rule is used: rout(x̄, ȳ) v sout(x̄, z̄) :− rD(x̄, ȳ), sD(x̄, z̄).

6.3. EXPERIMENTAL RESULTS 107

red wineout(N, M) v white wineout(N, M
′) :− red wineD(N, M),

white wineD(N, M′).

red wine(N, M) :− red wineD(N, M), not red wineout(N, M).

white wine(N, M) :− white wineD(N, M), not white wineout(N, M).

�

6.3 Experimental Results

In the INFOMIX project, a case study has been conducted, developing a data
integration system which models aspects of the information system of the Uni-
versity “La Sapienza” in Rome. In particular, the global schema consists of
14 global relations with 29 constraints, while the data sources include 29 re-
lations of 3 legacy databases and 12 wrappers generating relational data from
web pages. This amounts to more than 24MB of data regarding students, pro-
fessors and exams in several faculties of the university. Personal data has been
scrambled for privacy requirements (see, for instance, Query 3 in Figure 6.5).

On the INFOMIX schema we have tested five typical queries, each one with
particular characteristics, which model different use cases. The full encodings
of the tested queries are reported in Figures 6.1, 6.3, 6.5, 6.7, and 6.9, where we
underlined source relations. Note that the INFOMIX system performs a prelim-
inary selection of the source relations involved in an input query, so that only
those table which are required for answering the query are actually processed by
DLV. In the experiment, we considered datasets of increasing size obtained by
adding records produced by putting a prefix to all the arguments of the original
tuples. For each query and for each dataset considered, we measured the aver-
age execution time of the INFOMIX system with and without Dynamic Magic
Sets.

The experiment has been performed by running the INFOMIX prototype
system on a 3GHz Intel R© Xeon R© processor system with 4GB RAM under the
Debian 4.0 operating system with a GNU/Linux 2.6.23 kernel. A DLV proto-
type supporting Dynamic Magic Sets and compiled using GCC 4.3.3 has been
used as the computational core of the INFOMIX system. For each instance, we
allowed a maximum running time of 600 seconds (10 minutes) and a maximum
memory usage of 3GB.

The results of the experiment are represented in Figures 6.2, 6.4, 6.6, 6.8,
and 6.10, and reported in Tables 6.1–6.5. In particular, the achieved results
confirm that Dynamic Magic Sets considerably improve performances of Datalog
systems. More specifically, on Queries 1–4 the response time of DLV scales much
better with Dynamic Magic Sets. Indeed, the average execution time of DLV

with DMS appears essentially linear, while without magic sets the performance
of DLV is quite obviously non–linear. We also observe that there is basically no
improvement on Query 5. Indeed, for this query all data seems to be relevant,
which means that magic sets cannot have any positive effect. However, it is
important to note that the application of DMS does not incur any significant
overhead in this case.

108 CHAPTER 6. APPLICATION TO DATA INTEGRATION

courseD(X1, X2) :− esame(, X1, X2,).

courseD(X1, X2) :− esame diploma(X1, X2).

exam recordD(X1, X2, Z, W, X4, X5, Y) :− affidamenti ing informatica(X2, X3, Y),

dati esami(X1, , X2, X5, X4, , Y), dati professori(X3, Z, W).

exam recordout(X1, X2, X3, X4, Y5, Y6, Y7) v exam recordout(X1, X2, X3, X4, Z5, Z6, Z7) :−

exam recordD(X1, X2, X3, X4, Y5, Y6, Y7), exam recordD(X1, X2, X3, X4, Z5, Z6, Z7),

Y5 6= Z5.

exam recordout(X1, X2, X3, X4, Y5, Y6, Y7) v exam recordout(X1, X2, X3, X4, Z5, Z6, Z7) :−

exam recordD(X1, X2, X3, X4, Y5, Y6, Y7), exam recordD(X1, X2, X3, X4, Z5, Z6, Z7),

Y6 6= Z6.

exam recordout(X1, X2, X3, X4, Y5, Y6, Y7) v exam recordout(X1, X2, X3, X4, Z5, Z6, Z7) :−

exam recordD(X1, X2, X3, X4, Y5, Y6, Y7), exam recordD(X1, X2, X3, X4, Z5, Z6, Z7),

Y7 6= Z7.

course(X1, X2) :− courseD(X1, X2), not courseout(X1, X2).

exam record(X1, X2, X3, X4, X5, X6, X7) :− exam recordD(X1, X2, X3, X4, X5, X6, X7),

not exam recordout(X1, X2, X3, X4, X5, X6, X7).

query1(CD) :− course(C, CD), exam record(“09089903”, C, , , , ,).

query1(CD)?

Figure 6.1: Encoding of Query 1 — INFOMIX benchmark

6.3. EXPERIMENTAL RESULTS 109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400

E
xe

cu
tio

n
tim

e
(s

)

Dataset size (thousands of facts)

No Magic
DMS

Figure 6.2: Average execution time for Query 1 — INFOMIX benchmark

Table 6.1: Average execution time for Query 1 — INFOMIX benchmark

Instance Size No Magic DMS
(number of facts) (seconds) (seconds)

37 470 0.95 0.42
74 940 3.13 0.87

112 400 7.12 1.33
149 870 12.92 1.78
187 340 18.93 2.24
224 810 27.81 2.70
262 280 35.46 3.18
299 740 48.42 3.62
337 210 58.16 4.09
374 680 73.99 4.58

110 CHAPTER 6. APPLICATION TO DATA INTEGRATION

studentD(X1, X2, X3, X4, X5, X6, X7) :− diploma maturita(Y, X7),

studente(X1, X3, X2, , , , , , , , , , X6, X5, , , X4, , , , , Y,).

student(X1, X2, X3, X4, X5, X6, X7) :− studentD(X1, X2, X3, X4, X5, X6, X7),

not studentout(X1, X2, X3, X4, X5, X6, X7).

query2(SFN, SLN, COR, ADD, TEL, HSS) :−

student(“09089903”, SFN, SLN, COR, ADD, TEL, HSS).

query2(SFN, SLN, COR, ADD, TEL, HSS)?

Figure 6.3: Encoding of Query 2 — INFOMIX benchmark

6.3. EXPERIMENTAL RESULTS 111

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

E
xe

cu
tio

n
tim

e
(s

)

Dataset size (thousands of facts)

No Magic
DMS

Figure 6.4: Average execution time for Query 2 — INFOMIX benchmark

Table 6.2: Average execution time for Query 2 — INFOMIX benchmark

Instance Size No Magic DMS
(number of facts) (seconds) (seconds)

16 150 0.79 0.52
32 300 1.96 1.13
48 460 3.47 1.76
64 610 5.29 2.4
80 760 7.38 3.03
96 910 9.75 3.69

113 060 12.55 4.36
129 220 15.39 4.99
145 370 18.34 5.63
161 520 21.91 6.29

112 CHAPTER 6. APPLICATION TO DATA INTEGRATION

studentD(X1, X2, X3, X4, X5, X6, X7) :− diploma maturita(Y, X7),

studente(X1, X3, X2, , , , , , , , , , X6, X5, , , X4, , , , , Y,).

student course planD(X1, X2, X3, X4, X5) :− orientamento(Y1, X3),

piano studi(X1, X2, Y1, X4, Y2, , , , ,), stato(Y2, X5).

student(X1, X2, X3, X4, X5, X6, X7) :− studentD(X1, X2, X3, X4, X5, X6, X7),

not studentout(X1, X2, X3, X4, X5, X6, X7).

student course plan(X1, X2, X3, X4, X5) :− student course planD(X1, X2, X3, X4, X5),

not student course planout(X1, X2, X3, X4, X5).

query3(SID, SLN, R) :− student(SID, “ZNEPB”, SLN, , , ,),

student course plan(, SID, , R, “APPROVATO SENZA MODIFICHE”).

query3(SID, SLN, R)?

Figure 6.5: Encoding of Query 3 — INFOMIX benchmark

6.3. EXPERIMENTAL RESULTS 113

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

E
xe

cu
tio

n
tim

e
(s

)

Dataset size (thousands of facts)

No Magic
DMS

Figure 6.6: Average execution time for Query 3 — INFOMIX benchmark

Table 6.3: Average execution time for Query 3 — INFOMIX benchmark

Instance Size No Magic DMS
(number of facts) (seconds) (seconds)

17 270 0.82 0.57
34 550 2.07 1.22
51 820 3.59 1.88
69 090 5.46 2.55
86 370 7.61 3.21

103 640 10.01 3.91
120 910 12.71 4.60
138 180 15.66 5.27
155 460 19.23 5.93
172 730 22.82 6.61

114 CHAPTER 6. APPLICATION TO DATA INTEGRATION

studentD(X1, X2, X3, X4, X5, X6, X7) :− diploma maturita(Y, X7),

studente(X1, X3, X2, , , , , , , , , , X6, X5, , , X4, , , , , Y,).

courseD(X1, X2) :− esame(, X1, X2,).

courseD(X1, X2) :− esame diploma(X1, X2).

student course planD(X1, X2, X3, X4, X5) :− orientamento(Y1, X3),

piano studi(X1, X2, Y1, X4, Y2, , , , ,), stato(Y2, X5).

plan dataD(X1, X2, X3) :− dati piano studi(X1, X2,),

esame ingegneria(X2, Y3, Y2,), tipo esame(Y2, X3).

student(X1, X2, X3, X4, X5, X6, X7) :− studentD(X1, X2, X3, X4, X5, X6, X7),

not studentout(X1, X2, X3, X4, X5, X6, X7).

student course plan(X1, X2, X3, X4, X5) :− student course planD(X1, X2, X3, X4, X5)

not student course planout(X1, X2, X3, X4, X5).

plan data(X1, X2, X3) :− plan dataD(X1, X2, X3),

not plan dataout(X1, X2, X3).

course(X1, X2) :− courseD(X1, X2), not courseout(X1, X2).

query4(F, S) :− course(CID, “RETILOGICHE”), plan data(SCID, CID,),

student(SID, F, S, “ROMA”, , ,), student course plan(SCID, SID, , ,).

query4(F, S)?

Figure 6.7: Encoding of Query 4 — INFOMIX benchmark

6.3. EXPERIMENTAL RESULTS 115

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700

E
xe

cu
tio

n
tim

e
(s

)

Dataset size (thousands of facts)

No Magic
DMS

Figure 6.8: Average execution time for Query 4 — INFOMIX benchmark

Table 6.4: Average execution time for Query 4 — INFOMIX benchmark

Instance Size No Magic DMS
(number of facts) (seconds) (seconds)

61 650 1.67 0.90
123 290 4.09 1.88
184 940 7.12 2.88
246 580 10.93 3.90
308 230 15.16 4.92
369 870 19.83 5.99
431 520 25.72 7.03
493 160 31.30 8.14
554 810 37.93 9.15
616 450 45.73 10.23

116 CHAPTER 6. APPLICATION TO DATA INTEGRATION

courseD(X1, X2) :− esame(, X1, X2,).

courseD(X1, X2) :− esame diploma(X1, X2).

student course planD(X1, X2, X3, X4, X5) :− orientamento(Y1, X3),

piano studi(X1, X2, Y1, X4, Y2, , , , ,), stato(Y2, X5).

plan dataD(X1, X2, X3) :− dati piano studi(X1, X2,),

esame ingegneria(X2, Y3, Y2,), tipo esame(Y2, X3).

student course plan(X1, X2, X3, X4, X5) :− student course planD(X1, X2, X3, X4, X5),

not student course planout(X1, X2, X3, X4, X5).

plan data(X1, X2, X3) :− plan dataD(X1, X2, X3),

not plan dataout(X1, X2, X3).

course(X1, X2) :− courseD(X1, X2), not courseout(X1, X2).

query5(D) :− course(E, D), plan data(C, E,),

student course plan(C, “09089903”, , ,).

query5(D)?

Figure 6.9: Encoding of Query 5 — INFOMIX benchmark

6.3. EXPERIMENTAL RESULTS 117

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

)

Dataset size (thousands of facts)

No Magic
DMS

Figure 6.10: Average execution time for Query 5 — INFOMIX benchmark

Table 6.5: Average execution time for Query 5 — INFOMIX benchmark

Instance Size No Magic DMS
(number of facts) (seconds) (seconds)

45 490 0.83 0.84
90 990 2.03 2.02

136 480 3.50 3.58
181 970 5.28 5.40
227 470 7.30 7.73
272 960 10.10 10.17
318 450 12.21 13.10
363 940 15.50 15.70
409 440 19.32 18.36
454 930 22.81 21.70

Chapter 7

Related Work

In this chapter we first discuss about the main body of work which is related
to Dynamic Magic Sets, the technique for query optimization developed in this
thesis. In particular, we discuss Magic Set techniques for Datalog and its ex-
tensions. The discussion is structured in sections grouping techniques which
cover the same language. After that, we discuss some applications for which
Dynamic Magic Sets have already been exploited. All of these applications re-
fer to the preliminary work published in [24], in which the technique is referred
to as Disjunctive Magic Sets.

Magic Sets for Datalog

In order to optimize query evaluation in bottom–up systems, like deductive
database systems, many works have proposed the simulation of top–down strate-
gies by means of suitable transformations. Among these transformations, Magic
Sets for Datalog queries, here referred to as Classic Magic Sets, are one of the
best known logical optimization techniques for database systems. The method,
first developed in [7], has been analyzed and refined by many authors; see, for
instance, [10, 64, 56, 62]. These works form the foundations of Dynamic Magic
Sets.

Magic Sets for Datalog¬s

Many authors have addressed the issue of extending Classic Magic Sets in order
to deal with Datalog queries involving stratified negation. The main problem
related to the extension of the technique to Datalog¬s programs is how to assign
a semantics to the rewritten programs. Indeed, while Datalog¬s programs have
a natural and accepted semantics, namely the perfect model semantics [3, 65],
the application of Classic Magic Sets can introduce unstratified negation in
the rewritten programs. Solutions have been presented in [40, 60, 41, 11]. In
particular, in [40, 60] rewritten programs have been evaluated according to the
well–founded semantics, a three-valued semantics for Datalog¬ programs which
is two–valued for stratified programs and for the associated rewritten programs.
In [41, 11], instead, ad-hoc semantics have been defined. All of these methods are
considerably different from Dynamic Magic Sets. Indeed, they take advantage

119

120 CHAPTER 7. RELATED WORK

of the uniqueness of the intended model, which is not a property of Disjunctive
Datalog programs.

Magic Sets for Datalog¬

Extending Classic Magic Sets to Datalog¬ programs must face two major diffi-
culties. First, for a Datalog¬ program uniqueness of the intended model is no
longer guaranteed, thus query answering in this setting involves a set of stable
models in general. The second difficulty is that parts of a Datalog¬ program
may act as constraints, thus impeding a relevant interpretation to be a stable
model. In [29] a Magic Set method for Datalog¬ programs has been defined
and proved to be correct for coherent programs. This method takes special
precautions for relevant parts of the program that act as constraints, called
dangerous rules in [29]. It can be observed that dangerous rules cannot occur in
Datalog∨,¬s , which allows for the simpler Dynamic Magic Sets to work correctly
for this class of programs.

Magic Sets for Disjunctive Datalog

The first extension of Classic Magic Sets to Disjunctive Datalog is due to [36, 37],
where Static Magic Sets have been presented and proved to be correct for
Datalog∨ programs. The main drawback of Static Magic Sets is the introduction
of collecting predicates. Indeed, magic and collecting predicates of Static Magic
Sets have deterministic definitions. As a consequence, their extension can be
completely computed during program instantiation, which means that no fur-
ther optimization potential can be provided to the subsequent stable model
search. Moreover, while the correctness of Dynamic Magic Sets has been for-
mally established for Datalog∨,¬s programs in general (and also for Datalog∨,¬

SC

programs), the applicability of Static Magic Sets to Datalog∨,¬s programs has
not been considered in depth in [36, 37].

Applications

Magic Sets have been applied in many contexts. In particular, [14, 51, 55, 38]
have profitably used the optimization provided by Dynamic Magic Sets. In
particular, in [14, 51] a data integration system has been presented. The system
is based on Disjunctive Datalog and takes advantage of Dynamic Magic Sets for
fast query answering. In [55, 38], instead, an algorithm for answering query over
description logic knowledge bases has been presented. More specifically, the
algorithm reduces a SHIQ knowledge base to a Disjunctive Datalog program,
so that Dynamic Magic Sets can be used for query optimization.

Chapter 8

Conclusion

Magic Sets have already been assessed as an effective method for query optimiza-
tion over positive recursive Datalog. Many works have analyzed the technique
in this context [7, 10, 64, 56, 62], which has been referred to as Classic Magic
Sets in this thesis. Other works have presented extensions of the technique to
Datalog¬s [3, 65, 40, 60, 41, 11] and Datalog¬ [29]. All these works share the
key concept of relevance: the relevant atoms for a given query are the atoms
which can be reached during a top–down evaluation of the query, and relevant
atoms are sufficient for answering the query.1 Relevant atoms are identified by
magic atoms based on suitable sideways information passing strategies (SIPS).
Magic atoms are then used for limiting the instantiation of rule bodies during
a bottom–up evaluation of the rewritten program.

The first extension of Classic Magic Sets to Disjunctive Datalog, referred
to as Static Magic Sets in this thesis, has been presented in [36, 37]. The
main contribution of Static Magic Sets is the extension of the notion of SIPS
to Disjunctive Datalog rules. Indeed, the fact that binding information in this
setting has to be passed also from head atoms to head atoms has been first
observed in [36]. However, the main drawback of Static Magic Sets is that
magic atoms have deterministic definitions. Essentially, the same concept of
relevance adopted by Classic Magic Sets is used to identify the atoms which are
required for answering a given query. It is a drawback because the extension of
these magic atoms can be completely determined during program instantiation,
which means that no further optimization can be achieved during the subsequent
stable model search.

Dynamic Magic Sets, the technique developed in the work presented in this
thesis, has been designed for overcoming the drawbacks of Static Magic Sets.
The same notion of SIPS used by Static Magic Sets is adopted, but nondeter-
ministic definitions of magic atoms are possibly introduced. Nondeterministic
definitions take into account partial knowledge inferred during stable model
search, which means that a new notion of conditional relevance is introduced
by Dynamic Magic Sets: the relevant atoms for a given query are the atoms
which can be reached during a top–down evaluation of the query according to
all previously made assumptions. It is the notion of conditional relevance that
allows Dynamic Magic Sets to effectively disable parts of the program during

1The technique of [29] for Datalog¬ programs must also take into account atoms occurring
in odd cycles.

121

122 CHAPTER 8. CONCLUSION

stable model search.
A strong relationship between magic sets and unfounded sets has been high-

lighted: Relevant atoms are either true or belong to some unfounded set. This
relationship has been used for proving the correctness of Dynamic Magic Sets for
the class of Datalog∨,¬s programs. Moreover, the correctness of Dynamic Magic
Sets has been enlarged to the class of super–coherent programs (Datalog∨,¬

SC),
which include all odd–cycle–free programs.

Dynamic Magic Sets have also been used for proving decidability of query
answering over stratified finitely recursive programs, a class of logic programs
with uninterpreted function symbols denoted by Datalog∨,¬s

FR . In particular,
finitely recursive programs are mapped to finitely ground programs, for which
decidability was already established in the literature. The mapping is given by
Dynamic Magic Sets and opens the possibility of using DLV for experimenting
with Datalog∨,¬s

FR programs.2 The expressive power of Datalog∨,¬s

FR programs
has also been analyzed, showing that all computable sets and functions can be
expressed by programs in this class.

Dynamic Magic Sets have been empirically assessed by testing the imple-
mented DLV prototype in many benchmarks. Among them are benchmarks
from the literature which have already been used for assessing Static Magic
Sets. The results show that Dynamic Magic Sets outperform Static Magic Sets
in general, in some cases also by an exponential factor. Other benchmarks have
been taken from a real application scenario, the INFOMIX project for consistent
query answering over heterogeneous data sources. Also in these benchmarks the
benefits of Dynamic Magic Sets are tangible.

To sum up, Dynamic Magic Sets have been proved correct and effective
for Datalog∨,¬s and Datalog∨,¬

SC programs, and have been used for mapping
Datalog∨,¬s

FR programs to finitely ground programs. Whether Dynamic Magic
Sets may be applied to broader classes of programs, including syntactically ex-
tended languages like Disjunctive Datalog with recursive aggregates, constitutes
an interesting direction for further research.

2Finitely ground programs are supported by DLV–complex [19], a prototype system ex-
tending DLV. They are also supported by DLV since version 2010–10–14.

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic
sets for disjunctive datalog programs. Technical Report 09/2009, Dipar-
timento di Matematica, Università della Calabria, Italy, 2009. http:

//www.wfaber.com/research/papers/TRMAT092009.pdf.

[3] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a Theory
of Declarative Knowledge. In Minker [54], pages 89–148.

[4] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Scalar aggrega-
tion in fd-inconsistent databases. In International Conference on Database
Theory (ICDT-2001), pages 39–53. Springer Verlag, 2001.

[5] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proc. of the 18th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’99),
pages 68–79, 1999.

[6] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Specifying and
querying database repairs using logic programs with exceptions. In Proc.
of the 4th Int. Conf. on Flexible Query Answering Systems (FQAS 2000),
pages 27–41. Springer-Verlag, 2000.

[7] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic Sets and Other Strange Ways to Implement Logic Programs. In Proc.
Int. Symposium on Principles of Database Systems, pages 1–16, 1986.

[8] Pablo Barceló and Leopoldo Bertossi. Repairing databases with annotated
predicate logic. In Proc. the 10th Int. Workshop on Non-Monotonic Rea-
soning (NMR 2002), pages 160–170, 2002.

[9] Sabrina Baselice, Piero A. Bonatti, and Giovanni Criscuolo. On Finitely
Recursive Programs. Theory and Practice of Logic Programming, 9(2):213–
238, 2009.

[10] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. Journal
of Logic Programming, 10(1–4):255–259, 1991.

[11] Andreas Behrend. Soft stratification for magic set based query evaluation
in deductive databases. In PODS ’03: Proceedings of the twenty-second

123

124 BIBLIOGRAPHY

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 102–110, New York, NY, USA, 2003. ACM.

[12] Leopoldo Bertossi and Jan Chomicki. Query answering in inconsistent
databases. In J. Chomicki, R. van der Meyden, and G. Saake, editors,
Logics for Emerging Applications of Databases, chapter 2, pages 43–83.
Springer-Verlag, 2003.

[13] Leopoldo Bertossi, Jan Chomicki, Alvaro Cortes, and Claudio Gutierrez.
Consistent answers from integrated data sources. In Proc. of the 6th Int.
Conf. on Flexible Query Answering Systems (FQAS 2002), pages 71–85,
2002.

[14] Leopoldo E. Bertossi and Loreto Bravo. Consistent query answers in vir-
tual data integration systems. In Inconsistency Tolerance, volume 3300 of
LNCS, pages 42–83. Springer, 2005.

[15] Piero A. Bonatti. Reasoning with infinite stable models. Artificial Intelli-
gence, 156(1):75–111, 2004.

[16] Loreto Bravo and Leopoldo Bertossi. Logic programming for consistently
querying data integration systems. In Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), pages 10–15, 2003.

[17] Marco Cadoli, Thomas Eiter, and Georg Gottlob. Default Logic as a
Query Language. IEEE Transactions on Knowledge and Data Engineering,
9(3):448–463, May/June 1997.

[18] Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. Query rewriting and
answering under constraints in data integration systems. In Proc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages 16–21,
2003.

[19] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable Functions in ASP: Theory and Implementation. In
Proceedings of the 24th International Conference on Logic Programming
(ICLP 2008), volume 5366 of Lecture Notes in Computer Science, pages
407–424, Udine, Italy, December 2008. Springer.

[20] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity mainte-
nance using tuple deletions. Information and Computation, 197(1-2):90–
121, 2005.

[21] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing
consistent query answers using conflict hypergraphs. In Proc. 13th ACM
Conference on Information and Knowledge Management (CIKM-2004),
pages 417–426. ACM Press, 2004.

[22] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Hippo: A
system for computing consistent answers to a class of sql queries. In 9th In-
ternational Conference on Extending Database Technology (EDBT-2004),
pages 841–844. Springer Verlag, 2004.

BIBLIOGRAPHY 125

[23] Keith L. Clark. Negation as Failure. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, New York,
1978.

[24] Chiara Cumbo, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. En-
hancing the magic-set method for disjunctive datalog programs. In Pro-
ceedings of the the 20th International Conference on Logic Programming –
ICLP’04, volume 3132 of Lecture Notes in Computer Science, pages 371–
385, 2004.

[25] Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann,
Arne König, Max Ostrowski, and Torsten Schaub. Conflict-Driven Dis-
junctive Answer Set Solving. In Gerhard Brewka and Jérôme Lang, ed-
itors, Proceedings of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR 2008), pages 422–432,
Sydney, Australia, 2008. AAAI Press.

[26] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Transactions on Database Systems, 22(3):364–418, September 1997.

[27] Thomas Eiter and Mantas Simkus. Bidirectional answer set programs
with function symbols. In C. Boutilier, editor, Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence (IJCAI-09). AAAI
Press/IJCAI, 2009.

[28] Wolfgang Faber. Enhancing Efficiency and Expressiveness in Answer Set
Programming Systems. PhD thesis, Institut für Informationssysteme, Tech-
nische Universität Wien, 2002.

[29] Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic Sets and their
Application to Data Integration. Journal of Computer and System Sci-
ences, 73(4):584–609, 2007.

[30] Ariel Fuxman, Elham Fazli, and Renée J. Miller. Conquer: Efficient man-
agement of inconsistent databases. In SIGMOD Conference, 2005.

[31] Ariel Fuxman and Renée J. Miller. First-order query rewriting for incon-
sistent databases. In Thomas Eiter and Leonid Libkin, editors, Proceedings
of the 10th International Conference on Database Theory (ICDT 2005),
number 3363 in LNCS, pages 337–351. Springer, 2005.

[32] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder
for answer set programming. In Chitta Baral, Gerhard Brewka, and John
Schlipf, editors, Logic Programming and Nonmonotonic Reasoning — 9th
International Conference, LPNMR’07, volume 4483 of Lecture Notes in
Computer Science, pages 266–271, Tempe, Arizona, May 2007. Springer
Verlag.

[33] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Logic Programming: Proceedings Fifth Intl Con-
ference and Symposium, pages 1070–1080, Cambridge, Mass., 1988. MIT
Press.

126 BIBLIOGRAPHY

[34] Robert P. Goldman and Mark S. Boddy. Expressive Planning and Explicit
Knowledge. In Proceedings AIPS-96, pages 110–117. AAAI Press, 1996.

[35] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logic program-
ming approach to the integration, repairing and querying of inconsis-
tent databases. In Proc. of the 17th Int. Conf. on Logic Programming
(ICLP’01), volume 2237 of Lecture Notes in AI (LNAI), pages 348–364.
Springer-Verlag, 2001.

[36] Sergio Greco. Optimization of Disjunction Queries. In Danny De Schreye,
editor, Proceedings of the 16th International Conference on Logic Program-
ming (ICLP’99), pages 441–455, Las Cruces, New Mexico, USA, November
1999. The MIT Press.

[37] Sergio Greco. Binding Propagation Techniques for the Optimization of
Bound Disjunctive Queries. IEEE Transactions on Knowledge and Data
Engineering, 15(2):368–385, March/April 2003.

[38] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in descrip-
tion logics by a reduction to disjunctive datalog. Journal of Automated
Reasoning, 39(3):351–384, 2007.

[39] Tomi Janhunen, Ilkka Niemelä, Patrik Simons, and Jia-Huai You. Par-
tiality and Disjunctions in Stable Model Semantics. In Anthony G. Cohn,
Fausto Giunchiglia, and Bart Selman, editors, Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and
Reasoning (KR 2000), April 12-15, Breckenridge, Colorado, USA, pages
411–419. Morgan Kaufmann Publishers, Inc., 2000.

[40] David B. Kemp, Divesh Srivastava, and Peter J. Stuckey. Bottom-up evalu-
ation and query optimization of well-founded models. Theoretical Computer
Science, 146:145–184, July 1995.

[41] Jean-Marc Kerisit and Jean-Marc Pugin. Efficient query answering on
stratified databases. In FGCS, pages 719–726, 1988.

[42] Robert A. Kowalski. Predicate Logic as Programming Language. In IFIP
Congress, pages 569–574, 1974.

[43] Robert A. Kowalski and Donald Kuehner. Linear resolution with selection
function. Artif. Intell., 2(3/4):227–260, 1971.

[44] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc.
of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS 2002), pages 233–246, 2002.

[45] Nicola Leone, Georg Gottlob, Riccardo Rosati, Thomas Eiter, Wolfgang
Faber, Michael Fink, Gianluigi Greco, Giovambattista Ianni, Edyta Ka lka,
Domenico Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki,
Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina. The INFOMIX
System for Advanced Integration of Incomplete and Inconsistent Data. In
Proceedings of the 24th ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2005), pages 915–917, Baltimore, Maryland,
USA, June 2005. ACM Press.

BIBLIOGRAPHY 127

[46] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Got-
tlob, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, July 2006.

[47] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive Stable
Models: Unfounded Sets, Fixpoint Semantics and Computation. Informa-
tion and Computation, 135(2):69–112, June 1997.

[48] Yuliya Lierler. Disjunctive Answer Set Programming via Satisfiability. In
Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Terracina, ed-
itors, Logic Programming and Nonmonotonic Reasoning — 8th Interna-
tional Conference, LPNMR’05, Diamante, Italy, September 2005, Proceed-
ings, volume 3662 of Lecture Notes in Computer Science, pages 447–451.
Springer Verlag, September 2005.

[49] Yuliya Lierler and Vladimir Lifschitz. One More Decidable Class of Finitely
Ground Programs. In Proceedings of the 25th International Conference on
Logic Programming (ICLP 2009), volume 5649 of Lecture Notes in Com-
puter Science, pages 489–493, Pasadena, CA, USA, July 2009. Springer.

[50] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of Disjunctive
Logic Programming. The MIT Press, Cambridge, Massachusetts, 1992.

[51] Mónica Caniupán Marileo and Leopoldo E. Bertossi. The consistency
extractor system: Querying inconsistent databases using answer set pro-
grams. In SUM 2007, pages 74–88, 2007.

[52] John McCarthy. Circumscription — a Form of Non-Monotonic Reasoning.
Artificial Intelligence, 13(1–2):27–39, 1980.

[53] Jack Minker. On Indefinite Data Bases and the Closed World Assumption.
In Donald W. Loveland, editor, Proceedings 6th Conference on Automated
Deduction (CADE ’82), volume 138 of Lecture Notes in Computer Science,
pages 292–308, New York, 1982. Springer.

[54] Jack Minker, editor. Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann Publishers, Inc., Washington DC, 1988.

[55] Boris Motik. Reasoning in Description Logics using Resolution and De-
ductive Databases. PhD thesis, Fakultät für Wirtschaftswissenschaften,
Universität Fridericiana zu Karlsruhe, 2006.

[56] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and
Raghu Ramakrishnan. Magic is relevant. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, pages 247–
258, 1990.

[57] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Deductive
Database Systems. Journal of Logic Programming, 23(2):125–149, 1995.

[58] Raymond Reiter. On Closed World Data Bases. In Hervé Gallaire and
Jack Minker, editors, Logic and Data Bases, pages 55–76. Plenum Press,
New York, 1978.

128 BIBLIOGRAPHY

[59] John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(1):23–41, 1965.

[60] Kenneth A. Ross. Modular Stratification and Magic Sets for Datalog Pro-
grams with Negation. Journal of the ACM, 41(6):1216–1266, 1994.

[61] Mantas Simkus and Thomas Eiter. FDNC: Decidable Non-monotonic Dis-
junctive Logic Programs with Function Symbols. In Proceedings of the 14th
International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR2007), volume 4790 of Lecture Notes in Computer
Science, pages 514–530. Springer, 2007.

[62] Peter J. Stuckey and S. Sudarshan. Compiling query constraints. In Pro-
ceedings of the Thirteenth Symposium on Principles of Database Systems
(PODS’94), pages 56–67. ACM Press, May 1994.

[63] Sten-Åke Tärnlund. Horn clause computability. BIT Numerical Mathe-
matics, 17(2):215–226, June 1977.

[64] Jeffrey D. Ullman. Principles of Database and Knowledge Base Systems.
Computer Science Press, 1989.

[65] Allen Van Gelder. Negation as Failure Using Tight Derivations for General
Logic Programs. In Minker [54], pages 1149–1176.

[66] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. Unfounded Sets
and Well-Founded Semantics for General Logic Programs. In Proceedings
of the Seventh Symposium on Principles of Database Systems (PODS’88),
pages 221–230, 1988.

