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@ Decide the existence of a homomorphism

@ Enumerate all the homomorphisms AB

@ For a set of variales X, enumerate the projection A”[X]
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INPUT: CSP instance (A, B) }

.

( )
@ Decide the existence of a homomorphism

@ Enumerate all the homomorphisms AB

@ For a set of variales X, enumerate the projection A”[X]

@ Tractable decision and closure properties imply tractable search
[R. Dechter and A. Itai, 1992]

@ Non-uniform case
[D. Cohen, 2004]



[ CSPs and Hypergraphs

g -structure A Variables map to nodes
Scopes map to hyperedges
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The hypergraph is
acyclic

@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved

9 @ Generalized arc consistency — Global consistency y
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The hypergraph is
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@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved

9 @ Generalized arc consistency — Global consistency
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Decomposition Methods

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y




 Generalized Hypertree DecompoSIlONE

{1,2,3,4,5,20,21,22,23,24,25,26} {1H,20H}

{1.7,11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}

{11,12,13,17,22} {11H,13V} 18,9,10,6,15,19,26} {8H,6V}

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y




[ Generalized Hypertree Decomposition

{1,2,3,4,5,20,21,22,23,24,25,26} {1H,20H}

{1.7,11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}

{11,12,13,17,22} {11H,13V} 18,9,10,6,15,19,26} {8H,6V}

Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters

Each cluster can be seen as a subproblem HA

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition y
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Revisiting Decompositior

CSP instance (A, B)
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Ay = E-DM(A): By = r-DM(A, B)
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[ (Noticeable) Examples

CSP instance (

[

|
Ay = (-DM(A :BV:TDM(AB)

U

@ Treewidth: take all views that can be computed with at most k
variables

@ Generalized hypertree width: take all views that can be computed by
joining at most k atoms (k query views)

¢ Fractional hypertree width: take all views that can be computed
through subproblems having fractional cover at most k (or use Marx’s
O(k3) approximation to have polynomially many views)



[ Acyclicity in Decomposition

CSP instance (

A, B)
B U

Working on subproblems is not

necessarily beneficial...

|
Ay = E-DM(A): By = r-DM(A, B)
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Tree Projections (by Exam

Structure of the CSP Tree Projection Available Views



* From Acyclicity to Tree Proje

@ Deciding whether a tree projection exists is NP-complete

[G. Gottlob, Z. Miklos, and T. Schwentick, 2009]

@ The existence of a tree projection ensures polynomial-time solvability

[N. Goodman and O. Shmueli, 1984], [Y. Sagiv and O. Shmueli, 1993]

-

\_

@ Acyclicity is efficiently recognizable

@ Acyclic CSPs can be efficiently solved
Q
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 The Algorithm: Backtracking andiPropage

tlof)

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let B}, := GAC(Ay,By);

2. let active Values := dom(Xq;)Bg’;

3. for each element (a;) € activeValues do

4. if 2 = m then

5. | output (a1, ..., Am—1, Am);

6 else

7 | update dom (Xi)l% with {{a;)}; /x X; is fixed to value a; */
8. | | Propagate(i—+1,(Ay,By),m,(a,...,a;_1,a;));

end.
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It

Input(An ECSP instance (A, B, O), where O = { X1, ..., X, }; ]
Output: A™[U];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let By, := GAC(Ay,By);

2. let active Values := dom(Xq;)Bg’;

3. for each element (a;) € activeValues do

4. if 2 = m then

5. | output (a1, ..., Am—1,0m);

6 else

7 | update dom (X; )BV with {{a;)}; /x X; is fixed to value a; */
8. | | Propagate(i—+1,(Ay,By),m,(a,...,a;_1,a;));

end.
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 The Algorithm: Backtracking andiPropage

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
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invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (A, By): pair of structures, m: integer,
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4. if 2 = m then

5. | output (a1, ..., Am—1, Am);

6 else

7 | | update dom (X@-)BQ’ with {{a;)}; /x X; is fixed to value a; */
8. | |\ Propagate(i—+1,(Ay,By),m,(ar,....a; 1,a;));

end.
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 The Algorithm: Backtracking andiPropage

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ..., ai—1): tuple of values in A");

begi

l.fl‘ll;t B’V = GAC(Av,Bv); ]

2. let actwe Values := dom(Xi)BQ"

b

3. for each element (a;) € activeValues do

4. if © = m then

5. | output (a1, ..., Am—1,0m);

0. else

7. | [ update dom (X@-)BQ’ with {(a:)}; /+ X is fixed to value a; */
8. | |\ Propagate(i—+1,(Ay,By),m,(ar,....a; 1,a;));




 The Algorithm: Backtracking andiPropages

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: A®[O];
Method: update (A, B, O) with any of its domain-restricted versions;
let Ay := ¢-DM(A), By :=r-DM(A, B);
invoke Propagate(1, (Ay,By), m, ());

Procedure Propagate(i: integer, (Ay, By): pair of structures, m: integer,
(a1, ..., ai—1): tuple of values in A");
begin
let B, := GAC(Ay, By);
let active Values := dom(Xq;)BQ’;
for each element (a;) € active Value

1

2.

3.

4, if:% — o
5. | | output (a1, ..., am—1,0m);

6. else

7.

8

The solution is
not certified!

| update dom (X@-)I% with {(a:)}; /+ X is fixed to value a; */
| Propagate(i+ 1, (Ay,By),m, (a1, ....,ai—1,a;));

end.
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{B,C} is individually tp-covered

{D} is not individually tp-covered
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Let A be an (-structure, and let O C A be a set of variables. The following are equivalent:

(1) O is individually tp-covered
(2) For every r-structure B, ComputeAllSolutions,, computes A°[O].




Proof: Discussion on the Base (DECISION)

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]
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Proof: Discussion on the

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]



[ Proof: Discussion on the Ba:s

@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the ex]

projection for the core of the left-structure implie
[H. Chen and V. Dalmau, 2005]

ance of a tree
Global”

Over the views, i.e., k-consistency
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@ The existence of a tree projection implies "GAC — Global”

Q@

[Y. Sagiv and O. Shmueli, 1983]

For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]

For tree decompositions, and on classes of CSPs having bounded
arity, the existence of a tree projection for the core of the left-structure

IS a sufficient and necessary condition to imply "GAC — Global”
[A. Atserias, A. Bulatov, and V. Dalmau, 2007]



@ The existence of a tree projection implies "GAC — Global”
[Y. Sagiv and O. Shmueli, 1983]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core of the left-structure implies "GAC — Global”
[H. Chen and V. Dalmau, 2005]

@ For tree decompositions, and on classes of CSPs having bounded
arity, the existence of a tree projection for the core of the left-structure

IS a sufficient and necessary condition to imply "GAC — Global”
[A. Atserias, A. Bulatov, and V. Dalmau, 2007]

@ For generalized hypertree decompositions, the existence of a tree

projection for the core is also necessary to imply "GAC — Global”
[G. Greco and F. Scarcello, 2010]
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[ Proof: Discussion on the Base (DeciSIoH)is

Kl'hm [G. Greco and F. Scarcello, 2010]. \

Let A be an (-structure, and let Ay, be a v-structure.

The following are equivalent:

(1) Thereisacore A’ of A such that (Har. %Av) has a tree projection

(2) For every r-structure B, for every r-structure By, that is legal,
enforcing generalized arc consistency on By is a correct decision procedure

@ For generalized hypertree decompositions, the existence of a tree

projection for the core is also necessary to imply "GAC — Global”
[G. Greco and F. Scarcello, 2010]
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@ If Olis tp-covered, the algorithm runs With Polynomial Delay...



[ Complexity Issues of Comp

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/Thm.

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A has bounded treewdith modulo homomorphic equivalence;

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD. )




[ Complexity Issues of Compute!

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/?hm. ‘\

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variabledO C drv(A), Jhe ECSP
\ instance (A, B, O) is solvable WPD.

/
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[ Complexity Issues of Compute

@ If Olis tp-covered, the algorithm runs With Polynomial Delay...
@ ...and the result is essentially tight

/Thm.

Assume FPT # W{1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A h@md@d treewdith modulo homomorphic equivaiencD

(2) For every A € AT JOT CVeTy T=SITTICTITT B, and jor every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD. J

There is no efficient algorithm for the no-promise problem
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_ ASimple Modification

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: for each solution h € A®[O], a certified solution (h, h');
Method: let A = { X1, ..., X;n, Xint1, ..., X, } be the variables of A;
update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
invoke CPropagate(1, (Ay,By), m, ());

Procedure CPropagate(i: integer, (Ay, By ): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");

begin

1. let By, := GAC(Ay,By);

2. ifi > 1 and B), is empty then output “DM failure” and HALT;

3. let active Values := dom(Xi)Bg’;

4. for each element (a;) € active Values do

5. | ifi =n then

6. | | output the certified solution ({a1, ..., am ), (Gm41, .y An));
7. | else

8. | | wupdate dom(Xi)Bq’ with {(ai)}; /% X is fixed to value a; */
9. | | CPropagate(i+ 1,(Ay,BY),m,{(a,...,ai—1,a:));

10.| [ ifé > m then BREAK;
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update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
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_ ASimple Modification

Input: An ECSP instance (A, B, O), where O = {X1,..., X\ };
Output: for each solution h € A®[O], a certified solution (h, h');
Method: let A = { X1, ..., X;n, Xint1, ..., X, } be the variables of A;
update (A, B, A) with any of its domain restricted versions;
let Ay := ¢-DM(A), By := r-DM(A, B);
invoke CPropagate(1, (Ay,By), m, ());

Procedure CPropagate(i: integer, (Ay, By ): pair of structures, m: integer,
(a1, ...,a;—1): tuple of values in A");
begin

1. / o \'s’m\'s):
2.' ifi > 1 and B), is empty then output “DM failure” and HALT; ]

3. let actwe Values := dom(X;)"V;

for each element (a;) € active Values do
| if i = n then

| | output the certified solution ({a1, ..., Gm ), (Grm+1, -, An));
| else
|
|

| update dom(Xi)Bq’ with {(ai)}; /+ X is fixed to value a; */
| CPropagate(i + 1, (Ay,BY,), m, (a1, ...,ai—1,a:)):
0.| | ifi> m then BREAK;
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A Simple Modification

Let A be an (-structure, and O C A be a set of variables. Then, for every r-structure B,
ComputeCertifiedSolutions,, computes WPD a subset of the solutions in A®[O), with a certifi-
cate for each of them. Moreover,

— If ComputeCertifiedSolutionsy, outputs “DM failure”, then (Hy, He-pm(a)) does not have a
Iree projection,

\ — otherwise, ComputeCertifiedSolutions,, computes WPD A®[O). /
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Complexity Issues _

(“Thm, )

Assume FPT # W(1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has bounded treewdith;

(2) Forevery A € A, for every r-structure B, and for every set of variables O C A, the ECSP instance
(A, B, O) is solvable WPD.

—
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/Thm.

Assume FPT # WI1|. Let A be any class of (-structures of bounded arity. Then, the following are
equivalent:

~

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B. O) is solvable WPD. )
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Assume FPT # W[1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has bounded treewdith;

(2) lorevery A € A, for every r-structure B, and for every set of variables O C A, the ECSP instance

(A, B, O) is solvable WPD.
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/Thm.

Assume FPT # WI1|. Let A be any class of (-structures of bounded arity. Then, the following are

~

equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence,

(2) For every A € A, for every r-structure B, and for every set of variables O C drv(A), the ECSP
\ instance (A, B, O) is solvable WPD. )

ﬁl’hm. \

Assume FPT # W[1|. Let A be any bounded-arity recursively-enumerable class of (-structures closed
under taking minors. Then, the following are equivalent:

(1) A has baunded ticewdith;

(2) Forevery A € A, for every r-structure B, and for every set of variables Q. C_ A, the ECSP instance

(A, B, O) is solvable WPD.
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