Nucleolus Computation in Compact Coalitional Games

Gianluigi Greco, E. Malizia, L. Palopoli, and F. Scarcello
University of Calabria, Italy

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

- Outcomes belong to the imputation set $X(\mathcal{G})$

$$
x \in X(\mathcal{G})\left\{\begin{array}{c}
\text { • Efficiency } \\
x(N)=v(N) \\
\text { • Individual Rationality } \\
x_{i} \geq v(\{i\}), \quad \forall i \in N
\end{array}\right.
$$

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

- Solution Concepts characterize outcomes in terms of
- Fairness
- Stability

Excess...

- How fairness/stability can be measured?

$$
e(S, x)=v(S)-x(S)
$$

- The excess is a measure of the dissatisfaction of S

Excess...

- How fairness/stability can be measured?

$$
e(S, x)=v(S)-x(S)
$$

- The excess is a measure of the dissatisfaction of S
$v(\{1\})=v(\{2\})=v(\{3\})=0$
$v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1$
$v(\{1,2,3\})=3$

Excess...

- How fairness/stability can be measured?

$$
e(S, x)=v(S)-x(S)
$$

- The excess is a measure of the dissatisfaction of S

$$
\begin{aligned}
& x=(0,0,3) \Longrightarrow e(\{1,2\}, x)=v(\{1,2\})-\left(x_{1}+x_{2}\right)=1-0=1 \\
& x=(1,2,0) \Longrightarrow e(\{1,2\}, x)=v(\{1,2\})-\left(x_{1}+x_{2}\right)=1-3=-2
\end{aligned}
$$

$v(\{1\})=v(\{2\})=v(\{3\})=0$
$v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1$
$v(\{1,2,3\})=3$

...and the Nucleolus

- Arrange excess values in non-increasing order

...and the Nucleolus

- Arrange excess values in non-increasing order

$$
x=(1,2,0) \quad \theta(x)=(0,0,-1,-1,-2,-2)
$$

$v(\{1\})=v(\{2\})=v(\{3\})=0$
$v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1$
$v(\{1,2,3\})=3$

...and the Nucleolus

- Arrange excess values in non-increasing order

$$
\begin{array}{ll}
x^{*}=(1,1,1) & \theta\left(x^{*}\right)=(-1,-1,-1,-1,-1,-1) \\
\hline x=(1,2,0) & \theta(x)=(0,0,-1,-1,-2,-2)
\end{array}
$$

$v(\{1\})=v(\{2\})=v(\{3\})=0$
$v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1$
$v(\{1,2,3\})=3$

...and the Nucleolus

- Arrange excess values in non-increasing order

$$
\begin{aligned}
& x^{*}=(1,1,1) \quad \theta\left(x^{*}\right)=(-1,-1,-1,-1,-1,-1) \\
& \hline x=(1,2,0) \quad \theta(x)=(0,0,-1,-1,-2,-2) \\
& v(\{1\})=v(\{2\})=v(\{3\})=0 \\
& v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1 \\
& v(\{1,2,3\})=3
\end{aligned}
$$

...and the Nucleolus

- Arrange excess values in non-increasing order

Definition [Schmeidler]

The nucleolus $\mathscr{N}(\mathcal{G})$ of a game \mathcal{G} is the set $\mathscr{N}(\mathcal{G})=\{x \in X(\mathcal{G}) \mid \nexists y \in X(\mathcal{G})$ s.t. $\theta(y) \prec \theta(x)\}$

$x^{*}=(1,1,1)$	$\theta\left(x^{*}\right)=(-1,-1,-1,-1,-1,-1)$
$x=(1,2,0)$	$\theta(x)=(0,0,-1,-1,-2,-2)$
	$v(\{1\})=v(\{2\})=v(\{3\})=0$
$v(\{1,2\}))=v(\{1,3\})=v(\{2,3\})=1$	
$v(\{1,2,3\})=3$	

Compact Games

Compact Games

Compact Games

Compact Games

- Graph Games [Deng and Papadimitriou, 1994]
- Computational issues of several solution concepts
- The (pre)nucleolus can be computed in \mathbf{P}

$$
x_{i}^{*}=\frac{1}{2} \sum_{j \neq i} w_{i, j}
$$

Compact Games

- Graph Games [Deng and Papadimitriou, 1994]
- Computational issues of several solution concepts
- The (pre)nucleolus can be computed in \mathbf{P}

$$
x_{i}^{*}=\frac{1}{2} \sum_{j \neq i} w_{i, j}
$$

- Cost allocation on trees [Megiddo, 1978]
- Polynomial time algorithm
- Flow games [Deng, Fang, and Sun, 2006]
- Polynomial time algorithm on simple networks (unitary edge capacity)
- NP-hard, in general
- Weighted voting games [Elkind and Pasechnik, 2009]
- Pseudopolynomial algorithm

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

Computation Approaches

Succinct Linear Programs

Hardness Result

Kopelowitz, 1967

$$
\begin{aligned}
& \min \epsilon_{1} \\
& \quad e(S, x) \leq \epsilon_{1} \quad \forall S \subset N, S \notin W_{0}=\{\varnothing\} \\
& x \in X(\mathcal{G})
\end{aligned}
$$

Kopelowitz, 1967

$\int \min \epsilon_{1}$
$\operatorname{LP}_{1} \quad e(S, x) \leq \epsilon_{1} \quad \forall S \subset N, S \notin W_{0}=\{\varnothing\}$

$$
x \in X(\mathcal{G})
$$

$\min \epsilon_{2}$

$$
\begin{array}{ll}
e(S, x)=\epsilon_{1}^{*} & \forall S \in W_{1} \\
e(S, x) \leq \epsilon_{2} & \forall S \subset N, S \notin\left(W_{0} \cup W_{1}\right)
\end{array}
$$

$\mathrm{LP}_{2} \quad x \in X(\mathcal{G})$
where:

- $V_{1}=\left\{x \mid\left(x, \epsilon_{1}^{*}\right)\right.$ is an optimal solution to $\left.\mathrm{LP}_{1}\right\}$
- $W_{1}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{1}^{*}\right.$, for every $\left.x \in V_{1}\right\}$

Kopelowitz, 1967

$$
\operatorname{LP}_{k}\left(\begin{array}{ll}
\min \epsilon_{k} & \\
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin\left(W_{0} \cup \cdots \cup W_{k-1}\right) \\
x \in X(\mathcal{G}) &
\end{array}\right.
$$

where:

- $V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right)\right.$ is an optimal solution to $\left.\mathrm{LP}_{r}\right\}$
- $W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}\right.$, for every $\left.x \in V_{r}\right\}$

An Example Computation

$$
N=1, \ldots, n, n+1, n+2
$$

$$
\begin{aligned}
& v(N)=n+2 \\
& v(\{i\})=1, i \in\{1, \ldots, n\} \\
& v(\{1, \ldots, n\})=n \\
& v(\{n+1\})=v(\{n+2\})=0 \\
& v(\{n+1, n+2\})=2 \\
& v(S)=-\infty,|\{n+1, n+2\} \cap S| \geq 1, \\
& \quad|\{1, \ldots, n\} \cap S| \geq 1, S \neq N
\end{aligned}
$$

An Example Computation

$$
N=1, \ldots, n, n+1, n+2
$$

$$
\begin{aligned}
& v(N)=n+2 \\
& v(\{i\})=1, i \in\{1, \ldots, n\} \\
& v(\{1, \ldots, n\})=n \\
& v(\{n+1\})=v(\{n+2\})=0 \\
& v(\{n+1, n+2\})=2 \\
& v(S)=-\infty,|\{n+1, n+2\} \cap S| \geq 1, \\
& \quad|\{1, \ldots, n\} \cap S| \geq 1, S \neq N
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}, S_{2}, \ldots \subset\{1, \ldots, n\}\left|S_{i}\right|>1 \\
& v\left(S_{i}\right)=\left|S_{i}\right|-1+2^{-i}
\end{aligned}
$$

$$
\begin{gathered}
\epsilon_{1}^{*}=0 \\
x^{*}=\left(1, \ldots, 1, x_{n+1}^{*}, x_{n+2}^{*}\right)
\end{gathered}
$$

$\min \epsilon_{1}$

$$
n-x(\{1, \ldots, n\}) \leq \epsilon_{1}
$$

$$
\mathrm{LP}_{1} \quad 2-x_{n+1}-x_{n+2} \leq \epsilon_{1}
$$

$$
x(\{1, \ldots, n\})+x_{n+1}+x_{n+2}=n+2
$$

$$
x_{i} \geq 1, i \in\{1, \ldots, n\}
$$

An Example Computation

$$
N=1, \ldots, n, n+1, n+2
$$

$$
\begin{aligned}
& v(N)=n+2 \\
& v(\{i\})=1, i \in\{1, \ldots, n\} \\
& v(\{1, \ldots, n\})=n \\
& v(\{n+1\})=v(\{n+2\})=0 \\
& v(\{n+1, n+2\})=2 \\
& v(S)=-\infty,|\{n+1, n+2\} \cap S| \geq 1, \\
& \quad|\{1, \ldots, n\} \cap S| \geq 1, S \neq N
\end{aligned}
$$

The excess is constant

$$
e\left(S_{i}, x^{*}\right)=v\left(S_{i}\right)-x^{*}\left(S_{i}\right)=-1+2^{-i}
$$

An Example Computation

$$
N=1, \ldots, n, n+1, n+2
$$

$$
\begin{aligned}
& v(N)=n+2 \\
& v(\{i\})=1, i \in\{1, \ldots, n\} \\
& v(\{1, \ldots, n\})=n \\
& v(\{n+1\})=v(\{n+2\})=0 \\
& v(\{n+1, n+2\})=2 \\
& v(S)=-\infty,|\{n+1, n+2\} \cap S| \geq 1, \\
& \quad|\{1, \ldots, n\} \cap S| \geq 1, S \neq N
\end{aligned}
$$

The excess is constant

$$
\begin{aligned}
& S_{1}, S_{2}, \ldots \subset\{1, \ldots, n\}\left|S_{i}\right|>1 \\
& v\left(S_{i}\right)=\left|S_{i}\right|-1+2^{-i}
\end{aligned}
$$

$$
\begin{gathered}
\epsilon_{1}^{*}=0 \\
x^{*}=\left(1, \ldots, 1, x_{n+1}^{*}, x_{n+2}^{*}\right)
\end{gathered}
$$

$$
e\left(S_{i}, x^{*}\right)=v\left(S_{i}\right)-x^{*}\left(S_{i}\right)=-1+2^{-i}
$$

$\left[e\left(S_{i}, x^{*}\right) \leq \epsilon_{2}\right.$
$\epsilon_{2}^{*}=-1+2^{-1}$

An Example Computation

$$
N=1, \ldots, n, n+1, n+2
$$

$$
\begin{aligned}
& v(N)=n+2 \\
& v(\{i\})=1, i \in\{1, \ldots, n\} \\
& v(\{1, \ldots, n\})=n \\
& v(\{n+1\})=v(\{n+2\})=0 \\
& v(\{n+1, n+2\})=2 \\
& v(S)=-\infty,|\{n+1, n+2\} \cap S| \geq 1, \\
& \quad|\{1, \ldots, n\} \cap S| \geq 1, S \neq N
\end{aligned}
$$

The excess is constant

$$
\begin{gathered}
e\left(S_{i}, x^{*}\right)=v\left(S_{i}\right)-x^{*}\left(S_{i}\right)=-1+2^{-i} \\
e\left(S_{i}, x^{*}\right) \leq \epsilon_{3} \\
\epsilon_{2}^{*}=-1+2^{-1}>\epsilon_{3}^{*}=-1+2^{-2}, \ldots>
\end{gathered}
$$

Kopelowitz, 1967

$$
\operatorname{LP}_{k}\left(\begin{array}{ll}
\min \epsilon_{k} & \\
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin\left(W_{0} \cup \cdots \cup W_{k-1}\right) \\
x \in X(\mathcal{G}) &
\end{array}\right.
$$

where:

- $V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right)\right.$ is an optimal solution to $\left.\mathrm{LP}_{r}\right\}$
- $W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}\right.$, for every $\left.x \in V_{r}\right\}$

Kopelowitz, 1967

$$
\begin{aligned}
& \min \epsilon_{k} \\
& \qquad \begin{array}{l}
e(S, x)=\epsilon_{r}^{*} \\
e(S, x) \leq \epsilon_{k}
\end{array} \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
& \quad x \in X(\mathcal{G})
\end{aligned} \begin{aligned}
& \text { where: } \\
& \quad V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right) \text { is an optimal solution to LP } r\right\} \\
& \bullet W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}, \text { for every } x \in V_{r}\right\}
\end{aligned}
$$

Theorem

The algorithm performs $\Omega\left(2^{n}\right)$ steps, in some cases.

cf. Mashler, Peleg, and Shapley, 1979

$\int \min \epsilon_{k}$

$$
\begin{array}{ll}
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin\left(W_{0} \cup \cdots \cup W_{k-1}\right) \\
x \in X(\mathcal{G}) &
\end{array}
$$

where:

- $V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right)\right.$ is an optimal solution to $\left.\mathrm{LP}_{r}\right\}$
- $W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}\right.$, for every $\left.x \in V_{r}\right\}$

cf. Mashler, Peleg, and Shapley, 1979

$\int \min \epsilon_{k}$

$$
\begin{array}{ll}
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin\left(W_{K}\right) \\
x \in X(\mathcal{G}) &
\end{array}
$$

where:

- $V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right)\right.$ is an optimal solution to $\left.\operatorname{LP}_{r}\right\}$
- $W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}\right.$, for every $\left.x \in V_{r}\right\}$

$$
\left\{S \subseteq N \mid x(S)=y(S), \forall x, y \in V_{k-1}\right\}
$$

cf. Mashler, Peleg, and Shapley, 1979

$$
\left.\begin{array}{l}
\begin{array}{rl}
\min \epsilon_{k} \\
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin\left(W_{L}\right) \\
x \in X(\mathcal{G})
\end{array} \\
\text { where: } \\
\bullet V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right) \text { is an optimal solution to LP }\right\} \\
\bullet W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}, \text { for every } x \in V_{r}\right\}
\end{array}\right\}
$$

[Kern and Paulusuma, 2003]

LP Approaches over Compact Games

$$
\operatorname{LP}_{k}\left(\begin{array}{ll}
\min \epsilon_{k} & \\
e(S, x)=\epsilon_{r}^{*} & \forall S \in W_{r}, r \in\{1, \ldots, k-1\} \\
e(S, x) \leq \epsilon_{k} & \forall S \subset N, S \notin \mathcal{F}_{k-1} \\
x \in X(\mathcal{G}) & \\
\text { where: } & V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right) \text { is an optimal solution to } \operatorname{LP}_{r}\right\} \\
\bullet & W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}, \text { for every } x \in V_{r}\right\} \\
\bullet & \mathcal{F}_{k-1}=\left\{S \subseteq N \mid x(S)=y(S), \forall x, y \in V_{k-1}\right\}
\end{array}\right.
$$

- In compact games, two problems have to be faced:
(P1) Sets W and \mathcal{F} contain exponentially many elements, but we would like to avoid listing them explicitly
(P2) Translate LP (complexity) results to "succinct programs"

(P1): A Convenient Representation

equalities + implied equalities

(P1): A Convenient Representation

equalities + implied equalities

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$

(P1): A Convenient Representation

fixed inequalities
equalities + implied equalities

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$

$$
\left\{S \subseteq N \mid e(S, x)=\epsilon_{k}^{*}, \text { for every } x \in V_{k}\right\} \quad \uparrow \underbrace{}_{\text {equalities }}
$$

(P1): A Convenient Representation

equalities + implied equalities

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$
- A basis \mathcal{B}_{k} for aff.hull $\left(V_{k}\right)$ contains n vectors at most

(P1): A Convenient Representation

equalities + implied equalities

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$
- A basis \mathcal{B}_{k} for aff.hull $\left(V_{k}\right)$ contains n vectors at most
- $S \in \mathcal{F}_{k}$ iff S is a linear combination of the indicator vectors for \mathcal{B}_{k}

(P1): A Convenient Representation

equalities + implied equalities

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$
- A basis \mathcal{B}_{k} for aff.hull $\left(V_{k}\right)$ contains n vectors at most
- $S \in \mathcal{F}_{k}$ iff S is a linear combination of the indicator vectors for \mathcal{B}_{k}

(P1): A Convenient Representation

$$
\xrightarrow{i} \xrightarrow{\text { I-th inequality }}
$$

Theorem

- aff.hull $\left(V_{k}\right)=$ solutions for equalities over $W_{k} \cup W_{k-1} \cup \cdots \cup W_{1}$
- A basis \mathcal{B}_{k} for aff.hull $\left(V_{k}\right)$ contains n vectors at most
- $S \in \mathcal{F}_{k}$ iff S is a linear combination of the indicator vectors for \mathcal{B}_{k}

Computation Approaches

Succinct Linear Programs

Hardness Result

(P2) Computation Problems

- In compact games, two problems have to be faced:
(P1) Sets W and \mathcal{F} contain exponentially many elements, but we would like to avoid listing them explicitly
(P2) Translate LP (complexity) results to "succinct programs"

(P2) Computation Problems

Problem	Result
MEMBERSHIP	in Co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$

- In compact games, two problems have to be faced:
(P1) Sets W and \mathcal{F} contain exponentially many elements, but we would like to avoid listing them explicitly
(P2) Translate LP (complexity) results to "succinct programs"

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVALUECOMPUTATION	in F Δ_{2}^{P}
FEASIBLEVECTORCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{\mathbf{2}}^{P}$

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$

Trivial

- Given a vector \mathbf{x}, we can:
- Guess an index i
- Check that the i-th inequality is not satisfied by \mathbf{x}

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVALUECOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{\mathbf{2}}^{P}$

Complexity Results

Proof

- By Helly's theorem, we can solve the complementary problem in NP:
- Guess $\mathrm{n}+1$ inequalities
- Check that they are not satisfiable (in polynomial time)

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVALUECOMPUTATION	in F Δ_{2}^{P}
FEASIBLEVECTORCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$

Complexity Results

Proof Overview

(1) The dimension is $\mathbf{n}-\mathbf{k}$ at most, if there are at least \mathbf{k} linear independent implied equalities
(2) In order to check that the i-th inequality is an implied one, we can guess in NP a support set W (i), again by Helly's theorem:

- \mathbf{n} inequalities + the i-th inequality treated as strict
- $W(i)$ is not satisfiable, which can be checked in polynomial time
- Guess \mathbf{k} implied equalities plus their support sets
- Check that they are linear independent

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$
OPTIMALVALUECOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{\mathbf{2}}^{P}$
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{\mathbf{2}}^{P}$

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$

Proof

(1) Compute the dimension $\mathbf{n - k}$, with a binary search invoking an NP oracle
(2) Guess k implied equalities plus their support sets

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$
OPTIMALVALUECOMPUTATION	in F Δ_{2}^{P}
FEASIBLEVECTORCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$

Complexity Results

Routine

(1) Bfs can be represented with polynomially many bits
(2) LP induces a polytope and hence the optimum is achieved on some bfs.
(3) Perform a binary search over the range of the optimum solution:

- Add the current value as a constraint, and check satisfiability

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVALUECOMPUTATION	in F Δ_{2}^{P}
FEASIBLEVECTORCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{\mathbf{2}}^{P}$

Complexity Results

Routine

- LP induces a polytope
- Compute the lexicographically maximum bfs solution, by iterating over the various components, and treating each of them as an objective function to be optimized.

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in F Δ_{2}^{P}
OPTIMALVALUECOMPUTATION	in F Δ_{2}^{P}
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in F $\boldsymbol{\Delta}_{2}^{P}$

Complexity Results

Problem	Result
MEMBERSHIP	in co-NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_{2}^{P}$

Routine

(1) Compute the optimum value
(2) Define LP' as LP plus the constraint stating that the objective function must equal the optimum value
(3) Compute a feasible value for LP'

Putting It All Togheter

LP_{k}	$\int \min \epsilon_{k}$	$v: 2^{N} \mapsto \mathbb{R}$	Problem	Result
	$e(S, x)=\epsilon_{r}^{*} \quad \forall S \in W_{r}, r \in\{1, \ldots, k-1\}$		MEMBERSHIP	in co-NP
	$e(S, x) \leq \epsilon_{k} \quad \forall S \subset N, S \notin \mathcal{F}_{k-1}$		NonEmptiness	in co-NP
	$x \in X(\mathcal{G})$		Dimension	in NP
			AfFInEHULLCOMPUTATION	in $F \Delta_{2}^{P}$
	- $V_{r}=\left\{x \mid\left(x, \epsilon_{r}^{*}\right)\right.$ is an optimal solution to LPPr $\}$	aff.hull	OptimalValuecomputation	in $\mathrm{F} \Delta_{2}^{P}$
	- $W_{r}=\left\{S \subseteq N \mid e(S, x)=\epsilon_{r}^{*}\right.$, for every $\left.x \in V_{r}\right\}$		FeasibleVectorComputation	in $\mathrm{F} \Delta_{2}^{\text {P }}$
	- $\mathcal{F}_{k-1}=\left\{S \subseteq N \mid x(S)=y(S), \forall x, y \in V_{k-1}\right\}$		OptimalVectorComputation	in $\mathrm{F} \Delta_{2}^{P}$

M.P.S.

Compact Encoding
Algorithms in $\mathrm{F}^{\mathrm{P}}{ }_{2}$

- In compact games, two problems have to be faced:
(P1) Sets W and \mathcal{F} contain exponentially many elements, but we would like to avoid listing them explicitly
(P2) Translate LP (complexity) results to "succinct programs"

Putting It All Togheter

M.P.S. Compact Encoding

Algorithms in $\mathrm{F}^{\mathrm{P}}{ }_{2}$

Theorem

Computing the nucleolus is feasible in $\mathbf{F} \Delta_{2}^{\mathrm{P}}$. Thus, deciding whether an imputation is the nucleolus is feasible in Δ_{2}^{P}.

Computation Approaches

Succinct Linear Programs

Hardness Result
Further Solution Concepts

Checking Problem

Theorem

Deciding whether an imputation is the nucleolus is Δ_{2}^{P}-hard. Thus, it is Δ_{2}^{P}-complete.

Checking Problem

Theorem

Deciding whether an imputation is the nucleolus is Δ_{2}^{P}-hard. Thus, it is Δ_{2}^{P}-complete.

Proof (Reduction for Graph Games: The cost of individual rationality!)

- Deciding the truth value of the least significant variable in the lexicographically maximum satisfying assignment

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

$$
\alpha_{1}<\alpha_{2}<\alpha_{3}
$$

Overview of the Reduction

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

Overview of the Reduction

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

Overview of the Reduction

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

Overview of the Reduction

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

$$
\left\{\{p, \bar{q}\} \mid p \in N_{k} \backslash\left\{\alpha_{1}\right\} \wedge \bar{q} \in \bar{N}_{k}\right\}
$$

Overview of the Reduction

$$
\hat{\phi}=\left(\alpha_{1} \vee \neg \alpha_{2} \vee \alpha_{3}\right) \wedge\left(\neg \alpha_{1} \vee \alpha_{2} \vee \alpha_{3}\right)
$$

Core

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

Stable Sets

Thank you!

