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Abstract. Generalized hypertree width (short: ghw) is a concept that leads to
a large class of efficiently solvable CSP instances, whose associated recognition
problem (of checking whether the ghw of a CSP is bounded by a constant k) is
however known to be NP-hard. An elegant way to circumvent this intractability
has recently been proposed in the literature, by means of a “no-promise” approach
solving CSPs of bounded ghw without the need of actually computing a gener-
alized hypertree decomposition. In fact, despite the conceptual relevance of this
approach, its computational issues have not yet been investigated and, indeed,
precise bounds on the running time of the no-promise algorithm are missing.

The first contribution of this paper is precisely to fill this gap. Indeed, the com-
putational complexity of the no-promise approach is analyzed, by exploiting an
intuitive characterization relying on the notion of hyperconsistency width. It turns
out that, in the basic formulation, the approach is hardly suited for practical ap-
plications mainly because of its bad scaling in the size of the constraint database.
Motivated by these news and based on a variant of hyperconsistency width, a dif-
ferent and more efficient method to decide whether CSPs of bounded ghw admit
solutions is then provided. Importantly, the improved method exhibits the same
scaling as current evaluation algorithms for instances of bounded hypertree width,
nonetheless allowing to isolate a larger class of queries. Finally, to give a com-
plete picture of the complexity issues of the no-promise approach, the problems
of computing one solution and of enumerating all the solutions are also studied.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a well-known framework to model and
solve search problems in several application domains. Formally, a CSP instance (e.g.,
[5]) is a triple (Var , U, C), where Var is a finite set of variables, U is a finite domain
of values, and C = {C1, C2, . . . , Cq} is a finite set of constraints, where each Ci is a
pair (Si, ri), in which Si ⊆ Var is called the constraint scope, and ri ⊆ U |Si| is called
the constraint relation. Then, a solution for a CSP instance is simply a substitution
θ : Var �→ U that satisfies all constraints.

Following [13], in this paper we shall exploit the logic-based characterization of a
CSP instance as a pair (Q,D), where D is the constraint database, i.e., the set of all the
constraint relations ri, for each constraint Ci = (Si, ri), and Q is a conjunctive query,
i.e., an existentially quantified first-order formula with no negations or disjunctions,
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over the relational vocabulary consisting of the atoms ri(Si). Then, a solution θ is a
substitution such that θ(Q) evaluates true over D. The set of all the solutions for (Q,D)
will be denoted by Q[D].

Since solving CSPs in their general formulation is an NP-hard problem, much re-
search has been spent to identify restricted classes of CSPs over which solutions can
efficiently be computed. In this paper, we shall focus on classes of CSPs defined by
structural restrictions on the queries (see, e.g., [15,5,11,7]). In this context, we recall
that a class C is generally considered an “island of tractability” for CSPs if both the
recognition problem of deciding whether Q is in C, and the following promise problem

SATp
∅[C] :

⎧
⎨

⎩

Input : a CSP instance (Q,D) s.t. Q ∈ C
Output : Yes iff Q[D] �= ∅,

No iff Q[D] = ∅

are feasible in polynomial time.
When the recognition problem is hard, the promise problem SATp

∅[C] might still be
of interest in some applications, since one may have a guarantee that Q belongs to the
class C. But, this is in general not the case and, hence, one is more likely interested in
solving the no-promise problem SATnp

∅ [C], where an arbitrary CSP instance (Q,D) is
given in input, and where an algorithm may possibly decline to answer (e.g., answering
IDon′tKnow) when Q �∈ C:

SATnp
∅ [C] :

⎧
⎪⎪⎨

⎪⎪⎩

Input : a CSP instance (Q,D)
Output : Yes only if Q[D] �= ∅,

No only if Q[D] = ∅,
IDon′tKnow only if Q �∈ C

The need of dealing with no-promise problems has recently been argued in [3],
where the class of queries whose generalized hypertree width [8] is bounded by
a constant k (short: class C(ghw, k)) has been considered, and where it is shown
that SATnp

∅ [C(ghw, k)] can be solved in polynomial time, by means of a projective
k-consistency algorithm. Even though this result is conceptually relevant because check-
ing whether the ghw of a CSP is bounded by a constant k is NP-hard [9], its practical
applicability is still unclear because a thorough analysis of the complexity issues of the
projective k-consistency algorithm has not been conducted and, in fact, precise bounds
on its running time were missing.

In this paper we continue along this line of research, and we face the above research
questions by shedding light on the computational aspects of the projective k-consistency
algorithm, which have not been discussed in [3]. Indeed:

(1) We introduce the notion of hyperconsistency width as a measure for characterizing
the intricacy of constraints, and we study the computational properties of the class
C(hcw, k) of those queries whose hyperconsistency width is bounded by k.

(2) We show that this notion is a different, yet equivalent reformulation of the projec-
tive width, implicit in [3]. In fact, our reformulation leads to a conceptually sim-
pler method whose correctness is proven without the need of any game-theoretic
characterization for it.
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hcw≤ghw ahcw≤ghw

SATp
∅ O(q3kr2k) O(q2k+1rk)

SATp
∃ O(q3k+1r2k+1) O(q2k+2rk+1)

SATp
∀ O(q3k+1r2k+1o) O(q2k+2rk+1o)

SATnp
∅ O(q3k+1r2k+1) O(q2k+2rk+1)

SATnp
∃ O(q3k+1r2k+1) O(q2k+2rk+1)

SATnp
∀ O(q3k+2r2k+2o) O(q2k+3rk+2o)

Fig. 1. Results for SAT[C(ghw, k)]. On the left: bounds for the algorithm in [3]; on the right:
improved bounds.

(3) We introduce and investigate a different method to solve problems in C(ghw, k),
whose complexity improves on the bounds derived in (1). In particular, the basic
version of the projective k-consistency algorithm scales as O(q3kr2k), where q is
the size of Q (i.e. the number of atoms plus the number of variables in the for-
mula), and r is the size of the largest relation in D (i.e. the number of its entries).
To the contrary, our novel method scales as O(q2k+1rk), thereby significantly en-
larging the class of instances that can practically be managed. Indeed, this scal-
ing is basically the same that one may achieve when solving CSPs on the class
of queries having bounded hypertree width [8] (short: C(hw, k)), even though this
class is properly contained in C(ghw, k) and is, in fact, one of the largest classes of
tractable CSPs that is known to be also efficiently recognizable (see, e.g., [2,7]).

(4) Technically, the result in (3) is achieved by exploiting the fact that the hyper-
consistency width is defined in a way that is parametric w.r.t. the underlying de-
compositions. This is the main conceptual difference with the projective width. In
fact, our improved method is based on restricting the consistency algorithm on the
class of acyclic decompositions whose width is bounded by k (short: the subclass
C(ahcw, k) of C(hcw, k)). The relationships among these two notions and the no-
tion of generalized hypertree width are also clarified in the paper.

(5) Finally, to complement the results on the decision problems related to the class
C(ghw, k), we investigate the complexity issues arising for the problems of com-
puting one solution (short: SAT∃) and of computing all the solutions (short: SAT∀).

Our results are summarized in Figure 1, where o denotes the size of the output Q[D].
Notice that the complexity of the problems SAT, SAT∃, and SAT∀ has completely been
characterized for both the cases of promise and no-promise problems, and for both
the approach investigated in [3] and for the improved methods based on the notion of
acyclic hyperconsistency width.

The rest of the paper is organized as follows. In Section 2, the basic notion of hy-
perconsistency width is presented and its links with the notion of projective width are
discussed. Then, in Section 3, the subclass C(ahcw, k) of C(hcw, k) is defined and its
computational properties are studied, by also comparing them with the bounds derived
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for the approach in [3]. The problems of computing one solution and of computing
all the solutions are discussed in Section 4. Eventually, a few final remarks and some
directions for further work are reported in Section 5.

2 HyperConsistency Width

In this section, we present the notion of hyperconsistency width, which can be viewed
as a natural generalization of the various consistency concepts that have been studied in
the context of binary representations of constraints (e.g., [4,14]). Then, we compare it
with the notion of projective width that is implicit in [3].

The first step is to introduce the concept of hypergraph decomposition. In fact, the
reader might already be familiar with the notion of (generalized) hypertree decompo-
sition [8], which is basically a tree whose vertices are associated with a set of atoms
and with a subset of the variables occurring in them, and where for each variable X ,
the subgraph induced over the vertices containing X is connected (see Section 3.1).
Then, hypergraph decompositions can be viewed as an extension of hypertree decom-
positions where the underlying shape is an arbitrary graph rather than a tree, and where
the connectedness condition is omitted. In the following, let us denote by var(Q) (resp.,
atoms(Q)) the set of variables (resp., atoms) in a query Q.

Definition 1. A hypergraph decomposition J of a query Q, is a tuple (G, χ, λ) such
that:

– G = (V (J), E(J)) is a directed graph;
– λ : V (J) → 2atoms(Q) associates to each vertex v ∈ V (J) a set of atoms λ(v) ⊆

atoms(Q);
– χ : V (J) → 2var(Q) associates to each vertex v ∈ V (J) a set of variables χ(v) �= ∅

satisfying χ(v) ⊆ ⋃
A∈λ(v) var(A).

The width of J is defined as maxv∈V (J) |λ(v)|. �

Next, we shall make use of some standard relational operators to manipulate constraint
relations (see, e.g., [1]). Thus, if ri is a relation over the scope Si, and X is a subset
of Si, we denote by ΠX(ri) the relation obtained by projecting ri over X . Also, given
two relations ri and rj , the join of ri and rj is denoted by ri��rj ; and, the semi-join of
ri and rj , denoted by ri � rj , is just a shortcut for ri��(ΠSi∩Sj ri).

Let G = (V, E) be a directed graph. A G-set of relations R is a set of relations in
one-to-one correspondence with the nodes V ; thus, for each v ∈ V , rv ∈ R is the
associated relation in R. The �G-fixed-point of R, denoted by γG(R), is the G-set of
relations obtained as the unique fixed-point of R for the set of rules {rv := rv � rv′ |
(v, v′) ∈ E}.

Based on these notions, we can define an extremely simple and clear algorithm
AJ (for a decomposition J) deciding whether Q[D] = ∅. This algorithm, reported in
Figure 2, firstly computes for each node v, the joins and the projections corresponding
to λ(v) and χ(v), respectively. Then, it computes the �G-fixed-point of the resulting
G-set of relations. Finally, it reports No (resp., IDon′tKnow) if some relation in this
�G-fixed-point is (resp., is not) empty.
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Input: a CSP instance (Q,D), and a decomposition J ;
Output: No or IDon′tKnow;

begin
for each vertex v ∈ V (G) do

let rv = Πχ(v)(��A∈λ(v) (A[D]));
compute {r′v | v ∈ V (G)} = γG({rv | v ∈ V (G)});
if there is v ∈ V (G) such that r′v = ∅, then return No;
else return IDon′tKnow;

end.

Fig. 2. Algorithm AJ

Actually, AJ may be incomplete, but one may easily see that it is sound. In addition,
we next show that it terminates in polynomial time and that, for some special classes of
decomposition, it leads to a very efficient procedure.

Proposition 1. For a k-width hypergraph decomposition J , algorithm AJ returns No
on input (Q,D) only if Q[D] = ∅. Moreover, the �G-fixed-point can be computed so
that AJ terminates in time: O(|V |×|E|×r2k), in the general case, and O((|V |+|E|)×
rk) when G is acyclic.

Proof. If some relation r′v in the �G-fixed-point is empty, then any substitution θ for
the variables in χ(v) can not be extended to a solution, i.e., to a substitution for all the
variables in the query satisfying the constraints.

As for the running time, on a RAM machine, the join of k relations can be computed
in time O(rk), the projection of one relation in linear time, and the semijoin of two
relations in linear time [6]. Therefore, the set {rv | v ∈ V (G)} can be computed in
time O(|V | × rk), and each semijoin required for computing γG({rv | v ∈ V (G)})
takes O(rk). When G is acyclic, its edges can be sorted according to a topological
order, so that only |E| steps are needed to reach the fixed point. In the general case,
instead, the result follows since |V | × rk steps are required at most to reach the fixed
point, because this is an upper bound on the number of tuples in {rv | v ∈ V (G)}, and
since each step involves |E| semijoin computations. �

Depending on the structure of Q and J , AJ might be a complete decision procedure.
Formally, we say that a hypergraph decomposition J of a query Q is consistent if, for
each database D,

AJ returns

{
No iff Q[D] = ∅
IDon′tKnow iff Q[D] �= ∅

Then, the hyperconsistency width hcw(Q) of Q is the minimum width over all its
consistent decompositions. The class of those queries whose hyperconsistency width
is bounded by k is denoted by C(hcw, k). Focusing on this class provides a guarantee
for the tractability of CSPs. This is shown below, by providing a polynomial bound for
solving the SATp

∅[C(hcw, k)] problem.
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Theorem 1. Let (Q,D) be a CSP instance, let q be the size of Q and r the size of the
largest relation in D. Then, SATp

∅[C(hcw, k)] is feasible in O(q3kr2k).
Proof. Let J = (G, χ, λ) and J ′ = (G′, χ′, λ′) be two hypergraph decompositions for
the same query Q. We say that J is contained in J ′, denoted by J 	 J ′, if there is a
morphism f from the nodes of G to the nodes of G′ such that f(G′) is a subgraph of G
and, for each node v of G: χ′(f(v)) ⊇ χ(v), and λ′(f(v))) ⊇ λ(f(v).

Armed with this notion, one may note that J 	 J ′ ∧ J is consistent ⇒
J ′ is consistent. In addition, we observe that for any fixed natural number k, the hy-
pergraph decomposition Jk where:

– V (Jk) = {v ⊆ atoms(Q) | |atoms(v)| ≤ k)};
– E(Jk) = V (Jk) × V (Jk);
– ∀v ∈ V (Jk), λ(v) = v and χ(v) = (∪A∈vvar(A)).

is 	-maximal among the set of all the k-width hypergraph decompositions.
When hcw(Q) ≤ k, we know that Jk is consistent and we can decide

SATp
∅[C(hcw, k)] by using the algorithm AJk

. Then, we can apply Proposition 1,
and the running time follows by observing that |V (Jk)| × |E(JK)| = |V (Jk)|3 and
that |V (Jk)| = O(qk), by construction. �

2.1 Links with Projective Width

We are now in the position of showing that the notion of hyperconsistency width is a dif-
ferent formulation of the notion of projective width of [3]. The result is next proven by
observing that this notion provides a simple and natural characterization of the k-cover
game, introduced in [3] to define classes of queries with bounded projective width.

For a query Q and a databaseD, the game k-cover(Q,D) can be described as follows.
Two players, spoiler and duplicator, play one after the other. At each step i, the spoiler
chooses a pair (Xi, Li) such that Li⊆atoms(Q), |Li|≤k and Xi⊆

⋃
A∈Li

var(A).
Then, the duplicator chooses a homomorphism hi from variables in Xi to constants
in D such that hi(Xi) ∈ ΠXi(��A∈Li A[D]). Moreover, from the step i > 1, the
duplicator is also asked to choose hi such that, for each variable V ∈ Xi−1 ∩ Xi,
hi(V ) = hi−1(V ). The spoiler wins if the duplicator cannot find the required homo-
morphism, and the duplicator wins if the play is infinite.

Theorem 2. Let Q be a query. Then, the following statements are equivalent:

– for each database D, Q[D] = ∅ implies that the spoiler has a winning strategy in
the k-cover(Q,D) game;

– hcw(Q) ≤ k.

Proof. (Sketch) For each k-width hypergraph decomposition J = (G, χ, λ) of Q,
and for each database D, we can naturally define the game k-coverJ (Q, D) as a
restriction of k-cover(Q, D), where the spoiler is asked to choose tuples of the form
(Xi, Li) = (χ(vi), λ(vi)) for some vi ∈ V (J), and to follow the edges of E, i.e.,
for each i > 1, (Xi−1, Li−1) = (χ(vi−1), λ(vi−1)) is such that (vi−1, vi) ∈ E(J).
Then, we can show that for each node v ∈ V (J), the relation r′v computed by the
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algorithm AJ in Figure 2 exactly corresponds to a mapping witnessing a winning
strategy for the duplicator in the game k-coverJ(Q,D). Therefore, a hypergraph
decomposition J is consistent if and only if for each database D such that Q[D] = ∅,
the spoiler has a winning strategy in k-coverJ(Q, D). To conclude the proof,
we claim that k-cover(Q,D) coincides with the game k-coverJk

(Q, D), where Jk is
the 	-maximal hypergraph decomposition constructed as in the proof of Theorem 1. �

Note that a similar link was established in [14] for binary representations of CSPs.

3 Acyclic HyperConsistency Width

According to Theorem 1, the promise problem for the class C(hcw, k) can be solved
in polynomial time in the size of the query and the database. However, despite this
theoretical guarantee on the tractability, the running time O(q3kr2k) seems not suited
for practical applications, mainly because of the bad scaling in the size of the database.
In particular, we point out that solving CSPs in the class C(hw, k) (or, in C(ghw, k),
when a decomposition is given to hand) can be done by means of algorithms scaling as
O(rk) in the size of the database (see, e.g., [8]).

Hence, improving on the scaling we have derived for the notion of hyperconsistency
width is a major requirement for making this approach practical and competitive w.r.t.
structural methods already used in the literature. To achieve this goal, the basic idea
we shall exploit is to introduce a refinement of the notion of hyperconsistency width,
for which a good scaling is obtained by suitably restricting the shape of the underlying
hypergraph decompositions to acyclic graphs (as suggested by the better scaling which
can be achieved in this case according to Proposition 1).

Definition 2. The acyclic hyperconsistency width hcw(Q) of a query Q is the minimum
width over all its consistent decompositions J = (G, χ, λ) such that:

(1) J is acyclic; and,
(2) the depth of J (the length of the longest path in G) is bounded by the size of Q. �

Clearly enough, this novel notion comes as a refinement of the hyperconsistency width
and, therefore, it holds that C(ahcw, k) ⊆ C(hcw, k). On the other hand, it allows us to
improve the complexity result of Theorem 1, as stated below.

Theorem 3. SATp
∅[C(ahcw, k)] is feasible in O(q2k+1rk).

Proof. We observe that for any fixed natural number k, the following hypergraph de-
composition Jk,n where:

– V (Jk,n)=V × {0, 1, ..., n}, where V = {v ⊆ atoms(Q) | |atoms(v)| ≤ k)};
– E(Jk,n)={((v, i), (v′, i′)) | (v, v′)∈V ×V ∧ i′=i + 1}
– ∀v ∈ V (Jk), λ(v) = v and χ(v) = (∪A∈vvar(A)).

is 	-maximal among all the k-width decompositions of depth bounded by n. Therefore,
when ahcw(Q) ≤ k, and n = |Q| we know that Jk,n is consistent and we can decide
SATp

∅[C(hcw, k)] by using the algorithm AJk,n
. The running time, then, follows from

Proposition 1. �
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3.1 Links with Generalized Hypertree Width

We next investigate on how the classes C(ahcw, k) and C(hcw, k) compare with
C(ghw, k). Let us start by preliminary recalling the definition of generalized hypertree
width [8], by stating it as a specialization of the notion of hypergraph decomposition.

In fact, the focus is on acyclic decompositions (similarly to the case of ahcw), satis-
fying some additional requirements.

Definition 3. A generalized hypertree decomposition J of a query Q is a hypergraph
decomposition (G, χ, λ) such that:

– G is a rooted tree;
– ∀A ∈ atoms(Q), ∃v ∈ V (G) such that A ∈ λ(v);
– ∀X ∈ var(Q), the subgraph of G induced over the nodes in {v ∈ V (G) | X ∈

χ(v)} is a tree.

The generalized hypertree width of Q, denoted by ghw(Q), is the minimum width
over all its generalized hypertree decompositions. �

Proposition 2. Let J be a generalized hypertree decomposition. Then, J is consistent.

Proof. (Sketch) It is sufficient to observe that when J is a generalized hypertree
decomposition, the algorithms AJ in Figure 2 basically coincides with the evaluation
algorithm in [16], proposed for the class of acyclic queries. �

Therefore, C(ghw, k) ⊆ C(hcw, k) (cf. [3]) and, hence, when ghw(Q) ≤ k and when a
generalized hypertree decomposition J is given to hand, we can decide whether Q[D] =
∅, for each database D, by using Theorem 1.

Unfortunately, this approach to solve instances of bounded generalized hypertree
width has two important drawbacks. First, its scaling is O(q3kr2k) as a direct con-
sequence of the result on hyperconsistency width. And, second, no polynomial-time
algorithm may exist to recognize instances in the class C(ghw, k), unless P = NP (cf.
[9]). Dealing with the intractability of ghw will be addressed in Section 4. Here, we
focus instead on the former drawback, by relating the three notions studied in the pa-
per and by observing that the nice scaling results of the ahcw can be extended to the
generalized hypertree width.

Theorem 4. For every natural number k, it holds that: C(ghw, k) ⊆ C(ahcw, k) ⊆
C(hcw, k).
Proof. (Sketch) We know that C(ahcw, k) ⊆ C(hcw, k); hence, only C(ghw, k) ⊆
C(ahcw, k) remains to be proven. Actually, since generalized hypertree decompositions
are always acyclic, it suffices to show that when ghw(Q) ≤ k for a query Q, a
generalized hypertree decomposition of Q exists whose depth is bounded by size of Q.
In fact, this follows from the game-theoretic characterization of generalized hypertree
width in [10], where monotone winning strategies can be mapped into generalized
hypertree decompositions; indeed, because of the monotonicity of the game, the depth
of the generalized hypertree decomposition is bounded by |var(Q)|. �

A consequence of the theorem above is that the algorithm for SATp
∅[C(ahcw, k)] dis-

cussed in the proof of Theorem 3 is also an algorithm for SATp
∅[C(ghw, k)].
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Corollary 1. SATp
∅[C(ghw, k)] is feasible in O(q2k+1rk).

To conclude the analysis on the relationships among the various notions, we observe that
from [3] and Theorem 2 it follows that there are classes of queries where the generalized
hypertree width is unbounded, while the hyperconsistency width remains bounded.

Indeed, this is because the hyperconsistency width is preserved under taking cores
[12], while the generalized is not. Recall, here, that the core of a query Q, denoted
by CORE(Q), is a query Q′ such that: (1) atoms(Q′) ⊆ atoms(Q); (2) there is a
mapping f : var(Q) �→ var(Q′) such that for each atom ri(X1, ..., Xn) ∈ atoms(Q),
ri(f(X1), ..., f(Xn)) is in atoms(Q′); and, (3) there is no query Q′′ satisfying (1) and
(2) such that atoms(Q′′) ⊂ atoms(Q′).

In fact, we can show that a similar result holds when comparing the notion of acyclic
hyperconsistency width and the generalized hypertree width.

Proposition 3. There is a class {Qn | n > 0} of queries with ghw(Qn)
ahcw(Qn) → +∞.

Proof. Let (Qn)n∈N be a class of queries such that ghw(Qn) → +∞. For each
query Qn, we select a variable X ∈ var(Qn), and we define the novel query
Q′

n = Qn ∧ ∧{rn(X, . . . , X) | rn(Sn) ∈ atoms(Qn)}. Then, we can check that
ghw(Q′

n) = ghw(Qn), ghw(CORE(Q′
n)) = 1, and ahcw(Qn) = 1. �

4 Complexity Results on No-Promise Problems

In this section, we complete our investigation by focusing on the description of incom-
plete algorithms for solving CSPs. The main aim is to extend the tractability result in
Corollary 1 to the case of no-promise problems, i.e., when a generalized hypetree de-
composition is not given to hand. Actually, besides the decision problem of checking
whether Q[D] is empty for an instance (Q,D), we will also consider the related com-
putation problem SAT∃ of computing an element in Q[D], and the problem SAT∀ of
computing the whole set Q[D].

Moreover, rather than focusing on some specific structural decomposition method,
the algorithms we shall present correctly behave on any class of queries which is stable.
Formally, a class C of queries is stable if, for each Q ∈ C, for each unary constraint r
not in Q, and for each variable X , we have that Q ∧ r(X) is in C.

Theorem 5. Let C be a class of queries which is stable. Let A be an algorithm solving
in O(qarb) the problem:

Input: a CSP instance (Q,D);
Output: No only if Q[D] = ∅, and

IDon′tKnow only if Q[D] �= ∅ or Q �∈ C
Then, we can decide:

SATp
∅[C] in O(qarb); SATnp

∅ [C] in O(qa+1rb+1);
SATp

∃[C] in O(qa+1rb+1); SATnp
∃ [C] in O(qa+1rb+1);

SATp
∀[C] in O(qa+1rb+1o); SATnp

∀ [C] in O(qa+2rb+2o).



96 G. Gottlob, G. Greco, and B. Marnette

Input: a CSP instance (Q,D);
Output: a solution θ ∈ Q[D] only if Q[D] �= ∅, and

No only if Q[D] = ∅, and
IDon′tKnow only if Q �∈ C

Given: An incomplete algorithm A solving the following :
Input: a CSP instance (Q′,D′);
Output: No only if Q′[D′] = ∅, and

IDon′tKnow only if Q′[D′] �= ∅ or Q′ �∈ C
begin

if A(Q,D) returns No then return No;
let θ = ∅;
for each variable X ∈ var(Q) do

let rX be a fresh predicate symbol of arity 1;
let A ∈ atoms(Q) be such that x ∈ var(A);
let QX = Q ∧ rX(X);
let lX = Π{X}(A[D]);
for each e ∈ lX do

let DX,e = D ∪ {rX(e)};
if ∀e ∈ lX A(QX ,DX,e) returns No then

stop and return IDon′tKnow:
else

let e be s.t. A(QX ,DX,e) returns IDon′tKnow;
(Q,D) := (QX ,DX,e);
let θ(X) = e;

if θ �∈ Q[D] then return IDon′tKnow;
else return θ;

end.

Fig. 3. Algorithm Anp
∃ for SATnp

∃ [C] (cf. [3])

Proof. (SATp
∅[C]). We can solve SATp

∅[C] by means of an algorithm Ap
∅ that returns No

iff A(Q,D) returns No, and returns Yes iff A(Q,D) returns IDon′tKnow.
(SATnp

∃ [C]). Consider the algorithm Anp
∃ reported in Figure 3, that is basically the

algorithm discussed in [3] for the class of queries having bounded generalized hyper-
tree width. This algorithm only returns No when A(Q,D) returns No (in which case,
Q[D] = ∅). Otherwise, i.e., when Q[D] �= ∅, the algorithm starts computing a solution θ
by iteratively fixing a value e ∈ lX , for each variable X such that QX [DX,e] �= ∅. Note
that during the computation, the query Q is updated by adding a unary constraint pre-
cisely fixing the value for X . Hence, provided that the class C is stable, any such modi-
fication preserves the membership of Q in C. Finally, the algorithm returns IDon′tKnow
iff θ is not a solution. Note that when Q[D] �= ∅, there always exists at least one value
e ∈ lX , for each variable X such that QX [DX,e] �= ∅. For the complexity of Anp

∃ ,
note that the size of Q (resp. D) always remains smaller than 2q (resp. 2r) and therefore



HyperConsistency Width for Constraint Satisfaction 97

Input: a CSP instance (Q,D), a set O ⊆ var(Q);
Output: ΠO(Q[D]), and

IDon′tKnow only if Q �∈ C;

Given: An algorithm Anp
∅ for SATnp

∅ [C]

begin
if Anp

∅ (Q,D) returns IDon′tKnow then
stop and return IDon′tKnow;

if Anp
∅ (Q,D) returns No then
stop and return ∅;

if O = ∅ then
stop and return ∅;

else
choose a variable X in O and let O′ = O − {X};
let rX be a fresh predicate symbol of arity 1;
let A ∈ atoms(Q) be such that X ∈ var(A);
let QX = Q ∧ rX(X), lX = Π{X}A[D], and R = ∅;
for each e ∈ lX

let DX,e := D ∪ {rX(e)}
if Anp

∅ (QX ,DX,e) returns IDon′tKnow then
stop and return IDon′tKnow

if Anp
∅ (QX ,DX,e) returns Yes then

for each h′ ∈ Anp
∀ (QX ,DX,e,O′) do

let h′(X) := e;
R := R∪ {h′};

return R;
end.

Fig. 4. Algorithm Anp
∀ for SATnp

∀ [C]

each call to the algorithm A costs O(qarb). The number of such calls is bounded by
Σ{|lX |, X ∈ var(Q)} = O(qr). Therefore, Anp

∃ terminates in time O(qa+1ra+1).
(SATnp

∅ [C] and SATp
∃[C]). We can use the algorithm Anp

∅ which simply returns Yes
iff Anp

∃ returns one solution θ ∈ Q[D], and the same output of Anp
∃ , if no solution is

computed. Clearly enough, Anp
∅ is also an algorithm for SATp

∃[C].
(SATnp

∀ [C]). Armed with Anp
∅ , we present in Figure 4 the recursive algorithm Anp

∀
for SATnp

∀ [C], taking as extra-argument a set of variables O (for O = var(Q), the
whole relation Q[D] is computed). The algorithm Anp

∀ only returns a relation R =
ΠO(Q[D]) when every call to Anp

∅ (QX ,DX,e) have returned either Yes or No, in which
case we know by correctness of Anp

∅ that we didn’t forget any (or add any extra) tuple
in ΠO(Q[D]). Therefore, Anp

∀ only returns IDon′tKnow when Q �∈ C. Each call to Anp
∅

costs O(qa+1rb+1). Indeed, Anp
∀ first executes r calls to the algorithm Anp

∅ for the first
variable X ∈ O, and then applies r more calls each time that the case “Anp

∅ (Qx,Dx,e)
returns Yes” appears. This may happen O(|O| × o) = O(qo) times at most. Therefore,
Anp

∀ terminates in time O(qro) × O(qa+1rb+1) = O(qa+2rb+2o).



98 G. Gottlob, G. Greco, and B. Marnette

(SATp
∀[C]). The problem can be solved in time O(qa+2rb+2o), by a slight variation

of the algorithm Anp
∀ , where Ap

∅ is used instead of Anp
∅ . The complexity is then

O(qa+1rb+1o). �

As an example application of the above theorem, we next show that the class of queries
having bounded generalized hypertree width is stable, so that bounds in Figure 1 are
correct.

Proposition 4. For every k, the class C(ghw, k) is stable.

Proof. Let J = (G, χ, λ) be a k-width generalized hypergraph decomposition of Q, let
r be a unary constraint not in Q, let X be a variable, and let Q′ = Q∧r(X). We build a
hypergraph decomposition J ′ by adding a node v′ to V (J) such that χ(v′) = {X} and
λ(v′) = {r(X)}, and an edge (v, v′) to E(J), where v is an arbitrarily chosen node
such that X ∈ χ(v). Then, J ′ is a k-width generalized hypertree decomposition. �

5 Discussion and Conclusion

We have characterized the computational complexity of solving the promise and no-
promise problems on the class of queries having bounded generalized hypertree width,
by means of consistency-based algorithms. On the one hand, we have provided precise
bounds for the technique of [3], which firstly suggested the idea of no-promise algo-
rithms for C(ghw, k). On the other hand, the notion of hyperconsistency width being
parameterized by the underlying decomposition allowed us to obtain improved com-
plexity bounds. These bounds have been established for both the case of promise and
no-promise problems, and for the problems SAT, SAT∃, and SAT∀.

It turned out that instances of bounded generalized hypertree width can be solved
with the enhanced no-promise approach by means of an algorithm whose scaling is
the same as current evaluation algorithms for instances of bounded hypertree width
(see [8], for the description of these algorithms), but with the advantage of isolating a
larger class of instances (recall that C(ghw, k) ⊃ C(hw, k)). This is relevant in the light
that C(hw, k) is one of the largest classes of tractable CSPs that is known to be also
efficiently recognizable (see, e.g., [2,7]).

Several research questions naturally arise from this contribution. First, assessing the
exact relationship among the classes C(ghw, k), C(hcw, k), and C(ahcw, k) is still an
open problem. In particular, given that one may easily observe that for each query Q, it
is the case that hcw(Q)=hcw(CORE(Q)), it is natural to ask whether ghw(CORE(Q))
coincides with hcw(Q) (and ahcw(Q)).

Second, the (improved) no-promise algorithm scales as O(q2k) in the size of the
query. Interestingly, this is also the best upper bound known for computing a hypertree
decomposition. Whether it is possible to improve on this exponent appears therefore a
crucial question for a deeper and unifying understating of these notions.
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