16th Int. Conf. on Principles and Practice of Constraint Programming
St Andrews, Scotland,6-10th September 2010

Structural Tractability of Enumerating CSP Solutions

UNIVERSITA DELLA CALABRIA
I

——— University of Calabria, Italy

(W coprus D ARCARCATA

Gianluigi Greco and Francesco Scarcello

http://www.unical.it/portale/

[CSPs as Homomorphism Prob

F1n(X1, Xg, X3, X4 Xo)

(X1, X7 Xq1, X16, X50)

Set of variables {X;,..., X5} Set of constraint relations

Set of constraint scopes

[CSPs as Homomorphism Pro

|
Fn(Xg, Xo, X3 Xy, Xs) ,

B
[Ty
—— |
il
21 |22

24 |25 |26

15

20 23

(X1, X7 Xq1, X16, X50)

r-structure B

/-structure A

" CSPs as Homomorphism Prob

rlh(xll XZ, X31 X4’ X5)
M At
ooy

S

21 |22

14
il

24 |25 |26

15

20 23

|
|
|
rlv(>(11 X7’ Xll, X16, XZO) I
|
|
|

(-structure A r-structure B
S homomorphism =

(Questions

Questions s

r

INPUT: CSP instance (A, B)]

.

é)
@ Decide the existence of a homomorphism

@ Enumerate all the homomorphisms AB

@ For a set of variales X, enumerate the projection A”[X]
G J

Questions s

r

INPUT: CSP instance (A, B) }

.

()
@ Decide the existence of a homomorphism

@ Enumerate all the homomorphisms AB

@ For a set of variales X, enumerate the projection A”[X]

@ Tractable decision and closure properties imply tractable search
[R. Dechter and A. Itai, 1992]

@ Non-uniform case
[D. Cohen, 2004]

[CSPs and Hypergraphs

g -structure A Variables map to nodes
Scopes map to hyperedges

Structurally Restricted

Structurally Restricted

The hypergraph is
acyclic

@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved

9 @ Generalized arc consistency — Global consistency y

[Structurally Restricted CSPs _

The hypergraph is
acyclic

-

@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved

9 @ Generalized arc consistency — Global consistency

Decomposition Methoc

Decomposition Methods

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y

 Generalized Hypertree DecompoSIlONE

{1,2,3,4,5,20,21,22,23,24,25,26} {1H,20H}

{1.7,11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}

{11,12,13,17,22} {11H,13V} 18,9,10,6,15,19,26} {8H,6V}

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y

[Generalized Hypertree Decomposition

{1,2,3,4,5,20,21,22,23,24,25,26} {1H,20H}

{1.7,11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}

{11,12,13,17,22} {11H,13V} 18,9,10,6,15,19,26} {8H,6V}

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

Each cluster can be seen as a subproblem HA

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y

outine

pecomposition Methods and Tree Projections]

—

ERumeration without Certificates]

outine

- |

pecomposition Methods and Tree Projections]

Revisiting Decompositior

CSP instance (A, B)

{

|
Ay = E-DM(A): By = r-DM(A, B)
I

\ J
4

\ J
A4

Scopes Solutions

\ J
v

Work on subproblems

Revisiting Decompositio

)

CSP instance (

A B

2
|

Ay = E-DM(A): By = r-DM(A, B)

N\~

[(Noticeable) Examples

CSP instance (

[

|
Ay = (-DM(A :BV:TDM(AB)

U

@ Treewidth: take all views that can be computed with at most k
variables

@ Generalized hypertree width: take all views that can be computed by
joining at most k atoms (k query views)

¢ Fractional hypertree width: take all views that can be computed
through subproblems having fractional cover at most k (or use Marx’s
O(k3) approximation to have polynomially many views)

[Acyclicity in Decomposition

CSP instance (

A, B)
B U

Working on subproblems is not

necessarily beneficial...

|
Ay = E-DM(A): By = r-DM(A, B)

Tree Projections (by Exa

Structure of the CSP

Tree Projections (by Exal

Structure of the CSP Available Views

Tree Projections (by Exar

Structure of the CSP Tree Projection Available Views

Tree Projections (by Exam

Structure of the CSP Tree Projection Available Views

* From Acyclicity to Tree Proje

@ Deciding whether a tree projection exists is NP-complete

[G. Gottlob, Z. Miklos, and T. Schwentick, 2009]

@ The existence of a tree projection ensures polynomial-time solvability

[N. Goodman and O. Shmueli, 1984], [Y. Sagiv and O. Shmueli, 1993]

-

_

@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved
Q

SR e Without Certificates]

 The Algorithm: Backtracking andiPropage

tlof)

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let B}, := GAC(Ay,By);

2. let active Values := dom(Xq;)Bg’;

3. for each element (a;) € activeValues do

4. if 2 = m then

5. | output (a1, ..., Am—1, Am);

6 else

7 | update dom (Xi)l% with {{a;)}; /x X; is fixed to value a; */
8. | | Propagate(i—+1,(Ay,By),m,(a,...,a;_1,a;));

end.

[The Algorithm: Backtracking and Rropdyd

It

Input(An ECSP instance (A, B, O), where O = { X1, ..., X, };]
Output: A™[U];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let By, := GAC(Ay,By);

2. let active Values := dom(Xq;)Bg’;

3. for each element (a;) € activeValues do

4. if 2 = m then

5. | output (a1, ..., Am—1,0m);

6 else

7 | update dom (X;)BV with {{a;)}; /x X; is fixed to value a; */
8. | | Propagate(i—+1,(Ay,By),m,(a,...,a;_1,a;));

end.

tlof)

 The Algorithm: Backtracking andiPropage

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let B}, := GAC(Ay,By);

2. let active Values := dom(Xq;)Bg’;

3. for each element (a;) € activeValues do

4. if 2 = m then

5. | output (a1, ..., Am—1, Am);

6 else

7 | | update dom (X@-)BQ’ with {{a;)}; /x X; is fixed to value a; */
8. | |\ Propagate(i—+1,(Ay,By),m,(ar,....a; 1,a;));

end.

tlof)

 The Algorithm: Backtracking andiPropage

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ..., ai—1): tuple of values in A");

begi

l.fl‘ll;t B’V = GAC(Av,Bv);]

2. let actwe Values := dom(Xi)BQ"

b

3. for each element (a;) € activeValues do

4. if © = m then

5. | output (a1, ..., Am—1,0m);

0. else

7. | [update dom (X@-)BQ’ with {(a:)}; /+ X is fixed to value a; */
8. | |\ Propagate(i—+1,(Ay,By),m,(ar,....a; 1,a;));

 The Algorithm: Backtracking andiPropages

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ..., ai—1): tuple of values in A");
begin
let B, := GAC(Ay, By);
let active Values := dom(Xq;)BQ’;
for each element (a;) € active Value

1

2.

3.

4, if:% — o
5. | | output (a1, ..., am—1,0m);

6. else

7.

8

The solution is
not certified!

| update dom (X@-)I% with {(a:)}; /+ X is fixed to value a; */
| Propagate(i+ 1, (Ay,By),m, (a1,,ai—1,a;));

end.

[Tp-covering

L Tp-covering

F/E
L
S

{B,C} is individually tp-covered

{D} is not individually tp-covered

Ti

A e
)

I et el Tt T)
-l S A A

iy
]

ekl _::ﬂ

T
T 2t 2.

]
L

RO

-+

'

b e T

=T

2)
-y
3 |

Let A be an (-structure, and let O C A be a set of variables. The following are equivalent:

(1) O is individually tp-covered
(2) For every r-structure B, ComputeAllSolutions,, computes A°[O].

Proof: Discussion on the Base (DECISION)

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

Proof: Discussion on the

@ The existence of a tree projection implie @ Global”
[Y. Sagiv and O. Shmueli, 1983]

Over the views.

Proof: Discussion on the

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]

[Proof: Discussion on the Ba:s

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the ex]

projection for the core of the left-structure implie
[H. Chen and V. Dalmau, 2005]

ance of a tree
Global”

Over the views, i.e., k-consistency

[Proof: Discussion on the Base (Degcis

J

@ The existence of a tree projection implies "GAC — Global”

Q@

[Y. Sagiv and O. Shmueli, 1983]

For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]

For tree decompositions, and on classes of CSPs having bounded
arity, the existence of a tree projection for the core of the left-structure

IS a sufficient and necessary condition to imply "GAC — Global”
[A. Atserias, A. Bulatov, and V. Dalmau, 2007]

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]

@ For tree decompositions, and on classes of CSPs having bounded
arity, the existence of a tree projection for the core of the left-structure

IS a sufficient and necessary condition to imply "GAC — Global”
[A. Atserias, A. Bulatov, and V. Dalmau, 2007]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core is also necessary to imply "GAC — Global”
[G. Greco and F. Scarcello, 2010]

J o

[Proof: Discussion on the Base (DeciSIoH)is

Kl'hm [G. Greco and F. Scarcello, 2010]. \

Let A be an (-structure, and let Ay, be a v-structure.

The following are equivalent:

(1) Thereisacore A’ of A such that (Har. %Av) has a tree projection

(2) For every r-structure B, for every r-structure By, that is legal,
enforcing generalized arc consistency on By is a correct decision procedure

@ For generalized hypertree decompositions, the existence of a tree

projection for the core is also necessary to imply "GAC — Global”
[G. Greco and F. Scarcello, 2010]

Complexity Issues of C

Complexity Issues of Co

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...

[Complexity Issues of Comp

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/Thm.

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A has bounded treewdith modulo homomorphic equivalence;

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD.)

[Complexity Issues of Compute!

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/?hm. ‘\

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variabledO C drv(A), Jhe ECSP
\ instance (A, B, O) is solvable WPD.

/

rin: |PARIS
PANDA
~P|LAURA

ANITA

[Complexity Issues of Compute

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/Thm.

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A h@md@d treewdith modulo homomorphic equivaiencD

(2) For every A € AT JOT CVeTy T=SITTICTITT B, and jor every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD. J

There is no efficient algorithm for the no-promise problem

outine

=flmeration with Certifi J

_ ASimple Modification

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: for each solution h € A®[O], a certified solution (h, h');
Method: let A = { X1, ..., X;n, Xint1, ..., X, } be the variables of A;
update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
invoke CPropagate(1, (Ay,By), m, ());

Procedure CPropagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let By, := GAC(Ay,By);

2. ifi > 1 and B), is empty then output “DM failure” and HALT;

3. let active Values := dom(Xi)Bg’;

4. for each element (a;) € active Values do

5. | ifi =n then

6. | | output the certified solution ({a1, ..., am), (Gm41, .y An));
7. | else

8. | | wupdate dom(Xi)Bq’ with {(ai)}; /% X is fixed to value a; */
9. | | CPropagate(i+ 1,(Ay,BY),m,{(a,...,ai—1,a:));

10.| [ifé > m then BREAK;

_ ASimple Modification

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: for each solution h € A®[O], a certified solution (h, h');
Method: let A = { X1, ..., X;n, Xint1, ..., X, } be the variables of A;
update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
invoke CPropagate(1, (Ay,By), m, ());

Procedure CPropagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let By, := GAC(Ay,By);

2. ifi > 1 and B), is empty then output “DM failure” and HALT;

3. let active Values := dom(Xi)B%’;

4. for each element (a;) € active Values do

5. | ifi =n then

6. | | outpufthe certified solution ({a1, ..., am), (Gm41,s .y Un));]
7. | else

8. | | wupdate dom(Xi)Bq’ with {(ai)}; /+ X is fixed to value a; */
9. | | CPropagate(i+ 1,(Ay,BY),m,{(a,...,ai—1,a:));

10.| [ifé > m then BREAK;

_ ASimple Modification

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: for each solution h € A®[O], a certified solution (h, h');
Method: let A = { X1, ..., X;n, Xint1, ..., X, } be the variables of A;
update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
invoke CPropagate(1, (Ay,By), m, ());

Procedure CPropagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");
begin

1. / o \'s’m\'s):
2.' ifi > 1 and B), is empty then output “DM failure” and HALT;]

3. let actwe Values := dom(X;)"V;

for each element (a;) € active Values do
| if i = n then

| | output the certified solution ({a1, ..., Gm), (Grm+1, -, An));
| else
|
|

| update dom(Xi)Bq’ with {(ai)}; /+ X is fixed to value a; */
| CPropagate(i + 1, (Ay,BY,), m, (a1, ...,ai—1,a:)):
0.| | ifi> m then BREAK;

mple Modification

s B s : e R s tebe L g mt Lz o gr S ot rebe L gmt Lzl
St Tl o S T e R e e S T e R e e Y e R e e T e R e e

s = oep
ST v Al S

A Simple Modification

Let A be an (-structure, and O C A be a set of variables. Then, for every r-structure B,
ComputeCertifiedSolutions,, computes WPD a subset of the solutions in A®[O), with a certifi-
cate for each of them. Moreover,

— If ComputeCertifiedSolutionsy, outputs “DM failure”, then (Hy, He-pm(a)) does not have a
Iree projection,

\ — otherwise, ComputeCertifiedSolutions,, computes WPD A®[O). /
e K\
ffl‘ “?"Mﬁ%"(-l \7

! i
g P/
e e AT e U e e T e U e e T e U e T e T e e T e U e e T e U e e T e S e e T e e e

Complexity Issues _

(“Thm,)

Assume FPT # W(1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has bounded treewdith;

(2) Forevery A € A, for every r-structure B, and for every set of variables O C A, the ECSP instance
(A, B, O) is solvable WPD.

—

“Comparing The Resuits N

/Thm.

Assume FPT # WI1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B. O) is solvable WPD.)

ﬁl’hm. \

Assume FPT # W[1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has bounded treewdith;

(2) lorevery A € A, for every r-structure B, and for every set of variables O C A, the ECSP instance

(A, B, O) is solvable WPD.

“Comparing The Resuits N

/Thm.

Assume FPT # WI1|. Let A be any class of (-structures of bounded arity. Then, the following are

~

equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD.)

ﬁl’hm. \

Assume FPT # W[1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has baunded ticewdith;

(2) Forevery A € A, for every r-structure B, and for every set of variables Q. C_ A, the ECSP instance

(A, B, O) is solvable WPD.

Thank you!

