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The Model

Players form coalitions

Each coalition is associated with a worth

A total worth has to be distributed 

Solution Concepts characterize outcomes in terms of

Fairness

Stability
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Arrange excess values in non-increasing order

[Schmeidler]
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Graph Games [Deng and Papadimitriou, 1994]

Computational issues of several solution 
concepts

The (pre)nucleolus can be computed in P

Cost allocation on trees [Megiddo, 1978]

Polynomial time algorithm

Flow games [Deng, Fang, and Sun, 2006]

Polynomial time algorithm on simple networks (unitary edge capacity)

NP-hard, in general

Weighted voting games [Elkind and Pasechnik, 2009]

Pseudopolynomial algorithm 
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cf. Mashler, Peleg, and Shapley, 1979

where:

[Kern and Paulusuma, 2003]



LP Approaches over Compact Games

In compact games, two problems have to be faced:

(P1) Sets      and      contain exponentially many elements,  
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs” 
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P
Given a vector x, we can:

Guess an index i

Check that the i-th inequality is not satisfied by x x

Trivial
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i i-th inequality

By Helly’s theorem, we can solve the complementary problem in NP:

Guess n+1 inequalities 

Check that they are not satisfiable (in polynomial time) 

Proof
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i i-th inequality

(1) The dimension is n-k at most, if there are at least k linear independent implied 
equalities

(2) In order to check that the i-th inequality is an implied one, 

we can guess in NP a support set W(i), again by Helly’s theorem:
n inequalities + the i-th inequality treated as strict 
W(i) is not satisfiable, which can be checked in polynomial time

Proof Overview

Guess k implied equalities plus their support sets

Check that they are linear independent
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i i-th inequality

P

(1) Compute the dimension n-k, with a binary  

search invoking an NP oracle

(2) Guess k implied equalities plus their 

support sets

Proof



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

(1) Bfs can be represented with polynomially many bits

(2) LP induces a polytope and hence the optimum is achieved on some bfs.

(3) Perform a binary search over the range of the optimum solution:
Add the current value as a constraint, and check satisfiability

Routine
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Complexity Results

i i-th inequality

LP induces a polytope

Compute the lexicographically maximum bfs solution, by iterating over the 
various components, and treating each of them as an objective function to be 
optimized.

Routine
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Complexity Results

i i-th inequality

(1) Compute the optimum value

(2) Define LP’ as LP plus the constraint stating that the objective function must 
equal the optimum value 

(3) Compute a feasible value for LP’ 

Routine
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Checking Problem



Checking Problem

1 < 2 < 3

Proof

Deciding the truth value of the least significant variable in the lexicographically 

maximum satisfying assignment

(Reduction for Graph Games: The cost of individual rationality!)
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Core

Kernel

Bargaining Set

Stable Sets




