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Abstract. If F is a global function field of characteristic p > 3, we employ Tate’s theory
of analytic uniformization to give an alternative proof of a theorem of Igusa describing the
image of the natural Galois representation on torsion points of non-isotrivial elliptic curves
defined over F . Along the way, using basic properties of Faltings heights of elliptic curves,
we offer a detailed proof of the function field analogue of a classical theorem of Shafarevich
according to which there are only finitely many F -isomorphism classes of admissible elliptic
curves defined over F with good reduction outside a fixed finite set of places of F . We end
the paper with an application to torsion points rational over abelian extensions of F .

1. Introduction

In any modern treatment of the theory of elliptic curves over arithmetically interesting fields
a central role is played by the structure of the subgroup of torsion points viewed as a Galois
module. Indeed, if E is an elliptic curve defined over a global field F (by which we mean, as
usual, a finite extension of the field Q of rational numbers or the function field of a smooth,
projective algebraic curve over a finite field) then the absolute Galois group Gal(F s/F ) of F
(with F s being the separable closure of F in a fixed algebraic closure F̄ ) acts on the n-torsion
subgroup E[n] of E for all integers n ≥ 1 not divisible by the characteristic of F . (We remark
that E[n] ⊂ E(F s) if char(F ) - n; this is due to the fact that E[n], viewed as a group scheme,
is étale over F , cf. [16, Ch. 7, Theorem 4.38]. An alternative proof of this rationality result
is given in Proposition 3.8 below.) This basic property, an immediate consequence of the fact
that the group law on E is given by rational functions with coefficients in F (which says that,
in a fancier language, E is an algebraic group over F ), naturally leads to the study of one of
the most important objects that can be attached to an elliptic curve: its `-adic representation.

Explicitly, let ` be a rational prime number such that ` 6= char(F ). The natural action of
Gal(F s/F ) on the subgroups E[`n] gives rise to (continuous) Galois representations

(1) ρ̄E,`n : Gal(F s/F ) −→ Aut(E[`n]) ∼= GL2(Z/`nZ),

the non-canonical isomorphism on the right depending on the choice of a basis of the free
module E[`n] over Z/`nZ. Let now

T`(E) := lim←−
n

E[`n] ∼= Z` × Z`

be the `-adic Tate module of E, where the projective limit is taken with respect to the
multiplication-by-` maps. By considering the action of Gal(F s/F ) on T`(E) we obtain a
continuous Galois representation

(2) ρE,` : Gal(F s/F ) −→ Aut(T`(E)) ∼= GL2(Z`)

which is called the `-adic representation of E/F . Moreover:

ρE,` mod `n = ρ̄E,`n
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for all n ≥ 1. Observe that composing ρE,` with the natural inclusion Z` ⊂ Q` gives a
representation of Gal(F s/F ) over a field of characteristic zero. In the following we will regard
the representations defined in (1) and (2) as matrix-valued; in other words, for all ` we fix a
Z`-basis of T`(E). Put p := char(F ) > 0; since

(3) lim←−
(n,p)=1

E[n] =
∏
`6=p

T`(E),

we have a single large, continuous Galois representation

(4) ρE : Gal(F s/F ) −→
∏
`6=p

GL2(Z`)

whose `th component is the `-adic representation ρE,`. Now denote by E(p)-tors the subgroup
of torsion points of E whose order is prime to p. Our choice of bases for the groups E[n] gives
an identification

(5) Aut(E(p)-tors) = lim←−
(n,p)=1

GL2(Z/nZ) =
∏
` 6=p

GL2(Z`).

If F has characteristic zero then E(p)-tors is the whole torsion subgroup Etors of E, and the
inverse limits and the products in (3), (4) and (5) are taken over all positive integers and over
all prime numbers, respectively.

Given an elliptic curve E/F as above, at least two natural, closely related questions arise:

(∗) Can we describe the image of ρE,` (resp. ρE) in GL2(Z`) (resp. in the product)?

And, somewhat less ambitiously:

(∗∗) How “large” is the image of ρE,` (resp. ρE)?

Seeking an answer to questions (∗) and (∗∗) has been the fuel for much investigation in
arithmetic algebraic geometry over the past few decades. In particular, we have come to
realize that the zero and positive characteristic settings lead to different phenomena. When
F is a number field (i.e., a finite extension of Q), a celebrated theorem of Serre gives a very
satisfying answer for a large class of elliptic curves E/F . Namely,

Theorem 1.1 (Serre). Let F be a number field and let E/F be an elliptic curve without
complex multiplication1. The closed subgroup ρE(Gal(F̄ /F )) is open (i.e., has finite index) in
Aut(Etors). Equivalently:

i) ρE,`(Gal(F̄ /F )) is open (i.e., has finite index) in GL2(Z`) for all primes `;

ii) ρE,`(Gal(F̄ /F )) = GL2(Z`) for all but finitely many primes `.

A complete proof of this result, often cited in the literature as “the open image theorem”,
can be found in [21] (see also [22], where part i) was first proved).

Remark 1.2. Theorem 1.1 is false for CM elliptic curves. In fact, if E/F has complex multipli-
cation over F then it can be shown that the action of Gal(F̄ /F ) on T`(E) is abelian, hence
ρE,` falls short from being surjective. For details, see the proof of [25, Ch. II, Theorem 2.3].

In the positive characteristic case (i.e., when F is a global function field) things have a
similar but slightly more involved description. To explain what happens, we need to introduce
some notation. Let C/Fr

be a geometrically irreducible, smooth, projective algebraic curve
over a finite field of characteristic p > 0, and denote F := Fr(C) and OC the function field
and the structure sheaf of C, respectively. (In particular, the irreducibility condition implies
that Fr is algebraically closed in F , i.e., Fr is the field of constants of F ; see, e.g., [16, Ch. 3,

1Recall that, by definition, this means that End(E) = Z. We remark that throughout our paper we write
End(E) for EndF̄ (E).
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Corollary 2.14 (d)].) Fix a closed point ∞ of C and denote A := OC(C − {∞}) the Dedekind
domain of the elements of F that are regular outside ∞. The choices of the prime ∞ and of
the ring A, which is essentially the analogue of the ring of integers in an algebraic number
field and whose role in our arguments will become apparent only later, are immaterial for
the statement of Igusa’s results. However, for the sake of clarity, we deem it convenient to
introduce our setup once and for all at the beginning of the paper.

The basic example to keep in mind is the following:
• C = P1

/Fr
,

• ∞ = [1 : 0] (the usual point at infinity),

• A = Fr[T ],

• F = Fr(T ).
If they find it preferable, in all that follows the readers can interpret our notation according
to the dictionary above without impairing their understanding in any significant way. In the
sequel we adopt the notation of [4, §7.2].

Let n be an integer prime to p = char(F ); composing the Galois representation

ρ̄E,n : GF := Gal(F s/F ) −→ Aut(E[n]) ∼= GL2(Z/nZ)

with the determinant
det : Aut(E[n]) −→ (Z/nZ)×

induces a homomorphism GF → (Z/nZ)×. Set Hn := 〈r〉 ⊂ (Z/nZ)× for the cyclic subgroup
generated by r. The natural identification of r ∈ (Z/nZ)× with the rth-power Frobenius
shows that Hn

∼= Gal(Fr(µn)/Fr), where µn denotes the nth roots of unity in F s. As in [4,
§7.2], define the subgroup Γn of GL2(Z/nZ) via the short exact sequence

(6) 0 −→ SL2(Z/nZ) −→ Γn
det−−→ Hn −→ 0.

In other words, Γn is the inverse image of Hn in GL2(Z/nZ) via the determinant. Passing to
the inverse limit over all integers n not divisible by p we get an exact sequence of profinite
groups

(7) 0 −→ SL2(Ẑ(p)) −→ Γ̂ −→ Ĥ −→ 0.

Here Ẑ(p) :=
∏
` 6=p Z` is the prime-to-p profinite completion of Z, the group Γ̂ is closed in

GL2(Ẑ(p)) and Ĥ is the subgroup of Ẑ×(p) which is topologically generated by r. If we perform
the same procedure restricting instead to the powers of a prime ` 6= p, the sequence (6) yields
a sequence

0 −→ SL2(Z`) −→ Γ̂` −→ Ĥ` −→ 0.
Equivalently:

Γ̂ =
∏
`6=p

Γ̂` ⊂
∏
`6=p

GL2(Z`).

Finally, assume that E/F is not isotrivial, i.e. that we cannot find a finite extension F ′ of
F such that E/F ′ is isomorphic to a constant curve (i.e., a curve defined over the field of
constants of F ′). This is easily seen to be equivalent to the condition j(E) /∈ F̄r.

Theorem 1.3 (Igusa). The profinite group ρE(GF ) is an open subgroup of Γ̂.

If E[`∞] is the `-primary part of the torsion of E (for ` a prime number), Theorem 1.3 can
be equivalently formulated as

Theorem 1.4. The profinite group Gal(F (E[`∞])/F ) is an open subgroup of Γ̂` for all prime
numbers ` 6= p, and is equal to Γ̂` for almost all such `.
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Theorem 1.3, which is the counterpart in the function field setting of Theorem 1.1, was first
proved by Igusa in [13], where Galois-theoretic techniques are combined with an explicit (but
somewhat involved) case-by-case analysis of degenerations of elliptic curves and ramification
of fields of modular functions. The language adopted by Igusa is that of pre-Grothendieck
algebraic geometry, and this old-fashioned style could probably make his paper hard to ap-
preciate for the “modern” reader, typically acquainted (at least at an introductory level) with
scheme theory but perhaps less familiar with the geometric formalism of Weil’s school.

The main goal of our article is to provide an alternative proof of Theorem 1.3. Our strategy
is based on the following simple fact: at the cost of passing to a finite separable extension
of F , we can choose ∞ to be a prime of split multiplicative reduction for E 2. This implies
that E is a Tate curve locally at ∞, that is, if F∞ is the completion of F at ∞ then the
∞-adic Lie group E(F̄∞) is Galois-equivariantly isomorphic over F∞ to the quotient F̄×∞/〈q〉
for a certain “period” q ∈ F×∞. Following ideas of Serre in characteristic zero, this analytic
property allows us to replace the algebro-geometric arguments of Igusa with local ∞-adic
considerations. Although our strategy follows that of Serre closely, it is important to stress a
remarkable difference between the characteristic zero and the positive characteristic settings:
while our proof is valid for all non-isotrivial elliptic curves over a function field F as above,
Tate’s theory over number fields yields a proof only of a part of Serre’s theorem. In fact,
not every elliptic curve without complex multiplication has a non-integral j-invariant, so only
a proper subclass of non-CM elliptic curves can be dealt with by means of these “analytic”
arguments (actually, a full proof of Theorem 1.1 is achieved in [21] using different and, in
many respects, more sophisticated techniques).

In any case, the fact that this approach to questions (∗) and (∗∗) is fruitful both in char-
acteristic zero and in positive characteristic should come as no surprise. In fact, broadly
speaking, this is just another manifestation of the strong parallel between the arithmetic over
number fields and the arithmetic over function fields: from this perspective, our work is no
exception to this familiar principle. In this direction, the reader is referred to the survey
articles [2] by Böckle and [27] by Ulmer for further number fields/function fields analogies on
more advanced and abstract topics.

Our paper is organized as follows. Section 2 begins with a review of the basic properties of
Faltings heights of elliptic curves over global function fields. These heights, originally defined
by Faltings on suitable moduli spaces of abelian varieties of arbitrary dimension, play a key
role in the proof of the function field analogue (Theorem 2.17) of the well-known theorem
of Shafarevich asserting that there are only finitely many K-isomorphism classes of elliptic
curves defined over a number field K with good reduction outside a fixed finite set of places
of K. Remarkably enough, the need to use the theory of heights of elliptic curves seems to be
peculiar of our characteristic p setting, since in this case the classical diophantine arguments
given over number fields (see [22, Ch. IV, §1.4]) do not apply (cf. Remark 2.20). Although
the validity of Shafarevich’s theorem for admissible elliptic curves over global function fields
is certainly well known (cf., e.g., [11], [26]), to the best of our knowledge this is the first time
that the proof is written in a detailed and essentially self-contained way; in this sense, §2.1 and
§2.3 may be of independent interest and apparently fill a gap in the literature. A crucial role
in the proof of Shafarevich’s theorem is played by a remarkable property of admissible elliptic
curves over global function fields: their Faltings height is bounded in terms of the degree
of their conductor and the genus of F . A complete proof of this result, which is expected
to be valid for elliptic curves over all global fields and is commonly known as the “height

2I.e., the reduced curve E mod∞ has a node as its only singularity, and the slopes of the two tangent lines
at the curve in the node belong to the (finite) residue field of F at ∞ (and not just to its quadratic extension).
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conjecture”, is given in §2.2 (Proposition 2.15). The section closes with irreducibility results
for Tate modules (§2.4) that are applied in the proof of Theorem 1.3.

In Section 3 we conclude the proof of Igusa’s theorem. After showing (in §3.1 and §3.2)
that we can actually reduce to the case where E has (split) multiplicative reduction at the
prime ∞ of F , we review basic facts on Tate curves in §3.3, and then give in §3.4 and §3.5
crucial results on the “horizontal” and “vertical” variation of the Galois groups (this suggestive
terminology is borrowed from Lang’s book [14]). In particular, in Proposition 3.12 we prove
that Gal(F (E[`])/F ) = Γ` for almost all primes ` 6= p, and this result can be usefully applied
to gain control on the Galois cohomology of elliptic curves (cf., e.g., [4], [28]). Finally, with all
the “geometric” results at our disposal, in §3.6 we finish the proof of Theorem 1.3. It should
be noted that, as in [14, Ch. 17, §5] and [22, Ch. IV, §3.4], the final steps in the proof are
of a purely algebraic nature: they are just a formal “juggling” in abstract group theory and
have really nothing to do with elliptic curves.

The subsequent part, Section 4, is devoted to an interesting arithmetic consequence of
Igusa’s theorem: we show (Theorem 4.2) that on a non-isotrivial elliptic curve E/F there are
only finitely many torsion points rational over abelian extensions of F . Results in the same
spirit have been applied in various arithmetic contexts (see, e.g., [1], [3], [4], [28]), but it seems
that the statement above was never explicitly proved in this form.

The article is closed by Appendix A, which deals with isotrivial elliptic curves over F .
These are precisely the elliptic curves over F having a ring of endomorphisms which is larger
than Z, and we show that in this situation Theorem 1.4 is always false. In this case the image
of Galois is not open in Γ̂, hence in particular it cannot be “as large as possible” (in analogy
to what happens with CM elliptic curves over number fields).

To conclude this introduction, we would like to spend a few words on the background re-
quired of the reader. In order to make this note reasonably self-contained, we have tried to
keep the prerequisites to a minimum. In fact, apart from basic results in Galois theory and
algebraic number theory, we only assume a knowledge of the first definitions and properties
in the arithmetic of elliptic curves over local and global fields as treated, for example, in
Chapters VII and VIII of Silverman’s book [23]. In particular, we have made an effort not
to rely on results in the theory of Lie algebras and Lie groups, contrary to what done in [22]
over number fields. As a consequence, we think that our exposition is more elementary and
down-to-earth than those in [14] and [22]. Moreover, when we introduce more specific notions
(e.g., Faltings heights of elliptic curves, Tate’s theory of analytic uniformization) we always
give complete definitions and suggest references where the interested reader can find details
and proofs we have to omit.

Convention. Throughout the paper we assume (unless otherwise stated) that p > 3. This
condition is crucially exploited in the proof of Theorem 2.17 (Shafarevich’s theorem) to get
a uniform upper bound on the degree of the conductor of certain elliptic curves. We remark,
however, that Igusa’s results are valid in any positive characteristic.

Acknowledgements. We would like to thank Matthias Schütt for useful comments on an earlier
version of the paper and Bert Van Geemen for helpful conversations on some of the topics of
this work. We are also grateful to Matthew Baker for pointing us the article [30] and to Chris
Hall for interesting remarks and for showing us alternative proofs of some of the results in this
paper. Finally, we thank the anonymous referee for several valuable remarks and suggestions
which led to significant improvements in the exposition.



6 A. BANDINI, I. LONGHI AND S. VIGNI

2. Faltings heights and a theorem of Shafarevich

In this section we want to prove two auxiliary results (Theorem 2.17 and Theorem 2.22)
that will be crucially employed in the course of our main arguments.

2.1. Review of Faltings heights of elliptic curves. Before giving precise definitions in
the situation we are interested in, let us briefly describe the idea of “heights” over global fields
in its most basic form. Intuitively speaking, in all its various manifestations the notion of
height captures the “size” or “complexity” of objects of an arithmetic nature. In the simplest
case, take a point P in the projective space Pn(Q). Since Z is a PID, we can find homogeneous
coordinates for P of the form

P = [x0 : · · · : xn]
with x0, . . . , xn ∈ Z and the greatest common divisor of the xi equal to 1. Then the height of
P is naturally defined as

h(P ) := max
{
|x0|, . . . , |xn|

}
.

Notice that the set {
P ∈ Pn(Q) | h(P ) ≤ C

}
is finite for any constant C (in fact, it has fewer than (2C + 1)n+1 elements). This sort of
finiteness property is one of the most useful features of a well-defined height function (cf.
Propositions 2.9 and 2.11 below). A similar definition can be given over any global field, and
this can be usefully applied (at least in principle) to obtain finiteness results for much more
complex arithmetic objects. For example, one can embed the (compactified) moduli space
of (isomorphism classes of) elliptic curves into a suitable projective space, and then compute
the height of an elliptic curve over a global field by means of the chosen embedding. As a
consequence, for every C there will be only finitely many (isomorphism classes of) elliptic
curves whose height is bounded by C. Actually, this idea can be effectively exploited without
going through all the geometry which underlies the above considerations. This is achieved by
making a posteriori all the definitions explicit and then proving that one has a height function
on the objects of interest which enjoys the desired formal properties. As will become apparent
below, this will be the course taken in our article.

After this brief panoramic detour, let us return to our characteristic p setting. Retain
the previous notation; in particular, F is the function field of C/Fr

and A is the subring of
functions in F that are regular outside the closed point∞. Finally, let ΣF be the set of places
of the global field F , and if p ∈ ΣF denote by vp the discrete valuation associated with p.
Note that the elements of ΣF correspond to the (closed) points of C.

For any x ∈ F× define the principal divisor of x as

(x) :=
∑

p∈ΣF

vp(x) · p.

Recall that the degree of a prime p ∈ ΣF is by definition the degree over Fr of the residue
field of p, and by linearity the degree of any divisor of F can be introduced; it can be checked
that the degree of (x) is 0 (see, e.g., [19, Proposition 5.1]). The zero divisor of x is

(x)0 :=
∑

p∈ΣF

max{0, vp(x)} · p

and its pole divisor is
(x)∞ := (x−1)0,

so we can write (x) = (x)0 − (x)∞. We define the F -height of x to be

hF (x) := deg
(
(x)0

)
= deg

(
(x)∞

)
∈ N.
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Remark 2.1. It turns out that hF (x) 6= 0 if and only if x /∈ Fr (i.e., if and only if x is not
constant), and then

hF (x) = [F : Fr(x)].
For a proof of this fact, see [19, Proposition 5.1]. Observe also that, in the language of
algebraic geometry, the integer hF (x) is the degree of the rational map C/Fr

→ P1
/Fr

induced
by x.

Let now E/F be an elliptic curve and let DE be its minimal discriminant divisor; it is the
effective divisor of F defined as

(8) DE :=
∑

p∈ΣF

vp(∆p) · p

where ∆p is the discriminant of a minimal Weierstrass equation for E at p in the sense of [23,
Ch. VII, §1] (see also [9, §2] and [23, Ch. VIII, §8]). For the purposes of the present paper,
we give

Definition 2.2. The Faltings height (over F ) of E/F is the rational number

hF (E) :=
1
12

deg(DE) ≥ 0.

Remark 2.3. Although the notation adopted is the same, the height on F× and the Faltings
height over F are calculated on objects of a different nature, so no confusion is likely to arise.

The height hF (E) is an invariant of the class of F -isomorphism of E/F . There is another
natural notion of height of an elliptic curve E/F , essentially equal to the F -height of its
j-invariant j(E), that we recall below.

Definition 2.4. The geometric Faltings height (over F ) of E/F is the rational number

hF,g(E) :=
1
12
hF
(
j(E)

)
≥ 0.

The height hF,g(E) is evidently an invariant of the F̄ -isomorphism class of E/F ; moreover,
by Remark 2.1:

hF,g(E) > 0 ⇐⇒ E is not isotrivial.
The following proposition establishes a fundamental relation between hF and hF,g.

Proposition 2.5. The inequality

hF,g(E) ≤ hF (E)

holds for every elliptic curve E/F .

Proof. Let E/F be an elliptic curve, and set

T :=
{
p ∈ ΣF | vp(∆p) > 0

}
, T ′ :=

{
p ∈ ΣF | vp(j(E)) < 0

}
where ∆p is the discriminant for E at p introduced in (8). Note that T ′ consists of the places at
which E does not have potential good reduction (cf. [23, Ch. VII, Proposition 5.5]). Locally
at p we can write j(E) = c3

4,p

/
∆p where c4,p is a polynomial expression in the coefficients of

a minimal Weierstrass equation for E at p (see [23, Ch. III, §1] for a precise formula). In
particular, c4,p is an integer in the completion Fp of F at p. Thus we obtain:

vp(j(E)) = 3vp(c4,p)− vp(∆p) ≥ −vp(∆p).

We immediately deduce that
• T ′ ⊂ T ;
• −vp(j(E)) ≤ vp(∆p).
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Now, by equation (8) we can write

DE =
∑
p∈T

vp(∆p) · p.

Hence:

hF
(
j(E)

)
=
∑
p∈T ′

(
−vp(j(E))

)
deg(p)

≤
∑
p∈T ′

vp(∆p) deg(p)

≤
∑
p∈T

vp(∆p) deg(p) = deg(DE),

and this proves the proposition by definition of the two Faltings heights. �

Remark 2.6. The heights hF and hF,g, introduced for abelian varieties of arbitrary dimension
by Faltings in his landmark paper [8] in which he proved (among others) the Mordell conjec-
ture, admit the simple expressions given in Definitions 2.2 and 2.4 because we are working
with elliptic curves (i.e., in dimension one) and our base fields are function fields. In particu-
lar, in our setting there are no archimedean valuations, so no logarithmic error terms appear
in the expression of hF (E) (cf. [24, Proposition 1.1] for a formula in the number field case).
The reader may wish to consult [12] for details and for results related to Lang’s conjecture on
lower bounds for the Néron-Tate canonical height of non-torsion points on an elliptic curve E
in terms of the Faltings height hF (E) (see, in particular, [12, Theorem 6.1]).

For a general discussion of the theory of heights of abelian varieties over global fields (albeit
with a slant towards the number field setting) we refer the reader to the papers [6] by Deligne
and [26] by Szpiro. In any case, the notion of height of an elliptic curve will play in the sequel
only an auxiliary (and limited) role, so in order to keep things as plain as possible we decided
to adopt the somewhat ad hoc definitions given above.

Remark 2.7. By normalizing by the so-called “degree” of F (which is defined as the smallest
value of hF (x) with x varying in the non-constant elements of F , cf. [10, §1]), it would be
possible to modify Definitions 2.2 and 2.4 and introduce “absolute” versions of the heights
of E which do not depend on the field taken as field of definition of E. However, since the
properties of the functions hF and hF,g will suffice for our goals, in this note we are content
with the “relative” (and more common) notions explained above.

Lemma 2.8. If d is a divisor of F then the number of the x ∈ F× such that (x) = d is either
0 or the cardinality of F×r .

Proof. If the set of such x is not empty, let x, y ∈ F× be such that (x) = (y). Then (xy−1) = 0,
and we conclude that xy−1 ∈ F×r by [19, Proposition 5.1]. �

Proposition 2.9. The set {x ∈ F× | hF (x) ≤ C} is finite for all C ≥ 0.

Proof. Since the function hF is N-valued on F×, the claim of the proposition is equivalent to
the assertion that the set

Bn := {x ∈ F× | hF (x) = n}
is finite for all integers n ≥ 0. To begin with, note that if hF (x) = n then both (x)0 and (x)∞
are effective divisors of degree n. Since F has a finite field of constants, by [19, Lemma 5.5]
the set Div+

n of effective divisors of degree n is finite. We immediately conclude from Lemma
2.8 that every fibre of the natural map

Bn −→ Div+
n × Div+

n

x 7−→
(
(x)0, (x)∞

)
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is finite, and the proposition is proved. �

As a straightforward consequence of the above proposition, we get

Corollary 2.10. For all C ≥ 0 there are only finitely many F̄ -isomorphism classes of elliptic
curves E/F with hF,g(E) ≤ C.

Proof. Immediate from Proposition 2.9 by definition of hF,g(E). �

We end this § with a finiteness property of the Faltings height hF that will be needed in
§2.3 for the proof of Shafarevich’s theorem. Before stating this result, we introduce one more
piece of notation: if S ⊂ ΣF is a finite set we let AS be the ring of S-integers of F . In other
words:

AS :=
{
x ∈ F | vp(x) ≥ 0 for all p /∈ S

}
.

Proposition 2.11. For all C ≥ 0 there are only finitely many F -isomorphism classes of
non-isotrivial elliptic curves E/F satisfying hF (E) ≤ C.

See [24, Corollary 2.5] for the corresponding statement over number fields.

Proof. Since hF,g(E) ≤ hF (E) by Proposition 2.5, Corollary 2.10 implies that there are only
finitely many F̄ -isomorphism classes of (non-isotrivial) elliptic curves E/F with hF (E) ≤ C.
Thus we are reduced to the following problem: given a non-isotrivial elliptic curve E/F , up
to F -isomorphism there are only finitely many elliptic curves E′/F satisfying

j(E′) = j(E), hF (E′) ≤ C.
So fix E as above, and note that (by the very definition of the Faltings height!) bounding
hF (E′) is equivalent to bounding deg(DE′).

Now choose a finite set of places T ⊂ ΣF such that
• T contains all places of bad reduction for E;
• the ring AT of T -integers is a PID.

Recall that p = char(F ) > 3; then by [23, Ch. VIII, Proposition 8.7] we can find an affine
Weierstrass equation

E : y2 = x3 + ax+ b

for E/F with a, b ∈ AT and discriminant ∆(E) := −16(4a3 + 27b2) ∈ A×T (this result is proved
in loc. cit. for elliptic curves over number fields, but the arguments work over global function
fields too). The elliptic curves over F which are isomorphic over F̄ to E are the twists of E
given by the equations

Ed : y2 = x3 + ad2x+ bd3, d ∈ F×.
Furthermore, Ed ∼= Ed′ over F if and only if (d/d′) ∈ (F×)2. For a proof of these facts, see
[23, Ch. X, Proposition 5.4 and Corollary 5.4.1]. Our goal is to bound the set of such d
(mod (F×)2). First of all, without loss of generality we can assume that d ∈ AT . Moreover,
a direct computation shows that

(9) ∆(Ed) = d6∆(E).

Since Ed is isomorphic to E over a finite extension of F and E has good reduction outside T ,
it follows from [23, Ch. VII, Proposition 5.4 (b)] that Ed has either good or additive reduction
at primes outside T . From (9), if Ed has additive reduction at p /∈ T then vp(d) > 0. More
precisely, if p /∈ T then Ed has additive reduction at p if and only if vp(d) ≡ 1 (mod 2).3

3In fact, if vp(d) ≡ 0 (mod 2) then Ed is isomorphic over F to the curve Ed′ with d′ := dπ
−vp(d)
p , where

πp ∈ AT is such that vp(πp) = 1 and vp′(πp) = 0 for all primes p′ /∈ T , p′ 6= p. This shows that Ed has good
reduction at p.
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Hence:
deg(DEd

) ≥
∑
p/∈T

vp(d)≡1 (2)

deg(p),

so a bound on deg(DEd
) also bounds the degree of those p /∈ T with vp(d) ≡ 1 (mod 2). Put

C ′ := 12C and define
S := T ∪

{
p ∈ ΣF | deg(p) ≤ C ′

}
.

Since there are only finitely many primes of F of a given degree, the set S is finite. Now
observe that the proposition is proved if we show that the set

(10)
{
d ∈ F× | Ed has good reduction outside S

}/
(F×)2

is finite. By the S-unit theorem for function fields (see [19, Proposition 14.2]) we know that
the abelian group A×S /F

×
r is free of finite rank (equal to |S| − 1), hence A×S /(A

×
S )2 is finite.

But AS is a unique factorization domain and Ed has good reduction outside S if and only if
vp(d) ≡ 0 (mod 2) for all p /∈ S, so we can assume that d ∈ A×S . Thus the set (10) injects into
A×S /(A

×
S )2, and we are done. �

2.2. Admissible elliptic curves and the height conjecture. First of all, we introduce a
large class of elliptic curves over global function fields of characteristic p > 3, the so-called
“admissible” curves: these will be precisely the elliptic curves for which Shafarevich’s theorem
(Theorem 2.17) holds. Following [10, Definition 1.2], we give

Definition 2.12. An elliptic curve E/F is called admissible if the extension F/Fr(j(E)) is
finite and separable.

Thus an admissible elliptic curve is non-isotrivial. Definition 2.12 is equivalent to requiring
that j(E) is not a pth power in F .

The next proposition shows that admissibility is preserved under prime-to-p isogenies. This
property will be used in the proof of Theorem 2.22.

Proposition 2.13. Let E/F , E′/F be elliptic curves and let f : E → E′ be an isogeny whose
degree is not divisible by p. If E is admissible then E′ is admissible.

Proof. For simplicity, write j := j(E) and j′ := j(E′). We know that j and j′ are linked by an
isogeny of degree d not divisible by p. Choose an elliptic curve Ej′ defined over Fr(j′) whose
j-invariant is equal to j′. Then Fr(j′, Ej′ [d]) is separable over Fr(j′) (cf. the references given
in the introduction, or adapt the proof of Proposition 3.8 below), and so is Fr(j′,Λ) for any
subgroup Λ of Ej′ [d]. Now j lies in Fr(j′,Λ) for some Λ as above (take Λ equal to the kernel
of the corresponding dual isogeny), hence the extension Fr(j, j′)/Fr(j′) is finite and separable.
But the extension F/Fr(j) is finite and separable because E is admissible, hence F/Fr(j, j′)
is finite and separable as well. Thus we conclude that F/Fr(j′) is finite and separable, and
the proposition is proved. �

Remark 2.14. From a highbrow point of view, the separability of the extension Fr(j, j′)/Fr(j′)
could also be proved as follows. By decomposing the isogeny f into cyclic (i.e., with cyclic
kernel) isogenies we are reduced to the case where f is cyclic of degree d. Let Φd(X,Y ) ∈
Z[X,Y ] be the modular polynomial of order d, whose definition and main properties can be
found, e.g., in [14, Ch. 5, §2]. Then the separability of the above extension can be obtained
by exploiting the fact that Φd(j, j′) = 0 and by applying the moduli interpretation explained
by Deligne and Rapoport in [7, Ch. VI, §6]. This separability result is also pointed out by
Igusa in the concluding remarks of [13].
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Now we come to the main result of this §, the so-called “height conjecture” for admissible
elliptic curves. This conjecture predicts that the Faltings height of an elliptic curve E/F is
bounded in terms of the degree of the conductor of E and the genus of F (i.e., the genus
of the curve C). The canonical name for this statement is “height conjecture” because the
corresponding assertion in the number field case (and, more generally, for abelian varieties)
is still unproved.

Recall that the conductor of an elliptic curve E is the conductor of the Galois representation
T`(E) ⊗ Q` (for ` 6= p) as defined in [25, Ch. IV, §10]. We also refer the reader to [20, §2.1]
for a more conceptual approach to conductors of general `-adic representations.

Proposition 2.15 (Height conjecture). Let E/F be an admissible elliptic curve. Then

(11) hF (E) ≤ 1
2

deg(nE) + g − 1

where nE is the conductor of E over F and g is the genus of F .

Proof. We follow the proof of [12, Theorem 5.1] closely. For any prime p of F we denote j(E)p

the reduction of j(E) modulo p (with j(E)p = ∞ if vp(j(E)) < 0) and e(p) the ramification
index of p over Fr(j(E)).

To begin with, by [19, Proposition 5.1] there are equalities[
F : Fr(j(E))

]
=

∑
j(E)p=0

vp(j(E)) deg(p) =
∑

j(E)p=∞

−vp(j(E)) deg(p)

=
∑

j(E)p=1728

vp

(
j(E)− 1728

)
deg(p)

(12)

(for the last term note that Fr(j(E)) = Fr(j(E) − 1728)). Furthermore, since j(E) and
j(E)− 1728 are primes of Fr(j(E)), the following relations hold:

(13)

j(E)p = 0 =⇒ e(p) = vp(j(E)),

j(E)p =∞ =⇒ e(p) = −vp(j(E)),

j(E)p = 1728 =⇒ e(p) = vp

(
j(E)− 1728

)
.

Now E is admissible by assumption, so we can apply the Riemann-Hurwitz formula ([19,
Theorem 7.16]) to the finite separable extension F/Fr(j(E)), and since the genus of Fr(j(E))
is 0 we get the inequality

(14) 2g − 2 ≥ −2
[
F : Fr(j(E))

]
+
∑

p∈ΣF

(
e(p)− 1

)
deg(p).

Our strategy is to estimate the integers e(p) and then apply (14) to get the desired inequality
(11). More precisely, the e(p) for the primes p with j(E)p ∈ {0,∞, 1728} are computed by
means of (13), while for the other primes we simply use the inequality e(p) ≥ 1. Keeping (12)
and (13) in mind, we can write

2
[
F : Fr(j(E))

]
=

5
6

∑
j(E)p=∞

e(p) deg(p) +
2
3

∑
j(E)p=0

e(p) deg(p)

+
1
2

∑
j(E)p=1728

e(p) deg(p).

(15)

Let Σ′F be the set of primes of F such that j(E)p /∈ {0,∞, 1728} and recall the definition (8)
of the minimal discriminant divisor DE . Then, after some easy manipulations, formulas (14)
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and (15) yield

1
6

deg(DE)− 2g + 2 ≤
∑

j(E)p=∞

(
1
6
vp(∆p)− 1

6
e(p) + 1

)
deg(p)

+
∑

j(E)p=0

(
1
6
vp(∆p)− 1

3
e(p) + 1

)
deg(p)

+
∑

j(E)p=1728

(
1
6
vp(∆p)− 1

2
e(p) + 1

)
deg(p)

+
∑

p∈Σ′F

(
1
6
vp(∆p)− e(p) + 1

)
deg(p).

(16)

At this point, we examine all coefficients according to the different reduction types of E.
These coefficients can be calculated using [25, Table 4.1], and the results are identical to the
ones in [12, Table 1]: here we give the details in two of the possible cases just to illustrate the
methods. As customary, to denote the reduction type of E at a prime p of F we use Kodaira
symbols, as in the two references given above.

1) j(E)p =∞ (i.e., vp(j(E)) < 0), reduction type I∗n.

Here vp(∆p) = n+ 6, e(p) = −vp(j(E)) = n and vp(nE) = 2. One then has

1
6
vp(∆p)− 1

6
e(p) + 1 = 2 = vp(nE).

2) j(E)p = 1728 (i.e., vp(j(E)− 1728) > 0), reduction type III.

For an equation y2 = x3 + ax+ b of E minimal at p one has

j(E)− 1728 = −1728
(

(43a3)
∆

+ 1
)

=
−1728

∆
(−16 · 27b2),

so e(p) = vp(j(E) − 1728) = 2vp(b) − vp(∆p). Under our assumption on the reduction,
vp(∆p) = 3, e(p) = vp(j(E)− 1728) = 2vp(b)− 3 ≥ 1 and vp(nE) = 2. One then has

1
6
vp(∆p)− 1

2
e(p) + 1 ≤ 1 < vp(nE).

All other cases can be dealt with in an analogous manner. The crucial point is that the
coefficients of deg(p) in the right hand side of (16) are always bounded from above by vp(nE).
Hence inequality (16) gives

1
6

deg(DE)− 2g + 2 ≤
∑

p∈ΣF

vp(nE) deg(p),

and finally

hF (E) ≤ 1
2

deg(nE) + g − 1

by definition of the Faltings height of E. �

This proposition is clearly interesting in its own right, and we refer the reader to [9, §2]
and [10, §1 (b)] for comments, consequences and a slightly different proof. For the purposes
of this paper its importance lies in the central role it will play in the proof of Shafarevich’s
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theorem: in fact, inequality (11) is the ingredient that allows us to deduce Theorem 2.17 from
the finiteness property of the Faltings height hF that was established in Proposition 2.11.

2.3. Shafarevich’s theorem. A well-known theorem due to Shafarevich ([23, Ch. IX, The-
orem 6.1]) asserts that if K is a number field there are only a finite number of K-isomorphism
classes of elliptic curves defined over K having good reduction at all primes of K outside a
fixed finite subset. We now show that an analogous result holds for elliptic curves over a
global function field F of characteristic p > 3 which are admissible in the sense of Definition
2.12. This seems to be well known to experts and is essentially a consequence of the basic
properties of Faltings heights recalled in §2.1; however, we were not able to track down a
reasonably self-contained reference in the literature, so for the convenience of the reader we
give a detailed proof of this result.

Before turning to Shafarevich’s theorem, let us state the following result, which will be
used to prove Corollary 2.18 below.

Proposition 2.16. Let E/F , E′/F be elliptic curves and let f : E → E′ be an isogeny defined
over F . Then E and E′ have the same conductor over F .

Proof. It is easy to see that the Tate modules T`(E) and T`(E′) are isomorphic as GF -modules
for ` 6= p, and the claim follows. �

Now we prove

Theorem 2.17 (Shafarevich). Let S be a finite set of primes of F . There are only finitely
many F -isomorphism classes of admissible elliptic curves E/F having good reduction at all
primes of F outside S.

Proof. Let S = {p1, . . . , pn}. If an elliptic curve E/F has good reduction outside S then the
support of its conductor nE is contained in S. Since we are assuming that p > 3, it follows
that4

(17) deg(nE) ≤ C(S) := 2
n∑
j=1

deg(pj).

Note that the constant C(S) is independent of E. Now, by Proposition 2.15 we know that if
E/F is admissible then

(18) hF (E) ≤ 1
2

deg(nE) + g − 1.

Combining (18) and (17) yields the inequality

hF (E) ≤ 1
2
C(S) + g − 1,

and the claim of the theorem follows from Proposition 2.11. �

It seems worthwhile to point out a straightforward consequence of Shafarevich’s theorem.

Corollary 2.18. Every F -isogeny class of elliptic curves defined over F contains only finitely
many F -isomorphism classes of admissible elliptic curves.

Proof. By Proposition 2.16, two elliptic curves defined over F which are F -isogenous have the
same conductor over F , and so they have the same set of primes of bad reduction. �

4The uniform bound (17) does not hold in characteristic p = 2, 3 due to the possible high divisibility of nE

by places of additive reduction for E.



14 A. BANDINI, I. LONGHI AND S. VIGNI

The reader is referred to [23, Ch. IX, Corollary 6.2 and Remark 6.5] for the counterpart
of this result over number fields and for interesting arithmetic consequences of a (still-to-be-
found) proof of Shafarevich’s theorem over number fields which did not use Siegel’s theorem
or diophantine approximation techniques.

Remark 2.19. If the word “admissible” in Theorem 2.17 is replaced by “non-isotrivial”, the
resulting statement is false. For example, let E/F be a non-isotrivial elliptic curve and let S
be the set of places of bad reduction for E. Moreover, for all i ≥ 0 let Ei be the elliptic curve
obtained by applying to E the ith iteration of the rth-power (relative) Frobenius. Then the
family {Ei}i≥0 together with the finite set S gives a counterexample to this stronger assertion
(cf. Proposition 2.16).

Remark 2.20. The reader might wonder why we did not mimic, in the proof of Theorem 2.17,
the arguments originally given by Tate for elliptic curves over number fields and reproduced,
for example, in [22, Ch. IV, §1.4] and [23, Ch. IX, Theorem 6.1]. The reason is simply that
they do not work in our function field setting. In fact, the proof by Tate is based on applying
Siegel’s finiteness theorem for S-integral points to a certain auxiliary elliptic curve with j = 0.
Unfortunately, the analogue over global function fields of Siegel’s result is valid in full strength
only for non-isotrivial elliptic curves (cf. [29, Lemma 5.1 and Theorem 5.3]).

2.4. Irreducibility results. As in [14, Ch. 17], the first step towards Igusa’s theorem is
an irreducibility property for the Tate modules of a non-isotrivial elliptic curve E, which we
show in Theorem 2.22 below. As we shall see, its proof rests upon Shafarevich’s theorem.

Lemma 2.21. Let E/K be an elliptic curve over a field K of positive characteristic p. Then
End(E) = Z if and only if j(E) /∈ F̄p ∩K.

Here Fp is the finite field with p elements.

Proof. This is part of a classical result of Deuring, a complete statement and a proof of which
can be found in [17, p. 217]. �

As before, let F be our global function field of characteristic p > 3. In the following let E/F
be a non-isotrivial elliptic curve. Write V`(E) := T`(E)⊗Z`

Q` for all prime numbers ` 6= p.

Theorem 2.22. Retain the above notation. Then:
i) the GF -module E[`] is irreducible for almost all primes ` 6= p;

ii) the GF -module V`(E) is irreducible for all primes ` 6= p.

Proof. Since E is non-isotrivial, there exists an integer m ≥ 0 such that

j(E) ∈ F pm
, j(E) /∈ F pm+1

.

In particular, E is isomorphic over a finite, separable extension L of F to (the base change to
F of) an elliptic curve E′ which is defined and admissible over Fm := F p

m
. Now notice that

it clearly suffices to show that i) and ii) hold when GF is replaced by the smaller absolute
Galois group GL of L. On the other hand, the group of automorphisms of a purely inseparable
extension is trivial, hence there are natural identifications

Gal(F s/F ) = Aut(F̄ /F ) = Aut(F̄ /Fm) = Gal(F sm/Fm).

Thus, up to replacing F by Fm and E by E′, in order to prove the theorem it is not restrictive
to assume that E/F is admissible, which we do.

i) Suppose that E[`] is reducible for infinitely many primes ` 6= p, and for any such prime
let H` ⊂ E[`] be a nonzero GF -invariant proper subspace. It follows that the elliptic curve
E` := E/H` can be defined over F ; moreover, the natural (cyclic) isogeny π` : E � E` is
defined over F and has degree `. Now we claim that E` and E`′ are not isomorphic (over F̄ )
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if ` and `′ are distinct primes (which is equivalent to saying that j(E`) 6= j(E`′) if ` 6= `′). In
fact, suppose that

δ : E`
∼=−→ E`′

is an isomorphism, and consider the map ψ := π̂`′ ◦ δ ◦ π` where π̂`′ is the dual isogeny to π`′ .
Since End(E) = Z by Lemma 2.21, there exists an integer n such that

(19) ψ = [n]

as endomorphisms of E. Hence, passing to the degrees on both sides of (19), we get the
equality ``′ = n2, which is impossible because ` 6= `′. It follows that the set

E := {E` | ` 6= p a prime such that E[`] is GF -reducible}

consists of infinitely many elliptic curves which are defined over F , are isogenous to E and are
pairwise not F -isomorphic. Furthermore, since E is admissible and for every ` 6= p as above
the isogeny π` has degree `, Proposition 2.13 ensures that all of them are admissible. But
every curve in E , being isogenous over F to E, has good reduction outside the support of the
conductor of E (which consists of finitely many primes of F ), and this contradicts Theorem
2.17.

ii) If X ⊂ V`(E) is a GF -invariant, one-dimensional Q`-vector subspace then X ∩ T`(E)
is a GF -invariant submodule of T`(E) which is free of rank one over Z`, so the irreducibility
result for V`(E) is proved once we show that T`(E) is simple as a GF -module. Thus suppose
that this is not the case, and let W ⊂ T`(E) be a nonzero proper Z`-submodule which is
GF -invariant. Then W is free of rank one over Z`, and by the linearity of the GF -action we
can assume that it is a direct summand of T`(E). For every n ≥ 1 let λn : T`(E) � E[`n] be
the canonical projection, and set Wn := λn(W ). It follows that Wn is cyclic of order `n and
GF -invariant, and the elliptic curve En := E/Wn is defined over F and isogenous to E over
F . Moreover, the natural (cyclic) isogeny E � En has degree `n. We contend that En and
Em are non-isomorphic if n < m, which can be seen as follows. There is an obvious isogeny
πn,m : En � Em which is defined over F , is separable and has a cyclic kernel (of order `m−n).
Suppose now that

δ : Em
∼=−→ En

is an isomorphism, and consider the separable map ψ := δ ◦ πn,m. Since E is admissible, the
curve En is admissibile (so, in particular, non-isotrivial) as well by Proposition 2.13. Now we
know by Lemma 2.21 that End(En) = Z, hence

ψ = [t]

for a certain integer t not divisible by p. But ψ has a cyclic kernel (equal to the kernel of
πn,m), while the kernel of [t], being isomorphic to (Z/tZ)2, is not cyclic. This proves our
claim, and we conclude as before that the set

E := {En | n ≥ 1}

consists of infinitely many admissible elliptic curves defined over F and belonging to different
F -isomorphism classes. Since all the curves in E have good reduction outside the support of
the conductor of E, this contradicts once again Theorem 2.17. �

3. Proof of Theorem 1.3

Now that we have collected some of the algebraic results that will be used (most notably
Theorem 2.22), we can prove Igusa’s theorem. This will be done in §3.6, and before that we
need to gather a handful of geometric features that will pave our way towards Theorem 1.3.
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3.1. Consequences of the Weil pairing. In this § the curve E/F is an arbitrary elliptic
curve, possibly isotrivial. Let n ≥ 2 be an integer not divisible by p; recall from [23, Ch. III,
§8] that there is a bilinear, alternating, non-degenerate pairing (called the Weil pairing)

en : E[n]× E[n] −→ µn

such that

(20) en(P σ, Qσ) = en(P,Q)σ

for all P,Q ∈ E[n] and σ ∈ Gal(F̄ /F ). As a consequence of the properties of en, it turns out
([23, Ch. III, Corollary 8.1.1]) that µn ⊂ F (E[n]).

In the rest of the paper we will regard elements of Gal(F (E[n])/F ) as 2×2 invertible matrices
via the map ρ̄E,n.

Lemma 3.1. The equality

en(Q1, Q2)σ = en(Q1, Q2)det(σ)

holds for all Q1, Q2 ∈ E[n] and all σ ∈ Gal(F (E[n])/F ).

Proof. Let P1, P2 be a Z/nZ-basis for E[n] and let
(
a b
c d

)
be the matrix of σ for this basis.

Then, by the properties of the Weil pairing (in particular, the Galois equivariance of en
expressed by (20)), one gets:

en(P1, P2)σ = en(P σ1 , P
σ
2 )

= en(aP1 + cP2, bP1 + dP2)

= en(P1, P2)ad−bc

= en(P1, P2)det(σ),

and the equality for arbitrary points Q1, Q2 in E[n] follows by bilinearity. �

The following important results are consequences of the above lemma.

Proposition 3.2. For all n ≥ 1 prime to p there is an inclusion Gal(F (E[n])/F ) ⊂ Γn.

Proof. The case n = 1 being trivial, we assume n ≥ 2. Let σ ∈ Gal(F (E[n])/F ); by definition
of Γn, we have to show that det(σ) belongs to the subgroup Hn of (Z/nZ)× generated by r.

Choose P,Q ∈ E[n] such that ζn := en(P,Q) is a primitive nth root of unity: this can be
done by the non-degeneracy of the Weil pairing. Then

(21) ζσn = ζdet(σ)
n

by Lemma 3.1. On the other hand, there is a natural identification Gal(Fr(µn)/Fr) = Hn, so
there exists a positive integer s such that

(22) ζσn = ζr
s

n .

The claim follows immediately by comparing (21) and (22). �

As in the introduction, denote

ρE : GF −→
∏
` 6=p

GL2(Z`)

the Galois representation attached to E and write Γ̂ for the profinite group defined in (7).

Corollary 3.3. There is an inclusion ρE(GF ) ⊂ Γ̂.

Proof. Pass to the projective limit in the inclusions of Proposition 3.2. �
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3.2. Reduction to the split multiplicative case. From here on E/F is non-isotrivial. We
explain why it is not restrictive, for the purposes of our paper, to assume that E/F has split
multiplicative reduction at ∞.

Proposition 3.4. There exist a finite separable extension F ′ of F and a prime ∞′ of F ′ such
that the base-changed elliptic curve E/F ′ := E ×F F ′ has split multiplicative reduction at ∞′.

Proof. By assumption, j(E) /∈ Fr. In other words, j(E) is a non-constant function on the
smooth projective curve C, hence there exists a closed point ∞ of C at which j(E) has a
pole. This means that v∞(j(E)) < 0, so E has potential multiplicative reduction at ∞ (cf.
[23, Ch. VII, Propositions 5.4 and 5.5]). Thus we can find a finite extension F̃ of F and
a prime ∞̃ of F̃ above ∞ such that E/F̃ has multiplicative reduction at ∞̃. At the cost of

passing to a quadratic extension F ′ of F̃ in which ∞̃ is inert (equal to a prime∞′), E acquires
split reduction. Finally, note (see loc. cit.) that we are making an extension F̃ /F of degree
dividing 24 followed by an extension F ′/F̃ of degree at most two: the separability of F ′/F is
granted by our assumption that p > 3. �

Now let L be a (not necessarily finite) separable extension of F and let GL ⊂ GF be
the corresponding absolute Galois group. In the sequel, Proposition 3.4 will be applied in
conjunction with the following result.

Proposition 3.5. If ρE(GL) is an open subgroup of Γ̂ such is ρE(GF ), hence Theorem 1.3
holds for E/F if it holds for E/L.

Proof. This is a simple argument about topological groups. Suppose that G is a topological
group and let H ⊂ H ′ be subgroups of G with H open in G. Then

H ′ =
⋃

h′∈H′
h′H

is open in G as well because it is the union of the open subsets h′H. To prove the proposition,
observe that by Corollary 3.3 we already know that ρE(GF ) is a subgroup of Γ̂, and then
apply the above result to the subgroups ρE(GL) ⊂ ρE(GF ) of Γ̂. �

3.3. Tate curves: an overview. General references for the theory of Tate’s analytic uni-
formization of elliptic curves are [14, Ch. 15], [22, Ch. IV, Appendix A.1] and [25, Ch. V],
and we refer to them for more details and for proofs of the cited results.

Quite generally, in this § we let K denote a field which is complete with respect to a
discrete valuation v; we assume that the residue field of K is perfect of characteristic p > 0.
Let q ∈ K× be such that v(q) > 0, and let 〈q〉 be the discrete subgroup of K× generated by
q. The Tate elliptic curve (relative to q) is the curve with Weierstrass equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

whose coefficients are given by the power series

a4(q) := −5
∑
n≥1

n3qn

1− qn
, a6(q) := − 1

12

∑
n≥1

(7n5 + 5n3)qn

1− qn
.

Since v(q) > 0, these series converge in the v-adic metric. The discriminant and the j-invariant
of Eq are given by the formulas

∆(q) = q
∏
n≥1

(1− qn)24, j(q) =
1
q

+ 744 + 196884q + . . . ,
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which are clearly reminiscent of the corresponding ones from the complex case. If we define
the series

x(u, q) :=
∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

nqn

1− qn
,

y(u, q) :=
∑
n∈Z

q2nu2

(1− qnu)3
+
∑
n≥1

nqn

1− qn

we obtain a v-adic analytic uniformization

(23)
φ : K̄×

/
〈q〉

∼=−→ Eq(K̄)

u 7−→
(
x(u, q), y(u, q)

)
.

Since the action of GK := Gal(K̄/K) on K̄ is v-adically continuous, the map φ defined
in (23) is GK-equivariant, i.e. φ is not only an isomorphism of v-adic Lie groups but also
an isomorphism of GK-modules. Of course, this property is of the utmost importance for
arithmetic applications.

Because the j-invariant j(q) of Eq is not integral (i.e., v(j(q)) < 0), it is clear that, unlike
what happens for elliptic curves over the complex numbers, not every elliptic curve over K is
analytically isomorphic to a quotient K̄×/〈q〉 for some q ∈ K× with v(q) > 0. More precisely,
the reduction Ẽq of Eq modulo v has the equation

Ẽq : y2 + xy = x3,

so Eq has split multiplicative reduction over K. The crucial point in Tate’s theory is that the
non-integrality of the j-invariant is a necessary and sufficient condition for an elliptic curve
E over K to be analytically uniformized as above. Indeed, the following fundamental result
holds.

Theorem 3.6 (Tate). Let K be as before.
i) For every q ∈ K× with v(q) > 0 the map

φ : K̄×
/
〈q〉 −→ Eq(K̄)

described in (23) is an isomorphism of GK-modules.
ii) For every j0 ∈ K× with v(j0) < 0 there is a unique q ∈ K× with v(q) > 0 such that

the Tate elliptic curve Eq/K has j-invariant j0. The curve Eq is characterized by the
equality j(Eq) = j0 and the fact that it has split multiplicative reduction over K.

iii) Let E/K be an elliptic curve with non-integral j-invariant j0 ∈ K×, and let Eq be the
Tate curve with j-invariant j0 as in ii). If E has split multiplicative reduction then
E is isomorphic to Eq over K, while if E does not have split multiplicative reduction
then there is a unique quadratic extension L of K such that E is isomorphic to Eq
over L.

A complete proof of this theorem can be found in [25, Ch. V]. If E/K is an elliptic curve
with non-integral j-invariant, the element q ∈ K× whose existence is established in Theorem
3.6 is called “Tate period” for E.

Corollary 3.7. Let E/K be an elliptic curve with non-integral j-invariant and split multi-
plicative reduction, and retain the notation of Theorem 3.6.

i) Let n ≥ 0 be an integer not divisible by p, let ζn be a primitive nth root of unity in K̄

and fix an nth root q1/n of q in K̄. There is an isomorphism

E[n] ∼=
〈
q1/n, ζn

〉/
〈q〉

of GK-modules.
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ii) Let π be a uniformizer of K, write q = πeu with e := v(q) > 0 and denote v` the
`-adic valuation on Q for a prime `. For all primes ` 6= p and integers m > v`(e) the
field K

(
q1/`m , ζ`m

)
admits an automorphism σ over K leaving ζ`m fixed and such that

σ(q1/`m) = (ζ`m)`
v`(e) · q1/`m. Thus there exists an element

σ ∈ Gal(K(E[`m])/K)

which is represented by
(

1 `v`(e)

0 1

)
with respect to the basis of E[`m] corresponding to

the basis
{
ζ`m , q

1/`m
}

of Eq[`m].
iii) With notation and conventions as before, the group Gal(K(E[`∞])/K) contains the

subgroup (
1 `v`(e)Z`
0 1

)
of GL2(Z`) for all primes ` 6= p.

Proof. Part i) is an immediate consequence of part i) of Theorem 3.6, while ii) follows from
Kummer theory. Finally, iii) is implied by ii). �

We shall use these results in the following situation. By Proposition 3.5, in order to prove
Theorem 1.3 we can extend the ground field F to any separable extension; on the other hand,
Proposition 3.4 guarantees the existence of a prime of split multiplicative reduction for E in a
suitable finite separable extension of F . When combined together, these two results say that
it is not restrictive for us to assume that the prime ∞ of F that we chose at the outset is of
split multiplicative reduction for E, which from here on we do without any further comment.
In particular, there are a Tate period q ∈ F×∞ and a Gal(F̄∞/F∞)-equivariant short exact
sequence

0 −→ 〈q〉 −→ F̄×∞ −→ E(F̄∞) −→ 0
which expresses the geometric points of E/F∞ as a quotient of a one-dimensional∞-adic torus
by an infinite cyclic subgroup.

As an application of Tate’s uniformization, we conclude this § by showing that the prime-
to-p torsion of E is rational over F s.

Proposition 3.8. With notation as above, let k be the smallest positive integer such that
q /∈ (F×∞)p

k
and let P ∈ Etors(F̄ ). Then P ∈ Etors(F s) if and only if pk does not divide the

order of P .

Proof. Let n be the order of P and let q1/n be an nth root of q in F̄∞. The geometric points in
E[n] are rational over F∞(µn, q1/n)∩ F̄ , and the proposition follows from the next lemma. �

Lemma 3.9. F s = F̄ ∩ F s∞.

Proof. It is enough to observe that the purely inseparable extensions of F are totally ramified
at all places (as can be deduced, e.g., from [19, Proposition 7.5]). �

3.4. Galois groups: horizontal control. In this § we prove two results describing (in a
strong way) the asymptotic behaviour of the Galois groups of F (E[`]) and of F (E[`∞]) over F
when ` varies. As we shall see, the fact that E admits, locally at∞, an analytic uniformization
will be crucially exploited.

As a notational convention, if R is a domain denote Q(R) the quotient field of R. We begin
with two algebraic lemmas.

Lemma 3.10. Let R be either a discrete valuation ring or a (topological) field. Let H be a
subgroup of GL2(R) that acts irreducibly on Q(R)2 and suppose that H contains the subgroup(

1 I
0 1

)
where I is a nonzero ideal of R. Then H contains an open subgroup of SL2(R).
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In particular, if R is a field then I = R and H = SL2(R).

Sketch of proof. By adapting the proof of [15, Ch. XIII, Lemma 8.1] it can be shown that〈(1 0
I 1

)
,

(
1 I
0 1

)〉
⊃ ker

(
SL2(R) −→ SL2

(
R/I2

))
.

The kernel on the right is understood to be the whole SL2(R) if I = R. Observe that this
kernel is open in SL2(R) because all nonzero ideals in R are open, hence the quotient R/I2 is
discrete. Finally, from the irreducibility condition and the fact that

(
1 I
0 1

)
is contained in H

one can deduce the existence of a suitable basis of Q(R)2 such that H contains
(

1 0
I 1

)
as well

(see [22, Ch. IV, §3.2, Lemma 2] for details), and this completes the proof of the lemma. �

Lemma 3.11. If p - n then Gal(F (µn)/F ) = Hn.

Proof. Since Fr is algebraically closed in F it follows that

F ∩ Fr(µn) = Fr,
i.e. F and Fr(µn) are linearly disjoint over Fr. Thus

Gal(F (µn)/F ) = Gal(Fr(µn)/Fr),
whence the claim. �

In the sequel let F` be the field with ` elements. Now we can prove

Proposition 3.12. The equality Gal(F (E[`])/F ) = Γ` holds for almost all primes ` 6= p.

Proof. First we show that Gal(F (E[`])/F ) contains SL2(F`) for almost all primes ` 6= p. To
begin with, there is a natural embedding

Gal(F∞(E[`])/F∞) ↪−→ Gal(F (E[`])/F )

which we interpret as an inclusion, so that we view the former group as a subgroup of the
latter. As in §3.3, write q for the Tate period of E at ∞, so E(F̄∞) ∼= F̄×∞/〈q〉 as Galois
modules. Now let ` be a prime different from p not dividing e = v∞(q). By part ii) of
Corollary 3.7, there exists σ ∈ Gal(F∞(E[`])/F∞) which is represented by the matrix

(
1 1
0 1

)
with respect to a suitable F`-basis of E[`]. But part i) of Theorem 2.22 says that E[`] is
an irreducible Gal(F (E[`])/F )-module for almost all primes ` 6= p, so our claim follows from
Lemma 3.10.

Now let ` 6= p be a prime such that Gal(F (E[`])/F ) contains SL2(F`). As noticed before,
one knows that µ` ⊂ F (E[`]) and that the Galois action on the roots of unity is given by the
determinant (Lemma 3.1), so Lemma 3.11 ensures that Gal(F (E[`])/F ) fits into a short exact
sequence

0 −→ SL2(F`) −→ Gal(F (E[`])/F ) det−−→ H` −→ 0.
By definition of Γ`, the proposition is proved. �

Remark 3.13. In their paper [5], Cojocaru and Hall give a uniform version of Proposition 3.12.
More precisely, they show that there exists a positive constant c(F ), depending at most on
the genus of C, such that Gal(F (E[`])/F ) = Γ` for any non-isotrivial elliptic curve E/F and
any prime number ` ≥ c(F ), ` 6= p. Moreover, they determine an explicit expression for c(F ):
see [5, Theorem 1].

Now we state an auxiliary result that will be applied in various occasions later on. By
defining it componentwise in the obvious manner, consider the determinant map

det : Γ̂ −→ Ĥ.

This map is the one that appears in (7). By a slight abuse of notation, we denote in the same
way both the determinant map on Γ̂ and the analogous maps on the Γ̂`.
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Lemma 3.14. The following hold:
i) det(ρE,`(GF )) = Ĥ` for all primes ` 6= p;

ii) det(ρE(GF )) = Ĥ.

Proof. i) If ` is a prime different from p, it is an immediate consequence of Lemma 3.1 (cf.
also [22, Ch. I, §1.2]) that

det(ρE,`) : GF −→ Z×`
coincides with the cyclotomic character giving the action of GF on the `∞th roots of unity. It
follows that det(ρE,`(GF )) identifies with the Galois group Gal(F (µ`∞)/F ) where F (µ`∞) is
the extension of F generated by all roots of unity of order a power of `. On the other hand,
by setting n = `m and passing to the projective limit over m in Lemma 3.11 we get that

Gal(F (µ`∞)/F ) = Ĥ`,

whence our claim.
Part ii) can be proved in exactly the same way, this time working with all roots of unity

of prime-to-p order. �

Remark 3.15. Lemma 3.14 is valid for all elliptic curves E/F , including isotrivial ones.

Proposition 3.16. For all primes ` 6= p the group Gal(F (E[`∞])/F ) is open in Γ̂`.

Proof. Let ` 6= p be a prime. From the theory of Tate’s uniformization (see part iii) of
Corollary 3.7) we know that(

1 `nZ`
0 1

)
⊂ ρE,`(GF ) = Gal(F (E[`∞])/F ) ⊂ GL2(Z`)

for n = v`(e) and e = −v∞(j(E)). But V`(E) is an irreducible ρE,`(GF )-module by part ii)
of Theorem 2.22, hence ρE,`(GF ) contains an open subgroup of SL2(Z`) by Lemma 3.10. To
prove the proposition one can proceed as follows. As a consequence of part i) of Lemma 3.14,
there is a commutative diagram of short exact sequences

(24) 0 // W //
� _

��

ρE,`(GF ) det //
� _

��

Ĥ`
// 0

0 // SL2(Z`) // Γ̂`
det // Ĥ`

// 0

where W := ρE,`(GF ) ∩ ker(det) and the vertical maps are inclusions. Since ker(det) =
SL2(Z`) and W is an open subgroup of SL2(Z`), it follows that W is of finite index in
SL2(Z`) because this matrix group is compact. But then the exact sequence between the
cokernels of the vertical maps in (24) shows that ρE,`(GF ) has finite index in Γ̂`, and this
suffices to prove our claim because ρE,`(GF ) is closed in Γ̂`. �

We conclude this § with the following

Proposition 3.17. Let S be a finite set of primes not containing p and let

Γ̂S :=
∏
`∈S

Γ̂`.

Moreover, denote E[S∞] the group of points of E of order divisible only by primes in S. Then
Gal(F (E[S∞])/F ) is open in Γ̂S.

Proof. If L/F is a finite (separable) extension then Gal(L(E[S∞])/L) canonically identifies
with the Galois group of F (E[S∞]) over F (E[S∞]) ∩ L, so it can naturally be viewed as
an open subgroup of Gal(F (E[S∞])/F ). Let m be the product of the primes in S and set
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L := F (E[m]). Then, as ` varies in S, the extensions L(E[`∞])/L are pro-`, thus the fields
L(E[`∞]) are pairwise linearly disjoint over L. It follows that

(25) Gal(L(E[S∞])/L) =
∏
`∈S

Gal(L(E[`∞])/L).

But the same reasoning as above shows that, for all `, Gal(L(E[`∞])/L) is an open subgroup
of Gal(F (E[`∞])/F ), and then Proposition 3.16 implies that Gal(L(E[`∞])/L) is open in Γ̂`.
We readily deduce from (25) that Gal(L(E[S∞])/L) is open in Γ̂S , hence Gal(F (E[S∞])/F )
is open in Γ̂S as well. �

3.5. Galois groups: vertical control. In this short § we take a closer look at the Galois
group of F (E[`∞]) over F for a prime number ` 6= p. In order to do this, we need to introduce
an algebraic notion that will prove extremely useful.

Let X be a profinite group and let Σ be a finite simple group. Following [22, Ch. IV, §3.4],
we say that Σ occurs in X if there exist closed subgroups X1, X2 of X such that X2 is normal
in X1 and X1/X2

∼= Σ.

Lemma 3.18. With X and Σ as above, the following hold:
i) let Y be a closed normal subgroup of X; if Σ occurs in X then Σ occurs in either Y

or X/Y ;
ii) if X = lim←−X/Ωα with Ωα open in X for all α then Σ occurs in X if and only if Σ

occurs in X/Ωα for some α.

Proof. i) Let X1, X2 be closed subgroups of X with X2 normal in X1 and X1/X2
∼= Σ.

Consider the composite map

X1 ∩ Y ↪−→ X1 −� X1/X2,

which has X2 ∩ Y as its kernel. Then it is easy to see that (X1 ∩ Y )/(X2 ∩ Y ) is a normal
subgroup of X1/X2, which is simple by assumption. Hence there are two possibilities:

1. (X1 ∩ Y )
/

(X2 ∩ Y ) ∼= X1/X2
∼= Σ: in this case Σ occurs in Y ;

2. (X1 ∩ Y )
/

(X2 ∩ Y ) = 0, i.e. X1 ∩ Y = X2 ∩ Y : then Σ occurs in X/Y because

Σ ∼= X1/X2
∼= (X1/X1 ∩ Y )

/
(X2/X2 ∩ Y ) ∼= (X1Y/Y )

/
(X2Y/Y ).

ii) The “if” part is easy. For the other implication, observe that the family {Ωα}α is a basis
of neighbourhoods of the identity in X. Let X1, X2 ⊂ X be closed subgroups with X2 normal
in X1 and X1/X2

∼= Σ. Since Σ is finite, X2 is open in X1, hence there exists an index α such
that X1 ∩ Ωα ⊂ X2 and, in particular, X1 ∩ Ωα = X2 ∩ Ωα. There are closed injections

X2/(X2 ∩ Ωα) ↪−→ X1/(X1 ∩ Ωα) ↪−→ X/Ωα

with X2/(X2 ∩ Ωα) normal in X1/(X1 ∩ Ωα), hence Σ occurs in X/Ωα. �

As usual, set PSL2(F`) := SL2(F`)/{±1} for all primes `. It is well known that these
groups are simple for ` ≥ 5 (see, e.g., [15, Ch. XIII, Theorem 8.4]), and it is easy to see that
they are pairwise non-isomorphic; a common theme of the next proposition and of the proof
of Proposition 3.21 below will be the study of their occurrences in suitable profinite groups.

Proposition 3.19. The group PSL2(F`) occurs in Gal(F (E[`∞])/F ) for almost all ` 6= p.

Proof. We know that

Gal(F (E[`∞])/F ) = lim←−
n

Gal(F (E[`n])/F ).

Moreover, by Proposition 3.12 the group Gal(F (E[`])/F ) contains SL2(F`) for almost all
primes ` 6= p. Hence PSL2(F`) occurs in Gal(F (E[`])/F ) for almost all ` 6= p, and the claim
follows from part ii) of Lemma 3.18. �
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3.6. Conclusion of the proof. As remarked in the introduction, this is really an exercise
in abstract group theory; in particular, elliptic curves will play no role. We follow mutatis
mutandis the exposition in [14, Ch. 17, §5] and [22, Ch. IV, §3.4]. We begin by stating a
very useful lemma, a proof of which is given in [22, Ch. IV, §3.4, Lemmas 2 and 3].

Lemma 3.20. Let ` ≥ 5 be a prime number and let H be a closed subgroup of SL2(Z`) whose
reduction mod ` surjects onto PSL2(F`). Then H = SL2(Z`).

With this result at our disposal, we can prove

Proposition 3.21. With self-explaining notation, the group ρE(GF ) contains

S` :=
(
. . . , 1, 1, SL2(Z`), 1, 1, . . .

)
for almost all primes ` 6= p.

Proof. By Proposition 3.19, we know that PSL2(F`) occurs in the component of ρE(GF )
corresponding to ` for almost all primes ` 6= p. To prove the proposition, we first show that
PSL2(F`) occurs in ρE(GF ) ∩ S` for almost all ` 6= p. Let

U` :=
(
. . . , 1, 1, Γ̂`, 1, 1, . . .

)
for all primes ` 6= p. Clearly, for every prime ` 6= p there is an injection

(26) ρE(GF )
/(
ρE(GF ) ∩ U`

)
↪−→ Γ̂/U`.

By part ii) of Lemma 3.18, PSL2(F`) does not occur in Γ̂q for any prime q 6= ` if ` > 5.
Hence, by (26), PSL2(F`) does not occur in the quotient ρE(GF )/(ρE(GF ) ∩ U`), so part i)
of Lemma 3.18 ensures that it occurs in ρE(GF )∩U` for almost all ` 6= p. It follows from part
i) of Lemma 3.18 that for any such ` the group PSL2(F`) occurs in ρE(GF ) ∩ S`, which is
closed in S` and maps to PSL2(F`) by reducing mod ` and projecting. Denote M` the image
of ρE(GF )∩S` in PSL2(F`): we claim that M` = PSL2(F`). If not, M` is a proper subgroup,
so PSL2(F`) occurs in the kernel of this map, hence in

(27)
{
u ∈ SL2(Z`) | u ≡ 1 (mod `)

}
.

But this is impossible if ` ≥ 5 because the group in (27) is prosolvable5 while PSL2(F`) is
nonabelian and simple, hence nonsolvable.

Therefore ρE(GF ) ∩ S` maps onto PSL2(F`), hence ρE(GF ) ∩ S` ∼= SL2(Z`) by Lemma
3.20. �

Corollary 3.22. There exists a finite set S of prime numbers such that p ∈ S and ρE(GF )
contains

∏
`/∈S SL2(Z`).

In the statement of this corollary, the partial product is understood as a subgroup of Γ̂ in
the natural way.

5This can be seen as follows. For all n ≥ 1 and j ∈ {1, . . . , n} define the groups

K
(n)
j := ker

(
SL2(Z/`nZ) −� SL2(Z/`jZ)

)
.

Then for all n there is a chain

K(n)
n = {1} ⊂ K(n)

n−1 ⊂ · · · ⊂ K
(n)
1

with K
(n)
j+1 normal in K

(n)
j and K

(n)
j /K

(n)
2j abelian (for example, it injects in the additive group M2(Z/`nZ)).

This shows that K
(n)
1 is solvable for all n ≥ 1, and since{

u ∈ SL2(Z`) | u ≡ 1 (mod `)
}

= lim←−
n

K
(n)
1

the claim follows.
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Proof. With identifications as before, by Proposition 3.21 there exists a finite set S of primes
such that p ∈ S and ρE(GF ) contains SL2(Z`) for all ` /∈ S. It follows that ρE(GF ) contains

S :=
⋃
|T |<∞
T ∩S=∅

∏
`∈T

SL2(Z`),

where T runs through the finite sets of primes that are disjoint from S. But ρE(GF ) is closed
in Γ̂, hence it contains the closure of S , which is the product appearing in the statement of
the corollary. �

Now we are in a position to prove Igusa’s theorem. For the reader’s convenience we restate
Theorem 1.3, and then proceed to its proof.

Theorem 3.23 (Igusa). The group ρE(GF ) is open in Γ̂.

Proof. Let S be as in Corollary 3.22, let S′ := S − {p} and let S′′ be the (infinite) set of
primes not in S. As before, write

Γ̂S′ :=
∏
`∈S′

Γ̂`, Γ̂S′′ :=
∏
`∈S′′

Γ̂`.

Denote ρE,S′(GF ) and ρE,S′′(GF ) the projections of ρE(GF ) to Γ̂S′ and Γ̂S′′ , respectively. A
combination of Corollary 3.22 and part i) of Lemma 3.14 shows that ρE,S′′(GF ) = Γ̂S′′ . On
the other hand, ρE,S′(GF ) is open in Γ̂S′ by Proposition 3.17. It follows that

ρE(GF ) ⊃ ρE,S′(GF )× Γ̂S′′ ,

which is an open subgroup of Γ̂. The theorem is proved. �

Remark 3.24. To prove Igusa’s theorem one could also proceed as follows. By an argument
with Lie algebras exactly as in [22, Ch. IV, §3.4, Lemma 6], it can be deduced from Proposition
3.17 and Corollary 3.22 that ρE(GF ) contains an open subgroup of

∏
`6=p SL2(Z`). But then

part ii) of Lemma 3.14 allows one to conclude the proof as in Proposition 3.16.

4. An arithmetic application

In this final section we collect an arithmetic consequence of Theorem 1.3. We retain
throughout our previous notation; in particular, F = Fr(C) is a function field of charac-
teristic p > 0 and F s is the separable closure of F contained in an algebraic closure F̄ . We
remark that Theorem 1.3 is valid in any positive characteristic, though in the present paper
we have proved it only for p > 3.

4.1. Main application. The result we want to prove in this § says that a non-isotrivial
elliptic curve E/F has only finitely many torsion points rational over abelian extensions of
F . Although properties in the same spirit have been exploited, at least implicitly, in various
recent works on the arithmetic of elliptic curves in positive characteristic (cf., e.g., [1], [3],
[4], [28]), it seems that (quite surprisingly) the result below has never been written down in
detail.

We begin with a lemma in linear algebra.

Lemma 4.1. Let ` be a prime and let Sn be the kernel of the reduction-modulo-`n map

SL2(Z`) −→ SL2(Z/`nZ).

The commutator subgroup [Sn, Sn] contains S2n+2 for all n ≥ 2.

Sketch of proof. One just adapts the arguments of [15, Ch. XIII, Lemma 8.1] (as in Lemma
3.10). �
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Now we can prove the result we alluded to before.

Theorem 4.2. Let E/F be a non-isotrivial elliptic curve and let H := F ab be the maximal
abelian extension of F . The group Etors(H) is finite.

Proof. Define an Igusa prime to be a prime number satisfying the second part of Theorem
1.4. To prove our result we show that

i) E[`∞](H) is finite for all primes `;
ii) E[`](H) = {0} if ` is an Igusa prime.

Since by Theorem 1.4 almost all primes are Igusa, the theorem will follow.
i) We need to distinguish between two cases according as whether ` is equal to the charac-

teristic of F or not.
If ` = p the claim is immediate from Proposition 3.8 (see also [3, Lemma 2.2] for a proof

using a different argument).
If ` 6= p define the groups Sn as in Lemma 4.1. By Theorem 1.4, Sn ⊂ ρE,`(GF ) for some

n ≥ 2. Since Gal(F s/H) is the topological closure of the commutator subgroup [GF , GF ],
its image under ρE,` contains the commutator subgroup [Sn, Sn] of GL2(Z`), and hence, by
Lemma 4.1, S2n+2. Therefore E[`∞](H) is contained in the fixed subgroup of E[`∞] under
the action of S2n+2, which is the finite group E[`2n+2].

ii) Let ` be an Igusa prime and set F` := F (E[`]); then Gal(F`/F ) contains a subgroup
isomorphic to SL2(F`), hence the Galois orbit of a nonzero point P ∈ E[`] is the whole
E[`]− {0}. In particular, since the extension H/F is normal, if P ∈ E[`](H) and P 6= 0 then
F` ⊂ H, which is impossible because H/F is abelian. Thus E[`](H) = {0}, and the theorem
is completely proved. �

Remark 4.3. Replacing Igusa’s theorem with Serre’s theorem (Theorem 1.1) and disregarding,
of course, the “` = p” part, the proof of Theorem 4.2 carries over verbatim to the case of an
elliptic curve without complex multiplication defined over a number field. More precisely, one
shows that if K is a number field and E/K is a non-CM elliptic curve then there are only
finitely many torsion points on E that are rational over abelian extensions of K. Note that
this is the one-dimensional case of a theorem of Zarhin ([30, Theorem 1]) for non-CM abelian
varieties (see also [18, Theorem 1] for a weaker result which is valid for all abelian varieties).

Remark 4.4. If Z ( End(E), i.e., if E/F is isotrivial (resp., has complex multiplication) in
the function field (resp., in the number field) case, then Theorem 4.2 is false. Indeed, with
notation as in the introduction, it can be shown that there exists a finite extension K/F such
that

E(p)-tors ⊂ E(Kab).
This fact is a consequence of the results described in Appendix A in the function field case
and of the theory of complex multiplication in the number field case.

Appendix A. The isotrivial case

For the sake of completeness, in this appendix we treat the case of isotrivial elliptic curves.
We remark that we only give a “qualitative” description of the image of Galois; actually,
something more precise can presumably be proved, but we shall not pursue this issue here.

So let E/F be our elliptic curve over the function field F = Fr(C) and suppose that E
is isotrivial. Recall that this means that after a finite extension L/F the curve E becomes
isomorphic to an elliptic curve E′ defined over Fr; equivalently, j(E) ∈ Fr. By Lemma 2.21, we
can also equivalently define the elliptic curve E/F to be isotrivial if its ring of endomorphisms
is larger than Z.

First of all, note that there is an inclusion ρE(GF ) ⊂ Γ̂ (in fact, the arguments in §3.1 do
not rely on E being non-isotrivial, but just on general properties of the Weil pairing). Our
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present goal is to show that ρE(GF ) is not open in Γ̂ (in particular, the above inclusion is
proper), so that Theorem 1.4 is always false in the isotrivial case.

Let L/F be an extension as above, so that the base-changed curve E/L is isomorphic to an
elliptic curve E′ defined over Fr. Since we are assuming that p > 3, the extension L/F may
be taken to be separable, and we denote GL ⊂ GF the absolute Galois group of L. Observe
that there are isomorphisms

E(p)-tors(F
s) = E(p)-tors(L

s) ∼= E′(p)-tors(F̄r)

of GL-modules, and if we set Fs := L ∩ F̄r (that is, Fs is the field of constants of L) then the
action of GL on E′(p)-tors factors through the absolute Galois group GFs := Gal(F̄r/Fs). This

last group is procyclic, isomorphic to the profinite completion Ẑ of Z. It follows that ρE(GL)
is a procyclic (hence abelian) group, so it cannot be open in Γ̂. Since ρE(GL) has finite index
in ρE(GF ), we can state the following

Proposition A.1. If E/F is isotrivial then ρE(GF ) is not open in Γ̂.

In fact, we can say something more. To this end, define the profinite groups Ĥ ′ and Γ̂′ as
in (7) by replacing r with s. Clearly, Ĥ ′ ⊂ Ĥ and Γ̂′ ⊂ Γ̂. Now recall that Ẑ(p) is a shorthand
for
∏
` 6=p Z` and let

ρE′ : GFr −→ GL2(Ẑ(p))

be the Galois representation attached to E′. The cyclotomic character χ induces an isomor-
phism

χ : GFs

∼=−→ Ĥ ′

with the property that det ◦ρE′ = χ, thus the diagram

GL
ρE // //

����

ρE(GL)

det
��

GFs

ρE′
99rrrrrrrrrr χ // Ĥ ′

is commutative. It follows that the determinant gives an isomorphism

det : ρE(GL)
∼=−→ Ĥ ′,

hence the short exact sequence defining Γ̂′ admits a (topological) splitting as follows:

ρE(GL)� _

��
det

%%KKKKKKKK

0 // SL2(Ẑ(p)) // Γ̂′ // Ĥ ′ //
ee m_Q 0.

In other words, we have proved the following

Theorem A.2. With notation as above, if E/F is isotrivial then there are isomorphisms

Γ̂′ ∼= SL2(Ẑ(p)) o Ĥ ′ ∼= SL2(Ẑ(p)) o ρE(GL)

of topological groups. In particular, ρE(GL) is not open in Γ̂′.

Actually, by working componentwise it can be shown (as above) that ρE,`(GF ) ( Γ̂` for all
primes ` 6= p.
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Remark A.3. The goal of this appendix was to highlight the following “principle”: as long
as one is interested in the “asymptotic size” of the images of the Galois representations on
Tate modules of elliptic curves, isotriviality is the counterpart in characteristic p of complex
multiplication over number fields. In fact, when the ring of endomorphisms is “as small as
possible” (i.e., equal to Z) the image of Galois is definitively “as large as possible” (i.e., equal
to GL2(Z`) in characteristic zero and to Γ̂` in positive characteristic), while this never happens
(both in positive characteristic and in characteristic zero, cf. Remark 1.2) when the elliptic
curve has an endomorphism ring of rank greater than one.
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