Geometria analitica e algebra lineare – 9 settembre 2011

Nome e cognome	n. matricola
Scrivere nome e cognome <u>in testa ad ogni foglio</u> . Consegnare questo foglio.	
1. Nello spazio, sono assegnati la retta r di equazioni $\begin{cases} x+z=0 \\ y=0 \end{cases}$ ed il punto P di	coordinate (-1,-2,0).
 a) Scrivere delle equazioni parametriche e delle equazioni cartesiane d parallela a r. 	ella retta r ' che passa per P ed è
b) Scrivere un'equazione cartesiana del piano delle due rette r,r' .	(Punti 2 + 2
2. Scrivere un'equazione cartesiana del piano che passa per il punto $A = (-1,0)$ $\begin{cases} x=0 \\ y=-z-1 \end{cases}$. Trovare la distanza di A da s .	,1) ed è perpendicolare alla retta
	(Punti 1 + 2
3. Nello spazio, riferito a coordinate cartesiane ortogonali, è assegnat $x^2 + y^2 + z^2 + 2x + 2z - 1 = 0$. Studiare brevemente <i>S</i> . Studiare la conica <i>C</i> che	
di equazione $y = -1$; determinare delle equazioni parametriche di C .	(Punti 2 + 2 + 1
4. Nel piano, riferito a coordinate cartesiane ortogonali, è assegnata la cor Studiarla brevemente, e tracciarne un disegno approssimativo.	nica di equazione $x^2 - y^2 + 2x = 0$
	(Punti 3
 5. Giustificare¹ le risposte alle seguenti domande: a) E' vero che R² è sottospazio vettoriale di R³? b) E' vero che i piani e le rette dello spazio (in cui si sceglie un sister rappresentano geometricamente i sottospazi vettoriali propri di R³? c) E' vero che, se si prendono in R¹ due sottospazi vettoriali U, V, tali dimensione di V sia n-k, allora è R¹ = U ⊕ V? 	
6. Trovare gli autovalori e autovettori della matrice $\mathbf{N} = \begin{pmatrix} 2 & -1 & -2 & 0 \\ 1 & 4 & 2 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}.$	
Usando i risultati ottenuti, stabilire se sia possibile diagonalizzare la matrice.	(Punti 3 + 1
7. Stabilire, argomentando la risposta, se l'applicazione lineare L_G : R	$^3 \rightarrow R^3$ associata alla matrice
$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 5 & 3 \\ -1 & -1 & 0 \end{pmatrix}$ sia iniettiva, se sia surgettiva. Indicato con W il sottospazio	Span $\left\{ \begin{pmatrix} -2\\4\\-1 \end{pmatrix}, \begin{pmatrix} -1\\3\\0 \end{pmatrix} \right\}$, determinare la
dimensione del sottospazio immagine $L_G(\mathbf{W})$.	(Punti 1 + 1 + 3

¹ Le risposte non motivate sono considerate mancanti