### Game Theory V for Society and Economy

and Practice

Gianluigi Greco Dipartimento di Matematica e Informatica Università della Calabria

Doctoral Consortium - Al\*IA 2014

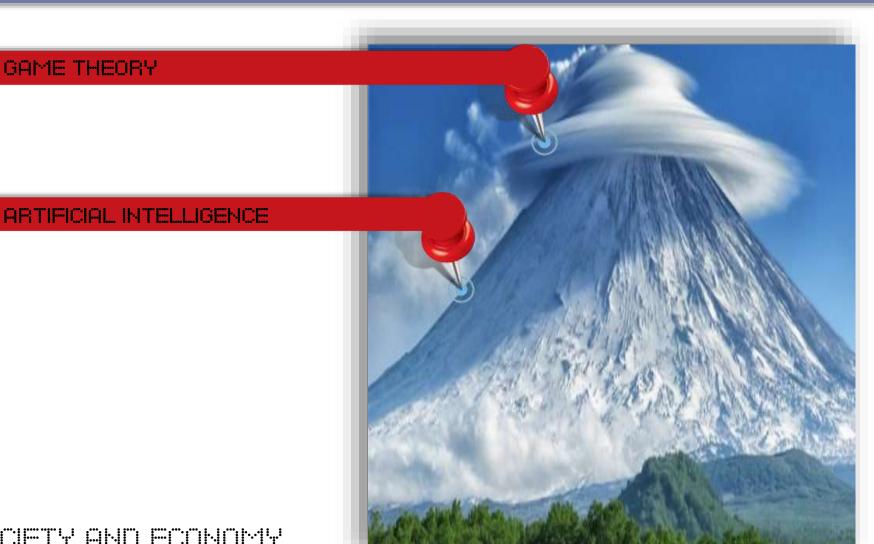
## Al and Society?



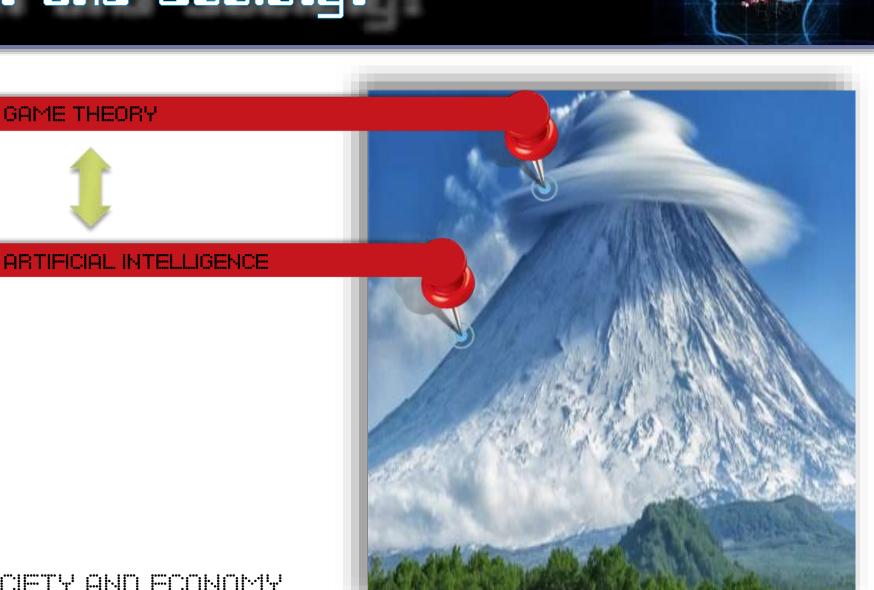
#### SOCIETY AND ECONOMY

ARTIFICIAL INTELLIGENCE





#### GAME THEORY



## Al and Society?

#### GAME THEORY



#### ARTIFICIAL INTELLIGENCE



#### Apologia di un matematico, 1940:

Non ho mai fatto nulla di «utile». Nessuna mia scoperta ha contribuito, e verosimilmente mai lo farà, ad apportare il benché minimo miglioramento, diretto o indiretto, al benessere dell'umanità. [...] Giudicato dal punto di vista della rilevanza pratica, il valore della mia vita matematica è nullo. [...] La sola difesa della mia vita è questa: Ho aggiunto qualcosa al sapere e ho aiutato altri ad aumentarlo ancora; il valore dei miei contributi si differenzia soltanto in grado, e non in natura, dalle creazioni dei grandi matematici, o di tutti gli altri artisti, grandi e piccoli, che hanno lasciato qualche traccia dietro di loro.

## Al and Society?

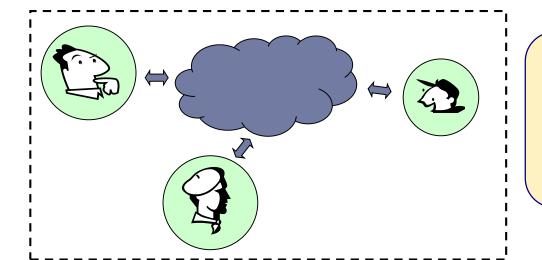
#### GAME THEORY



#### ARTIFICIAL INTELLIGENCE

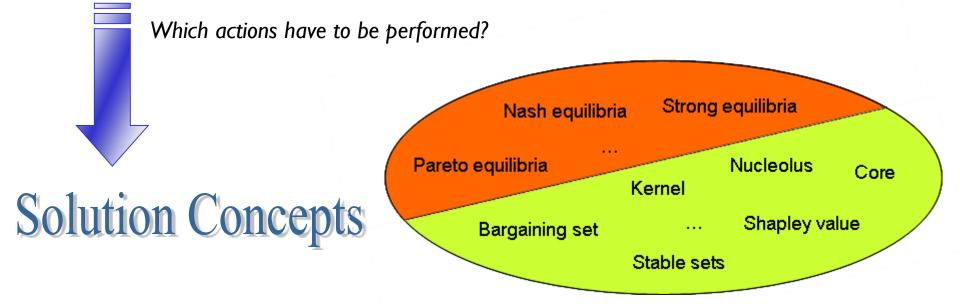






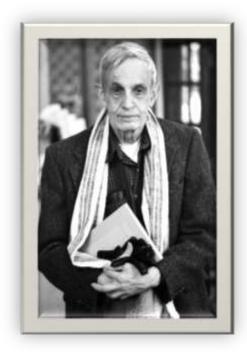
#### Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

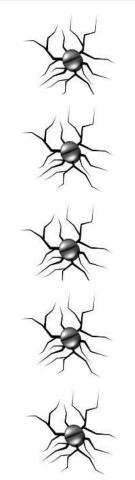


## Two Perspectives

- Strategic Games
  - Agents are selfish interested



JOHN NASH





**Coalitional Games** 

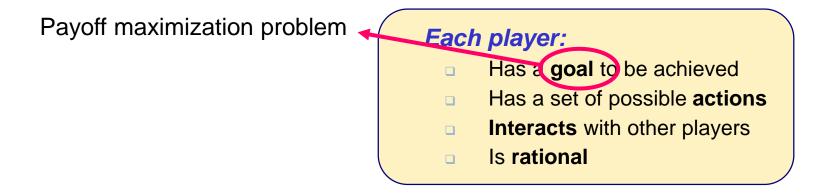
Agents can collaborate



JOHN VON NEUMANN

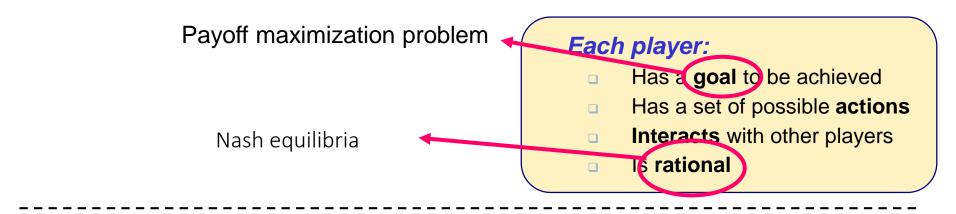






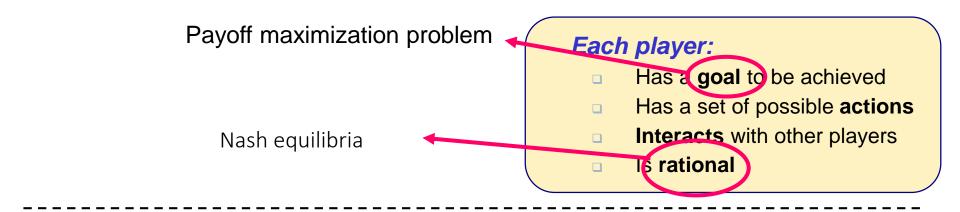
| Bob  | John goes <mark>out</mark> | John stays at <mark>home</mark> |
|------|----------------------------|---------------------------------|
| out  | 2                          | 0                               |
| home | 0                          | 1                               |

| John | Bob goes out | Bob stays at home |
|------|--------------|-------------------|
| out  | 1            | 1                 |
| home | 0            | 0                 |

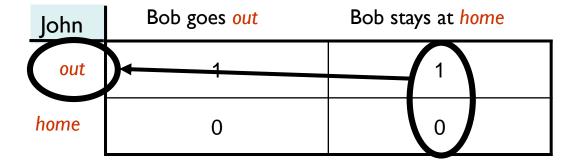


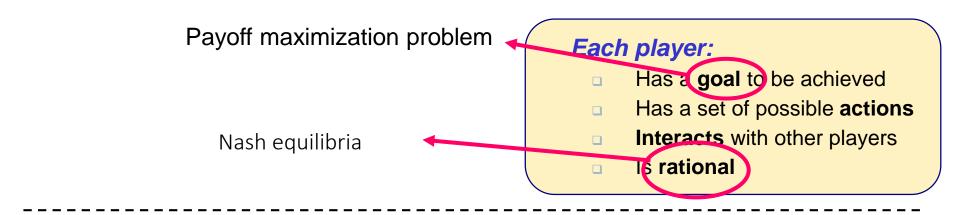
| В  | ob  | John goes <mark>out</mark> | John stays at <mark>home</mark> | _ |
|----|-----|----------------------------|---------------------------------|---|
|    | out | 2                          | 0                               |   |
| hc | ome | 0                          | 1                               |   |

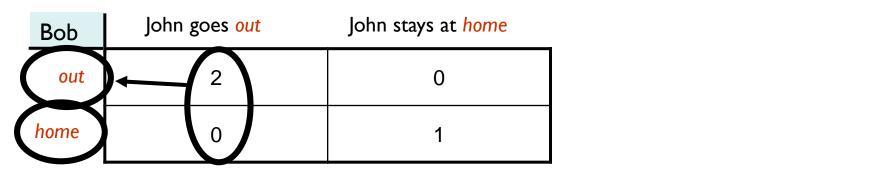
| John | Bob goes out | Bob stays at home |
|------|--------------|-------------------|
| out  | 1            | 1                 |
| home | 0            | 0                 |

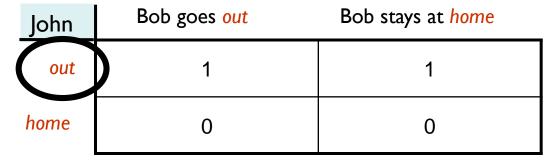


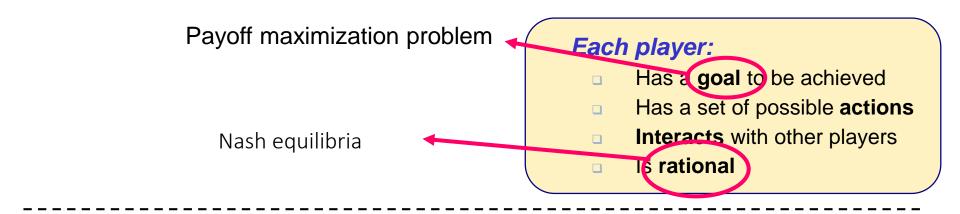
| Bob  | John goes <mark>out</mark> | John stays at home |
|------|----------------------------|--------------------|
| out  | 2                          | 0                  |
| home | 0                          | 1                  |

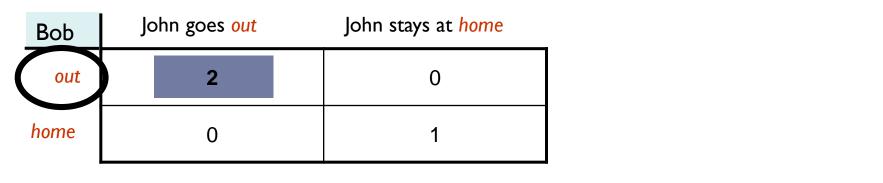


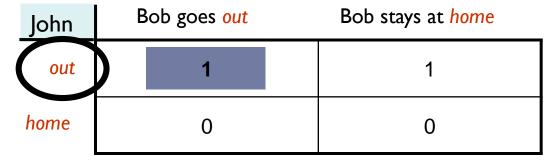


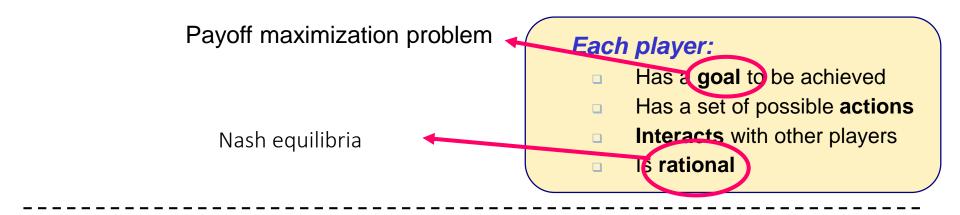


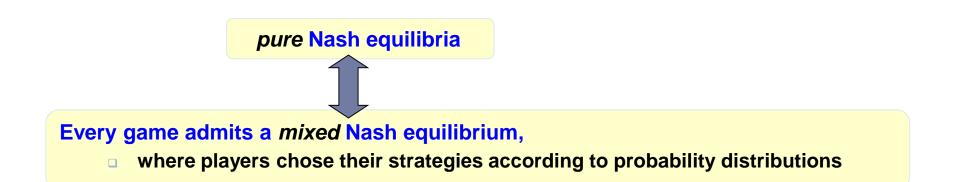


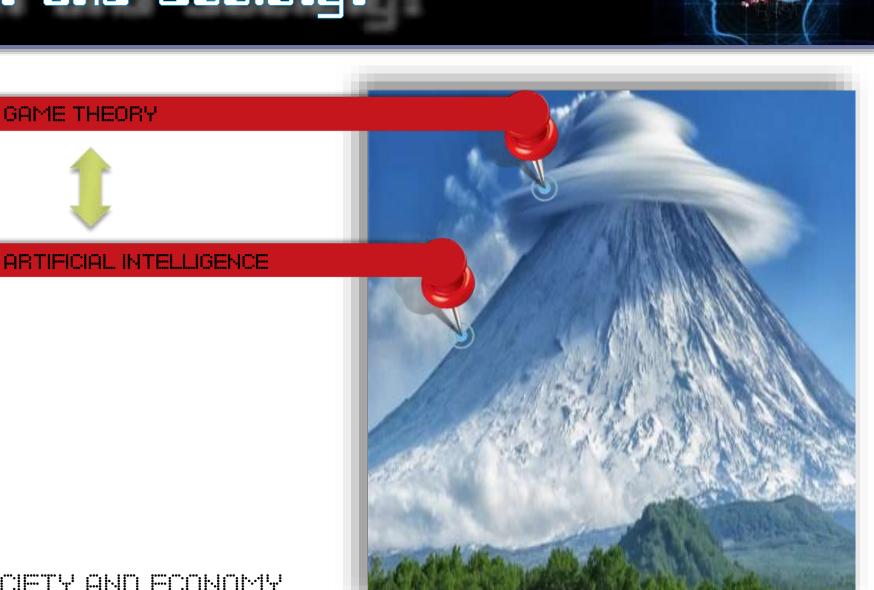












- Players:
  - Maria, Francesco
- Choices:
  - movie, opera

If 2 players, then size =  $2^2$ 

| Maria | Francesco, <u>movie</u> | Francesco, <mark>opera</mark> |
|-------|-------------------------|-------------------------------|
| movie | 2                       | 0                             |
| opera | 0                       | 1                             |

#### Players:

- Maria, Francesco, Paola
- Choices:
  - movie, opera

If 2 players, then size =  $2^2$ 

If 3 players, then size =  $2^3$ 

| Maria | F <sub>movie</sub> and P <sub>movie</sub> F | movie and P <sub>opera</sub> F <sub>opera</sub> | and P <sub>movie</sub> F <sub>opera</sub> and | nd P <sub>opera</sub> |
|-------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------|
| movie | 2                                           | 0                                               | 2                                             | 1                     |
| opera | 0                                           | 1                                               | 2                                             | 2                     |

#### Players:

- Maria, Francesco, Paola, Roberto, and Giorgio
- Choices:
  - movie, opera

If 2 players, then size =  $2^2$ 

If 3 players, then size =  $2^3$ 

If N players, then size =  $2^{N}$ 

. . .

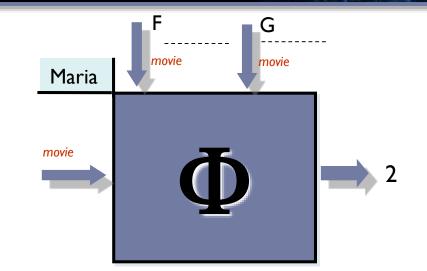
| Maria | $F_{movie}$ and $P_{movie}$ and $R_{movie}$ and $G_{movie}$ |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|
| movie | 2                                                           |  |  |  |
| opera | 0                                                           |  |  |  |

### Game Representation

- Tables
- Arbitrary Functions

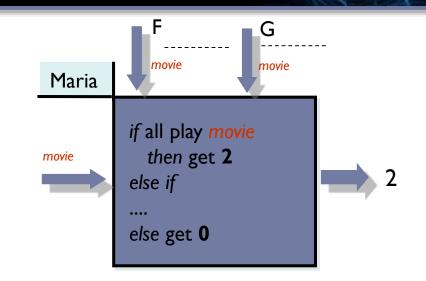
| Maria | $F_{movie}$ and $P_{movie}$ and $R_{movie}$ and $G_{movie}$ |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|
| movie | 2                                                           |  |  |  |
| opera | 0                                                           |  |  |  |

- Game Representation
  - Tables
  - Arbitrary Functions



| Maria | $F_{movie}$ and $P_{movie}$ and $R_{movie}$ and $G_{movie}$ |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|
| movie | 2                                                           |  |  |  |
| opera | 0                                                           |  |  |  |

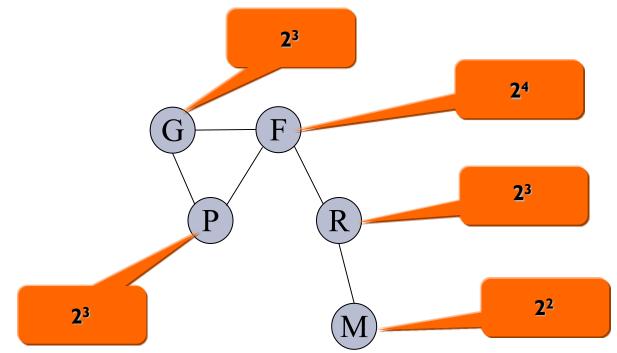
- Game Representation
  - Tables
  - Arbitrary Functions



| Maria | $F_{movie}$ and $P_{movie}$ and $R_{movie}$ and $G_{movie}$ |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|
| movie | 2                                                           |  |  |  |
| opera | 0                                                           |  |  |  |

#### Players:

- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
  - movie, opera



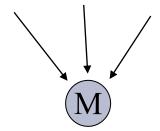
## Games on Graphs

### Game Representation

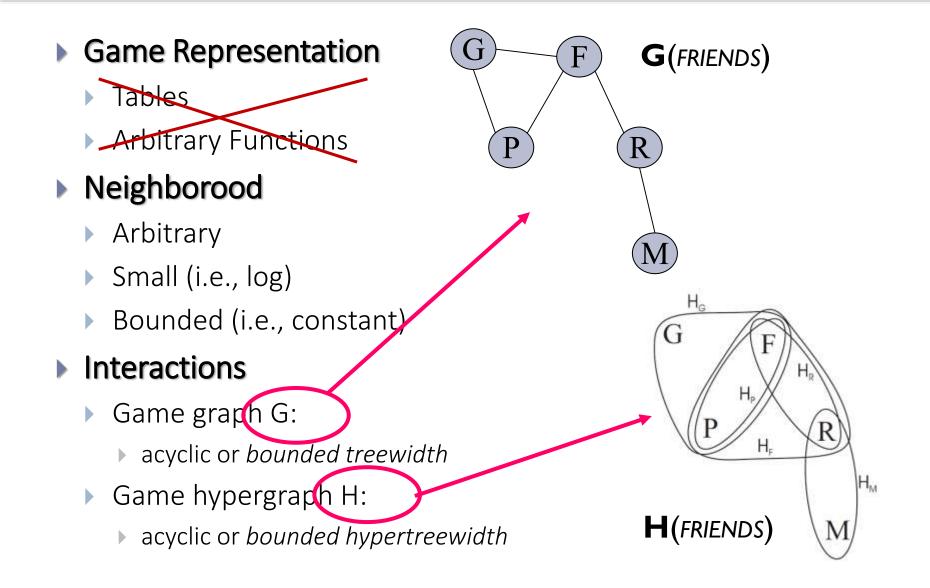
TablesArbitrary Functions

### Neighborood

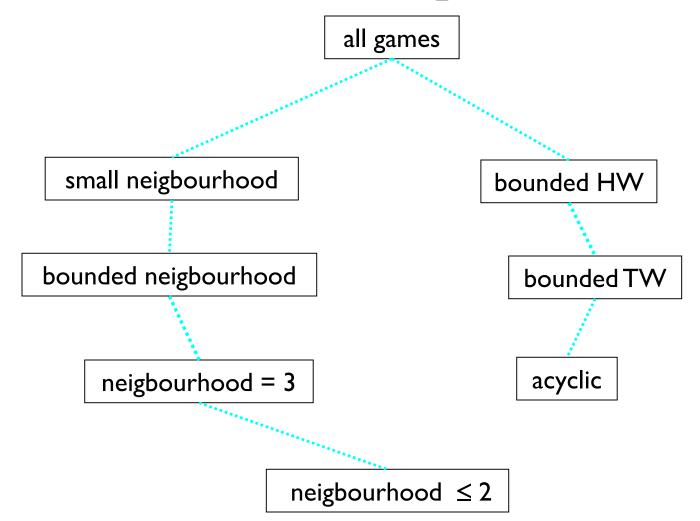
- Arbitrary
- Small (i.e., log)
- Bounded (i.e., constant)



## Games on Graphs

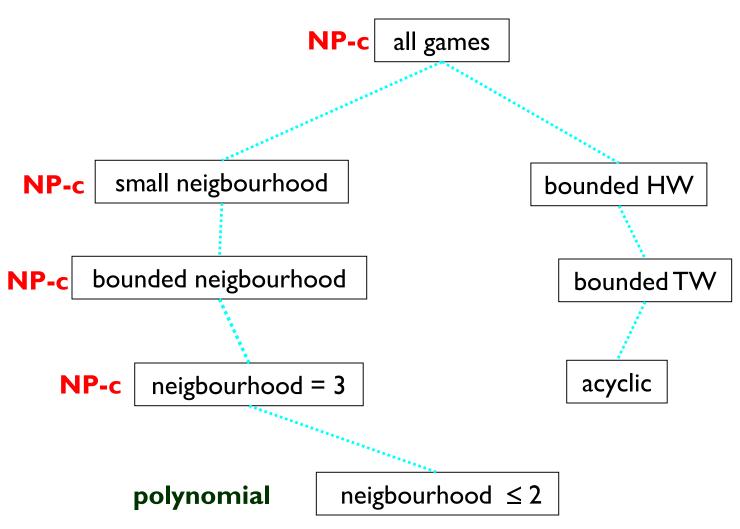


### [G., Gottlob, Scarcello JAIR'05]



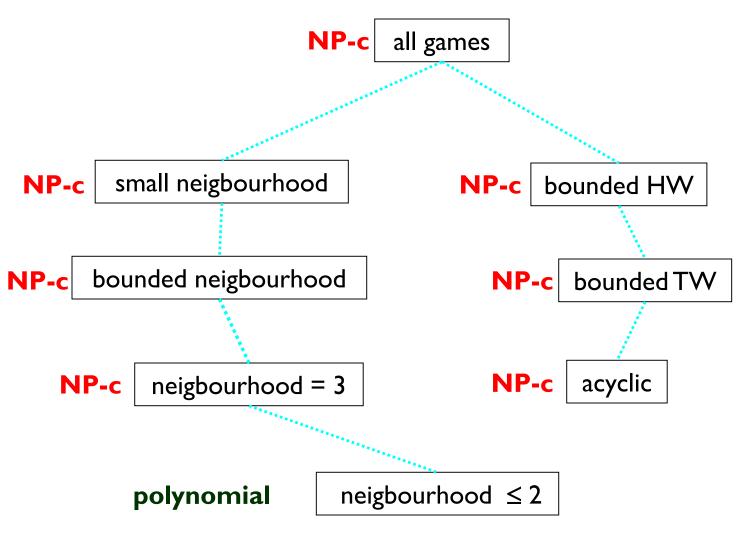


#### THE BAD NEWS:



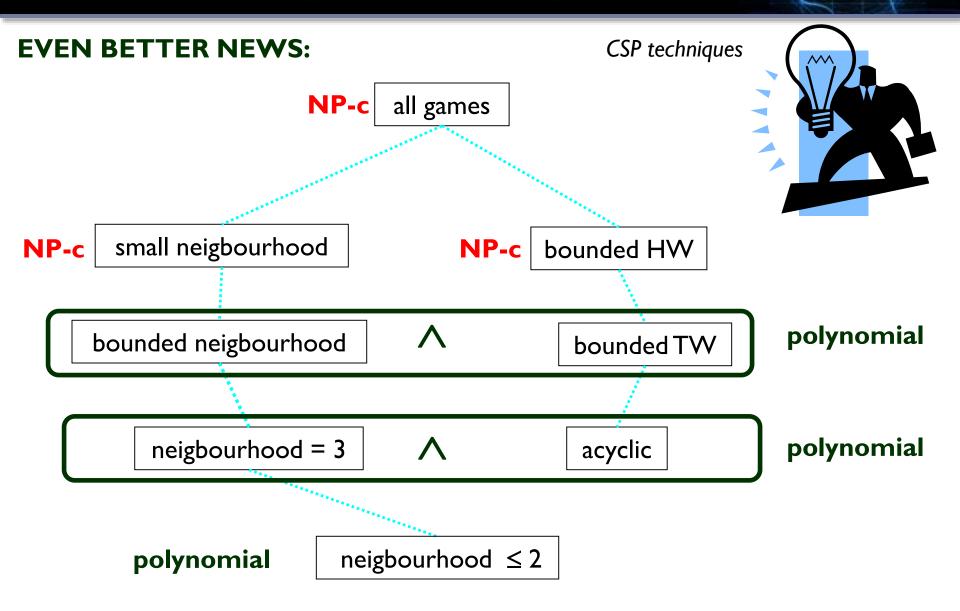
#### **THE BAD NEWS:**

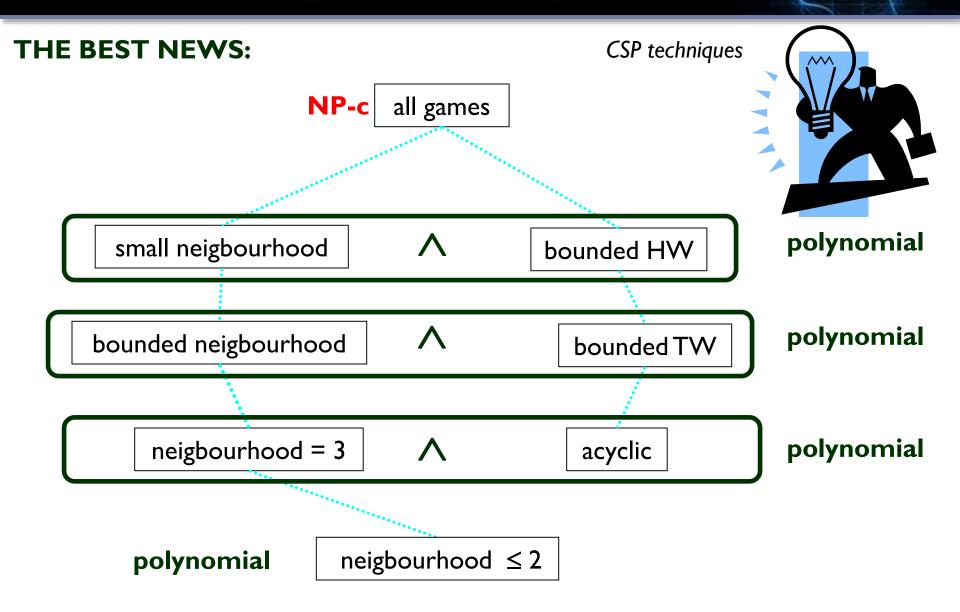
**FURTHER BAD NEWS:** 



#### **THE GOOD NEWS: CSP** techniques NP-c all games small neigbourhood NP-c bounded HW NP-c bounded neigbourhood bounded TW NP-c NP-c NP-c NP-c neigbourhood = 3acyclic polynomial neigbourhood $\leq 2$

#### **CSP** techniques **THE GOOD NEWS:** NP-c all games small neigbourhood NP-c bounded HW NP-c bounded neigbourhood bounded TW NP-c NP-c neigbourhood = 3polynomial Λ acyclic neigbourhood $\leq 2$ polynomial





## Al and Society?

#### GAME THEORY



#### ARTIFICIAL INTELLIGENCE



#### SOCIETY AND ECONOMY





Ormai da 10 anni sul mercato

ArtéMat

 E' una delle principali realtà imprenditoriali in Italia nell'ideazione e sviluppo di Business Simulation per la formazione manageriale ed il recruitment



 Collabora con: Scuole di Alta Formazione Manageriale, Grandi Aziende, Università, Associazioni di Categoria, Incubatori d'impresa



### Business Games

I Business Game sono strumenti innovativi di simulazione manageriale che riproducono le dinamiche e le logiche di uno scenario "virtuale" competitivo.



#### Funzionamento

Composizione delle squadre

Presentazione dello scenario e delle regole del gioco Avvio della simulazione e Debriefing sui risultati per ogni round di gioco

Inserimento di "imprevisti" per stimolare la reattività dei team in situazioni incerte

Round finale No

Debriefing sui risultati finali e Premiazione dei vincitori





Analista Artémat, presso il cliente



Modello di mercato, formalizzato nel linguaggio BGL



Compilatore del modello:

- Sistema sviluppato prototipalmente presso Artémat Lab
- Oggi, completamente ingegnerizzato



Applicativo web (autogenerato) che supporta il business game sul modello scelto



businessgamestudio

Possibilità di introdurre aziende «virtuali» nell'evento, utili per:

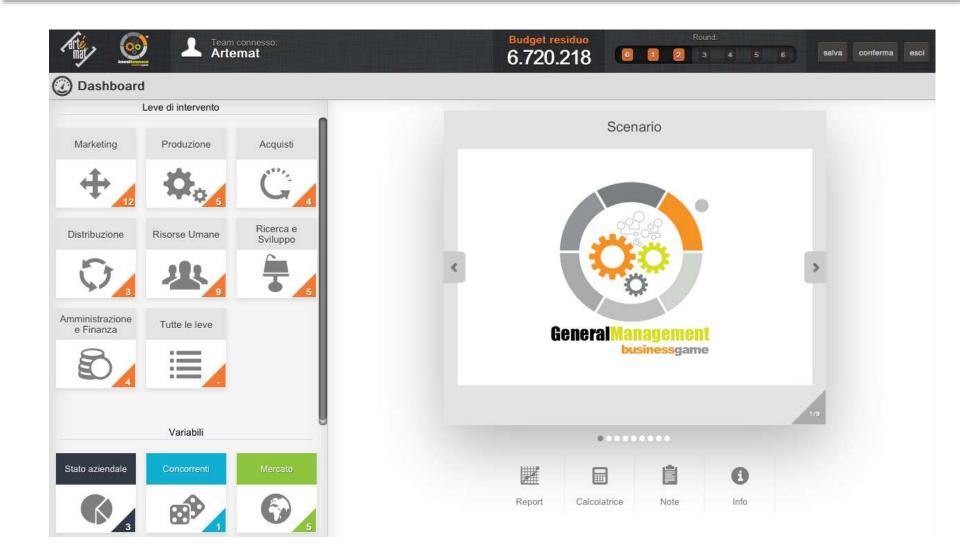
- Aumentare il realismo della simulazione, creando particolari condizioni di mercato
- Aumentare la dimensione della simulazione, e rendere fruibile il sistema anche ad utenti singoli o classi di piccole dimensioni





Supporto all'evento formativo mediante «facilitatori»

#### Esempio Interfaccia



## Catalogo dei Modelli





businessgame



businessgame









Food&Wine businessgame



Banking



businessgame





CulturalEvent businessgame





MarketingAcademy businessgame

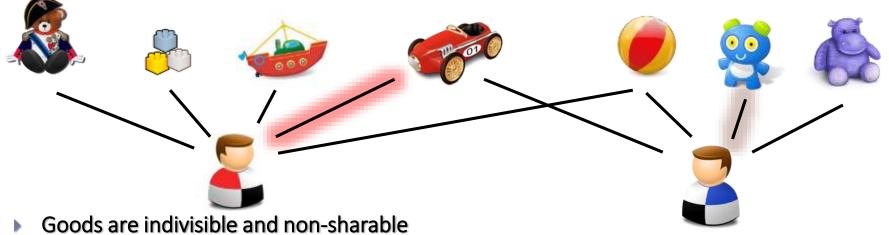




#### 



## The Model



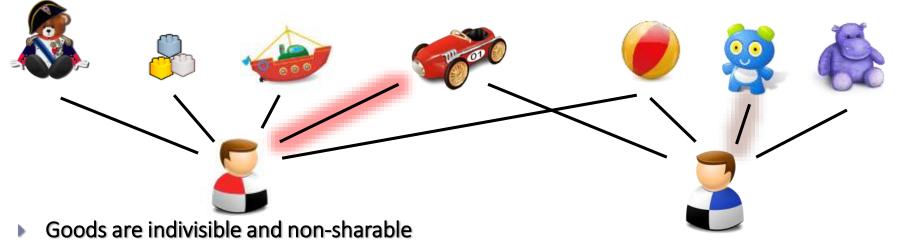
- Constraints on the max/min number of goods to be allocated to each agent
- Agent preferences: Private types VS Declared types



Monetary compensation to induce truthfulness

see, e.g., [Shoham, Leyton-Brown; 2009]

## The Model



- Constraints on the max/min number of goods to be allocated to each agent
- Agent preferences: *Private* types VS *Declared* types



- Monetary compensation to induce truthfulness «budget balance»
  - The algebraic sum of the monetary transfers is zero
  - In particular, mechanisms cannot run into deficit

## Goals of the Allocation

#### «Efficiency»

Maximize the social welfare

#### «Fairness»

- For instance, it is desirable that *no agent envies* the allocation of any another agent, or that
- the selected outcome is *Pareto efficient*, i.e., there must be no different allocation such that every agent gets at least the same utility and one of them even improves.

see, e.g., [Brandt, Endriss; 2012]

## Impossibility Results

[Green, Laffont; 1977] [Hurwicz; 1975]



Fairness + Truthfulness + Budget Balance

Efficiency + Truthfulness + Budget Balance

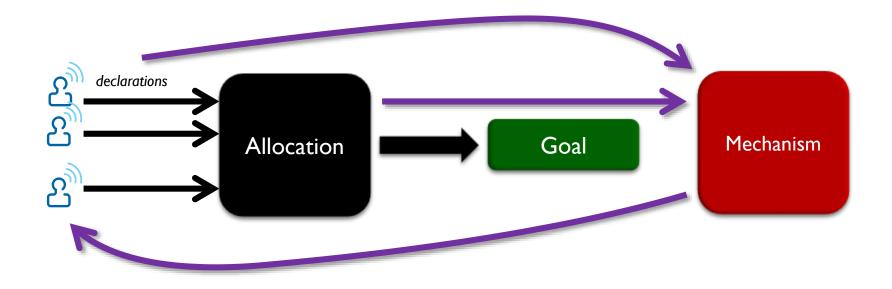
[Tadenuma, Thomson; 1995] [Alcalde, Barberà; 1994] [Andersson, Svensson, Ehlers; 2010]

### Impossibility Results





#### Fairness + Truthfulness + Budget Balance



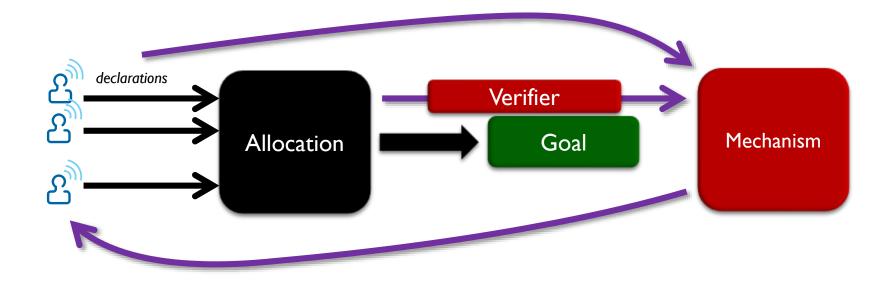
## Impossibility Results





Fairness + Truthfulness + Budget Balance

#### Verification on «selected» declarations





[Green, Laffont; 1986] [Nisan, Ronen; 2001]

**Probabilistic Verification** 

Punishments are used to enforce truthfulness



[Auletta, De Prisco, Ferrante, Krysta, Parlato, Penna, Persiano, Sorrentino, Ventre]

(2) Probabilistic Verification

Punishments are used to enforce truthfulness



[Caragiannis, Elkind, Szegedy, Yu; 2012]

Punishments are used to enforce truthfulness

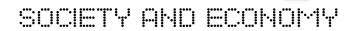
## Al and Society?

#### GAME THEORY



#### ARTIFICIAL INTELLIGENCE







#### (1) Partial Verification

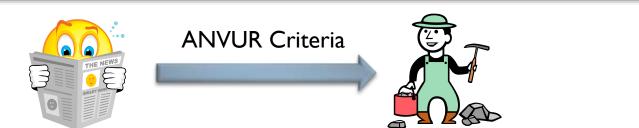
(2) Probabilistic Verification

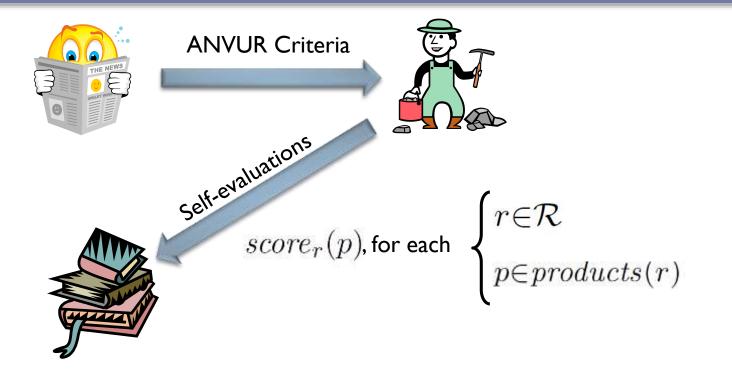
Punishments are used to enforce truthfulness

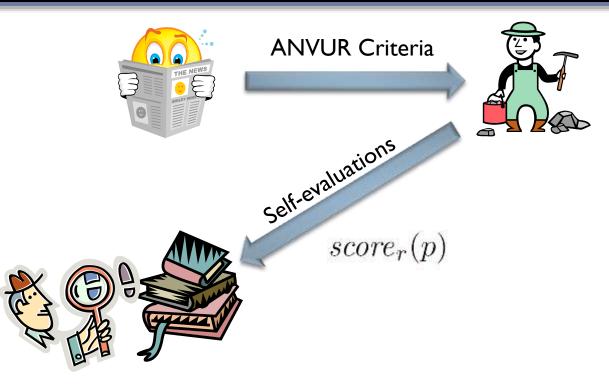
# (3) Full Verification No punishments!

# VOR 2009-2010

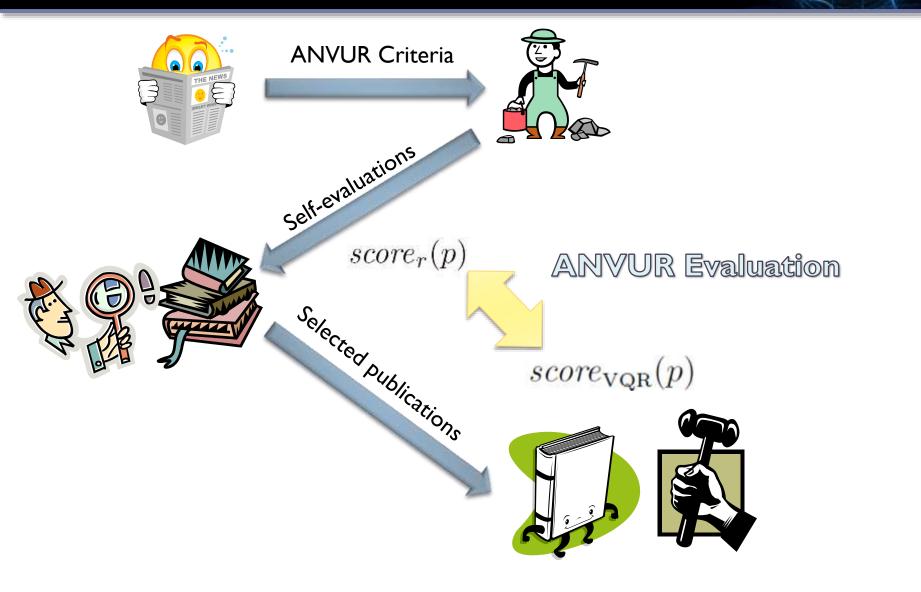
- VQR 2004-2010: ANVUR should evaluate the quality of research of all Italian research structures
- Funds for the structures in the next years depend on the outcome of this evaluation
- Substructures will be also evaluated (e.g. university departments)

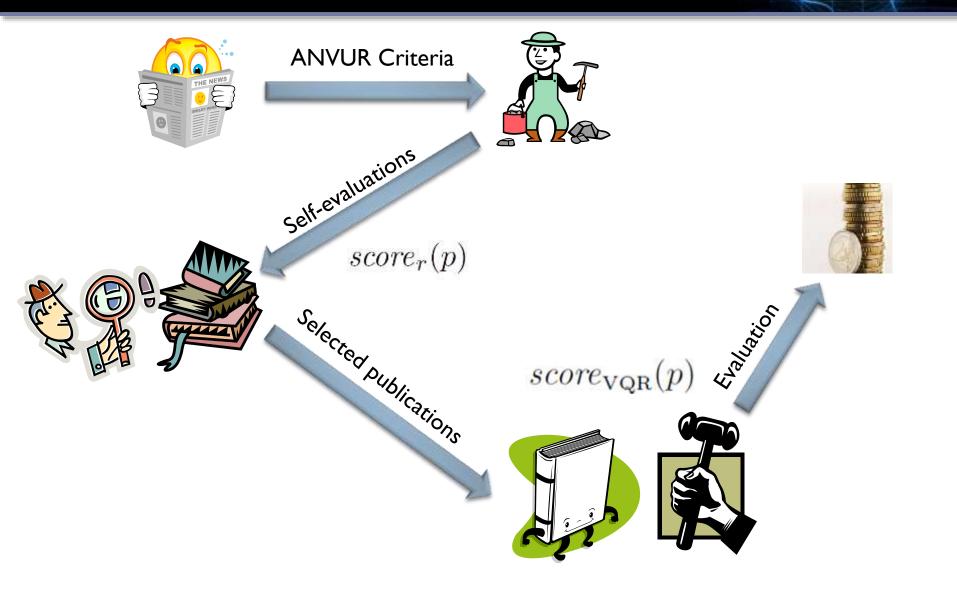


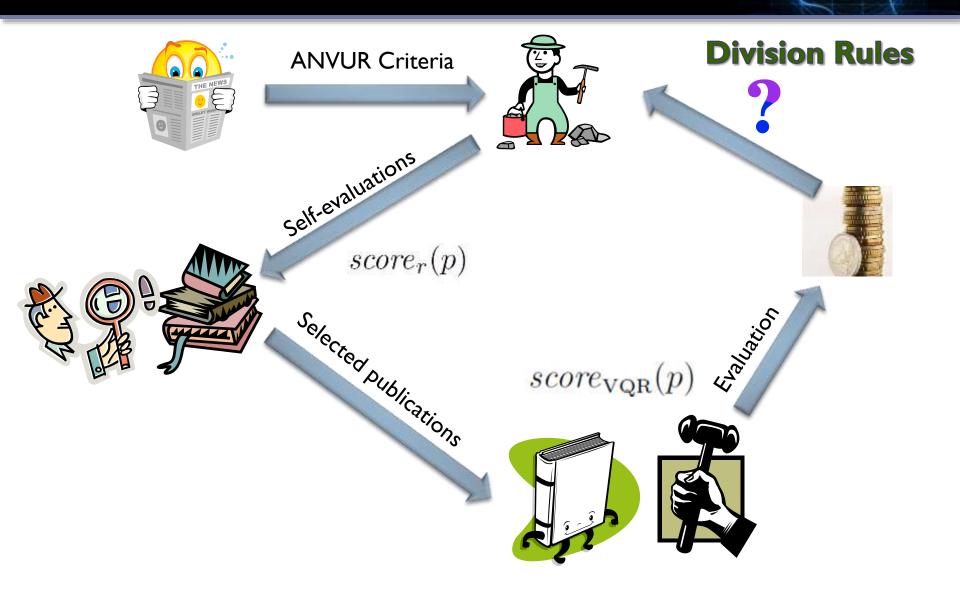


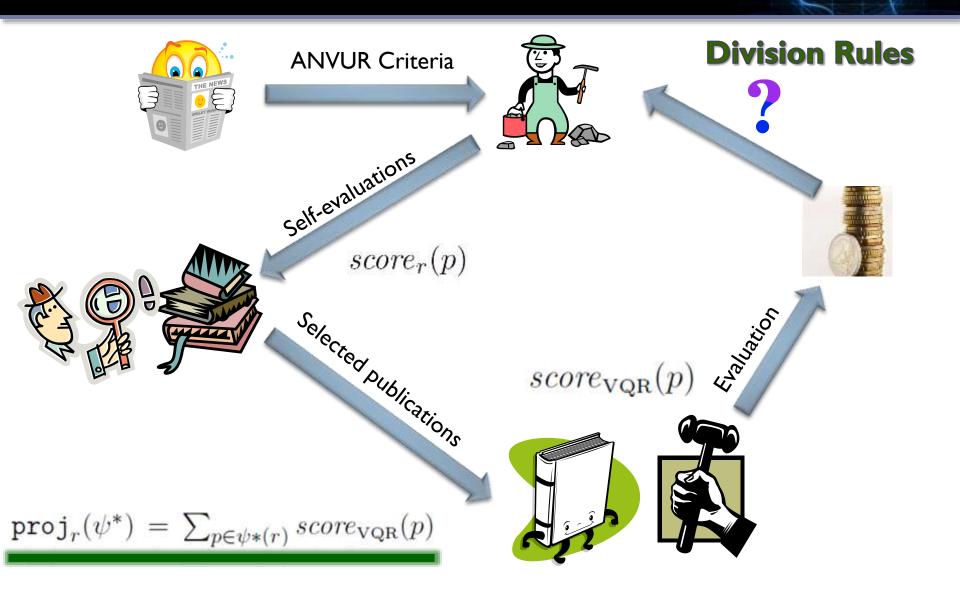


Structures are in charge of selecting the products to submit









| Input:<br>Assumption  | An allocation $\pi$ for $\langle \mathcal{A}, G, \omega \rangle$ , and a vector $\mathbf{w} \in \mathbf{D}$ ;<br><b>n</b> : A verifier $\mathbf{v}$ is available. Let $\mathbf{v}(\pi) = (v_1,, v_n)$ ;                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Let $\mathbb{C}$ d | lenote the set of all possible subsets of $\mathcal{A}$ ;                                                                                                                                                                             |
| 2. For eac            | h set $\mathcal{C} \in \mathbb{C}$ ,                                                                                                                                                                                                  |
| 3.   Con              | mpute an optimal allocation $\pi_{\mathcal{C}}$ for $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$ w.r.t. w;                                                                                                          |
| 4. For eac            | h agent $i \in \mathcal{A}$ ,                                                                                                                                                                                                         |
| 5.   For              | each set $\mathcal{C} \in \mathbb{C}$ ,                                                                                                                                                                                               |
| 6.                    | Let $\Delta^{1}_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$               |
| 7.   [                | Let $\Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$                              |
|                       | $\xi_i(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{( \mathcal{A}  -  \mathcal{C} )! ( \mathcal{C}  - 1)!}{ \mathcal{A} !} (\Delta^1_{\mathcal{C}, i}(\pi, \mathbf{w}) - \Delta^2_{\mathcal{C}, i}(\pi, \mathbf{w}));$ |
| 9. L Def              | fine $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$                                                                                                                                                               |

#### [G., Scarcello JAIR' | 4]

# The Mechanism [6519]

| Input:<br>Assumption:                          | An allocation $\pi$ for $\langle \mathcal{A}, G, \omega \rangle$ , and a vector $\mathbf{w} \in \mathbf{D}$ ;<br>A verifier $\mathbf{v}$ is available. Let $\mathbf{v}(\pi) = (v_1,, v_n)$ ;                                         |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. Let $\mathbb{C}$ de                         | note the set of all possible subsets of $\mathcal{A}$ ;                                                                                                                                                                              |  |
| 2. For each set $\mathcal{C} \in \mathbb{C}$ , |                                                                                                                                                                                                                                      |  |
| 3. Com                                         | pute an optimal allocation $\pi_{\mathcal{C}}$ for $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$ w.r.t. w;                                                                                                          |  |
| 4. For each                                    | agent $i \in \mathcal{A}$ ,                                                                                                                                                                                                          |  |
| 5.   For e                                     | ach set $C \in \mathbb{C}$ , Allocated goods are considered only                                                                                                                                                                     |  |
| 6.     L                                       | et $\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$                 |  |
| 7.   L L                                       | et $\Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$                              |  |
| 8.   Let $\xi$                                 | $(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{( \mathcal{A}  -  \mathcal{C} )! ( \mathcal{C}  - 1)!}{ \mathcal{A} !} (\Delta^{1}_{\mathcal{C}, i}(\pi, \mathbf{w}) - \Delta^{2}_{\mathcal{C}, i}(\pi, \mathbf{w}));$ |  |
| 9. L Defin                                     | e $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$                                                                                                                                                                 |  |

Input: An allocation  $\pi$  for  $\langle \mathcal{A}, G, \omega \rangle$ , and a vector  $\mathbf{w} \in \mathbf{D}$ ; A verifier **v** is available. Let  $\mathbf{v}(\pi) = (v_1, ..., v_n);$ Assumption: Let  $\mathbb{C}$  denote the set of all possible subsets of  $\mathcal{A}$ ; 1. 2. For each set  $\mathcal{C} \in \mathbb{C}$ , 3. Compute an optimal allocation  $\pi_{\mathcal{C}}$  for  $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$  w.r.t. w; 4. For each agent  $i \in \mathcal{A}$ , Allocated goods are considered only 5. For each set  $\mathcal{C} \in \mathbb{C}$ , Let  $\Delta^{1}_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$ 6. Let  $\Delta_{\mathcal{C},i}^{2}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$ 7. Let  $\xi_i(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{(|\mathcal{A}| - |\mathcal{C}|)! (|\mathcal{C}| - 1)!}{|\mathcal{A}|!} (\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) - \Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}));$ 8. Define  $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$ 9.



In fact, allocated goods are the only ones that we verify

Input: An allocation  $\pi$  for  $\langle \mathcal{A}, G, \omega \rangle$ , and a vector  $\mathbf{w} \in \mathbf{D}$ ; A verifier **v** is available. Let  $\mathbf{v}(\pi) = (v_1, ..., v_n);$ Assumption: Let  $\mathbb{C}$  denote the set of all possible subsets of  $\mathcal{A}$ ; 1. 2. For each set  $\mathcal{C} \in \mathbb{C}$ , 3. Compute an optimal allocation  $\pi_{\mathcal{C}}$  for  $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$  w.r.t. w; 4. For each agent  $i \in \mathcal{A}$ , Allocated goods are considered only 5. For each set  $\mathcal{C} \in \mathbb{C}$ , Let  $\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$ 6. Let  $\Delta_{\mathcal{C},i}^2(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$ 7. Let  $\xi_i(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{(|\mathcal{A}| - |\mathcal{C}|)!(|\mathcal{C}| - 1)!}{|\mathcal{A}|!} (\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) - \Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}));$ 8. Define  $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$ 9.

> «Bonus and Compensation», by Nisan and Ronen (2001)

Input: An allocation  $\pi$  for  $\langle \mathcal{A}, G, \omega \rangle$ , and a vector  $\mathbf{w} \in \mathbf{D}$ ; A verifier **v** is available. Let  $\mathbf{v}(\pi) = (v_1, ..., v_n);$ Assumption: Let  $\mathbb{C}$  denote the set of all possible subsets of  $\mathcal{A}$ ; 1 2. For each set  $\mathcal{C} \in \mathbb{C}$ , 3. Compute an optimal allocation  $\pi_{\mathcal{C}}$  for  $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$  w.r.t. w; 4. For each agent  $i \in \mathcal{A}$ , Allocated goods are considered only 5. For each set  $\mathcal{C} \in \mathbb{C}$ , Let  $\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$ 6. Let  $\Delta_{\mathcal{C},i}^2(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$ 7. Let  $\xi_i(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{(|\mathcal{A}| - |\mathcal{C}|)!(|\mathcal{C}| - 1)!}{|\mathcal{A}|!} (\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) - \Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}));$ 8. Define  $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$ 9.

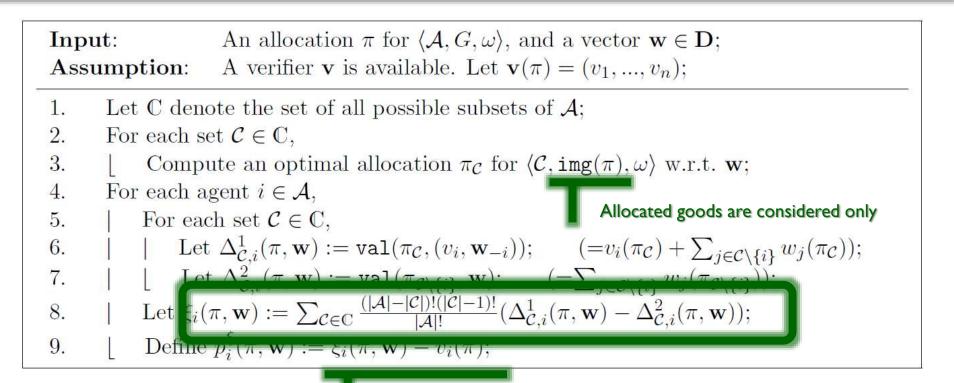
«Bonus and Compensation», by Nisan and Ronen (2001)



An allocation  $\pi$  for  $\langle \mathcal{A}, G, \omega \rangle$ , and a vector  $\mathbf{w} \in \mathbf{D}$ ; Input: A verifier **v** is available. Let  $\mathbf{v}(\pi) = (v_1, ..., v_n);$ Assumption: 1 Let  $\mathbb{C}$  denote the set of all possible subsets of  $\mathcal{A}$ ; 2. For each set  $\mathcal{C} \in \mathbb{C}$ , 3. Compute an optimal allocation  $\pi_{\mathcal{C}}$  for  $\langle \mathcal{C}, \operatorname{img}(\pi), \omega \rangle$  w.r.t. w; 4. For each agent  $i \in \mathcal{A}$ , Allocated goods are considered only 5. For each set  $\mathcal{C} \in \mathbb{C}$ , Let  $\Delta^{1}_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}}, (v_i, \mathbf{w}_{-i})); \qquad (=v_i(\pi_{\mathcal{C}}) + \sum_{j \in \mathcal{C} \setminus \{i\}} w_j(\pi_{\mathcal{C}}));$ 6. Let  $\Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}) := \operatorname{val}(\pi_{\mathcal{C}\setminus\{i\}}, \mathbf{w}); \qquad (=\sum_{j\in\mathcal{C}\setminus\{i\}} w_j(\pi_{\mathcal{C}\setminus\{i\}}));$ 7. Let  $\xi_i(\pi, \mathbf{w}) := \sum_{\mathcal{C} \in \mathbb{C}} \frac{(|\mathcal{A}| - |\mathcal{C}|)! (|\mathcal{C}| - 1)!}{|\mathcal{A}|!} (\Delta^1_{\mathcal{C},i}(\pi, \mathbf{w}) - \Delta^2_{\mathcal{C},i}(\pi, \mathbf{w}));$ 8. Define  $p_i^{\xi}(\pi, \mathbf{w}) := \xi_i(\pi, \mathbf{w}) - v_i(\pi);$ 9.

> «Bonus and Compensation», by Nisan and Ronen (2001)

Truth-telling is a dominant strategy for each agent



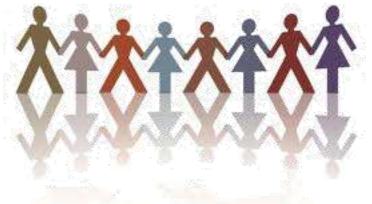
«Bonus and Compensation», by Nisan and Ronen (2001)

Truth-telling is a dominant strategy for each agent

## Coalitional Games

- Players form coalitions
- Each coalition is associated with a *worth*
- A total worth has to be distributed

 $\mathcal{G} = \langle \mathbf{N}, \varphi \rangle, \ \varphi \colon \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$ 



#### Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

# Shapley Value

$$\phi_i(\mathcal{G}) = \sum_{C \subseteq N} \frac{(|N| - |C|)!(|C| - 1)!}{|N|!} (\varphi(C) - \varphi(C \setminus \{i\}))$$

#### Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

# The Mechanism [6574]

$$\mathcal{G} = \langle \mathbf{N}, \varphi \rangle, \ \varphi \colon \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$$

 $\varphi(C)$  is the contribution of the coalition w.r.t.  $\begin{cases}
 selected products \\
 and \\
 verified values
 \end{cases}$ 

# The Mechanism [6514]

$$\mathcal{G} = \langle \mathbf{N}, \varphi \rangle, \ \varphi \colon \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$$

arphi(C) is the contribution of the coalition **w.r.t.** 



and verified values

#### **Best possible allocation,** assuming that agents in C are the only ones in the game

# The Mechanism (6579)

$$\mathcal{G} = \langle \mathbf{N}, \varphi \rangle, \ \varphi \colon \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$$

 $\varphi(C)$  is the contribution of the coalition w.r.t.  $\varphi(C)$  is the contribution of the coalition w.r.t.  $\varphi(C)$  is the contribution of the coalition w.r.t.  $\varphi(C)$  is the contribution of the coalition w.r.t.

Each researcher gets the Shapley value  $\phi_i(\mathcal{G})$ 

# The Mechanism [6574]

Properties

$$\mathcal{G} = \langle N, \varphi \rangle, \ \varphi \colon 2^N \mapsto \mathbb{R}$$

$$\varphi(C) \text{ is the contribution of the coalition w.r.t.} \begin{cases} \text{selected products} \\ and \\ \text{verified values} \end{cases}$$
Each researcher gets the Shapley value  $\phi_i(\mathcal{G})$ 

The resulting mechanism is «efficient», «fair» and «buget balanced»

Essentially, it is the only possible mechanism enjoying these properties!



