Compito a casa n. 4

Scrivere la proposizione duale della proposizione A.

Proposizione A:

in $\mathbb{P}^4(\mathbb{R})$, se un sottospazio, σ , di dimensione due (un piano) ed un sottospazio, r, di dimensione uno (una retta) sono in posizione generale, allora per ogni retta s contenuta in σ esiste un solo iperpiano che contiene entrambe r ed s.

Dimostrare la proposizione A e la sua duale per via sintetica.

Dimostrare la proposizione A per via analitica, scegliendo il sistema di riferimento proiettivo in modo conveniente. Perché è lecito supporre che σ abbia equazioni $x_1 = x_2 = 0$ e che r abbia equazioni $x_3 = x_4 = x_5 = 0$?

Traccia di soluzione.

Proposizione A	Proposizione duale.
In $\mathbb{P}^4(\mathbb{R})$, se un sottospazio, σ , di dimensione	In $\mathbb{P}^4(\mathbb{R})$, se un sottospazio, s, di dimensione
due (un piano) ed un sottospazio, r, di	uno (una retta) ed un sottospazio, R, di
dimensione uno (una retta) sono in posizione	dimensione due (un piano) sono in posizione
generale, allora per ogni retta s contenuta in σ	generale, allora per ogni piano S che contenga s
esiste un solo iperpiano che contiene entrambe <i>r</i>	esiste un solo punto che appartiene a entrambi R
ed s.	ed S.
Dim. Dall'ipotesi che σ , r siano in posizione	Dim. Dall'ipotesi che s, R siano in posizione
generale segue: $\dim \sigma \cap r = -1$, $\dim J(\sigma, r) = 4$.	generale segue: dim $s \cap R = -1$, dim $J(s,R) = 4$.
Se s è un sottospazio, con $s \subset \sigma$, anche	Se <i>S</i> è un sottospazio, con $S \supset s$, anche
dim $s \cap r = -1$, quindi dalla formula di	$\dim J(S,R) = 4$, quindi dalla formula di
Grassmann, avendosi dim $s = \dim r = 1$, segue:	Grassmann, avendosi dim $S = \dim R = 2$, segue:
$\dim J(s,r) = 1 + 1 - (-1) = 3$. L'iperpiano $J(s,r)$ è	dim $S \cap R = 2+2-4 = 0$. Il punto $S \cap R$ è
univocamente determinato come il minimo	univocamente determinato come sottospazio
sottospazio che contiene s ed r .	intersezione di R , S .

Dimostrazione della proposizione A per via analitica.

Poiché le proprietà da dimostrare non dipendono dalla scelta del sistema di riferimento, è lecito prendere due generatori indipendenti di r come punti fondamentali del riferimento $A_1=[1,0,0,0,0]$, $A_2=[0,1,0,0,0]$, e tre generatori indipendenti di σ come restanti punti fondamentali A_3,A_4,A_5 . Con questa scelta, σ ha le equazioni $x_1 = x_2 = 0$ ed r $x_3 = x_4 = x_5 = 0$.

Una qualsiasi retta
$$s$$
 contenuta in σ è generata da due punti $P = [0,0,a,b,c], Q = [0,0,a',b',c'],$ con
$$(*) \qquad rango \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} = 2 .$$

I quattro punti indipendenti A_1A_2,P,Q generano l'iperpiano di equazione

det
$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a & b & c \\ 0 & 0 & a' & b' & c' \end{pmatrix} = -\det \begin{pmatrix} x_2 & x_3 & x_4 & x_5 \\ 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & a' & b' & c' \end{pmatrix} = (bc'-b'c)x_3 - (ac'-a'c)x_4 + (ab'-b'c)x_5 = 0.$$

L'ipotesi (*) garantisce che l'equazione trovata abbia almeno un coefficiente diverso da zero, e quindi definisca un (solo) iperpiano. Possiamo concludere che per ogni scelta dei punti P, Q esiste l'iperpiano che contiene r e la retta s di P e Q.