Sull'uso dei determinanti in Geometria analitica.

Proprietà dei determinanti.

Le osservazioni che seguono sono di complemento al paragrafo 6 del capitolo 3 di [testo]; possono essere trovate in P. Maroscia, *Introduzione alla geometria e all'algebra lineare*, Zanichelli, cap. 5, n. 3.

Ricordiamo (vedi [testo], pag. 102) che si chiama "trasposta" di una matrice $\bf A$ di tipo (m,n) la matrice di tipo (n,m), che si indica con $\bf A^T$, ottenuta da $\bf A$ scambiando le righe con le colonne: se è $\bf A=(a_{ik})$, allora è $\bf A^T=(a_{ki})$, per $i=1,2,\ldots,m,\ k=1,2,\ldots,n$.

Per matrici quadrate degli ordini 2, 3 si verifica facilmente che valgono le proprietà enunciate dalla proposizione che segue, della quale **omettiamo la dimostrazione**.

Proprietà dei determinanti. Sia A una matrice quadrata di ordine n, con righe a¹,a²,...,aⁿ.

- **1.** *Se in* **A** *si scambiano due righe, il determinante cambia di segno,*
- **2.** se una qualunque riga è moltiplicata per uno scalare k, il determinante viene moltiplicato per k,
- 3. $se \ a^i = u + v$, $detta \ B$ la matrice che si ottiene da A sostituendo la riga i-esima con u, e chiamata C la matrice che si ottiene da A sostituendo la riga i -esima con v, si ha det(A) = det(B) + det(C),
- 4. $det(\mathbf{A}) = det(\mathbf{A}^{T})$.

Corollario 1. *Se nella matrice* **A** *ci sono due righe uguali, allora* $det(\mathbf{A}) = 0$.

Dimostrazione: per la proprietà 1, scambiando le due righe il determinante cambia nel suo opposto, ma siccome le righe sono uguali, il determinante non cambia, quindi è l'unico numero uguale al suo opposto, cioè 0.

C.v.d.

Corollario 2. Se ad una riga \mathbf{a}^i si sostituisce il vettore riga \mathbf{a}^i + k \mathbf{a}^j (k scalare), per $j \neq i$, il determinante non cambia.

Dimostrazione. Per la proprietà 3, il determinante della nuova matrice è la somma di det(A) e del determinante di una matrice C, in cui la riga i-esima è un multiplo della riga j-esima; per la proprietà 2 e per il corollario 1, det(C) = 0, quindi il determinante della nuova matrice è uguale a det(A).

C.v.d.

Corollario 3. Sia S una matrice a scalini ottenuta da A, per mezzo di un procedimento di eliminazione di Gauss; allora det(A) = 0 se e solo se det(S) = 0.

Dimostrazione. Un procedimento di eliminazione di Gauss consiste nell'applicazione ripetuta di

- a) scambio di righe: questa operazione, per la proprietà 1, cambia di segno il determinante
- b) moltiplicazione di una riga per uno scalare k diverso da zero: per la proprietà 2, questa mossa ha l'effetto di moltiplicare il determinante per lo scalare k
- c) sostituzione di una riga \mathbf{a}^{i} con \mathbf{a}^{i} + k \mathbf{a}^{j} , che per il corollario 2 non altera il determinante.

In conclusione, esiste uno scalare h, diverso da 0, per cui

$$det(\mathbf{A}) = h \ det(\mathbf{S});$$

quindi se uno dei due determinanti è nullo, lo è anche l'altro.

C.v.d.

1

Ricordiamo (vedi [testo], pag. 120, definizione 3.9) che si chiama "singolare" una matrice quadrata di ordine n il cui rango sia minore di n.

Corollario 4. A è singolare se e solo se det(A) = 0.

Dimostrazione. Se A è singolare, una sua forma a gradini S contiene almeno una riga di zeri, e quindi det(S) = 0; per il corollario 3, anche det(A) = 0.

Viceversa, se $det(\mathbf{A}) = 0$, per il corollario 3 anche il determinante di una sua riduzione a scalini è uguale a zero; ma allora il numero dei pivots è minore dell'ordine della matrice, e quindi il rango di \mathbf{A} non è il massimo possibile.

C.v.d.

Corollario 5. Le proprietà del determinante relative alle righe di una matrice sono valide anche per le colonne.

Dimostrazione. Per la proprietà 4, il determinante non cambia se si scambiano le righe con le colonne; quindi le proprietà 1, 2, 3 e quelle di cui nei corollari 1, 2 valgono anche per le colonne.

C.v.d.

Corollario 6. $det(\mathbf{A}) = 0$ se e solo se le sue righe o le sue colonne sono vettori linearmente dipendenti.

Dimostrazione. La condizione di dipendenza lineare tra le colonne di A conduce al sistema lineare omogeneo AX = 0, che ha soluzione non banale se e solo se il rango di A non è massimo, ovvero, per il corollario 4, se e solo se det(A) = 0.

Per la proprietà 4. poiché le righe di **A** sono le colonne di **A**^T, si può ripetere il ragionamento precedente sostituendo ad **A** la sua trasposta.

C.v.d.

Applicazioni geometriche del determinante.

1. Volume del parallelepipedo.

Fissiamo nello spazio un riferimento cartesiano ortogonale, e come d'uso indichiamo con **i, j, k** i versori degli assi. Dati due vettori $\mathbf{u} = (a,b,c)$, $\mathbf{v} = (a',b',c')$, ricordiamo che le componenti del loro prodotto vettoriale $\mathbf{u} \wedge \mathbf{v}$ si ricavano utilizzando le proprietà del prodotto vettoriale (vedi [testo], cap. 2, n. 3.12, pag. 60). Allargando la nozione di determinante ad una matrice "mista" (cioè, i cui elementi sono vettori in una riga, scalari nelle altre due) si ottiene, tramite lo sviluppo di Laplace, il vettore $\mathbf{u} \wedge \mathbf{v}$ come combinazione lineare dei versori fondamentali:

$$\mathbf{u} \wedge \mathbf{v} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ a' & b' & c' \end{pmatrix} = \mathbf{i}(bc' - b'c) + \mathbf{j}(ca' - ac') + \mathbf{k}(ab' - a'b).$$

Preso un terzo vettore $\mathbf{w} = (a", b", c")$, il suo prodotto scalare con $\mathbf{u} \wedge \mathbf{v}$ è dato, quindi, da un determinante "ortodosso" (si sviluppi secondo la terza riga):

$$\mathbf{u} \wedge \mathbf{v} \bullet \mathbf{w} = \det \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}.$$

Ricordiamo (si veda [testo] cap. 1, Def. 5.9, pag. 36) che $|\mathbf{u} \wedge \mathbf{v}|$ è l'area del parallelogrammo di lati \mathbf{u} , \mathbf{v} , e che, dato un versore \mathbf{n} , $|\mathbf{n} \bullet \mathbf{w}|$ è la misura della proiezione ortogonale di \mathbf{w} sulla

direzione di **n** ([testo], cap. 1, Def. 5.1, pag. 33, cap. 2, E.3.3, pag. 63). Se i tre vettori **u,v,w** non appartengono allo stesso piano, essi determinano un unico parallelepipedo P, di cui possiamo calcolare il volume come prodotto dell'area |**u**\nabla **v**| di una faccia per l'altezza relativa

a quella faccia, cioè per $|\mathbf{n} \bullet \mathbf{w}|$, con $\mathbf{n} = \frac{\mathbf{u} \wedge \mathbf{v}}{|\mathbf{u} \wedge \mathbf{v}|}$. Si ha quindi:

$$vol(P) = |\mathbf{u} \wedge \mathbf{v}| \frac{|\mathbf{u} \wedge \mathbf{v} \cdot \mathbf{w}|}{|\mathbf{u} \wedge \mathbf{v}|} = \left| \det \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix} \right|.$$

Da questa interpretazione del determinante come volume (a meno del segno) si può ricavare una diversa dimostrazione del **corollario 6**, per il caso di matrici di ordine 3.

2. Equazione del piano e condizione di complanarità.

Dato un punto $P_0=(x_0,y_0,z_0)$, il piano passante per P_0 e parallelo ai vettori **u**, **v** ha come direzione normale quella di $\mathbf{n}=\mathbf{u}\wedge\mathbf{v}$ e quindi (vedi [testo], cap. 2, n. 5, pag. 78-79) ha equazione

$$\mathbf{n} \bullet (\overrightarrow{OP} - \overrightarrow{OP_0}) = 0$$
, cioè $\mathbf{u} \wedge \mathbf{v} \bullet (\overrightarrow{OP} - \overrightarrow{OP_0}) = 0$

Dalle considerazioni precedenti si ricava quindi la **equazione del piano** per P_0 e parallelo ai vettori **u, v in forma di determinante**:

$$\det \begin{pmatrix} x - x_0 & y - y_0 & z - z_0 \\ a & b & c \\ a' & b' & c' \end{pmatrix} = 0.$$

Ricordiamo che se tre punti A, B, C non sono allineati, essi determinano un piano, che è parallelo ai vettori $\mathbf{u} = \overrightarrow{OB} - \overrightarrow{OA}$, $\mathbf{v} = \overrightarrow{OC} - \overrightarrow{OA}$; il piano dei punti A, B, C ha quindi l'equazione

$$\det \begin{pmatrix} x - x_A & y - y_A & z - z_A \\ x_B - x_A & y_B - y_A & z_B - z_A \\ x_C - x_A & y_C - y_A & z_C - z_A \end{pmatrix} = 0.$$

Se ne deduce la **condizione di complanarità** per 4 punti: i punti *A,B,C,D* appartengono ad uno stesso piano se e solo se è

$$\det \begin{pmatrix} x_D - x_A & y_D - y_A & z_D - z_A \\ x_B - x_A & y_B - y_A & z_B - z_A \\ x_C - x_A & y_C - y_A & z_C - z_A \end{pmatrix} = 0.$$

In modo analogo, si ha che, nel piano riferito a coordinate x,y, l'equazione della retta per i punti distinti A, B è

$$\det\begin{pmatrix} x - x_A & y - y_A \\ x_B - x_A & y_B - y_A \end{pmatrix} = 0.$$

Come esercizio (da non trascurare!), ragionando in analogia al caso della complanarità, si trovi la condizione di allineamento di tre punti nel piano.