Seminar on "Equilibrium Computation" Dagstuhl, 25-30 April 2010

Nucleolus Computation in Compact Coalitional Games

Gianluigi Greco, E. Malizia, L. Palopoli, and F. Scarcello

University of Calabria, Italy

"On the Complexity of Compact Coalitional Games", IJCAI'09

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle N, v \rangle, v : 2^N \mapsto \mathbb{R}$$

The Model

- Players form *coalitions*
- Each coalition is associated with a *worth*
- A total worth has to be distributed

$$\mathcal{G} = \langle \pmb{N}, \pmb{v}
angle, \, \pmb{v}: \pmb{2^N} \mapsto \mathbb{R}$$

Outcomes belong to the imputation set $X(\mathcal{G})$ 0

 $x \in X(\mathcal{G}) \begin{cases} \bullet \text{ Efficiency} \\ x(N) = v(N) \\ \bullet \text{ Individual Rationality} \\ x_i \ge v(\{i\}), \quad \forall i \in N \end{cases}$

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \pmb{N}, \pmb{v}
angle, \, \pmb{v} : \pmb{2^N} \mapsto \mathbb{R}$$

Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

How fairness/stability can be measured?

$$e(S,x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

How fairness/stability can be measured?

$$e(S, x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

How fairness/stability can be measured?

$$e(S, x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

$$x = (0,0,3) \longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 0 = 1$$

$$x = (1,2,0) \longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 3 = -2$$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

$$x = (1, 2, 0)$$
 $\theta(x) = (0, 0, -1, -1, -2, -2)$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

$$\begin{aligned} x^* &= (1,1,1) & \theta(x^*) = (-1,-1,-1,-1,-1,-1) \\ x &= (1,2,0) & \theta(x) = (0,0,-1,-1,-2,-2) \end{aligned}$$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

Arrange excess values in non-increasing order

Definition [Schmeidler]

The *nucleolus* $\mathcal{N}(\mathcal{G})$ of a game \mathcal{G} is the set $\mathcal{N}(\mathcal{G}) = \{x \in X(\mathcal{G}) \mid \nexists y \in X(\mathcal{G}) \text{ s.t. } \theta(y) \prec \theta(x)\}$

$$\begin{aligned} x^* &= (1, 1, 1) & \theta(x^*) &= (-1, -1, -1, -1, -1, -1) \\ x &= (1, 2, 0) & \theta(x) &= (0, 0, -1, -1, -2, -2) \end{aligned}$$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

- Graph Games [Deng and Papadimitriou, 1994]
 - Computational issues of several solution concepts
 - The (pre)nucleolus can be computed in P

$$x_i^* = \frac{1}{2} \sum_{j \neq i} w_{i,j}$$

- Graph Games [Deng and Papadimitriou, 1994]
 - Computational issues of several solution concepts
 - The (pre)nucleolus can be computed in P

$$X_i^* = \frac{1}{2} \sum_{j \neq i} W_{i,j}$$

- Cost allocation on trees [Megiddo, 1978]
 - Polynomial time algorithm
- Flow games [Deng, Fang, and Sun, 2006]
 - Polynomial time algorithm on simple networks (unitary edge capacity)
 - NP-hard, in general
- Weighted voting games [Elkind and Pasechnik, 2009]
 - Pseudopolynomial algorithm

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

$$\begin{split} & \text{LP}_{1} \begin{cases} \min \epsilon_{1} \\ e(S, x) \leq \epsilon_{1} \\ x \in X(\mathcal{G}) \end{cases} & \forall S \subset N, S \not\in W_{0} = \{ \varnothing \} \\ & x \in X(\mathcal{G}) \end{cases} \\ & \begin{cases} \min \epsilon_{2} \\ e(S, x) = \epsilon_{1}^{*} \\ e(S, x) \leq \epsilon_{2} \\ x \in X(\mathcal{G}) \end{cases} & \forall S \subset N, S \notin (W_{0} \cup W_{1}) \\ & x \in X(\mathcal{G}) \end{cases} \end{split}$$

where:

*V*₁ = {*x* | (*x*, *ϵ*^{*}₁) is an optimal solution to LP₁}
 *W*₁ = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ*^{*}₁, for every *x* ∈ *V*₁}

$$\begin{split} & \underset{LP_k}{\text{fmin } \epsilon_k} \\ e(S, x) = \epsilon_r^* \\ e(S, x) \leq \epsilon_k \\ x \in X(\mathcal{G}) \end{split} \quad \forall S \in W_r, r \in \{1, \dots, k-1\} \\ \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{k-1}) \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

N = 1, ..., *n*, *n* + 1, *n* + 2

$$\begin{split} & v(N) = n+2 \\ & v(\{i\}) = 1, \, i \in \{1, ..., n\} \\ & v(\{1, ..., n\}) = n \\ & v(\{n+1\}) = v(\{n+2\}) = 0 \\ & v(\{n+1, n+2\}) = 2 \\ & v(S) = -\infty, \, |\{n+1, n+2\} \cap S| \geq 1, \\ & |\{1, ..., n\} \cap S| \geq 1, \, S \neq N \end{split}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

N = 1, ..., *n*, *n* + 1, *n* + 2

$$\begin{split} & v(N) = n+2 \\ & v(\{i\}) = 1, \, i \in \{1, ..., n\} \\ & v(\{1, ..., n\}) = n \\ & v(\{n+1\}) = v(\{n+2\}) = 0 \\ & v(\{n+1, n+2\}) = 2 \\ & v(S) = -\infty, \, |\{n+1, n+2\} \cap S| \geq 1, \\ & |\{1, ..., n\} \cap S| \geq 1, \, S \neq N \end{split}$$

LP1

$$egin{aligned} S_1, S_2, ... &\subset \{1, ..., n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\begin{array}{c}
\epsilon_{1}^{*} = 0 \\
x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*}) \\
\vdots \\
min \epsilon_{1} \\
n - x(\{1, ..., n\}) \leq \epsilon_{1} \\
2 - x_{n+1} - x_{n+2} \leq \epsilon_{1} \\
x(\{1, ..., n\}) + x_{n+1} + x_{n+2} = n + 2 \\
x_{i} \geq 1, i \in \{1, ..., n\} \\
\vdots
\end{array}$$

N = 1, ..., n, n + 1, n + 2

v(N) = n + 2 $v(\{i\}) = 1, i \in \{1, ..., n\}$ $v(\{1,...,n\}) = n$ $v({n+1}) = v({n+2}) = 0$ $v(\{n+1, n+2\}) = 2$ $v(S) = -\infty, |\{n+1, n+2\} \cap S| \ge 1,$ $|\{1, ..., n\} \cap S| \ge 1, S \ne N$

$$\begin{array}{c} \epsilon_{1}^{*} = 0 \\ x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*}) \\ x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*}) \\ \hline \\ cess is constant \\ e(S_{i}, x^{*}) = v(S_{i}) - x^{*}(S_{i}) = -1 + 2^{-i} \end{array}$$

The excess is constan

N = 1, ..., n, n + 1, n + 2

 $\begin{array}{l} v(N) = n+2 \\ v(\{i\}) = 1, \, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) = n \\ v(\{n+1\}) = v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) = 2 \\ v(S) = -\infty, \, |\{n+1, n+2\} \cap S| \geq 1, \\ |\{1, ..., n\} \cap S| \geq 1, \, S \neq N \end{array}$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\epsilon_{1}^{*} = 0$$

$$x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*})$$

$$x^{*}(S_{1}) = x^{*}(S_{2}) = -1 + 2^{-i}$$

The excess is constant

$$e(S_i, x^*) = v(S_i) - x^*(S_i) = -1 + 2^-$$

 $\begin{bmatrix} e(S_i, x^*) \le \epsilon_2 \\ \epsilon_2^* = -1 + 2^{-1} \end{bmatrix}$

N = 1, ..., *n*, *n* + 1, *n* + 2

$$\begin{split} v(N) &= n+2 \\ v(\{i\}) &= 1, \, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) &= n \\ v(\{n+1\}) &= v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) &= 2 \\ v(S) &= -\infty, \, |\{n+1, n+2\} \cap S| \geq 1, \\ |\{1, ..., n\} \cap S| \geq 1, \, S \neq N \end{split}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\epsilon_1^* = 0$$

$$x^* = (1, ..., 1, x_{n+1}^*, x_{n+2}^*)$$

The excess is constant

$$e(S_i, x^*) = v(S_i) - x^*(S_i) = -1 + 2^{-i}$$

$$e(S_i, x^*) \leq \epsilon_3$$

 $\epsilon_2^* = -1 + 2^{-1} > \epsilon_3^* = -1 + 2^{-2}, ... >$

$$\begin{split} & \underset{LP_k}{\text{fmin } \epsilon_k} \\ e(S, x) = \epsilon_r^* \\ e(S, x) \leq \epsilon_k \\ x \in X(\mathcal{G}) \end{split} \quad \forall S \in W_r, r \in \{1, \dots, k-1\} \\ \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{k-1}) \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

$$\begin{split} & \underset{LP_k}{\mathsf{min}} \epsilon_k \\ & e(S, x) = \epsilon_r^* \\ & e(S, x) \leq \epsilon_k \\ & x \in X(\mathcal{G}) \end{split} \quad \forall S \in W_r, r \in \{1, \dots, k-1\} \\ & \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{k-1}) \end{split}$$

where:

V_r = {x | (x, e_r^{*}) is an optimal solution to LP_r}
W_r = {S ⊆ N | e(S, x) = e_r^{*}, for every x ∈ V_r}

Theorem

The algorithm performs $\Omega(2^n)$ steps, in some cases.

cf. Mashler, Peleg, and Shapley, 1979

$$\begin{split} & \left\{ \begin{array}{l} \min \epsilon_k \\ e(S,x) = \epsilon_r^* \\ e(S,x) \leq \epsilon_k \\ x \in X(\mathcal{G}) \end{array} \right. \forall S \in W_r, r \in \{1,\ldots,k-1\} \\ \forall S \subset N, S \not\in (W_0 \cup \cdots \cup W_{k-1}) \\ x \in X(\mathcal{G}) \end{array} \end{split}$$

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_r}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

cf. Mashler, Peleg, and Shapley, 1979

$$\begin{split} & \underset{L \mathbb{P}_k}{\mathsf{min} \, \epsilon_k} \\ & e(S, x) = \epsilon_r^* \\ & e(S, x) \leq \epsilon_k \\ & x \in X(\mathcal{G}) \end{split} \quad \forall S \in W_r, r \in \{1, \dots, k-1\} \\ & \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{K-1}) \\ & x \in X(\mathcal{G}) \end{split}$$

where:

V_r = {x | (x, e_r^{*}) is an optimal solution to LP_r}
W_r = {S ⊆ N | e(S, x) = e_r^{*}, for every x ∈ V_r}

 $\{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1}\}$

cf. Mashler, Peleg, and Shapley, 1979

$$\begin{split} & \underset{LP_k}{\mathsf{fin}} \overbrace{\substack{\mathsf{e}(S,x) = \epsilon_r^* \\ \mathsf{e}(S,x) \leq \epsilon_k}}_{LP_k} & \forall S \in W_r, r \in \{1, \dots, k-1\} \\ & \underset{\mathsf{e}(S,x) \leq \epsilon_k \\ x \in \mathsf{X}(\mathcal{G})} & \forall S \subset \mathsf{N}, S \not\in (W_0 \cup \cup W_{\mathsf{K}-1}) \\ & \underset{\mathsf{K} \in \mathsf{X}(\mathcal{G})}{\mathsf{fin}} \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

$$\{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1}\}$$

[Kern and Paulusuma, 2003]

LP Approaches over Compact Games

$$\begin{split} & \underset{\mathbb{LP}_{k}}{\text{IP}_{k}} \begin{cases} \min \epsilon_{k} \\ e(S,x) = \epsilon_{r}^{*} & \forall S \in W_{r}, r \in \{1,\ldots,k-1\} \\ e(S,x) \leq \epsilon_{k} & \forall S \subset N, S \notin \mathcal{F}_{k-1} \\ x \in X(\mathcal{G}) \\ \text{where:} \\ \bullet \ V_{r} = \{x \mid (x,\epsilon_{r}^{*}) \text{ is an optimal solution to } \mathbb{LP}_{r}\} \\ \bullet \ W_{r} = \{S \subseteq N \mid e(S,x) = \epsilon_{r}^{*}, \text{ for every } x \in V_{r}\} \\ \bullet \ \mathcal{F}_{k-1} = \{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1}\} \end{cases} \end{split}$$

In compact games, two problems have to be faced:

 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly
 (P2) Translate LP (complexity) results to "succinct programs"

Theorem

• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$

 $\{S \subseteq N \mid e(S, x) = \epsilon_k^*, \text{ for every } x \in V_k\}$

equalities

Implied equalities

Theorem

• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$

• A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most

Theorem

- aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$
- A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most
- $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k

Theorem

- aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$
- A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most
- $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k

Theorem

- aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$
- A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most
- $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

(P2) Computation Problems

In compact games, two problems have to be faced: (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to "succinct programs"

(P2) Computation Problems

Problem	Result
Membership	in co-NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$
OptimalValueComputation	in $F\Delta_2^P$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

In compact games, two problems have to be faced:
 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to "succinct programs"

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in FΔ ^P ₂

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Trivial

- Given a vector **x**, we can:
 - Guess an index *i*
 - Check that the *i-th inequality* is not satisfied by **x**

Problem	Result
Membership	in co- NP
NonEmptiness	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

Problem	Result
Membership	in co- NP
NonEmptiness	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Proof

By **Helly's theorem**, we can solve the complementary problem in **NP**:

- Guess n+1 inequalities
- Check that they are not satisfiable (in polynomial time)

Problem	Result
Membership	in co-NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OptimalVectorComputation	in $F\Delta_2^{\overline{P}}$

Proof Overview

- (1) The dimension is n-k at most, if there are at least k linear independent implied equalities
- (2) In order to check that the *i-th* inequality is an implied one,

we can guess in **NP** a **support set** W(i), again by Helly's theorem:

- **n** inequalities + the *i-th* inequality treated as strict
- W(i) is not satisfiable, which can be checked in polynomial time
- Guess k implied equalities plus their support sets
- Check that they are linear independent

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in FΔ ^P ₂
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\mathbf{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co-NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in FΔ ^P ₂
FEASIBLEVECTORCOMPUTATION	in FΔ ^P ₂
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Proof

- (1) Compute the dimension **n-k**, with a *binary search* invoking an **NP** oracle
- (2) Guess k implied equalities plus their support sets

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in FΔ ^P ₂
OptimalValueComputation	in FΔ ^P ₂
FEASIBLEVECTORCOMPUTATION	in FΔ ^P ₂
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Routine

- (1) Bfs can be represented with polynomially many bits
- (2) LP induces a polytope and hence the optimum is achieved on some bfs.
- (3) Perform a *binary search* over the range of the optimum solution:
 - Add the current value as a constraint, and check satisfiability

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVECTORCOMPUTATION	in FΔ ^P ₂

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in F $\Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$

Routine

- LP induces a polytope
- Compute the lexicographically maximum bfs solution, by iterating over the various components, and treating each of them as an objective function to be optimized.

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Routine

- (1) Compute the optimum value
- (2) Define LP' as LP plus the constraint stating that the objective function must equal the optimum value
- (3) Compute a feasible value for LP'

Putting It All Togheter

In compact games, two problems have to be faced:
 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly
 (P2) Translate LP (complexity) results to "succinct programs"

Putting It All Togheter

Theorem

Computing the nucleolus is feasible in $F\Delta_2^P$. Thus, deciding whether an imputation is the nucleolus is feasible in Δ_2^P .

Computation Approaches

Succinct Linear Programs

Hardness Result

Further Solution Concepts

Theorem

Deciding whether an imputation is the nucleolus is Δ_2^P -hard. Thus, it is Δ_2^P -complete.

Theorem

Deciding whether an imputation is the nucleolus is Δ_2^P -hard. Thus, it is Δ_2^P -complete.

Proof (Reduction for Graph Games: *The cost of individual rationality!*)

 Deciding the truth value of the least significant variable in the lexicographically maximum satisfying assignment

$$\hat{\phi} = (\alpha_1 \vee \neg \alpha_2 \vee \alpha_3) \wedge (\neg \alpha_1 \vee \alpha_2 \vee \alpha_3)$$

 $\alpha_1 < \alpha_2 < \alpha_3$

Further Solution Concepts

