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@ Players form coalitions
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@ Outcomes belong to the imputation set X (G)

e Efficiency

x(N) = v(N)
x € X(G) <

@ Individual Rationality

xi>v({i}), VieN




The Model _

@ Players form coalitions
@ Each coalition is associated with a worth
@ A total worth has to be distributed

G=(N,v),v:2N —R
[ ]

@ Solution Concepts characterize outcomes in terms of
@ Fairness
¢ Stability
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@ How fairness/stability can be measured?
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[ Excess... _

@ How fairness/stability can be measured?

~ ™
e(S,x) =v(S) —x(S)

@ The excess is a measure of the dissatisfaction of S

X=(0,0,3) === o({1,2},x) =Vv({1,2}) — (X1 +X2)=1-0=1
[ X =(1,2,0) == o({1,2},x) =v({1,2}) — (X1 + X2) = 1 —3=—2]

v({1}) = v({2}) = v({3}) =0
v({1.2})) = v({1.3}) = v({2,3}) =1
v({1.2,3}) =3
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...and the Nucleolus _

@ Arrange excess values in non-increasing order

[X*:(17171) Q(X*):(_17_17_17_17_17_1) ]
x = (1,2,0) 9(x) = (0,0, —1,—-1,-2, —2)

v({1}) = v({2}) = v({3}) =0
v({1.2})) = v({1,3}) = v({2,3}) =1
v({1.2,3}) =3



[ ...and the Nucleolus _

@ Arrange excess values in non-increasing order

Definition [Schmeidler]

The nucleolus ¥ (G) of a game G is the set
A(G) = {x € X(G) | Fy € X(G) s.t. O(y) < 0(x)}

[x*:(1,1,1) O(x*) = (=1, -1,—1, -1, -1, 1) ]
x—(1.2.0) 9(x) = (0,0, —1,-1,-2 —2)
v({1}) = v({2}) = v({3}) =0
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v({1,2,4}) =7



Compact Games _

@ Graph Games [Deng and Papadimitriou, 1994]

@ Computational issues of several solution
concepts

@ The (pre)nucleolus can be computed in P

x 1 -
X:" o § Z]#f W’:J

v({1,2,4}) =7



@ Graph Games [Deng and Papadimitriou, 1994]

@ Computational issues of several solution
concepts

@ The (pre)nucleolus can be computed in P

x 1 o
Xi =3 Zj;éf Wi,

@ Cost allocation on trees [Megiddo, 1978]
@ Polynomial time algorithm

@ Flow games [Deng, Fang, and Sun, 2006]

@ Polynomial time algorithm on simple networks (unitary edge capacity)
@ NP-hard, in general

@ Weighted voting games [Elkind and Pasechnik, 2009]
@ Pseudopolynomial algorithm
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Kopelowitz, 1967

any
min €4

e(S, x) < ¢4 VSCN,S¢ W, ={a}
x € X(G)
.

LP1




Kopelowitz, 1967 _

f

min €4
rp,| €(S:X) = VSCN,S¢ W, = {2}
x € X(G)
.
"min e
e(S, x) = € vSe W,
e(S,x) < e VSc N, S¢ (WoU W)
LP2l x e X(G)
where:
o Vj = {x | (x,€]) is an optimal solution to LP4 }
o Wy ={SCN|e(S x)=c¢j, forevery x € Vi}

\~



Kopelowitz, 1967 _

LPg

min e

e(S,x) =€ vSe W,,re{l,....k—1}
e(S.x)<ex  VYSCN,.SE(WoU---U Wy_4)
x € X(G)

where:
o Vi, ={x| (x,¢€) is an optimal solution to Lp,}

o W, ={SCN|e(S x)=c¢;, forevery x € V,}

-




An Example Computatio_

N=1,..nn+1.n+2

v({i})=1,i€{1....n} v(Si) = |Si| —1+27
v({1....n})=n

vi{n+1}) =v({n+2})=0
vi{n+1,n+2})=2

V(S) = —oco, {n+1,n+2}NnS| >1,
{1,...n}NS|>1,S # N)

fv(N):n—|-2 h [ S1,82,... C{1,..,n} [Sj| > 1 ]

\_




An Example Computation _

N=1,..nn+1.n+2

(V(N) =ni2 h [ S1,5,,...Cc{1,...n} |S,‘ > 1 ]
v({i}) =1, i€ {1....n} W(S) = |Si|—1+2
v({1....n})=n
vi{n+1}) =v({n+2})=0 F 0
v({n+1,n+2}) =2 “ =

V(S):—OO, |{n+1,n+2}ﬁ8| > 1, X* — (13"'313X;+13X;—|—2)

1

{1...n}NS| =1, 8#N

" min €1

n—x({1,....n}) < ey

LPq 2 — Xpy1 — Xpg2 < €4

X({1, ... n}) + Xn11 + Xpj2=n+2
Xi>1,1 € {1,...,[7}

. ;
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(n L
{(n+1,n+2})=2 . “ = . ;
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y {1, NS 21, S#N | 1

The excess is constant

e(Si, x*) = v(S) = x*(S)) = —1+ 2"

e(Si, x*) < €5
e =—1+2""



An Example Computation _

N=1,..nn+1.n+2

(VN =n+2 h 81,82,...C{1,...,n} |Sf‘>1
{ v(Si)=1|Si|—-1+27

(n L
{(n+1,n+2})=2 . “ = . ;
V(S):—OO,|{H—|—1,H—I—2}QS|21, X :(13"'311Xn—|—1axn—|—2)

y {1, NS 21, S#N | 1

The excess is constant

e(Si, x*) = v(S) = x*(S)) = —1+ 2"

e(Si, x*) < €3
€5 = —1 o1 > 63 = —1 —|-2_2,... >




Kopelowitz, 1967 _

LPg

min e

e(S,x) =€ vSe W,,re{l,....k—1}
e(S.x)<ex  VYSCN,.SE(WoU---U Wy_4)
x € X(G)

where:
o Vi, ={x| (x,¢€) is an optimal solution to Lp,}

o W, ={SCN|e(S x)=c¢;, forevery x € V,}
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Kopelowitz, 1967 I

min e
e(S,x) =¢ vSe W, re{l,....k—1}
e(S, x) < ex VSCN,S&(WyU---U W 4)

LP gk
x € X(G)
where:
o V, ={x| (x,¢r) is an optimal solution to L.P,}
_© W, ={SCN|e(S x)=¢;, forevery x € V,}

The algorithm performs Q(2™) steps, in some cases. '




cf. Mashler, Peleg, and Shﬁﬂ_

LP gk

-

min e

e(S,x) =¢ vSe W, re{l,....k—1}
e(S, x) < ek VSCN,SE&(WoU---UWy_1)
x € X(G)

where:

o Vi, ={x| (x,¢€) is an optimal solution to Lp,}
o W, ={SCN]|e(S x)=c¢;, forevery x € V;}



[ cf. Mashler, Peleg, and Shapley, 1979

LP gk

min e
e(S,x) = ¢ vSe Wrre{l,....k—1}
e(S, x) < e VSCN,S¢

x € X(G)
where:
o Vi, ={x| (x,¢€) is an optimal solution to Lp,}
. © W, ={S CN|e(S x)=c¢;, forevery x € V,}

(SCNIX(S)=y(S)hvxy € Vi) |




[ cf. Mashler, Peleg, and Shapley; 1978

min e
e(S,x) = ¢ vSe Wrre{l,....k—1}
e(S, x) < e VSCN,S¢

LP gk
x € X(G)
where:
o V, ={x| (x,¢r) is an optimal solution to L.P,}
_© W, ={SCN|e(S x)=¢;, forevery x € V,}

(SCNIX(S)=y(S)hvxy € Vi) |

[Kern and Paulusuma, 2003]



[ LP Approaches over Compa

"min e
e(S,x)=¢ vSe W,re{l,... k—1}
e(S, x) < ¢ VSCN,S¢& Fy_1
x € X(G)

where!
o Vy = {x| (x,¢) is an optimal solution to Lp,}
o W, ={SCN|e(S,x)=c¢, forevery x € V,}
L Fk1={SCN|X(S)=y(S).vx.y € Vi1}

LPgk

@ In compact games, two problems have to be faced:

(P1) Sets W and ‘F contain exponentially many elements,
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs”
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@ aff.hull( Vi) = solutions for equalities over W, U Wy_4 U --- U W,
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[ (P1): A Convenient Represen

v:2N — R
—I.— )y [P 1
aff.hull

i i-th inequality

— |LP

@ aff.hull( Vi) = solutions for equalities over W, U Wy_4 U --- U W,

@ A basis By for aff .hull( Vi) contains n vectors at most

@ S c Fy iff S is a linear combination of the indicator vectors for Bkj
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(P2) Computation Proble

@ In compact games, two problems have to be faced:

(P1) Sets W and ‘F contain exponentially many elements,
but we would like to avoid listing them explicitly

[ (P2) Translate LP (complexity) results to “succinct programs” ]




[ (P2) Computation Problems _

Problem Result

i i-th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FAS

OPTIMALVALUECOMPUTATION in FAY

FEASIBLEVECTORCOMPUTATION || in FAS

OPTIMALVECTORCOMPUTATION in FAY

@ In compact games, two problems have to be faced:

(P1) Sets W and ‘F contain exponentially many elements,
but we would like to avoid listing them explicitly

[ (P2) Translate LP (complexity) results to “succinct programs” ]




Complexity Results

i-th inequality
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Problem Result
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in FAY




[ Complexity Results _

Problem Result
i ith inequality MEMBERSHIP in co-NP
— [P > NONEMPTINESS in co-NP
DIMENSION in NP
AFFINEHULLCOMPUTATION in FAY
OPTIMALVALUECOMPUTATION in FAS
FEASIBLEVECTORCOMPUTATION | in FAS
OPTIMALVECTORCOMPUTATION in FAY
Trivial /
~_/
_ / N
@ Given a vector x, we can: <l
@ Guess an index i P /
@ Check that the i-th inequality is not satisfied by x X /<>
d




Complexity Results

i-th inequality

»

Problem Result
MEMBERSHIP iIn co-NP
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[ Complexity Results _

Problem Result

i i-th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FAS

OPTIMALVALUECOMPUTATION in FAY

FEASIBLEVECTORCOMPUTATION || in FAS

OPTIMALVECTORCOMPUTATION in FAY

@ By Helly’s theorem, we can solve the complementary problem in NP:
@ Guess n+1 inequalities
@ Check that they are not satisfiable (in polynomial time)



Complexity Results

i-th inequality
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Problem Result
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[ Complexity Results _

Problem Result

i i-th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FAS

OPTIMALVALUECOMPUTATION in FAY

FEASIBLEVECTORCOMPUTATION || in FAS

OPTIMALVECTORCOMPUTATION in FAY

Proof Overview

(1) The dimension is n-k at most, if there are at least k linear independent implied
equalities

(2) In order to check that the i-th inequality is an implied one,

we can guess in NP a support set W(i), again by Helly’s theorem:
@ n inequalities + the i-th inequality treated as strict
e W(i) is not satisfiable, which can be checked in polynomial time

@ Guess k implied equalities plus their support sets

@ Check that they are linear independent



Complexity Results

i-th inequality

»

Problem Result
MEMBERSHIP in co-NP
NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION Ig FA’;
OPTIMALVALUECOMPUTATION in FA’Z’
FEASIBLEVECTORCOMPUTATION In FA’;

OPTIMALVECTORCOMPUTATION

in FAY




“Complexity Results R

Problem Result
i thinequality MEMBERSHIP in co-NP
— [P > NONEMPTINESS in co-NP
DIMENSION in NP
AFFINEHULLCOMPUTATION in FA,
OPTIMALVALUECOMPUTATION in FA,
FEASIBLEVECTORCOMPUTATION in FAf.ZJ
OPTIMALVECTORCOMPUTATION in FAY
Proof /
(1) Compute the dimension n-k, with a binary //\\//
search invoking an NP oracle £ o
(2) Guess k implied equalities plus their K
support sets >
d




Complexity Results

i-th inequality

»

OPTIMALVECTORCOMPUTATION

Problem Result

MEMBERSHIP in co-NP

NONEMPTINESS in co-NP
DIMENSION in NP
AFFINEHULLCOMPUTATION in FAY

|| OPTIMALVALUECOMPUTATION in FAY
[ FEASIBLEVECTORCOMPUTATION || in FAY

in FAY




[ Complexity Results _

Problem Result

i -th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FAS

|| OPTIMALVALUECOMPUTATION in FAY

[ FEASIBLEVECTORCOMPUTATION || in FAY

OPTIMALVECTORCOMPUTATION in FAY

Routine

(1) Bfs can be represented with polynomially many bits
(2) LP induces a polytope and hence the optimum is achieved on some bfs.

(3) Perform a binary search over the range of the optimum solution:
@ Add the current value as a constraint, and check satisfiability



Complexity Results

i-th inequality

»

Problem Result
MEMBERSHIP in co-NP
NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION N FA{Z’
OPTIMALVALUECOMPUTATION in FA2P
FEASIBLEVECTORCOMPUTATION Ig FA’;

OPTIMALVECTORCOMPUTATION

in FAZF
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Problem Result

i th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FAY

OPTIMALVALUECOMPUTATION in FAY

FEASIBLEVECTORCOMPUTATION || in FAS

OPTIMALVECTORCOMPUTATION || in FAY

Routine

LP induces a polytope

Compute the lexicographically maximum bfs solution, by iterating over the
various components, and treating each of them as an objective function to be
optimized.



Complexity Results

i-th inequality

»

Problem Result
MEMBERSHIP in co-NP
NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION N FAE
OPTIMALVALUECOMPUTATION in FA’Z’
FEASIBLEVECTORCOMPUTATION N FA’;

OPTIMALVECTORCOMPUTATION

: P
in FA2




[ Complexity Results _

Problem Result

i i-th inequality MEMBERSHIP in co-NP

— [P > NONEMPTINESS in co-NP
DIMENSION in NP

AFFINEHULLCOMPUTATION in FA§

OPTIMALVALUECOMPUTATION in FAf?’

FEASIBLEVECTORCOMPUTATION || in FA’;

OPTIMALVECTORCOMPUTATION in FA’2°

Routine

(1) Compute the optimum value

(2) Define LP’ as LP plus the constraint stating that the objective function must
equal the optimum value

(3) Compute a feasible value for LP’



Putting It All Togheter

("min ¢, Problem Result
e(S.x) =¢; vSe Wrre{1,..., kK—1} MEMBERSHIP in co-NP
e(S, x) < ek VYSc N.S¢ Fr_q v -oN SR NONEMPTINESS in co-NP

BPRl € X(Q) DIMENSION in NP
) + w—- LD 1 AFFINEHULLCOMPUTATION in FAY
wnere: . P
o Vi = {x| (x,€;) is an optimal solution to Lp,} aff.hull OPTIMALVALUECOMPUTATION In FA%
o W, ={SCN|eS x)=e, forevery x € V,} (F)EASIBLI?/VECTORCCOMPUTATION in IEA%
| o Fe1={SCN|X(S)=y(S).¥x.y € Vi_1} PTIMALVECTORCOMPUTATION in FAS
| / J | J
. 28 Y Y
M.P.S. Compact Encoding Algorithms in FAF,

@ In compact games, two problems have to be faced:

(P1) Sets W and ‘F contain exponentially many elements,
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs”



Putting It All Togheter

("min ¢, Problem Result
e(S.x) =¢; vSeW,re{l,....,k—1} MEMBERSHIP in co-NP
e(S, x) < ek VYSc N.S¢ Fr_q v -oN SR NONEMPTINESS in co-NP

BPRl € X(9) DIMENSION in NP
) + w—- LD 1 AFFINEHULLCOMPUTATION in FAY
wnere: . P
o Vi = {x| (x,€;) is an optimal solution to Lp,} aff.hull OPTIMALVALUECOMPUTATION In FA%
o W, = {SCN|e(S x)= e, forevery x € V,} FEASIBLEVECTORCOMPUTATION || in FA%
| o F1={SCTN|x(S)=y(S),7x.y € Vi_1} OPTIMALVECTORCOMPUTATION in FAS
— / U _J | J
Y Y Y
M.P.S. Compact Encoding Algorithms in FAF,

Computing the nucleolus is feasible in FAY. Thus, deciding
whether an imputation is the nucleolus is feasible in AY.
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[ Checking Problem _

Deciding whether an imputation is the nucleolus is A% -hard.
Thus, it is AY -complete.




[ Checking Problem _

Deciding whether an imputation is the nucleolus is A% -hard.
Thus, it is AY -complete.

Proof (Reduction for Graph Games: The cost of individual rationality!)

@ Deciding the truth value of the least significant variable in the lexicographically
maximum satisfying assignment

[Qg: ((11 \/—I(sz\/afg)/\(ﬁ()m \/042\/(){3)]

oy < 0Oy < O3



[ Overview of the Reduction _

~ 3
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~ 3
[(;5:(0{1 \/ﬁaz\/ag,)/\(—lOM \/042\/0{3)J

{{r,q} | p € Ni. \ {1} Ag € Ny}

N,

---- penalty edges
= normalizer edges
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Core

Kernel

Bargaining Set

VoE
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Thank you!




