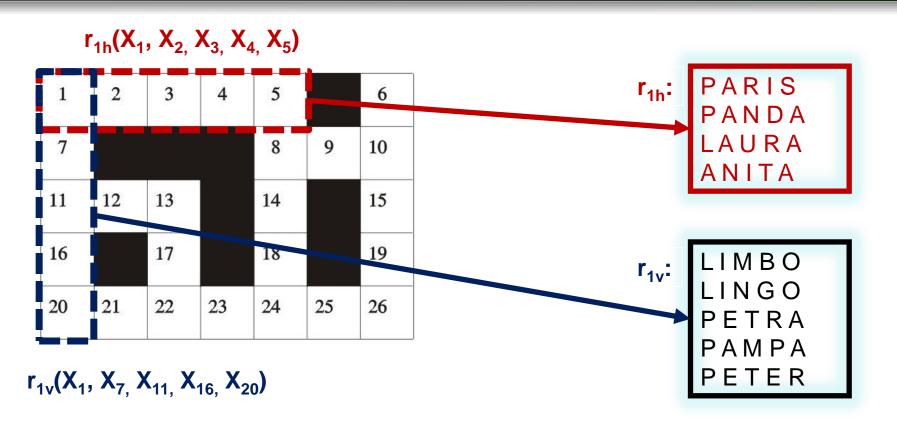
16th Int. Conf. on Principles and Practice of Constraint Programming St Andrews, Scotland,6-10th September 2010

Structural Tractability of Enumerating CSP Solutions

Gianluigi Greco and Francesco Scarcello

University of Calabria, Italy

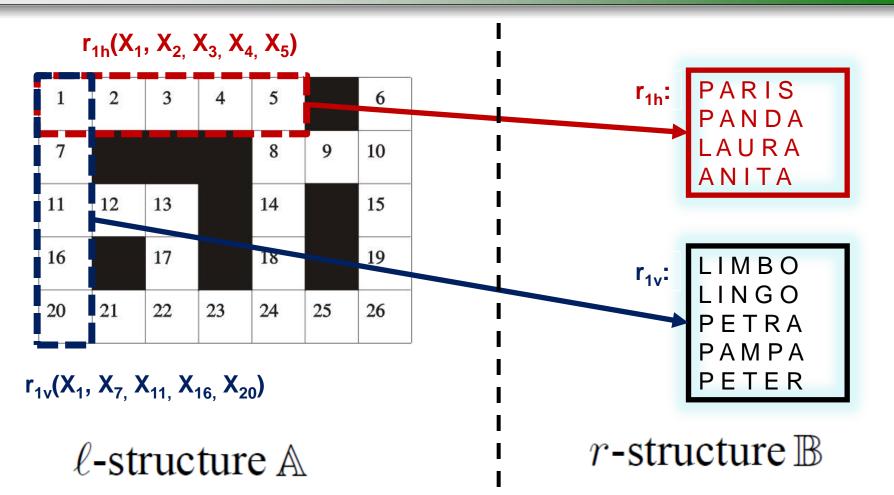
CSPs as Homomorphism Problems



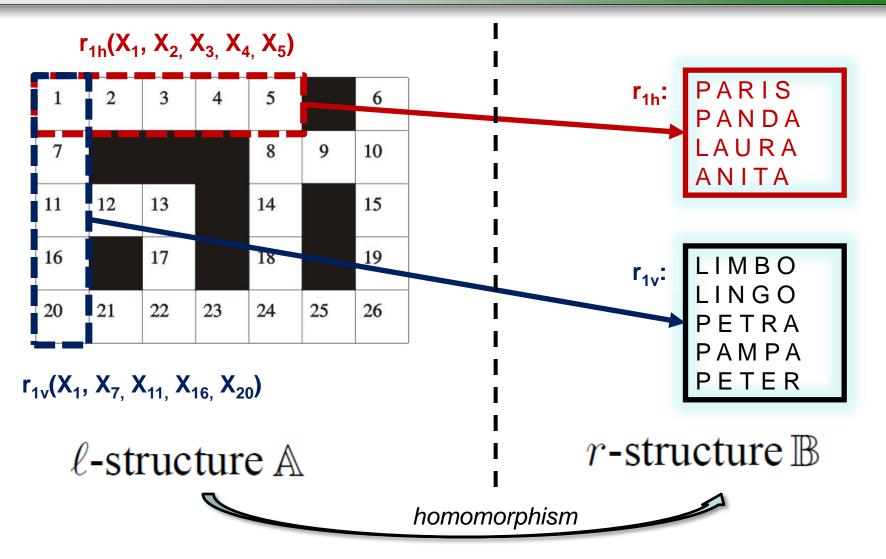
- Set of variables $\{X_1, \dots, X_{26}\}$
- Set of constraint scopes

Set of constraint relations

CSPs as Homomorphism Problems



CSPs as Homomorphism Problems



Questions

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Decide the existence of a homomorphism
- Enumerate all the homomorphisms $\mathbb{A}^{\mathbb{B}}$
- For a set of variales X, enumerate the *projection* $\mathbb{A}^{\mathbb{B}}[X]$

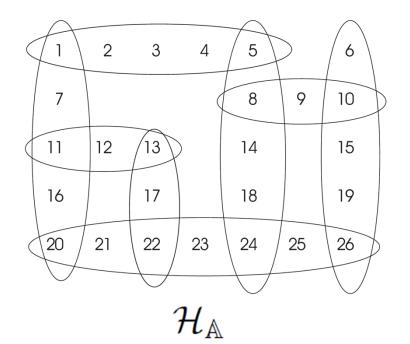
INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Decide the existence of a homomorphism
- Enumerate all the homomorphisms $\mathbb{A}^{\mathbb{B}}$
- For a set of variales X, enumerate the *projection* $\mathbb{A}^{\mathbb{B}}[X]$

- Tractable decision and closure properties imply tractable search [R. Dechter and A. Itai, 1992]
- Non-uniform case
 [D. Cohen, 2004]

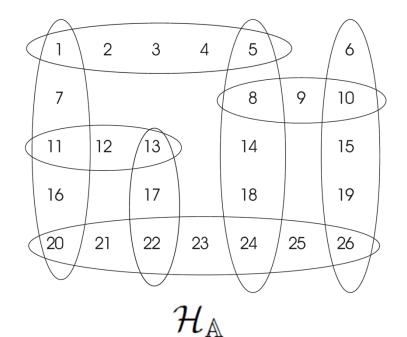
CSPs and Hypergraphs

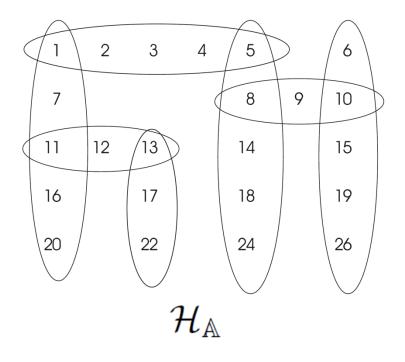
1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

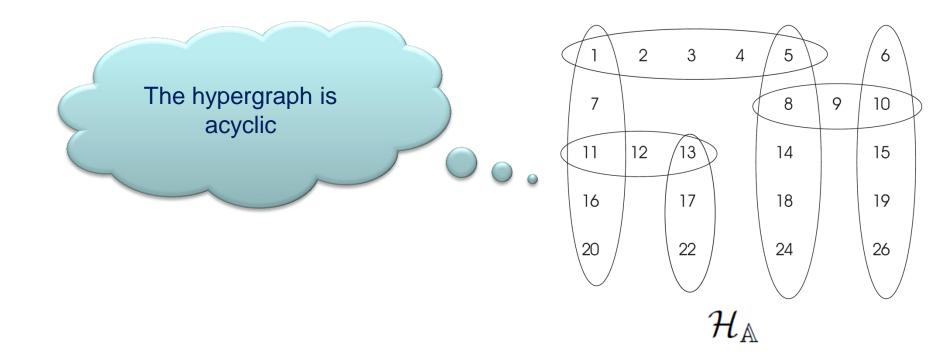


 ℓ -structure \mathbb{A}

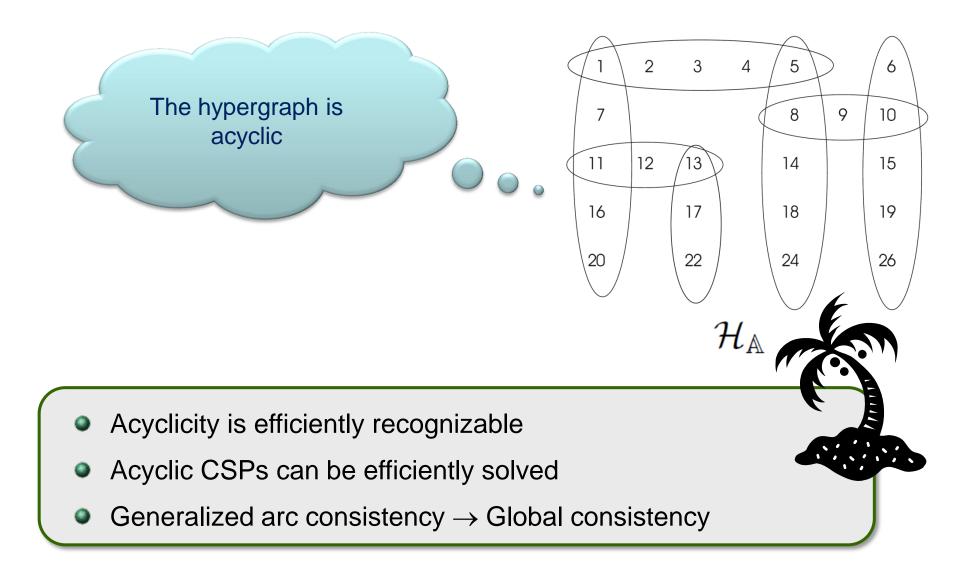
- Variables map to nodes
- Scopes map to hyperedges



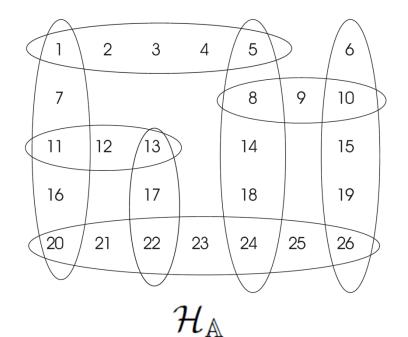




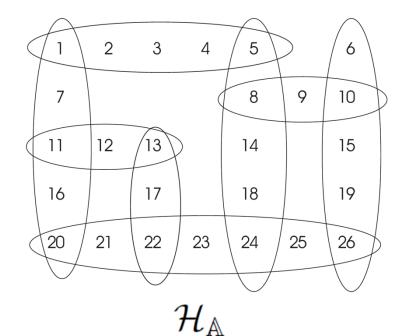
- Acyclicity is efficiently recognizable
- Acyclic CSPs can be efficiently solved
- Generalized arc consistency \rightarrow Global consistency



Decomposition Methods



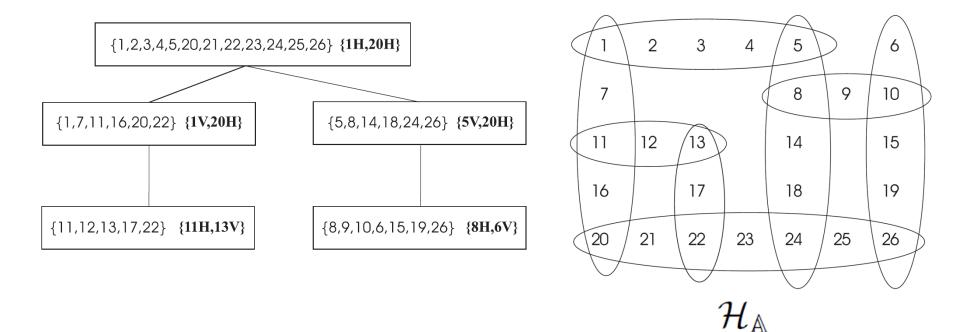
Decomposition Methods



Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

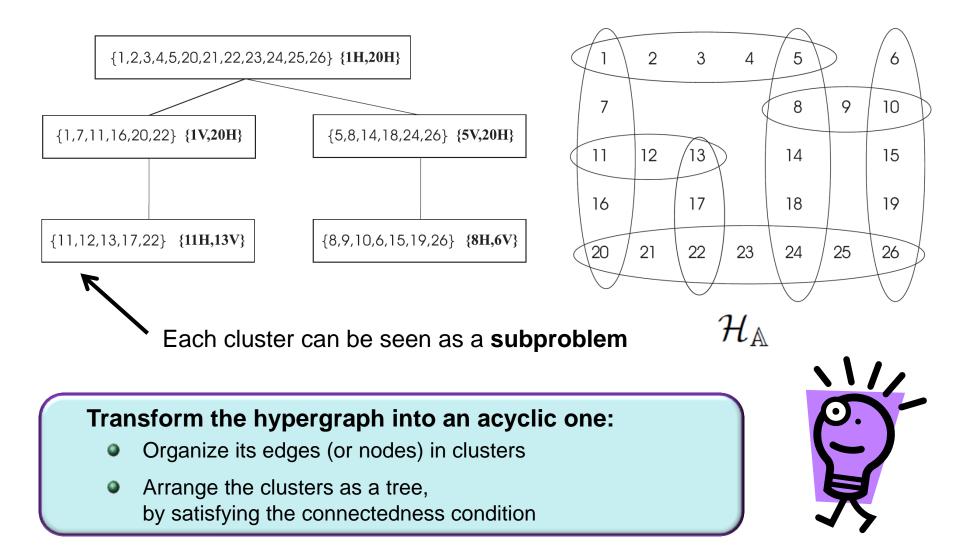
Generalized Hypertree Decompositions



Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

Generalized Hypertree Decompositions



Outline

Decomposition Methods and Tree Projections

Enumeration without Certificates

Enumeration with Certificates

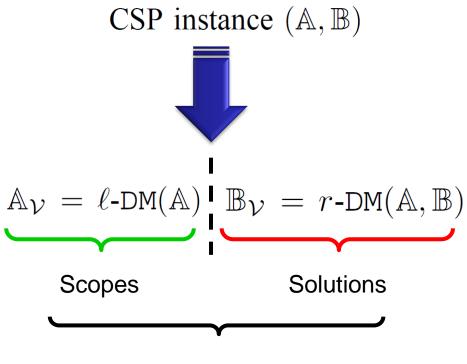
Outline

Decomposition Methods and Tree Projections

Enumeration without Certificates

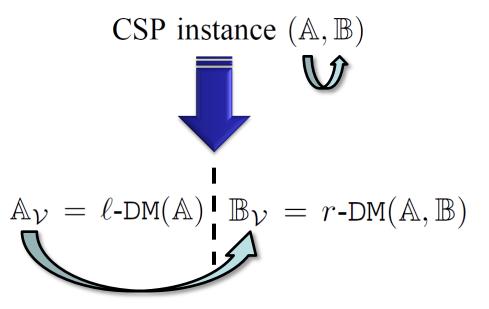
Enumeration with Certificates

Revisiting Decomposition Methods

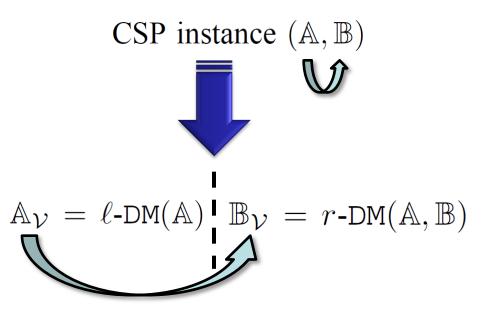


Work on subproblems

Revisiting Decomposition Methods

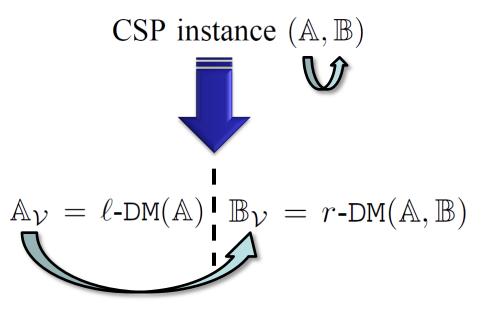


(Noticeable) Examples



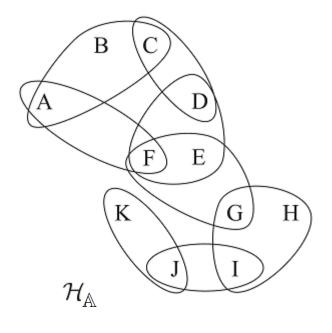
- Treewidth: take all views that can be computed with at most k variables
- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)
- Fractional hypertree width: take all views that can be computed through subproblems having fractional cover at most k (or use Marx's O(k³) approximation to have polynomially many views)

Acyclicity in Decomposition Methods



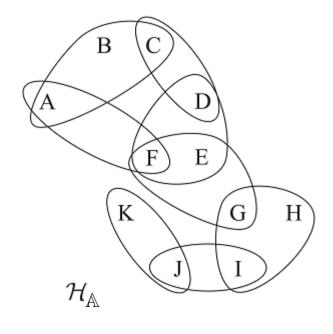
Working on subproblems is not necessarily beneficial...

 $\mathbb{A} : \begin{array}{ccc} r_1(A, B, C) & r_2(A, F) & r_3(C, D) & r_4(D, E, F) \\ r_5(E, F, G) & r_6(G, H, I) & r_7(I, J) & r_8(J, K) \end{array}$

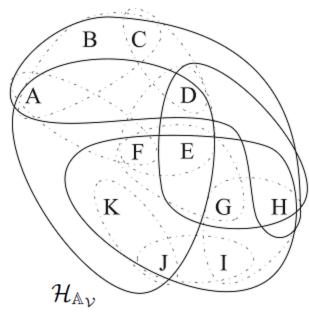


Structure of the CSP

 $\mathbb{A} : \begin{array}{ccc} r_1(A, B, C) & r_2(A, F) & r_3(C, D) & r_4(D, E, F) \\ r_5(E, F, G) & r_6(G, H, I) & r_7(I, J) & r_8(J, K) \end{array}$

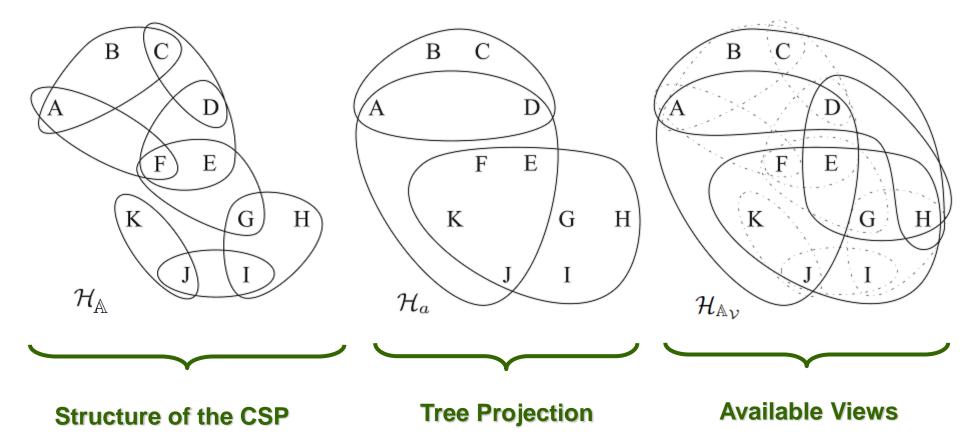


Structure of the CSP

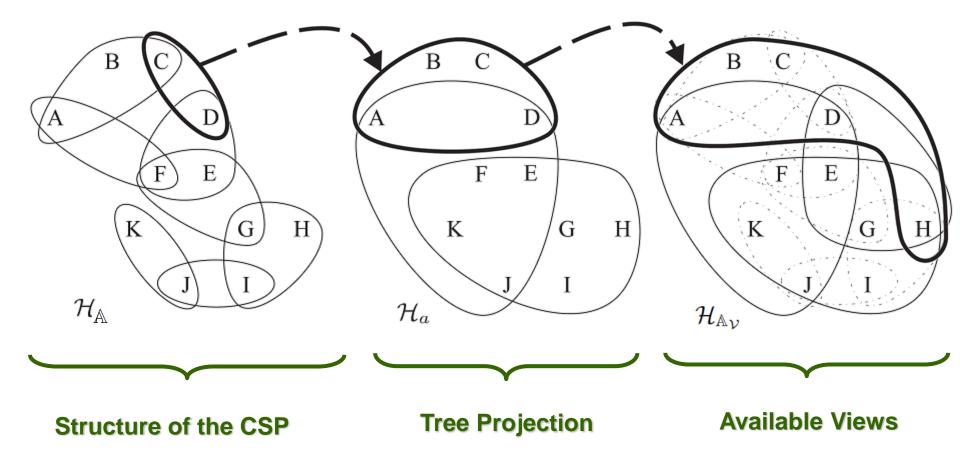


Available Views

 $\mathbb{A} : \begin{array}{ccc} r_1(A, B, C) & r_2(A, F) & r_3(C, D) & r_4(D, E, F) \\ r_5(E, F, G) & r_6(G, H, I) & r_7(I, J) & r_8(J, K) \end{array}$



 $\mathbb{A} : \begin{array}{ccc} r_1(A, B, C) & r_2(A, F) & r_3(C, D) & r_4(D, E, F) \\ r_5(E, F, G) & r_6(G, H, I) & r_7(I, J) & r_8(J, K) \end{array}$



From Acyclicity to Tree Projections

- Deciding whether a tree projection exists is NP-complete [G. Gottlob, Z. Miklós, and T. Schwentick, 2009]
- The existence of a tree projection ensures polynomial-time solvability [N. Goodman and O. Shmueli, 1984], [Y. Sagiv and O. Shmueli, 1993]

- Acyclicity is efficiently recognizable
- Acyclic CSPs can be efficiently solved
- Generalized arc consistency \rightarrow Global consistency

Outline

Decomposition Methods and Tree Projections

Enumeration without Certificates

Enumeration with Certificates

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: $\mathbb{A}^{\mathbb{B}}[O]$; **Method**: update $(\mathbb{A}, \mathbb{B}, O)$ with any of its domain-restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke Propagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$; **Procedure** Propagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin 1. let $\mathbb{B}'_{\mathcal{V}} := \text{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$ 2. let $active Values := dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$; for each element $\langle a_i \rangle \in active Values$ do 3. 4. if i = m then 5. output $\langle a_1, ..., a_{m-1}, a_m \rangle$; 6. else 7. | update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 8. | | Propagate $(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$ end.

Input An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; Output: $\mathbb{A}^{\mathbb{P}}[O]$; **Method**: update $(\mathbb{A}, \mathbb{B}, O)$ with any of its domain-restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke Propagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$; **Procedure** Propagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin 1. let $\mathbb{B}'_{\mathcal{V}} := \text{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$ 2. let active Values := $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$; for each element $\langle a_i \rangle \in active Values$ do 3. 4. if i = m then **output** $(a_1, ..., a_{m-1}, a_m);$ 5. 6. else 7. | update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 8. | | Propagate $(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$ end.

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: $\mathbb{A}^{\mathbb{B}}[O]$; **Method**: update $(\mathbb{A}, \mathbb{B}, O)$ with any of its domain-restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke Propagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$; **Procedure** Propagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin 1. let $\mathbb{B}'_{\mathcal{V}} := \text{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$ let $active Values := dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$; 2. for each element $\langle a_i \rangle \in active Values$ do 3. 4. if i = m then **output** $(a_1, ..., a_{m-1}, a_m);$ 5. 6. else update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 7. Propagate $(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$ 8. end.

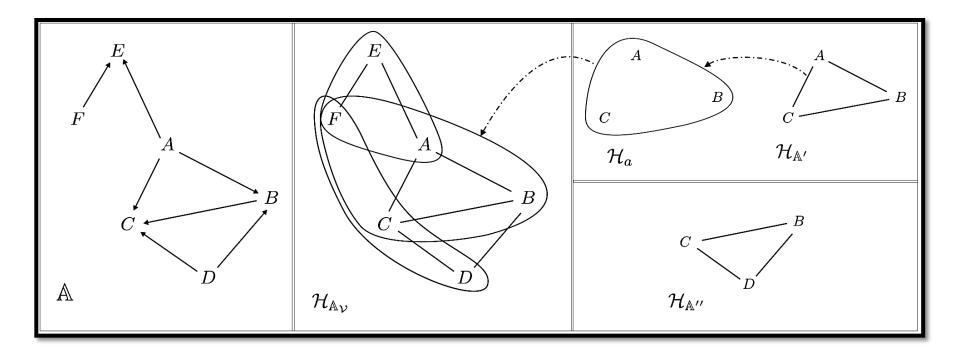
Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: $\mathbb{A}^{\mathbb{B}}[O]$; **Method**: update $(\mathbb{A}, \mathbb{B}, O)$ with any of its domain-restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke Propagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$; **Procedure** Propagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin let $\mathbb{B}'_{\mathcal{V}} := \operatorname{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$ 1. let active Values := $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$; 2. for each element $\langle a_i \rangle \in active Values$ do 3. 4. if i = m then **output** $(a_1, ..., a_{m-1}, a_m);$ 5. 6. else update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 7. Propagate $(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$ 8. end.

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: $\mathbb{A}^{\mathbb{B}}[O]$; **Method**: update $(\mathbb{A}, \mathbb{B}, O)$ with any of its domain-restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke Propagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle);$ **Procedure** Propagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin 1. let $\mathbb{B}'_{\mathcal{V}} := \text{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$ The solution is let $active Values := dom(X_i)^{\mathbb{B}'_{\mathcal{V}}};$ 2. not certified! for each element $\langle a_i \rangle \in active Value$ 3. 4. if i = m then **output** $\langle a_1, ..., a_{m-1}, a_m \rangle$; 5. 6. else 7. | update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ | Propagate $(i+1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, \dots, a_{i-1}, a_i \rangle);$ 8. end.

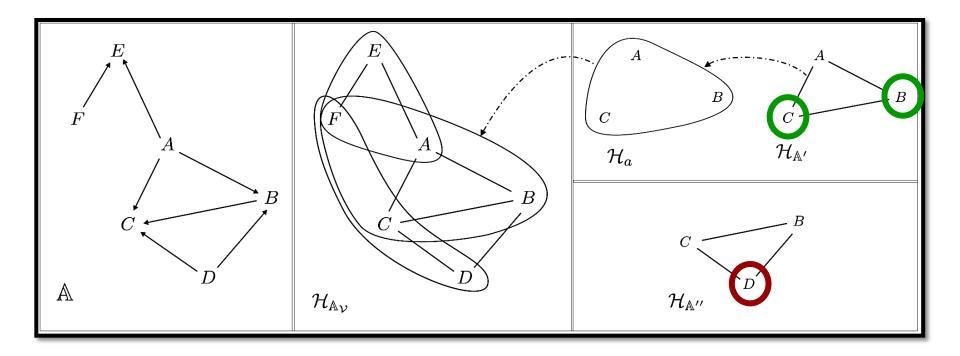
When is the algorithm correct?

- al has the restantistic base. The second
- t in same in the second states in the second states
 - Contract of the second second

Tp-covering



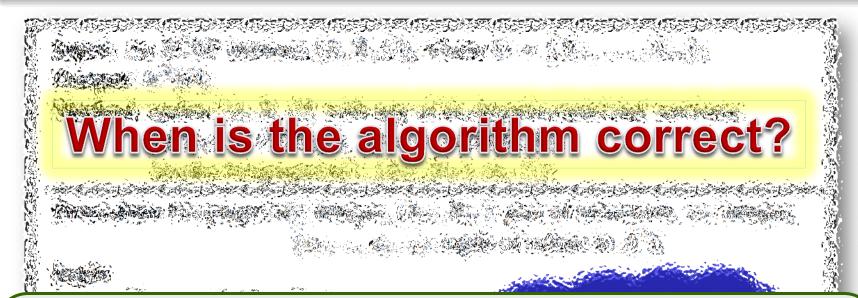
Tp-covering



{B,C} is individually tp-covered

{D} is not individually tp-covered

Tight Characterizations for the Correctness

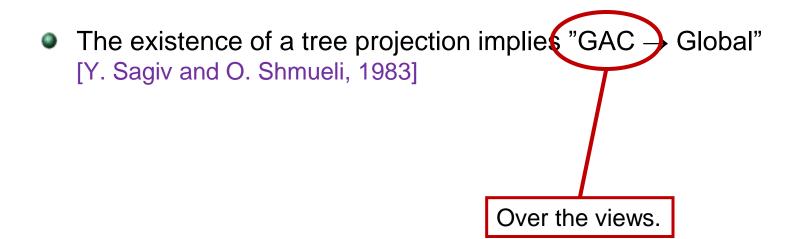


Thm.

Let A *be an* ℓ *-structure, and let* $O \subseteq A$ *be a set of variables. The following are equivalent:*

- (1) O is individually tp-covered
- (2) For every *r*-structure \mathbb{B} , ComputeAllSolutions_{DM} computes $\mathbb{A}^{\mathbb{B}}[O]$.

 The existence of a tree projection implies "GAC → Global" [Y. Sagiv and O. Shmueli, 1983]



- The existence of a tree projection implies "GAC → Global" [Y. Sagiv and O. Shmueli, 1983]
- For generalized hypertree decompositions, the existence of a tree projection for the core of the left-structure implies "GAC → Global" [H. Chen and V. Dalmau, 2005]

- The existence of a tree projection implies "GAC → Global" [Y. Sagiv and O. Shmueli, 1983]
- For generalized hypertree decompositions, the existence of a tree projection for the core of the left-structure implies "GAC -> Global" [H. Chen and V. Dalmau, 2005]

Over the views, i.e., k-consistency

- The existence of a tree projection implies "GAC → Global" [Y. Sagiv and O. Shmueli, 1983]
- For generalized hypertree decompositions, the existence of a tree projection for the core of the left-structure implies "GAC → Global" [H. Chen and V. Dalmau, 2005]
- For tree decompositions, and on classes of CSPs having bounded arity, the existence of a tree projection for the core of the left-structure is a sufficient and necessary condition to imply "GAC → Global" [A. Atserias, A. Bulatov, and V. Dalmau, 2007]

- The existence of a tree projection implies "GAC → Global" [Y. Sagiv and O. Shmueli, 1983]
- For generalized hypertree decompositions, the existence of a tree projection for the core of the left-structure implies "GAC → Global" [H. Chen and V. Dalmau, 2005]
- For tree decompositions, and on classes of CSPs having bounded arity, the existence of a tree projection for the core of the left-structure is a sufficient and necessary condition to imply "GAC → Global" [A. Atserias, A. Bulatov, and V. Dalmau, 2007]

 For generalized hypertree decompositions, the existence of a tree projection for the core is also necessary to imply "GAC → Global" [G. Greco and F. Scarcello, 2010]

Thm [G. Greco and F. Scarcello, 2010].

Let A be an l-structure, and let A_V be a v-structure.
The following are equivalent:
(1) There is a core A' of A such that (H_{A'}, H_{A_V}) has a tree projection
(2) For every r-structure B, for every r-structure B_V that is legal, enforcing generalized arc consistency on B_V is a correct decision procedure

For generalized hypertree decompositions, the existence of a tree projection for the core is also necessary to imply "GAC → Global" [G. Greco and F. Scarcello, 2010]

If O is tp-covered, the algorithm runs With Polynomial Delay...

- If O is tp-covered, the algorithm runs With Polynomial Delay...
- …and the result is essentially tight

Thm.

Assume $FPT \neq W[1]$. Let **A** be any class of ℓ -structures of bounded arity. Then, the following are equivalent:

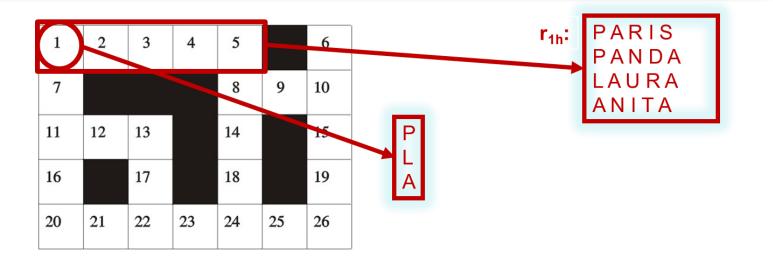
(1) A has bounded treewdith modulo homomorphic equivalence;
(2) For every A ∈ A, for every r-structure B, and for every set of variables O ⊆ drv(A), the ECSP instance (A, B, O) is solvable WPD.

- If O is tp-covered, the algorithm runs With Polynomial Delay...
- …and the result is essentially tight

Thm.

Assume $FPT \neq W[1]$. Let **A** be any class of ℓ -structures of bounded arity. Then, the following are equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence;
(2) For every A ∈ A, for every r-structure B, and for every set of variables O ⊆ drv(A), the ECSP instance (A, B, O) is solvable WPD.



- If O is tp-covered, the algorithm runs With Polynomial Delay...
- …and the result is essentially tight

Thm.

Assume $FPT \neq W[1]$. Let **A** be any class of ℓ -structures of bounded arity. Then, the following are equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence: >

(2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq drv(\mathbb{A})$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

There is no efficient algorithm for the no-promise problem

0 0

Outline

Decomposition Methods and Tree Projections

Enumeration without Certificates

Enumeration with Certificates

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: for each solution $h \in \mathbb{A}^{\mathbb{B}}[O]$, a certified solution (h, h'); **Method**: let $A = \{X_1, \ldots, X_m, X_{m+1}, \ldots, X_n\}$ be the variables of \mathbb{A} ; update $(\mathbb{A}, \mathbb{B}, A)$ with any of its domain restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke CPropagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$;

Procedure CPropagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i);

begin

1. let $\mathbb{B}'_{\mathcal{V}} := \operatorname{GAC}(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}});$

2. if i > 1 and $\mathbb{B}'_{\mathcal{V}}$ is empty then output "DM failure" and HALT;

3. let
$$active Values := dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$$
;

4. for each element $\langle a_i \rangle \in active Values$ do

5. | if
$$i = n$$
 then

6. | | **output** the certified solution $(\langle a_1, ..., a_m \rangle, \langle a_{m+1}, ..., a_n \rangle);$

8. | update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 9. | CPropagate $(i + 1 (A_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}})) = (a_1 - a_{i-1}, a_i)$):

$$\mathbf{D} \mid \mathsf{CPropagate}(i+1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$$

10.
$$\lfloor \quad \mid \quad \text{if } i > m \text{ then BREAK};$$

end.

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \dots, X_m\}$; **Output**: for each solution $h \in \mathbb{A}^{\mathbb{B}}[O]$, a certified solution (h, h'); **Method**: let $A = \{X_1, \dots, X_m, X_{m+1}, \dots, X_n\}$ be the variables of \mathbb{A} ; update $(\mathbb{A}, \mathbb{B}, A)$ with any of its domain restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke CPropagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle)$;

Procedure CPropagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i);

begin

let B'_V := GAC(A_V, B_V);
 if i > 1 and B'_V is empty then output "DM failure" and HALT;
 let active Values := dom(X_i)^{B'_V};
 for each element ⟨a_i⟩ ∈ active Values do
 | if i = n then

output the certified solution $(\langle a_1, ..., a_m \rangle, \langle a_{m+1}, ..., a_n \rangle);$

7. | else

8. | update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value a_i */

9. | | CPropagate
$$(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$$

10. \lfloor **if** i > m **then** BREAK;

end.

6.

Input: An ECSP instance $(\mathbb{A}, \mathbb{B}, O)$, where $O = \{X_1, \ldots, X_m\}$; **Output**: for each solution $h \in \mathbb{A}^{\mathbb{B}}[O]$, a certified solution (h, h'); Method: let $A = \{X_1, ..., X_m, X_{m+1}, ..., X_n\}$ be the variables of A; update $(\mathbb{A}, \mathbb{B}, A)$ with any of its domain restricted versions; let $\mathbb{A}_{\mathcal{V}} := \ell$ -DM(\mathbb{A}), $\mathbb{B}_{\mathcal{V}} := r$ -DM(\mathbb{A}, \mathbb{B}); invoke CPropagate $(1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}}), m, \langle \rangle);$ **Procedure** CPropagate(*i*: integer, $(\mathbb{A}_{\mathcal{V}}, \mathbb{B}_{\mathcal{V}})$: pair of structures, *m*: integer, $\langle a_1, ..., a_{i-1} \rangle$: tuple of values in A^i); begin 1 let $\mathbb{R}'_{1} := GAC(\mathbb{A}_{1}, \mathbb{R}_{1})$ if i > 1 and $\mathbb{B}'_{\mathcal{V}}$ is empty **then** output "DM failure" and HALT; 2. let active Values := $dom(X_i)^{\nu_{\mathcal{V}}}$; for each element $\langle a_i \rangle \in active Values$ do 4. if i = n then 5. **output** the certified solution $(\langle a_1, ..., a_m \rangle, \langle a_{m+1}, ..., a_n \rangle);$ 6. 7. else update $dom(X_i)^{\mathbb{B}'_{\mathcal{V}}}$ with $\{\langle a_i \rangle\}$; /* X_i is fixed to value $a_i */$ 8. | CPropagate $(i + 1, (\mathbb{A}_{\mathcal{V}}, \mathbb{B}'_{\mathcal{V}}), m, \langle a_1, ..., a_{i-1}, a_i \rangle);$ 9 10. | | **if** i > m **then** BREAK; end.

- nanat The spice of the spice of the
- A AN AN AN AN AN A COMPANY A COMPANY AND A

When is the algorithm correct?

- ALL STREET S
- All a series of the second second
- the contract of the second second
 - A Carlos
 - n de medice adamentation accimination

やないたかないのやないたかない

100

- 「おいややいない Sa Sa String Telson

When is the algorithm correct?

Thm.

Let \mathbb{A} be an ℓ -structure, and $O \subseteq A$ be a set of variables. Then, for every r-structure \mathbb{B} , ComputeCertifiedSolutions_{DM} computes WPD a subset of the solutions in $\mathbb{A}^{\mathbb{B}}[O]$, with a certificate for each of them. Moreover,

- If ComputeCertifiedSolutions_{DM} outputs "DM failure", then $(\mathcal{H}_{\mathbb{A}}, \mathcal{H}_{\ell-DM(\mathbb{A})})$ does not have a tree projection;
- otherwise, ComputeCertifiedSolutions_{DM} computes WPD $\mathbb{A}^{\mathbb{B}}[O]$.

Complexity Issues

Thm.

Assume FPT \neq W[1]. Let **A** be any bounded-arity recursively-enumerable class of ℓ -structures closed under taking minors. Then, the following are equivalent:

- (1) A has bounded treewdith;
- (2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq A$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

Comparing The Results

Thm.

Assume $FPT \neq W[1]$. Let **A** be any class of ℓ -structures of bounded arity. Then, the following are equivalent:

- (1) A has bounded treewdith modulo homomorphic equivalence;
- (2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq drv(\mathbb{A})$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

Thm.

Assume FPT \neq W[1]. Let **A** be any bounded-arity recursively-enumerable class of ℓ -structures closed under taking minors. Then, the following are equivalent:

- (1) A has bounded treewdith;
- (2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq A$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

Comparing The Results

Thm.

Assume $FPT \neq W[1]$. Let **A** be any class of ℓ -structures of bounded arity. Then, the following are equivalent:

- (1) A has bounded treewdith modulo homomorphic equivalence;
- (2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq drv(\mathbb{A})$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

Thm.

Assume FPT \neq W[1]. Let **A** be any bounded-arity recursively-enumerable class of ℓ -structures closed under taking minors. Then, the following are equivalent:

- (1) A has bounded treewdith;
- (2) For every $\mathbb{A} \in \mathbf{A}$, for every *r*-structure \mathbb{B} , and for every set of variables $O \subseteq A$, the ECSP instance $(\mathbb{A}, \mathbb{B}, O)$ is solvable WPD.

